
e> Pergamon
laf<1fTIUIJU... Spu-m.. Vol. 20. No. 4, pp. 30S-316, 1995

Copyright.@) 1993 Ehevier Science Ltd
0306-4379(95)00016-X Printed in Great Britaa. AD rights retiene<1

0306-4319/93 '9.50 + 0.00

GUIDING SCHEMA INTEGRATION BY BEHAVIOURAL INFORMATION

CHRI5TIAAN THIEME AND ARNO SIEBES

CWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

(Reca-1. Aagrut 199,f; in Jirw.l ret!Ued form. 10 April 1995)

Ablftrac:t - This paper preaents u approach to schema integration, where schemas are restruc­
tured using schema tramfonnations and 8Chemaa are merged using join opera.tars. The novelty of
the approach is that behavioural information is uaed to guide schema restructuring as well as schema
merging.

Key wonll: Schema Integration, Behaviour, Object Oriented Da.tabaBes

I. INTRODUCTION

Schema integration is an important and non-trivial task in data.base design. It occurs when
a number of dift"erent user views, developed for a. new database system, or a number of existing
data.base schemas must be integrated into a global., unified schema. As schema integration is a
difficult task, methods to support the designer with this task are essential. In [6J, a framework for
comparing integration methods is given. The framework identifies four steps. In the first step, the
preintegra.tion step, an integration strategy is chosen and additional information on the schemas
is gathered. Subsequently, the schemas are analysed and compared to find similarities/conflicts
among the schemas. In the conforming step, the conflicts found in the comparison step have to be
resolve.d. Fina.lly, in the last step, the schemas are merged by superimposition and the resulting
schema is analysed and restructured if necessary.

For our purpose, the main characteristic of an integration method is: which similarities/conflicts
are detected and how are conflicts resolved? A number of integra.tion methods use assertions
among different component schemas to compare attributes and entity types. In {l 7J, interschema
assertions, names, and types are used to compare object types. In 115], schemas are merged
using schema operators and assertions among entity types and attributes in different schemas.
And in [13], attribute assertions (e.g., Irey/non-key and lower/upper bounds} are used to compare
attributes and entity types. However, the assertions must be supplied by the designer and the
resolution of conflicts depends heavily on the common sense of the designer. Other methods
use schema. transformations to resolve structural conflicts. In f8J, structural transformations are
defined to integrate compatible structures. In [16], a number of schema transformations {e.g., join
and meet) are proposed to restructure schemas. And in [5], transformations between attributes,
entity types, and relationship types are used to resolve type confticts. However, only the last one
gives a heuristic {viz., concept likeness/unlikeness) for applying the tra.nsforn1ations. Finally, a.
number of recent methods use more specific information on semanticaI properties of attributes
and entity types to detect similarities and conflicts. In [18, 23], attribute assertions are used to
define relationships between a.n attribute on one hand and a semantic point or a set of concepts
on the other hand. Again, the assertions must be supplied by the designer. In fl9], a database
meta.dictionary is used to define a semantic domain for each attribute. And in [9J, a terminological
knowledge base containing information on negative and positive associations between terms and
information on specialisation of terms is used to compare entity types.

This pa.per presents a. new approach to schema. integration, based on schema transformations
and the approach ta.ken in [20, 21), where classes are compared by structure and by behaviour.
The approach consist of two steps. First, component schemas a.re restructurt!d using schema
transformations, and syntactical properties of methods a.re used to guide the restructuring proc('.ss.
Subsequently, the component schemas are merged using join operators, a.nd semantical properties

305

306 c. TlnEMB AND A. SIB88S

of methods are used to guide the merging process. More details on the approach are given in [22}.
There is, as far as the authors know, no other approach that uses methods to compare attributes.
For sake of completeness, it should be mentioned tha.t there is an approach to schema evolution
that analyses methods ([7]), not to compare attributes, but to solve non-legitimate overriding of
methods.

Since behavioural information plays an important role in our method, we have chosen an object­
oriented model as our vehicle. In principle, the approach can also be used in a relational or E-R
setting, where the behavioural information is hidden in the applications. In practice, however,
extracting such information from applications will be much more difficult than extracting it from
the object-oriented schema.

Finally, the theoretical basis of our approach is invariant with respect to renaming of classes,
attributes and methods. This means that our approach is supplementary to an approach that uses
names to find similarities, such as a lexicon-based approach.

The outline of this paper is as follows. In the next section, we give a. brief overview and formal­
isation of our data model. In Section 3, we define a number of well-known type transformations
and extend them to be applicable to recursive types as well. Furthermore, we show how these type
transformations induce schema. transformations. In Section 4, we show how methods can be used
to guide schema restructuring and give a heuristic algorithm to restructure and merge schemas.
In the last section, we sum.ma.rise and give some directions for further research..

2. DATABASESCHEMAS

In this section, we introduce a. subset of the data.base schemas found in object-oriented data.base
languages such a.s Galileo [2], Goblin [12], 0 2 [14], and TM/FM [4].

Informally, an object-oriented database schema is a. a cl.ass hierarchy, i.e., a set of classes
related by a subclass relation. A class has a name, a set of supercla.sses, a set of attributes, a set
of constraints, and a set of update and query methods.

Definition 1 {Class h1erarchies) First, five disjoint. sets are postulated: a. set CN of class
names, a set AN of attribute names, a set MN of method names, a set L of labels, and a set
Cons of basic consta.nts (i.e., 'integer', 'rational', and 'string' constants). The sets a.re generated
by the nonterminals CN, AN, MN, L, and Cons, respectively. Class hierarchies a.re the sentences of
the following BNF-gramma.r, where the plus sign(+) denotes a finite, nonempty repetition, square
brackets ([n denote an option, and the vertical bar (I) denotes a choice:

Hierarchy
Class

Att
Type
BasicType
SetType
RerordType
F'ieldList
Field
Key
KeyAtt
Meth

Par List
Par
Result

.. _
··-
··-.. -
··-.. -
··-.. -
.. -
··-.. -
.. -
.. -
.. -

Class+
'Class' CN ['Isa' CN+]
['Attributes' Att+]
I 'Constraints' Key+ }
['Methods' Meth+ J
'Endclass'
AN':' Type
Ba.sicType I SetType I RecordType I CN
'integer' l 'rational' I 'string'
'{'Type'}'
'<' FieldList '>'
Field I Field ',' FieldList
L ':'Type
keyKeyAtt+
AN I KeyAtt '.' L
MN ·c· [ParList 1 ') =' AsnList I
MN'(' { ParList) -+'Result')=' AsnLisi
Par I Par ',' ParList
L ':' BasicType
L ':'Type

AsnList .. -
Assign .. -
Dest .. -
Source .. -

Term .. -
ActParList .. -

Object Oriented Schema. Integration

Assign I Assign ';' AsnList
Dest ':=' Source I 'insert(' Source ','Dest ')'
L I AN I L '.' Dest I AN '.' Dest
'self' I Term I Term'+' Source I Term'-' Source I
Term 'x' Source I Term'+' Source I 'new(' CN ')'I
Dest '.' MN '(' ActPa.rList ')'
Dest I Cons
Term I Term ',' ActParList

307

A dass is well-defined if it satisfies four conditions. The first condition is that the Isa
rel.ation is acyclic, and classes h.ave a unique name and only refer to classes in the class hierarchy.

second is that attributes havf• a name within their and are well-typed, The third
is that keys must be well-denned. The fourth is that methods haNe a unique name within their
ci<JSs and a.re well-typed.

Informally, the set of all attributes of a class consists of both the new and inherited attributes.

Definition 2 (Attributes) Let Ji be a dass hierarchy satisfying the first condition for well­
deiined da.ss hierarchies. We abbreviate every dass in H to a. 5-tuple {c,S,.4,K,M), where c is
the name of the class, S is the set of (names of) superdasses, A is the set of new attributes, K
is the set of new keys, and M is the set of new methods. Now iet C = (c, S, A, K, M) be an
ahhreviated da.<is in H. The name of C is denoted by name(C) nnd the set of aH attributes of C,
denoted by atts(C), is defined as:

atts(C) =Au {a: TI 3C' E H: [name(C1) ES/\ a: TE atts(C1) /\ 'Va1 : T' E A[a :f. a'11}.

Since we require that the Isa relation is acyclic, atts is weH-defined,

Every class in a class hierarchy has an underlying type, which describes the structure of the dass,
i.e., the structure of the objects in its extensions (cf. TM/FM f4J). The underlying type of a class
is an aggregation of its attributes, where recursive types f3J are used to cope with attributes that
refer to dasses,

Definition 3 (Underlying types) First, postulate a new type 'oid', whose extension is an enu­
merable set of object identifiers. Let H be a class hierarchy satisfying the first condition, C be :a
class in H, and c be the name of C. The underlying type of class C, denoted by type(C), is defined
as:

type(C) = r(c,0)

where

r(d, V) =µ.d.< id: oid,a1 : r(Ti, VU {d}), · · · ,a1:: r(Tk, VU {d}) :>
if d ~ V and 3D E H[name{D) = dA atts(D) = {a1 : Ti.··· ,a,.: T.1:}],

r{ d, V) = d if d E V,
r(B, V) = B if BE {integer,rational,string},
r({U}, V) = {r(U, V)},
r(< 11 : Ui,,. ·, ln : U.,, >, V) = < l1 : r(U1, V), · · ·, l.,, : r(U,., V) >.

Set V contains the names of the classes for which a (recursive) type is being constructed as part
of the construction of the underlying type of class C. If V contains d, then r(d, V) = d indicates
a repetition of the recursive type.

The set of all types, denoted by 1}fpes, is defined as the co-domain of r, i.e., it consists of all
types that can be constructed using -r.

Note that the underlying type of a. class depends on the hierarchy.

308 C. TllmuB AMI> A. Suns

3. SCHEMA TRANSFORMATIONS

In this section, we give an overview of type transformatiom and show how type transfotmations
induce schema transformaiions.

The set of basic type transfonnatiom consists of rena.11ring, aggregation, and objectification (d.
[l] a.nd (10]).

Definition 4 (Basic type transformations) Let C. be the union of Land AN and 1Wes be
the set of types introduced in Definition 3. Renaming is defined as a function of type (C. - {id}) -
(.C - {id}) -t Types -t Types:

rename(l1:)(l)(t) = t if t E CN
rename(li)(l)(B) = B i:f BE {integer,rational,stling}
rename(li)(l)({v}) = {v}
rename(li)(l)(< Ii : Vi,•·· ,ln : Va >) = < l1 : Ul, • • •, ln. : Va >

if li '1. {l1 1 • .. ,l,.} orl E {l1,- .. ,ln}
rename(li)(l)(< li : V1, .. • ,ln: Va >) = < 11 : vi, .. ·, l: 't1i, ln: v"' >

if li E {l1, · · · ,ln} and l t/. {li, · · · ,Zn}
rename(l')(l}(µt.a) = µt.(rename(l')(l)(a)).

Note that we do not allow renaming of id-fields. Aggregation is defined as a. function of type
p(.C) - (.C - {id}) -+ Types -+ 7\tpes:

aggregate({Z1,l&+i. · · · ,l;})(l)(< 11: vi., ···,In: vn >) =
< l1 : VI, • · ., l :< Ii : 1Ji., • • • , l; : 'Vj > 1 • • ', ln : 11,. >
if {it, Z.+i. · · ·, l;} ~ {li, ···,In} a.nd l '1. ({Ii.···, In} - {Z.,Z.+i, · · · ,l;})

aggregate({ls, 1&+1, · · ·, l;} }(l)(Jd.a) =
µt.(aggn:gate({l.i, Z.+i, · · ·, l;})(l)(a))
jf id '1. {li, Z.+h ... ,l;}

aggn:ga.te({li, li+i. · · ·, l;})(l){Jd. < Z1 : Vi,···, In : vn >) =
p.s. < Z1 : vt[t \ s), · · · ,l: µt. < Z. : u,[t \ s), · · -,l; : v;[t \ s} >, .. ·,In: v.[t \a}>
if id E {Z;., z.+i. · · · ,l;} and {Z..,z.+1, · · ·, l;} ~ {li. ···,f.}.

Fbr all other cases, we have: aggregate(L)(l)(v) = v. Objectification is defined as a function of
type 7tlJ>e$ -+ 7;pes:

objectify(< li: V1,· · · ,l,.: Un.>)= p.a.< id: oid,li: vi,· ··,la: Va>

if id '1. {l1.- .. ' In}
objectify(µ.t. < li : VJ.,···, l,. : Va >) = µt. <id: oid,l1 : 1'1t' · • ,Zn : Va >

jf id '1. {li. ... ' fn}.

For all other cases, we have: objectifv(v) = v.

Complex type tra.nsformatiolis are obtamed by combining basic type transformations

Example 1 Type"= < Ii : p.a. <id: oid,l: vi.'2 : 112 >,ls: 113 >can be obtained from type
0"1 = < li : VJ.,'2: v,,l3: 1.'3 > 88 mllows:

u2 = rename(l1)(l)(0'1) = < l: Vi,'2: v,,ls: 118 >
0"3 = Gggn>gate({l,l2})(l1)(0-2) = < l1: < l: 't11 1 '2: V, >,13; 1'3 >
u4 = < 11 : obJectih(< l: vt. '2 : 1'2 >),ls : 113· > =a-.

Both the transformation for lexical attributes and the transformation fur UDSta.ble subtypes from
[11] can be obtained by composing one aggregate and one objectify operation.

Example 2 The following class hierarchy introduces a clm P«SOD, a class Em~, which
inherits from class Person, a.nd a. class Company:

Class Person
Attributes

name : string
street : string
house : integer
city : string

Endclasa
Class Employee Isa Person
Attributes

employer : Company
salary : integer

End class
Class Company
Attn1mtes

name : string
Endclass.

Object Oriented Schema Integration

The underlying type of class Person is:

µ.Person. <id:oid, name:string, street:strlng, house:integer, city:string>.

309

The underlying type of class Penon can be transformed into (by applying ag!J'"!}ate ({street.house,
city}) (address)):

p Person. <id:oid, name:string, address:<street:string, house:integer, city:string>>,

which can be transformed into (by applying objectify to the type of address):

µ Person. <id:oid, name:string,
address:µ Address. <id: oid, street:string, house:integer, city:string> >.

The composite transbma.tion is a. variaat of the tra.nshrmation for lexical attributes from {11]. We
can redefine class Person as a class (named Peraonl) that refers to a new class {named Address):

Class Personl
Attributes

name : string
address : Address

Endclus
Class Address
Attributes

street : string
house : integer
city : string

End class.

The underlying type of class Employee is:

µ.Employee. <id:oid, name:ming, street:string, home:iateger, city-.string,
employer.Tc, salary-.integer>,

where re is the underlying type of dus Compaay. The underlying type of class Employee can be
transformed into (by applying og,,..te ({id,name,street,houe,ciiy}) (employee)):

µ. WorkLfor. <employee : p, Employee.. <id:oid, name:string, atreet:striag,
house:integer, city:string>, em.ployer:rc, sala.ry:integer>,

which ca.n be transformed into (by applying ob;ectifJI):

310 C. Tllmm AHD A. SIBBBS

p. Works..for. <id:oid, employee : p. Employee. <id:oid, name:string, street:string,
house:integer, city:string>, employer:rc, salary:integer>.

The composite transbma.tion is a. variant of the transformation for unstable subtypes from [11].
We can redefine class Employee as a 'rela.tion' (namt!d Works_for) tha.t refers to a. new class (named
Employee!):

Class Works.lor
Attributes

employee : Employeel
employer : Company
sa.1a.ry : integer

End class
Class Employeel
Attributes

name : string
street : string
house : integer
city : string

End class.

Note that, in the original situation, an employee (an object in class Employee), does have a unique
employer, whereas, in the resulting situation, an employee (an object in class Employeel) does not.
Therefore, we define a. key for class Works..for:

Class Works...forl
Attributes

employee : Employee!
employer : Company
salary : integer

Constraints
key employee

End class.

4. APPLICATION OF SCHEMA TRANSFORMATIONS

In the previous section, we defined type transformations and showed how they induce schema
transforma.tions. In this section, we show how behaviour of methods can be used to choose among
a set of schema transformations.
A class can be transformed in several ways, wdng different factors and dlif'erent transfomuitions.

Example 3 Let class Employee be the following class:

Class Employee
Attributes

name : string
dob: Date
street : string
house : integer
city : string
employer : Company

Methods
move (s:string,h:integer ,c:string) =

street := s; house := h; city := c
Endclaas

and class Address be a factor of Employee:

Class Address
Attributes

street : string
house : integer
city : string

Methods

Object Oriented Schema Integration

move (s:string,h:integer,c:string) =
street := s; house := h; city := c

End class.

311

One option to transform class Employee is to redefine Employee as a subclass of Address (factori­
sation by specialisation):

Class Employeel Isa Address
Attributes

name : string
doh: Date
employer: Company

End class.

Another option is to redefine Employee as a class referring to Address (factorisa.tion by delegation):

Class Employee2
Attributes

name : string
dob: Date
address: Address2
employer: Company

Methods
move (s:string,h:integer,c:string) =

address := address.new...address(s,h,c}
End class
Class Address2
Attributes

street : string
house : integer
city : string

Methods
new..address (s:string,h:integer,c:string-+ l:Address2) =

I := new(Address2); I.street:= s; I.house:= h; I.city:= c
End class.

Note tha.t, as a.n employee is not an address in the real world, it is unlikely that the first option is
the right choice. The second option, where employee refers to an address (as one of its attributes)
is a more reasonable choice. Now, let class Person be a factor of class Employee2:

Class Person
Attn"butes

name : string
dob: Date
address : Address2

Methods
move (s:string,h:integer,c:string) =

address := address.new ..address(s,h,c)
Endclass.

One option to transform class Employee2 is to redefine Em.ployee2 as a subclass of Person (factori­
sation by specialisation):

312

Class Employee3 Isa Person
Attributes

employer : Company
End class.

C. TBJmm AND A. SIEBES

Another option is to redefine Em.ployee2 as a class referring to Person (factorisation by delegation):

Class Employee4
Attributes

person : Personl
employer : Company

Methods
move (s:string,h:integer ,c:string) =

person:= person.new_person(s,h,c)
End class
Class Personl
Attributes

name : string
dob: Date
address : Address2

Methods
new ..person (s:string,h:integer ,c:string -+ l:Personl)

1 := new(Personl) ; I.name := name ;
l.dob :=doh; I.address:= 1.address.new..a.ddress{s,h,c)

Endclass.

Since the objects in class Employee2 become the objects in class Employee4, we redefine method
'move' to be applicable to objects in class Employee4. Yet another option is to redefine class
Employee2 as a relation involving class Person:

Class Employment
Attributes

employee : Person
employer : Company

Constraints
key employee

Endclass.

Since the objects in class Employee2 become the objects in class Person, we do not redefine method
'move', because it is already applicable to objects in class Person.
Note that, as an employee is a person in the real world, it is likely that options one and three are
more reasonable than option two, where a.n employer refers to a person (as one of its attributes).

AI! we have seen, a class can be transformed in several ways, using different factors and different
transformations, e.g., factorisation by specialisation, factorisation by delegation, or redefinition as
a. relation. But how do we choose factors and how do we choose between specialisation, delegation
and redefinition as a rela.tion? For that purpose, we introduce evidence ratios for relatedness. Weak
relatedness for a set of attributes says whether the attributes are mutually rel&ted (according to
the methods). Strong re1a.tedness for a set of attributes says whether the attributes are mutually
related, but not to attributes outside the set (according to the methods}. Isolation for a. set of
attributes says whether the attributes are not related to attributes outside the set {according to
the methods).

Definition 5 (Relatedness ratios) Let H be a well-defined class hierarchy, C be a class in H,
c be the name of C. and M be the set of all methods of C. Furthermore, for meth E M, let
atts(meth) consist of the names of attributes of C that occur in meth. Weak relatedness of a. set

Object Oriented Schema Integration 313

of attributes A ~ {a I a : T E atts(C)} is defined as:

we.a/crel(c A)= I {meth EM I atts(meth) 2 A} I
' I { meth EM I atts(meth) n A# 0} I"

Strong relatedness of a set of attributes A is defined as:

t l(A)_ I {meth EM I atts(meth) =A} I
srongre c, -l{methEMlatts(meth)nA#;0}1"

Isolation of a set of attributes A~ {a I a: Te atts(C)} is defined as:

isolation(c A)= I {meth e MI atts(meth) ¥- 0A atts(meth) c A} I_
' I {meth EM I atts(meth) n A '/-0} I

If {meth e MI atts{meth) nA ¥- 0} is empty, then weakrel(c,A) and strongrel(c,A) are defined to
be 0, and isolation(c, A) is defined to be 1.

For a set of attributes with strong relatedness ratio 1 and any method, either all attributes
occur in the method and all attributes that occur in the method are in the set, or no attribute
in the set occurs in the method. In that case, the attributes are strongly related. For a set of
attributes with wea.k relatedness ratio 0, there is no method in which all attributes occur and,
hence, the attributes are not (mutually) rela.ted. And for a set of attributes with isolation ratio
l and any method, either all attributes that occur in the method a.re attributes in the set or no
attribute that occurs in the method is an attribute in the set. In that case, the attributes are only
related within the set.

Weak and strong relatedness can help to choose a factor. If the strong relatedness ratio of a set of
attributes is high, then it is reasonable to believe that they belong together and, hence, to factorise.
On the other hand, if the weak relatedness ratio is low, then it reasonable to believe tha.t they do
not belong together and, hence, not to factorise.

Example 4 Consider class Employee of Example 3. The weak a.nd strong relatedness ratios for
{street, house, city} and {name, doh} are given by:

strongrel(Employee, {street, house, city}) = 1
weakrel (Employee, {street, house, city}) = 1
strongrel(Employee, {name, doh}) = 0
weakrel(Employee, {name, doh}) = 0.

Al!. we can see, street, house, and city are strongly related, whereas name and doh are not related.
Now, consider class Employee2 of Example 3. The weak a.nd strong relatedness ratios for

{name, dob, address} and {name, doh, employer} are given by:

strongrel(Employee2, {name, doh, address})= 0
weakrel(Employee2, {name, doh, address}) = 0
strongrel(Employee2, {name, doh, employer}) = 0
weakrel(Employee2, {name, dob, employer}) = 0.

As we can see, in both cases the attributes a.re not related.

Jc;olation can help to choose between specialisation a.nd redefinition as a. relation. H the isolation
ratio is less than one, then specialisation is possible, but redefinition as a. relation is not, since, in
that case, we have to add a method to the relation that updates another relation or class.

Example 5 Consider class Employee2 of Example 3. The isolation evidence ratio for name, doh,
address is given by:

isolation(Employee2, {name, doh, address}) = 1.

314 C. 'hmm AJm A. SIDlll

Redefinition as a relation results in a re1a.t.ion (Employment) that repreaeata a Rimple woci&tioa.
between a persoo. aad a company. Now, if we add a method to class Emp&a,,iee2 tbt 11pd.atea
attribute ad.dress a.ad attribute employer, then we will have to add a metbod to Employment that
creates a new person and updates attribute employee and attribute emp&o,er. Since dais method
is not a simple insert or update operation on F.m.p&oyment, :Employment is ao Jonger a rel&Uoa.

So, how do we chooee f.acton a.ad trusfonna.tioaa? Factors are Chosen by compa.riiag wee.It
evidence ratios. If the weak evidence ratio of a set of attributes is greater iJaaa oae tJu:ediold.1

there is reason to assume that the a.ttributes caa be aed as a factor. If noc, there is DO reason.
Transtiormatioo are choeen by comparillg strong eridenee ratios and iaolatioa l'liios. la cue tlt.e
strong evidence ratio is greater than some threshold, delega.tim is a reasouble option, becauee tlt.e
attributes are strongly related witm:a the set and weakly reia&ed wita ot.llel' &ttri.bates. h. cue tlt.e
isolation ratio is less tha.n one, thee specialisaiioo is poeaib&e, but redefinition as a relatioR is aot.
Otherwise, speci.alisa.tio or redefinition as a relation are both potllSible. It shoold be meatiaaed
that, in the context of schema integration, schem.a. traasiJrma.tioas mut be appied carefa.l1y and
only if D«e8118.l'Y· In particular, this is true for f.actoris&tion by specialieatioa, siace a lot of new
classes will be genera.ted by this type of traasforma.tioa.

The considerations for cboosiDg factors aad t.raasbmaiicm can be ued in a 8emi8tic aJgorithm
to support schema integration. First, the attributes of f!'llffl:J daas are partitioned ia l8da a way that
the isolation ra.tio of every element in the partition is one, and every class is facioriaed by delegaticn
if desirable. Subsequently, for every pair of promising da89es, a se& of possible aaperdaaaes is
computed, and both classes are £actoriaed by specialisation or redefined as a relatioa if desirable.

Algorithm 1 The following algorithm is a heuristic for integra.ting two database &ehemas (xesp.,
DBSl and DBS2), giwn thresholds for strong relatedness and weak relatedaess (resp., TSR a.ad
TWR):

integrate(DBS1 ,DBS2, TSll, nil) •

•

for every claaa C in DBS1 U DBS2
do lOr every elaent A in psrtition(C)

od;

do if stroogrel(name(C) ,1) ~ TSB. and 1 < Iii < latt.CC)j

od

then create class C1 as the class containing J.
and the methods that refer to 1;
factorise c by delegation using et;
aarlt C and C1

elif 10etlkrel(name(C) ,1) ~ '1'Vll
then urlt C
ft

for every marked C1 in DBS1
do for every marked C2 in DBS2

od

do if there is a superclua C of a clus in joiru(C1,C2)
that can be used as a factor accordiDg to the designer
then transform(C1,C2,C)
ft

od

tranafora(C1,C2,C) •
begin let ft be au injection. fram. att.(C) to atia(C1) induced by C1 ~ C;

let f2 be au injection from att.(C) to ott.t(C2) indllced by C2 ~ C;
defil'le .l1 as the attribute n.aes in the range of /1;
define .l2 as the attribute naaea in the rage of /2;
if isolat1on(name(C1) ,.1.1) < 1 or Uolaticm(name(C2) ,12) < 1
then factorise C1 and C2 by apecialiaaticm u.aiDg C

Object Oriented Schema Integration

elif 1 < jAll < latts(Cl)I and l < IA21 < iatts(C2)j
then factorise Cl and C2 or redefine Cl and C2 as relations

according to the choice of the designer
else factorise Cl and C2 by specialisation using C
ft

end;

where partition(C) is constructed as follovs:

graph(C) has a node for every attribute name in atts(C)
graph(C) has an edge between two nodes if there is a method in the set of

all methods of C in which both attribute names occur
partition(C) consists of sets of attribute names,

one set for every connected subgraph of graph(C):
attribute names are in the same set if their nodes are connected
attribute names are in different sets if their nodes are not connected,

315

and joins(Dl,D2) is the set of common superclasses of Dl and D2, and :::5 is the subclass relation
as defined in (21].

Note that the algorithm interacts with the designer. It should be mentioned again that the al­
gorithm is a heuristic and should therefore be used in close interaction with the designer. The
heuristic can be improved by combining the different thresholds a.nd refining the different actions.
This is the subject of future research.

5. CONCLUSION

In this paper, we presented a new approach to schema integration based on transformations
and behaviour, because we think that this reflects the importance of behaviour for the real world
semantics of objects. First, we formalised schemas using underlying types and underlying con­
straints. Next, we presented a number of type transformations on underlying types and used them
to transform schemas. Finally, we gave a heuristic algorithm for integrating schemas. The algo­
rithm uses schema transformations to restructure schemas and join operators to merge them and
behavioural information to guide restructuring and merging.

Our approach differs from other approaches on a number of points:

1. Names. The theoretical basis of our approach is invariant with respect to renaming of classes,
attributes, and methods. This means that our approach is supplementary to an approach
that uses names to find similarities, e.g., a lexicon-based approach.

2. Structure. We propose using schema transformations already in the comparison phase to de­
tect transformational similarities between classes. This means that more (a.nd more complex)
similarities can be detected before interaction with the designer.

3. Behaviour. We also propose using semantic properties of methods to detect similarities
between classes and syntactic properties of methods to reduce the amount of work.

Further research includes generalisation and improvement of the theoretical framework, such
as extension of the data model and refinement of the heuristic algorithm. Further research also
includes construction of a.n integration tool based on the theoretical framework and practical
validation on real world applications using the tool.

Acl:nowledgemenu - We wish kl thank the anonymous referees for their constructive criticism. This research was
partly funded by The Netherlands Organization for Scientific Research (NWO) through NFI-grant NF74.

316 C. TmDl:z AND A. SIBBES

REFERENCES

[l] S. Abiteboul and R. Hull. Rest.ructuring hierarc:hical database objects. Theoretical Com.,.ter Scieace, 62:3-38
(1988).

[2] A. Albano, L. Cardelli, a.nd R. Orsini. Galileo: A strongly typed, interactive conceptual language. ACM l'mu.
Oft Da.ta.ba..e s.,.tern.a, 10(2):230-260 (1985).

[3] R. Amadio and L. Cardelli. Subtyping recursive types. In Proc. In.t. Symp. oft J>riAeiplu of Programmiag
JAnpa.ge•, pp. l<M-118 (1991).

(4) P. Apers, H. Balaters, R. de By, and C. de Vreeze. Inheritance in an object-oriented data model. Memoranda.
Informatica. 90-77, Uniwnity of Twente, Emchede, The Netherlands (1990).

(5] C. Ba.tini and M. Lem:erini. A methodology for data schema. integration in the ER model. IEEE '.lhuua.etiotu
oft Soft-re Engineering, pp. Sfi0--66.l (1984).

[6] C. Ba.tini, M. Lenzerini, and S. Nan.the. A comparative aaa.l.ysis of meUiodologies for da.tablllle llCb.ema inte­
gration. ACM Com,.ting S•nier•, 18(4):323-364 (1986).

(7] E. Casails. An incremental clasa reorpnizatjon approach. In E~ Con./. on Object-Orieated Progn&mmirag,
pp. 114-132 (1992).

[8] R. Elmasri and G. Wiederhold. Data model iniegra.tion using the structural model. In Proc. I.t. Con/. 011

Management of Data, pp. 191-202 (1979).

[9] P. Fankhawier, M. Kracker, and E. Neuhold. Semantic vs. structural reiJemblance of classes. ACM SIGMOD
&cord, 20(4):59-63 (1991).

[10] J.-L. Haina.ut. Entity-generating llCbema. ttansforma.ti.om for entity-relationship models. In Proc. Iff.t. Con/.
on tAe En.tit,..Relatio'UA.ip A~ (1991).

[11) P. JohannellllOll. Schema. transformations u an aid in view integration. In Proc. Jnt. Con.J. Off. Ad,,.ti.eed
In/onnanon Symma E~, LNCS 685, pp. 71-92. Springer-Verlag, Berlin (1993).

{12] M. Kersten. Goblin: a DBPL designed for advanced d&tabaee applications. In Proc. In.t. Coaf. on. Da.tabale
arui &i:pert S'll•teml ApplicatM>M, pp. 345-349. Springer-Verlag, Wien (1991).

[13] J. I.anon, S. Na.vathe, a.nd R. Elmasri. A theory of attribute equivalence in databases with applic:ation to
schema integration. IEEE '.lftnaactiou cm Software Engineeritig, 15(4):449-463 (1989).

{14] C. Lecluse and P. Richard. The OJ d&tabue programming language. In Proc. lnt. COAf. on Very JArge
DatGbclau, pp. 411-422. Morgan Kaufmann, Palo Alto, CA (1989).

[15] M. Mannino, S. Nava.the, and W. Effelsberg. A rule b-1 approach for merging genera1isa.tion hien.rchies.
In/~n. Syskma, 13(3):257-272 (1988).

[16] A. Motro and P. Bunema.n. Comtrueting superviewa. In Proc. Int. Cot&/. Off. MaAagement of Data, pp. 56-64
(1981).

(17] S. Na.vathe and S. Gadgil. A methodology for view integration in logical d&t& base design. In Proc. Im. Conf.
cm Very Large DalalHuu, pp. 142-155 (1982).

(18] A. Sheth aud S. Gala.. Attribute relationships: an impediment in automating 8Chema integr&tion. In Proc.
Worbhop cm Helef'ogt!'MIOU Dalal>ue Sr•'- (1989).

[19] M. Siegel and S. Madnick. A metada.ta. approach to reeolving leDl&tltic conflicts. In Proc. Internaticmal
CanfeT'eflee cm Verr IArge Dcata6uu, pp. 133-145 (1991).

(20] C. Thieme and A. Siebes. Schema integration in object-oriented databases. In Proc. Im. COAj. cm A49Gt&cal
It&/Of'm4Uon. S11.tema ~, LNCS 685, pp. 54-70. Springer-Verlag, Berlin (1993).

(21] C. Thieme a.nd A. Siebes. Schema refinement and adiema. integralion in object-oriented databaaes. In Proc.
Computing S~ m The Netherlatula, ISBN 90 6196 430 X, pp. 343-354. Stichting Ma.thema.tisch Centrum
(1993).

(22] C. Thieme and A. Siebe&. An approach to adiema. integration b-1 on transformations and behaviour. Report
CS-R.9403, CWI, Amsterdam, The Netherlands (1994 (&"V8ilable by anonymous ftp from ftp.cwi.nl)).

(23) C. Yu, W. Sun, S. Dao, and D. Keinley. Determining rel&tiomshipe among attributes for i.nteropera.bilty of
multi-databue systems. In Proc. In.t.. Worbhop - 1~ m M.itidat.bo.re Sr&tema, pp. 251-257
(1991).

