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Abstract -Traditionally, lossy compression schemes have focused on compressing data 
at fixed bit rates to either communicate information over limited bandwidth communi- 
cation channels, or to store information in a fixed-size storage media. In this paper we 
describe a class of lossy algorithms that is capable of compressing image data over a wide 
range of rates so that quick browsing of large amounts of information as well as detailed 
examination of high resolution areas can be achieved by the same compression system. 
To accomplish this we use a quad tree structure to decompose an image into variable size 
blocks which are subsequently quantized using a Tree-Structured Vector Quantizer 
(TSVQ). The developed algorithms utilize variable-size image blocks encoded within quad 
tree data structures to efficiently encode image areas with different information content. 
These algorithms are also capable of compressing images so that the loss of information 
complies with user defined distortion requirements. In this paper we describe the use of 
quad tree structures in image compression type applications, and we analyze their ad- 
vantages over the classic vector quantization schemes. Finally, we describe their progres- 
sive compression capabilities and we demonstrate that they achieve higher compression/ 
distortion performance compared to the classic TSVQ algorithm. 

1. INTRODUCTION 

A typical model of a data compression system capable of achieving high compression ra- 
tios consists of the transform coder, the quantizer, and an optional lossless compressor 
(Fig. 1). Although such systems were originally designed to accomplish lossy compression, 
it has been demonstrated that they are also capable of implementing lossless compression 
with higher performance than existing stand-alone lossless techniques. 

The transform coder block is responsible for transforming the incoming image to a dif- 
ferent domain of representation so that a large fraction of its information is packed in rel- 
atively few coefficients. Some examples of block transform methods include the Discrete 
Cosine Transform (DCT) [l], the Predictive Coding [2,3], the wavelets [4], and so on. Some 
coefficients can be discarded from this transformed image if they do not convey critical in- 
formation with respect to the observing instrument. For example, the low-amplitude, high- 
frequency components of a small, DCT transformed image block can be either discarded, 
or encoded with a coarse quantizer since they do not convey important information with 
respect to the human visual system. The quantizer is a mapping of the transformed image 
to a finite number of reconstruction levels. Clearly, the quantization processes introduces 
some loss of information, and is primarily responsible for the high compression ratios 
achieved in lossy algorithms. Careful selection of an appropriate quantization function can 
minimize the error effects so that they are not visible to the human eye. Finally, the quan- 
tization error can be compressed using a lossless algorithm such as Huffman coding [5], 
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Fig. 1. A typical data compression system. 

arithmetic coding [6], or Lempel-Ziv type methods [7,8] to attain a lossless technique that 
exceeds the performance of stand-alone lossless methods. 

1.1 Vector quantization 
Vector quantization is a lossy block-coding technique that is used extensively to com- 

press data at low bit rates (high compression ratios). Vector quantizers compress image data 
by replacing an image block, represented by a discrete vector, with the index of the best- 
match entry found in a reconstruction codebook based on a given distortion measure [9]. 
A reconstruction codebook consisting of vectors of size N divides the entire search space 
into a fixed number of N-dimensional regions. The encoding process is responsible for iden- 
tifying the corresponding region of each input block and for replacing the block with the 
index of the codebook vector that represents that region (Fig. 2). This is accomplished by 
measuring the distortion between the input block and each codebook vector, and by iden- 
tifying the vector with the minimum distortion. The decoding process is a simple look-up 
operation where each index of the compressed data string is used to rebuild the original im- 
age. Both the encoder and the decoder maintain the same vocabulary that has been con- 
structed off-line using training algorithms on a set of data that is similar to the one that 
will be compressed. Some of the training algorithms that can be used to construct the code- 
book include the widely used k-means algorithm [lo], and neural network type algorithms. 

A straightforward implementation of the vector quantization algorithm is to perform 
a linear search over all vocabulary entries. This full search method is a computationally ex- 
pensive task since linear time is required to compare each input vector against all codebook 
entries using a given distortion measure. A more efficient approach that reduces the com- 
putational requirements from linear to logarithmic time is the tree-structured vector quan- 
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Fig. 2. A N = m x n vector quantizer. 
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Fig. 3. A tree-structured vector quantizer. 

tization algorithm [l 11. This is accomplished by storing the reconstruction vocabulary in 
a binary tree form, so that the leaf nodes of the tree represent the codebook entries, and 
the intermediate nodes constitute the centroids of their children nodes (Fig. 3). 

“.= “I+“, 
I 2 

Each codebook entry is represented by a unique index which is the binary path from 
the root node to the corresponding leaf node. Each node of the tree executes the follow- 
ing calculations to identify the children node that results in minimum distortion: 

if D(X,V,) < D(X,V,) left node (2a) 

if D(X,V,) L D(X,V,) right node (2b) 

where D is the distortion measure. 
Each centroid in the TSVQ algorithm defines a hyperplane that divides the search 

space in two regions which are represented by the children nodes. An L entry vocabulary 
divides the entire search space in L Vonoroi regions that are uniquely defined by the vec- 
tors of the leaf nodes. Figure 4 shows the Vonoroi regions of a uniform TSVQ in the two- 
dimensional search space, utilizing an eight-entry vocabulary. 

1.2 Progressive transmission 
The majority of the modern data compression techniques offer the capability of trans- 

mitting a set of data in a progressive fashion. Initially, the image is transmitted at low bit 
rates (high compression rates) where the reconstructed information is highly distorted. Ad- 
ditional information that restores the distorted area is only transmitted upon request. The 
tree-structure of the TSVQ algorithm is very suitable for progressive transmission because 
of the hierarchical structure of the vocabulary. Since the centroid of each tree-node rep- 
resents a unique region of the search space, the k most significant bits of the index of the 
best-match vector can be used to obtain the kth approximation of the original data block. 
This property allows the TSVQ to trade off between compression rates and distortion. The 
potential compression rate of a TSVQ system is a function of the vector and the vocabu- 
lary sizes. Assuming a b-bit vocabulary (26-entries) and N-size input blocks, the lowest 
possible distortion is achieved at b/N bits per pixel (bpp), while the lowest rate is l/N bpp 
with the original image degraded in a binary form. In TSVQ the possible compression rates 
can vary (b - 1)/N bpp, whereas the quality of the reconstructed image is upper bounded 
by the distortion achieved at the b/N bpp rate. 
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Fig. 4. Vonori regions of the TSVQ algorithm: (a) Vonori regions with eight codewords in a two- 
dimensional space; (b) binary-tree representation of the eight-word vocabulary. 

1.3 Distortion measures 
A number of distortion measures have been proposed for evaluating the loss of infor- 

mation in images. Some of these measures take into consideration the physical properties 
of the human eye, while others are more targeted towards quantitative analysis of image 
data. One of the most widely used measures is the Mean Squared Error (MSE), which un- 
fortunately does not take into account the characteristics of the human eye. The MSE is 
used widely because of its ability to formulate easily the theoretical performance of the 
compression algorithms, so that theoretical results can be compared against the experimen- 
tal ones. The measure that will be used throughout this paper to quantify the distortion of 
the reconstructed images is the Peak Signal-to-Noise Ratio (PSNR). The signal is the peak 
energy of the image (255 for Gray scale images), and noise is the MSE between the origi- 
nal and the reconstructed images. Clearly, this measure falls in the category of the MSE 
distortions, and for this reason is not very representative of the loss of information that 
the eye perceives. 

PSNR = 10 * log,, (3) 

where XY is the image size, p is the number of bits per pixel, and Xi, xi are the pixel 
values of the original and the reconstructed images, respectively. 

The performance of the developed algorithms was evaluated using images obtained 
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from the USC (University of Southern California) database, as well as Thermatic Mapper 
data obtained from the LANDSAT satellite. The required vocabularies were created using 
the tree-structured version of the k-means algorithm. 

2. MOTIVATION 

Vector quantization is a lossy technique whose distortion is lower bounded by the size 
of the existing vocabulary. For certain applications, where only minimal loss of informa- 
tion can be tolerated, the quality of the decoded image may not be adequate. Such appli- 
cations include target recognition, object measurement, and quantitative analysis or 
observation of multi-spectral satellite images. To eliminate the lower distortion bound posed 
by the TSVQ we will present a class of distortion-controlled methods that are capable of 
compressing data in a wide range of operating conditions (distortion, compression ratios). 
The compression rates of the distortion-controlled vector quantizers (DCVQ) vary from low 
rates, suitable for quick browsing of large amounts of image data, to high rates for accu- 
rately reconstructing images with high information content. The first technique that will 
be presented is the Multi-Resolution Vector Quantization (MRVQ), an algorithm that com- 
presses data by dividing an image block into a number of variable-size subblocks and en- 
codes them using a quad tree representation. Two similar approaches have been proposed 
in [ 12,131. Our approach uses a variable-size and variable-depth quad tree representation 
to utilize large size blocks without reducing the distortion/compression performance at high 
bit rates. The MRVQ method requires multiple vocabularies consisting of different size vec- 
tors that will be used for compressing image blocks at different levels of the quad tree. The 
training of these vocabularies is a computationally expensive task, and for that reason we 
will present methods for creating these product codebooks from a single vocabulary on- 
the-fly. The second class of DCVQ algorithms that will be presented is based on recursive 
quantization of the error vector, which is defined as the difference between the current ap- 
proximation and the original vector. We will refer to these algorithms as Error Coding Vec- 
tor Quantizers (ECVQ), and Error Coding Multi-Resolution (ECMR) methods. The latter 
combines the advantages of both MRVQ, and ECMQ schemes to maximize the compres- 
sion/distortion performance. 

It has also been shown that pruning methods [ 14,151 experience better performance 
compared to the basic TSVQ scheme. These schemes can be incorporated in the design of 
the DCVQ methods to take full advantage of the state-of-the-art data compression 
algorithms. 

3. QUAD-TREE IMAGE COMPRESSION 

The classic TSVQ algorithm uses a fixed number of bits to encode all image blocks in- 
dependently of their information content. However, the amount of information contained 
in typical images is not uniformly distributed among the different regions. This introduces 
some inefficiency in the way the TSVQ algorithm allocates the coding bits in each image 
block. A solution to this problem is to use a hierarchical structure where the number of bits 
required to encode an image region is proportional to the information content of the re- 
gion. The quad tree data structure [16] is one of the most suitable structures for this pur- 
pose. Quad trees are very useful structures in image processing type applications since each 
block can be decomposed in four equal quadrants, thus preserving the spatial character- 
istics of adjacent blocks. 

In the next section we will present a base image-compression algorithm that utilizes 
quad trees, and in the subsequent sections we will present some improvements of this base 
algorithm, and we will examine their compression/distortion performance. 

4. MULTI-RESOLUTION VECTOR QUANTIZATION 

The MRVQ algorithm utilizes the quad tree structure to decompose the image in vari- 
able size blocks, so that large size blocks can be used to compress image areas with low in- 
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formation content at low bit rates, and small size blocks can be used to compress areas with 
high information content at high bit rates. A parameter that specifies the acceptable dis- 
tortion of the entire image is given to the system in the form of average error per pixel. This 
parameter is responsible for determining the size of image blocks during the quad tree de- 
composition. Initially, the image is divided into large size blocks (N = n x m) which are 
quantized by applying TSVQ in a vocabulary (V,“) that contains n x m-size vectors. The 
best-match vector obtained from this operation represents the current approximation of the 
original vector. If this approximation satisfies the specified distortion criteria, the index of 
the codebook vector replaces the N-size image block. Otherwise, the image block is divided 
into four equal size subblocks (quadrants) which are quantized separately using vectors 
from a (n/2) x (m/2)-vector vocabulary (V;““” ). The same procedure is repeated recur- 
sively until the distortion requirements are satisfied in all subblocks, or until a leaf node 
is encountered during the recursive process. The highest possible resolution that can be ob- 
tained in the MRVQ algorithm is a single pixel (image area is left uncompressed). A k’J_, 
(d is the depth of the quad tree) vocabulary containing all the possible intensity values is 
assumed in this case. The advantage of this recursive decomposition is that by reducing the 
vector size in each quad tree level, the search space is reduced by several orders of magni- 
tude. A transition between two consecutive tree levels reduces the input space from (2p)N 
to (2P)N’4 possible vector combinations (p is the number of bits per pixel in the uncom- 
pressed image). This results in a more efficient reconstruction of the original image block. 

The compressed file consists of the indices of the best-match vectors which are embed- 
ded in the quad tree structure. The encoding of the quad tree representation itself intro- 
duces an additional overhead that needs to be minimized in order to maintain high 
compression ratios. Each tree node requires four additional bits to indicate its active chil- 

dren nodes (i.e., subblocks where distortion criteria are not met). A logic zero denotes that 
the best match vector satisfies the local distortion requirements of the corresponding sub- 
block, whereas a logic one denotes that the subblock will be quantized in a lower level uti- 
lizing smaller size vectors. The quad tree product VQ method, presented in [12,13] requires 
a fixed-size, variable-depth quad tree which is used throughout the compressing process. 
To reduce the coding overhead of the quad tree in image blocks with high information con- 
tent, we have introduced a variable size structure where a tree level is eliminated if no best- 
match vector has been used to approximate a block in the current or any of the upper levels 
[17]. This scheme increases the compression performance by eliminating the upper levels 
of the tree structure in blocks with high information content. Another advantage of this 
scheme is that large size blocks can be utilized to compress blocks at low rates without af- 
fecting the compression performance at high bit rates. With this feature, the MRVQ algo- 
rithm can compress image areas with minimal information (i.e., black background of a 
picture, sea or clouds in an aerial photo) at very low bit rates. Figure 5 shows the quad tree 
decomposition of an image block and the compressed code that is associated with this par- 
ticular block. It should be also noted that a minimum overhead (3 bits per block) is required 
to encode the maximum size of the quad tree structure. Entropy coders can also be used 
to encode the tree structure. In this case, the entire tree should remain intact since the re- 
dundancy in the upper levels can be removed by the coding algorithm. It should be also 
noted that in this case the maximum size of the tree remains constant. For this reason it 
is not included in the compressed file, thus resulting in an additional savings of three bits 
per block. 

The formal description of the MRVQ algorithm is the following: Assuming that XN 
is an input vector of size N, and X” is a subvector of XN at level i with size K = N/4’, 
then the corresponding vector of node j at level i(XK) is generated by applying a mask 
function M in the vector of its parent node (level (i - I), node (j/4)). 

X: = X$5 I ) (j/4) MJ mod 4 (4) 

Mi is a function that selects one quadrant of a given vector (0: upper-left, 1: upper-right, 
2: lower-left, and 3: lower-right). There is also an L-entry tree structured vocabulary (V,‘t) 
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Fig. 5. Quad-tree representation of the MRVQ algorithm. 

with codebook vectors of size K( V$, I= 0, . . . L - 1) for each tree level (i). It should be 
noted that L can be a function of i so that different size vocabularies can be assigned in 
different levels. 

If Tj is thejth tree node at the ith level, then the approximation of the input vector 
in the Tij node is given by the recursive expression: 

kij = 6 BM(Tj) + bij i [Tijk BM(‘l;i)Mk + rijk-J?ti+l)(4j+k)] 
k=O 

(5) 

where BM is a function that returns the best-match entry of current approximation applied 
in the vocabulary Vi” using the MSE distortion measure: 

BM(zj) = min (/1X$, V/II) (6) 
/=o.. L 

K-l 

~~XK, Yq = c (Xk - Yk)2 
k=O 

(7) 
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b is a binary function that denotes if the best-match vector satisfies the distortion require- 
ments, and V~ is a similar function applied in the qth quadrant. If we assume that the dis- 
tortion requirement is +E intensity values per pixel, the formal definition of the two 
functions is 

0 
bij = 

IIXK,BM(Kj)II s KE*, or i > D 

1 otherwise 

where D is the maximum size of the quad tree, and 

0 II Yp, Zp II I KE*/4, Yp = M~K, Zp = BM( ~j/M4) 
rij, = 

1 otherwise 

(8) 

(9) 

These two binary functions form a unique quad tree that defines the coding of an im- 
age block. The function b;j determines the type of the ij node. If the node is not leaf, then 
the r function determines the children nodes that have a connection with the parent node. 
the &,,, quantity represents the final approximation of the input vector, and IIXN, .&, )I 
gives the distortion of the entire block. 

The number of bits that is required to encode an image block can be calculated as fol- 
lows: If Bij is the number of bits that is required to encode the corresponding subtree, then 
the size of a compressed image block is given by B 00. The first term of the Bij quantity is 
the coding overhead of the best-match vector, the second term is the overhead associated 
with the coding of the active children nodes, and the last term represents the encoding over- 
head of the subtrees that originate from node ij. It should be noted that this expression does 
not account for possibly eliminated quad tree levels. 

B, = ~B( ~j)H(“OOOO”) + b,NAND k o,.. .,3(rijk)B(~j:j.)H(“rijorijlrij2rij3”) = 

3 

+ bij c rijkB(; + 1)(4j + k) 

k=O 

(10) 

where B( L$) is the number of bits required to represent the index of the best-match vec- 
tor found in the vocabulary vj for node ij, H(s) is the number of bits required to encode 
the string s using an entropy coding algorithm, and NAND(s) is the bit-wise NAND func- 
tion of the binary string S. It should be noted that all the expressions above do not account 
for possibly eliminated quad tree levels (variable size MRVQ algorithm). 

4.1 Performance of the MR VQ algorithm 
The effect of the maximum size image block in terms of compression/distortion per- 

formance is depicted in Fig. 6. This figure shows the ability of the MRVQ algorithm to 
achieve low compression rates using large size blocks without penalizing the compression 
performance at high rates. The same figure shows the trade-off between compression/dis- 
tortion performance and dynamic compression range. The restricted quad trees, in terms 
of size and resolution that can be achieved, offer a slightly better performance over their 
dynamic range. 

The described top-down MRVQ approach is a computationally inefficient method for 
compressing high-detail areas since the algorithm spends a significant amount of time cal- 
culating distortions and identifying best-matches for large size blocks that will not be used 
in the final bit stream. A more efficient approach is to use a down-up approach, where 
quantization is initially applied at the lowest possible levels of the quad tree using small size 
vectors. At each level, the algorithm examines the distortion of the best-match vector to 
verify if it complies with the given criteria. If this is true, the current best-match vector is 
used to encode the block, and the current node becomes leaf node of the tree. If the dis- 
tortion criteria are not met, the best-match vectors of the immediately lower level will be 
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Fig. 6. Compression performance of quad tree with different size. 

used to encode the quadrants of the current node. Although the down-up approach is com- 
putationally more efficient, it can not be used to implement progressive transmission. 

The performance of the MRVQ method can be further improved if additional effi- 
ciency measures are applied during the decomposition process. One method is to trade dis- 
tortion for compression by eliminating the subtrees of the quad tree structure that fail to 
significantly reduce the block distortion. A similar pruning scheme has been proposed in 
[15] to perform a similar operation for the TSVQ algorithms. The pruning scheme of the 
MRVQ algorithm is accomplished as follows: At each node of the quad tree we examine 
the distortion improvement and compression rate of the corresponding subtree. If the ra- 
tio of these two quantities is below a predefined threshold, the entire subtree is deleted, the 
current node becomes leaf node, and the best-match vector of the current node is used to 
approximate the examined subblock. 

d(MSE) 

d(rate) 
< threshold (11) 

The pruning algorithm improves the compression rates of medium and high bit rates but 
it also reduces the dynamic range of the compression curve. The performance of the prun- 
ing scheme for various threshold values is shown in Fig. 7. 

4.2 Generation of product vocabularies 
The MRVQ algorithm uses different vocabularies for each level of the quad tree that 

should be constructed using different sets of training data. As was mentioned earlier, this 
training phase is a computationally expensive process. In addition, hardware systems with 
limited storage resources may pose a severe restriction on the size of these vocabularies. An 
alternative approach is to generate these vocabularies on-the-fly using only a single vocab- 
ulary that will be referred as the “core” vocabulary. 

A number of linear interpolation methods have been evaluated for generating product 
codebooks from the “core” vocabulary. The first method is the replication scheme [18], 
where a n x m size block is expanded to a (2n) x (2m) block by replicating adjacent pix- 
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Fig. 7. Compression performance of pruning schemes. 

els. Another method that offers smoother transitions among the neighboring pixels is the 
bilinear interpolation [ 191. The disadvantage of this scheme is the inaccurate generation of 
pixels in the right, and lower sides of the image block. This effect causes severe degrada- 
tion in the right and lower edges of the image block when generating large size vectors. To 
overcome this problem we modified the bilinear transformation so that the intensity of the 
left and lower pixels are computed using a postprocessing averaging scheme. Quantization 
in this case is only applied on the rest of the pixels. This interpolation scheme reduces the 
vector quantization effect (sharp discontinuities among adjacent blocks) when large vec- 
tors are used to compress an image block. 

Figure 8 shows the performance of the evaluated interpolation methods. The tree-struc- 
tured version of the k-means algorithm was used to create the 2 x 2-size vocabulary. The 
remaining vocabularies were generated by the 2 x 2 “core” vocabulary using the described 
methods. Figure 8 shows that the replication method achieves almost identical performance 
with the separate vocabulary MRVQ case, and it is also the simplest one to compute. 

5. ERROR CODING VECTOR QUANTIZER (ECVQ) 

This scheme is an iterative procedure that quantizes the error vectors, generated by 
subtracting the current approximation from the original vector, using a TSVQ quantizer 
to obtain the new approximation. The basic idea behind this scheme is to reduce the vec- 
tor variance at each iteration step so that blocks can be efficiently approximated using a 
minimum number of iterations. At each step, the current approximation is compared 
against the original vector to determine if the distortion requirements are met. The recur- 
sive formula that describes the ECVQ method is 

x; = xi_, + BM(x - x:-i), and xb = BM(x) (12) 

where x is the input vector, xi is the ith approximation of the input vector, and BM is the 
function that identifies the best-match from the appropriate vocabulary. 

To capture the different variance of the error vectors in each iteration step, the vocab- 
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ularies are trained using different sets of data. The initial vocabulary is created using vec- 
tors obtained from the intensity domain of the training set of images, while the remaining 
ones are created using different size vectors obtained from error images. The codebook that 
is used during the ith iteration is trained using a set of n x m-size vectors taken from er- 
ror images that were generated by compressing the original set of images with a (n/i) x 
(m/i) TSVQ compressor. 

The performance of the ECVQ scheme is inferior to the one obtained in the MRVQ 
case, especially at high bit rates. The primary reasons for this behavior is that the vector 
size remains constant in all iteration steps. The fact that the search-space in a vector quan- 
tization algorithm grows exponentially with the vector size indicates that there is an ex- 
tremely large number of possible combinations, even at the latest stages of the iterative 
procedure. Even if the variance has been significantly reduced in those stages, the large 
search space cannot be accurately covered in a few thousands of codebook vectors. 

6. ERROR CODING MULTI-RESOLUTION ALGORITHM 

A modified version of the previous algorithm is to use the MRVQ method so that the 
size of the input vector is also reduced during each iteration step. By reducing the vector 
variance and the vector size a fewer number of iterations is required to achieve performance 
comparable to the MRVQ case performance. The advantage of this approach is that the 
variance of the error vectors is much smaller than the variance of the intensity vectors. This 
implies that the number of lower levels required to efficiently represent the image block is 
significantly reduced. This results in a more accurate approximation of the lower levels of 
the quad tree. This algorithm maintains all the important features of the MRVQ method 
that were described in earlier sections. The error vocabularies, used during the ith level 
of the quad tree, was created using a set of K-size vectors (K = N/2’) taken from error 
images that were generated by compressing the original set with a K-dimensional TSVQ 
compressor. 

The ECVQ differs from the MRVQ case in that the corresponding input vector in each 
tree node is formed by subtracting the current best match approximation of the parent node 
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from the original input vector and applying the A4 function to extract the corresponding 
quadrant: 

x,F = M&(j/4) - BM(T(;-l)(j/4))1Mj,,d4 (13) 

The vocabularies in the ECMR case are generated using a set of training images obtained 
by subtracting the original image from a TSVQ compressed image. If XK is a set of vec- 
tors that are used to train the K vocabularies, then XK = XK - BM( I$) is a set of vectors 
that can be used to train the ECMR vocabularies. The approximation of the input vector 
in node ij is given, as in the MRVQ case, by the following expression: 

(14) 

In the ECMR case the best-match vectors are included in all nodes even if a node has 
all of its children in active status. The number of bits required to encode an image block 
in the ECMR case is given by 

B;j = B( Kj) [ bi, H( “0000”) + 6,NAND k 0,...,3(rijk)H(“rijOrijlrij2rij3") = 

3 

+ bij c rijkB(i+l)(4j+k)l 
k=O 

(15) 

7. HUFFMAN CODING OF THE QUAD-TREE STRUCTURE 

The variable size quad tree approach that was described in the earlier sections exploited 
very good performance at high bit rates and average performance in moderate and low bit 
rates when compared with the classic TSVQ algorithm. In certain types of images with high 
information content throughout the entire region, the classic TSVQ showed better perfor- 
mance over a small range of the compression/distortion curve. Such behavior occurs in 
moderate compression rates where the entire image is primarily compressed using the same 
size vectors. In this case, the overhead associated with the coding of the quad tree struc- 
ture exceeds the small savings achieved by utilizing large size blocks. 

To increase the performance of both multi-resolution algorithms over their entire dy- 
namic range it is critical to minimize the quad tree encoding overhead. Experimental results 
obtained from a large number of images have shown that certain codes used in the quad 
tree description are much more frequently used than other ones. This is true for a signifi- 
cant number of codes over a wide range of compression rates. For example the “0000” sym- 
bol (i.e., no active children nodes) that indicates that the best-match vector satisfies the 
distortion requirements is the most frequently occurring pattern independent of the com- 
pression rate. Another common symbol in low bit rates is the pattern “1111” (i.e., all chil- 
dren nodes active) which denotes that the entire vector will be encoded using high resolution 
vectors. A static Huffman coder applied in a highly nonuniform probability distribution 
can increase considerably the entropy of the source, thus resulting in high compression. By 
using this scheme and by eliminating the codes that were used to encode the maximum size 
of the tree, we were able to increase the compression performance of both multi-resolution 
algorithms over their entire dynamic range. Figure 9 shows that the Huffman scheme ex- 
periences better performance compared to variable size quad tree approach. It should also 
be noted that in the latter case the quad tree codes were compressed using a LZW type al- 
gorithm [8]. 

I. 1 Performance evaluation of the DCVQ schemes 
The required vocabularies were created using the tree-structured version of the k-means 

algorithm. Each vocabulary had 256 entries and was trained using a set of satellite images 
containing Thermatic Mapper data obtained from the LANDSAT satellite. A different im- 
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Fig. 9. Compression performance of quad-tree codes. 

age that was not included in the training set was then used to evaluate the performance of 
the developed algorithms. 

Figure 10 shows the MRVQ and the ECMR curves obtained at the lowest possible rates 
so that they meet the specified distortion requirements. This figure shows that both multi- 

DCVQ vs. TSVQ 

36.0 

34.0 

32.0 

30.0 
G- 
z 

$ 28.0 

26.0 

24.0 

8-bit vocabularies. mox: 8x8. min: 1x1 
, “. ” “. I , ” 

_ - 
_ - 

_ _ 
_ - 

r - 

e+PP-B _ - 

aapp-a _ - - _cl- - 

0 - 
_ - 

_ - 

- TSVO 2x2 
- TSVO 4x4 

- TSVO 8x8 

V - 0 ECVO 

0.0 1 .o 

Compression ratio (bpp) 

Fig. 10. Multi-resolution schemes versus TSVQ algorithms. 



720 T. MARKAS and J. REIF 

resolution methods exceed the performance of the TSVQ over the entire dynamic range. 
In addition, both algorithms offer better visual characteristics than the TSVQ scheme since 
they are capable of minimizing the error of the image edges which are important in the hu- 
man visual system. The ECMR method outperforms the MRVQ method since it is capa- 
ble of minimizing the number of small-size vectors that are used to reproduce high-detail 
areas. This stems from the fact that the number of nodes at a given level of the quad tree 
structure grows exponentially with the tree depth (4” at the nth level). This means that 
compression of an image block using small size vectors is accomplished at low levels, thus 
introducing high overhead. The ECMR algorithm manages to minimize the lower levels of 
the tree by reducing the variance of the input source as well as the dimensionality of the 
search space at each iteration step. The DCVQ algorithms were also applied in images ob- 
tained from the USC database and they have experienced similar performance. 

8. PROGRESSIVE TRANSMISSION IN DCVQ SCHEMES 

Progressive transmission in the MRVQ and ECMR algorithms can be accomplished 
with three different approaches. The first approach is to transmit only the k most-signifi- 
cant bits of the vector indices and leave the quad tree code intact. The second approach is 
to partially transmit the quad tree (one level at a time) along with the associated indices of 
the best-matches. The most efficient approach is to use a combination of both methods. 
The distortion requirement parameter is used in this case to determine in what level the cur- 
rent approximation should terminate. Once a partial quad tree has been constructed that 
satisfies the distortion requirement, the indices of the best-match vectors are transmitted 
progressively, one level at a time, until the entire structure has been fully transmitted. If 
the current approximation does offer the necessary quality, the user can request additional 
resolution by specifying tighter distortion requirements. The encoder responds by select- 
ing the leaf nodes of the current structure that do not meet the new distortion requirement. 
A new subtree is then created in each of the selected nodes, and the new information is 
transmitted to the user. 

Expansion of the quad tree at extremely high resolutions (single pixel) can also yield 
lossless compression. However, the size of the compressed image in this case will be larger 
than the original one because of the quad tree coding overhead. Once a high level of ac- 
curacy has been obtained, it is preferable to use a lossless algorithm for compressing the 
error image. This will yield a more efficient lossless compression algorithm. 

9. EFFECTS OF TRANSMISSION ERRORS 

In communication type applications images are transmitted through noisy channels. 
In most cases, the communication protocols guarantee fault free transmission that can be 
achieved using error correcting codes, collision detection, and retransmission methods, and 
so on. However, there is a significant number of applications (i.e., satellite communica- 
tions) where such schemes impose a very high overhead and therefore they are considered 
non-cost-efficient. Clearly, it can be concluded that the compression and the error correc- 
tion problems cannot be treated separately when dealing with noisy communication chan- 
nels. To implement a data compression system capable of transmitting and receiving image 
data it is essential to identify a suitable error correction code that will minimize the effect 
of an error given a specific data compression algorithm. 

Traditionally, in error correcting codes equal protection capability is provided for all 
samples. In image compression applications equal protection does not necessarily minimize 
the overall error. A simple reversal error, a single bit is reversed due to channel noise, can 
cause complete loss of information in certain types of lossless algorithms such as Lempel- 
Ziv type algorithms and Huffman coders. In Pulse Code Modulation coders (PCM) a re- 
versal error will affect only the intensity of a single pixel. In Differential Pulse Code 
Modulation (DPCM) systems the effect of an error will be more severe since the recon- 
structed pixel intensities are calculated recursively using past values. Finally, in transform 
coders and in vector quantization the error will be limited to the block where the fault oc- 
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curred. Several optimizations have been suggested for the predictive and the transform 
methods. Such treatments vary from filter optimization methods to the design of hybrid 
systems that offer higher protection to samples with larger variances. 

The compressed data in the multi-resolution algorithms consists of quad tree informa- 
tion encoded with some kind of compression scheme, and vocabulary indices. The former 
information consists of variable-length codes that are very susceptible in reversal errors. 
Such errors usually result in total loss of information. In contrast, the vocabulary indices 
obtained from uniform binary trees are less susceptible to reversal errors since the error 
does not propagate outside of the block boundaries. Also, the most significant bits of the 
vocabulary indices convey much more information than the lower ones. This indicates that 
hybrid error correction schemes that can offer high protection against errors in the quad 
tree codes, and minimal protection in the least significant bits of the vocabulary indices can 
offer low error probability without decreasing the compression ratio. 

10. CONCLUSIONS 

In this paper we have presented a class of distortion controlled vector quantizers that 
are capable of compressing images so that they comply with certain distortion requirements. 
This class of data compression algorithms is applicable in cases where significant loss of 
information cannot be tolerated. These algorithms can be used in a wide range of appli- 
cations, from compressing images at low rates for quick browsing of large amounts of data, 
to high rates for detailed examination of images with high information content. In conclu- 
sion, it has been shown that the performance of these algorithms exceeds the performance 
of classic TSVQ methods at low rates based on the MSE distortion measure. The ECMR 
method outperforms the MRVQ method since it is capable of minimizing the lower levels 
of the quad tree by reducing the variance of the input source as well as the dimensional- 
ity of the search space at each iteration step. 
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