
Denotational and Operational Semantics for Prolog†

Saumya K. Debray

Department of Computer Science

The University of Arizona

Tucson, AZ 85721

Prateek Mishra

Department of Computer Science

State University of New York at Stony Brook

Stony Brook, NY 11794

Abstract: The semantics of Prolog programs is usually given in terms of the model theory of first order

logic. However, this does not adequately characterize the computational behavior of Prolog programs.

Prolog implementations typically use a sequential evaluation strategy based on the textual order of

clauses and literals in a program, as well as non-logical features like ‘‘cut’’. In this work we develop a

denotational semantics that captures the computational behavior of Prolog. We present a semantics for

‘‘cut-free’’ Prolog, which is then extended to Prolog with cut. For each case we develop a congruence

proof that relates the semantics to a standard operational interpreter. As an application of our denotational

semantics, we show the correctness of some standard ‘‘folk’’ theorems regarding transformations on Pro-

log programs.

hhhhhhhhhhhhhhhhhhhhhhhhhhhhh

† A preliminary version of this paper appears in the Proceedings of the IFIP Conference on Formal Description

of Programming Concepts, Ebberup, Denmark, Aug. 1986.

This work was supported in part by the National Science Foundation under grant number DCR-8407688.



1. Introduction

Any attempt at formulating a semantics for the programming language Prolog must cope with a cer-

tain schizophrenia. From one perspective the question is simply closed, as programs in Prolog are state-

ments in the Horn clause fragment of first-order logic. The semantics of Prolog can therefore be stated in

terms of the model theory of first order logic [1, 13]. This is usually referred to as the declarative or logi-

cal semantics of Prolog. From a computational point of view, this formulation is inadequate as it ignores

several behavioral aspects of Prolog programs. These include issues such as termination, the use of a

sequential depth-first search strategy, and constructs for controlling search, such as cut. Further, in prac-

tice, Prolog seems to be used more as a language for defining computations over sequences of substitu-

tions than as a language for asserting the truth of certain formulae (e.g. see [10]).

In this work we develop a denotational semantics [12] for Prolog that can express behavioral pro-

perties of interest. The semantics incorporates the sequential evaluation strategy used by standard Prolog

evaluators and can express the effect of the cut operator. A natural consequence is that the meaning of a

predicate is a function from substitutions to a (potentially) infinite sequence of substitutions, rather than a

set of ground atoms. The reasonableness of the denotational semantics is demonstrated by developing a

congruence proof that relates it to an operational interpreter for Prolog.

Our work is motivated by the need to verify various optimizing transformations on Prolog pro-

grams. The literature contains various references to folk theorems as the basis for such transformations

[4, 11]. Many such theorems entail reasoning about the computational behavior of Prolog programs: e.g.,

reasoning about termination owing to the insertion or removal of cuts or about the behavior of predicates

when viewed as substitution sequence transformers. In Section 5 we use our semantics to give simple

proofs for two nontrivial theorems regarding program transformations involving cuts. We are currently

using our denotational semantics to validate sophisticated static analysis schemes such as mode inference

and determinacy inference. While these theorems could have been proved by reasoning about the

behavior of an interpreter, using computational induction or fixpoint induction, this would be difficult

because the interpreter does not support reasoning about sequences of substitutions: instead, it is organ-

ized around the concept of encoding such information in its state. We believe the denotational approach

we use is substantially simpler and more understandable.

Proofs of semantic equivalence are traditionally unreadable, and need be developed with care to

possess even a modest degree of versimilitude. The key issue in our proof is reconciling a compositional

denotational semantics with an operational semantics that is much more oriented towards ‘‘substitution-

at-a-time’’ processing. For the cut-free case we reconcile the two semantic specifications by developing a

set of theorems that support a modular decomposition of interpreter states. Unfortunately, for full Prolog

such a straightforward decomposition is not possible because of the non-local nature of cut, and the proof

is instead expressed as an invariant relating the interpreter state to the denotational semantics (Section 4).

For the sake of continuity, the proofs of theorems have been relegated to the appendices.

Related work on the denotational treatment of the semantics of logic programming languages

includes that of Frandsen [5, 6] and Jones and Mycroft [7]. Frandsen treats ‘‘pure’’ programs and ignores

2



the sequential nature of Prolog’s computation, which makes it difficult to use his semantics to explain

behavioral aspects of programs. There are a number of differences between our work and that of Jones

and Mycroft. Our semantic definitions are motivated by the need to justify program analysis and transfor-

mation methods, whereas their definitions are driven by the goal of generating correct Prolog interpreters.

In contrast to their direct semantics wherein ‘‘cut’’ is a modelled by means of a special token, we give a

continuation semantics that models ‘‘cut’’ in a more intuitively accessible manner. In final contrast, we

provide a congruence proof relating operational and denotational semantics, and use the semantics to vali-

date two nontrivial optimizing transformations of Prolog programs.

The remainder of this paper is organized as follows: Section 2 discusses some basic notions, and

develops the notation used in the rest of the paper. Section 3 is concerned with the semantics of cut-free

Prolog. Section 4 discusses the semantics of Prolog with cut. Section 5 applies the semantics to validate

two optimizing transformations of Prolog programs, and Section 6 concludes the paper. Appendices 1

and 2 contain the proofs of equivalence between the denotational and operational semantics for the cut-

free and the cut cases respectively.

2. Preliminaries

2.1. SLD-resolution

A term in Prolog is either a variable, a constant or a compound term f (t1, ..., tn) where f is an n-ary

function symbol and the ti, 1 ≤ i ≤ n, are terms. The set of variables, function symbols and predicate sym-

bols will be denoted by Var, Func and Pred respectively. The set of terms will be denoted Term. A

substitution is an idempotent mapping from Var to Term which is the identity mapping at all but finitely

many points. The set of substitutions will be denoted by Subst. Given substitutions σ1 and σ2, σ1 will be

said to be more general than σ2 if there is a substitution θ such that σ2 = θ ° σ1. Two terms t1 and t2 are

said to be unifiable if there exists a substitution σ such that σ(t1) = σ(t2); in this case, the substitution σ is

said to be a unifier for the terms. If two terms t1 and t2 have a unifier, then they have a most general

unifier mgu(t1, t2), which is unique up to variable renaming.

A Prolog program consists of a set of predicate definitions. A predicate definition consists of a

sequence of clauses. Each clause is a sequence of literals, which are either atomic goals or negations of

atomic goals. Prolog clauses are generally constrained to be definite Horn, i.e. have exactly one positive

literal; the positive literal is called the head of the clause, and the remaining literals, if any, constitute the

body of the clause. A clause with only negative literals is referred to as a negative clause or goal. We

will adhere to the syntax of Edinburgh Prolog and write clauses in the form

p :− q1, . . ., qn.

which can be read as ‘‘p if q1 and . . . and qn’’.

The evaluation strategy used by Prolog is an instance of a more general theorem proving procedure

called SLD-resolution [1]. An SLD-derivation with respect to a set of clauses P is a sequence N0, N1, ...

3



of negative clauses such that for each i, if Ni = a1, ..., ani
, then

Ni+1 = θ(a1, ..., ak−1, (b1, ..., bm), ak+1, ..., ani
)

satisfying:

(1) 1 ≤ k ≤ ni;

(2) b :− b1, ..., bm is a clause in P, appropriately renamed to have no variables in common with those in

Ni;

(3) θ is the most general unifier of ak and b.

A program $langle P,G$rangle is a set of predicate definitions P togther with a goal clause G.

Given a program $langle P, G$rangle , an SLD-tree is a tree whose nodes are labelled with goal clauses,

with the root being labelled by G. If a node N in the SLD-tree has label a1, ..., am, then an atom ak, 1 ≤ k

≤ m, is selected, and for each clause a ¢:− b ¢of P whose head unifies with ak after appropriate renaming

of variables, there is a son of N labelled with the resulting goal.

2.2. Sequential Prolog

An SLD-tree represents a collection of SLD-derivations all starting with q. An execution of a pro-

gram can be thought of as a traversal of an SLD-tree for that program searching for refutations, i.e. paths

that terminate in the empty clause. It can be shown that that the existence of a node labelled by the empty

clause in any SLD-tree for a program implies the existence of a node labelled by the empty clause in

every SLD-tree for that program [1]. Hence in solving for a refutation it suffices to search any one SLD-

tree. Prolog’s execution strategy corresponds to a depth-first search of an SLD-tree where the selected

atom in a goal is always the leftmost one, and where the sons of a node in the tree are ordered according

to the textual order of the corresponding clauses in the program. In such a scheme, the invocation of an

atomic goal is handled by unifying it with the appropriate clauses chosen in sequence. This can result in

programs that are declaratively identical but computationally distinct. As an example, consider the fol-

lowing definitions of the reverse function:

append([],X,X).

append([A|B],Y,[A|D]) :− append(B,Y,D).

rev1([],[]).

rev1([A|X],Y) :− rev1(X,Z), append(Z,[A],Y).

rev2([],[]).

rev2([A|X],Y) :− append(Z,[A],Y), rev2(X,Z).

The reader can verify that the goal rev1([1,2],X) terminates with X bound to [2,1], whereas the goal

rev2([1,2],X) yields one solution and then diverges.

4



2.3. On the Observable Behaviour of Prolog Programs

An aspect of Prolog that has attracted much attention is its ability to define computations over sub-

stitutions. A naive semantic definition of the substitution generated by evaluating a goal is to compose the

substitutions generated in going from one node in the SLD-tree to the next until an empty clause is

encountered. This neglects the fact that the only observable aspect of a Prolog computation is in terms of

the variables contained in the top-level goal. Our semantic definitions incorporate this notion of observa-

bility and discard unnecessary information from substitutions. As an example, the predicates foo1 and

foo2 have identical meaning in our formulation:

foo1(X,Y) :− foo(X,Z).

foo([],[]).

foo2([],Y).

2.4. On the Semantics of Cut

The action of encountering a cut during a sequential traversal of a SLD-tree can be explained as fol-

lows. By parent goal we will mean the goal that activated the clause under consideration. When a cut is

encountered in the clause, the sub-tree of the SLD-tree below the parent goal that has not been traversed

by the interpreter is discarded. In effect, this means that (i) all but the first substitution obtained from the

atoms to the left of the cut are discarded and (ii) any substitutions that might have been obtained from the

clauses following the current clause in textual order are discarded. In modelling the action of a cut our

semantics incorporates this viewpoint explicitly.

2.5. Definitions and Notation

Given a (countable) set S, we use S$bottom to denote the set S ∪ {$bottom }. The set of finite and

(ω-)infinite sequences of elements of a set S will be denoted by S∞. The set of finite sequences of ele-

ments of a set S will be denoted by S*. The sequence whose first element is a, and where the sequence

formed by the second element onwards is L, will sometimes be written a :: L; the empty sequence will be

denoted by nil. Given two sequences S1 and S2, their concatenation will be denoted by S1 $sometimes S2.

Let $bottom denote the undefined sequence. Then, $sometimes is defined as follows:

$bottom $sometimes L = $bottom ;

nil $sometimes L = L;

(a :: L1) $sometimes L2 = a :: (L1 $sometimes L2).

An n-tuple of objects a1, ..., an will be denoted by $langle a1, ..., an$rangle . Where there is no need

to distinguish between the elements of a tuple, we will sometimes write the tuple with a bar, e.g. td.

A common operation on sequences is to apply a function to each element of the sequence, and col-

lect the results in order. This is denoted by ‘||’:

f ||$bottom = $bottom ;

5



f ||nil = nil;

f ||(a :: L) = f(a) :: f ||L.

Finally, we define an operator to ‘‘collect’’ the results of applying a sequence-valued function to the ele-

ments of a sequence of values. Let f : S$bottom → S$bottom
∞ be such a function, and s ∈ S$bottom

∞ a sequence

of S-objects. We wish to apply f to each element of s in order, and concatenate the resulting sequences

together to produce the output. This operation is denoted by $circle :

f $circle $bottom = $bottom ;

f $circle nil = nil;

f $circle (a :: L) = f(a) $sometimes (f $circle L).

The syntactic categories of Prolog are as follows:

Variable ::= Var;

Functor ::= Func;

Predicate ::= Pred;

Term ::= Term;

Term ::= Variable + Functor(Term1, ..., Termn);

Atom ::= Predicate(Term1, ..., Termn);

Literal ::= Atom + ‘!’;

Goal ::= Literal*;

Clause ::= Atom :− Goal.

Recall that a substitution is an idempotent, almost-identity mapping from Var to Term. Given a

substitution σ, we will usually wish to know the effect of σ on some finite set of variables only, which are

of interest to us. For this, we define the set FSubst to be the set of finite substitutions, which are map-

pings from Var to Term with finite domain and range. It is convenient to require that any variable

‘‘mentioned’’ in a finite substitution be in its domain. Let the function vars : Term → 2Var yield the set

of variables occurring in a term (extending in the natural way to literals and clauses). Then, we have the

following definition:

Definition: A finite substitution φ is an idempotent mapping from a finite set of variables V to a finite set

of terms T, such that for any v in V, vars(φ(v)) ⊆ V.

The domain of a finite substitution φ will be written dom(φ). Given a finite substitution φ and a set of

variables V containing dom(φ), the extension of φ to V, written φ↑V, is the mapping with domain V which

is the same as φ on dom(φ), and the identity mapping on V −dom(φ). Given two finite substitutions θ and

σ, their composition θ°σ is a finite substitution with domain dom(θ) ∪ dom(σ). In the limit, the extension

of a finite substitution to the set of all variables Var yields a substitution. We will sometimes not distin-

guish between finite substitutions and substitutions when the context is unambiguous. The set of finite

6



substitutions is closed under finite composition, but not under infinite composition.

The function unify : Term × Term → (FSubst ∪ {fail}) returns the most general unifier of two

terms, if it exists, and the token fail otherwise. It extends in the natural way to atoms. The function

rename : Term × 2Var → Term takes a term t and a set of variables V and yields a term t ¢identical to t

but with its variables consistently replaced by ‘‘new’’ variables not occurring in V. (We assume that the

set of variables Var is a countably infinite set v1, v2, ... indexed by the natural numbers. Then, given any

finite set of variables V, it is possible to effectively find the element vk ∈ V which has the largest index of

any element in V, and thence to find a variable vm with m > k, so that vm $nomem V. We do not elaborate

the nature of rename further.) When referring to rename(t, V), we will say that t has been ‘‘renamed with

respect to V’’. The function rename extends in the natural way to literals and clauses.

In the development that follows, we will be interested in the set FSubst$bottom
∞ , the set of finite and

infinite sequences of finite substitutions together with the undefined sequence. Elements of FSubst will

be written as lower case Greek letters σ, θ, φ, ..., while elements of FSubst$bottom
∞ will be written as upper

case Greek letters Σ, Θ, Φ, ... . The finite substitution with domain V which is the identity mapping will

be written εV.

Let V be the set of variables occurring in a goal G. If θ is an ‘‘answer substitution’’ for G, then we

are interested only in the part of θ dealing with variables in V. Another way of saying this is the observa-

tion that since θ is an answer substitution, any instance of θ(G) is refutable from the program, which

implies that for any substitution θ¢that agrees with θ on elements of V, θ¢(G) is also refutable from the

program. The ‘‘interesting’’ part of θ is therefore the part dealing with V. We use the projection function

↓ : FSubst × 2Var → FSubst to restrict a finite substitution to a set of variables:

Definition: Given a finite substitution φ : V → T, and W ⊆ V, the projection of φ on W, written φ ↓ W, is

the finite substitution with domain V1 = W ∪ (
v ∈ W
∪ vars(φ(v)) ), such that for any v in V1, (φ ↓ W)(v) = if v

∈ W then φ(v) else v.

3. Semantics of Prolog without Cut

3.1. Denotational Semantics for Cut-free Prolog

The meaning of a predicate definition is a function that maps terms to sequences of finite substitu-

tions. The set FSubst$bottom
∞ , of finite and infinite sequences of finite substitutions augmented with a least

object $bottom , is a complete partial order under the standard prefix ordering. Predicate symbols are

associated with their meanings in the usual way, using environments. Intuitively, an environment would

map identifier names to functions from terms to substitution sequences. It turns out, however, that for

technical reasons (renaming of variables before resolution) it is also necessary to dynamically propagate

the set of variables encountered during execution. This is done by passing in, as an argument, the

appropriate finite substitution, and performing renaming with respect to the domain of this substitution.

7



We therefore have

Env = Predicate → Term → FSubst → FSubst$bottom
∞ .

Environments will typically be denoted as ρ, ρ0, ρ1, ... The act of binding an identifier Id to an object Obj

in an environment will be indicated by Id ← Obj. Given an environment ρ, the environment ρ[p ← f]

will denote the environment which is the same as ρ except for the value of p, which is f.

The process of defining the denotational semantics of a program can be seen as consisting of two

parts. First, the meanings of individual predicates have to be defined in terms of the meanings of their

components; this is done using the semantic function D[[ ]], which defines the meaning of a sequence of

clauses to be a function over environments. Given a sequence of clauses C* and an environment ρ,

D[[C*]]ρ gives the new environment obtained by elaborating the clause sequence C* in environment ρ.

Second, the meanings of goals with respect to these definitions have to be specified. This is done using

the semantic function G[[ ]]: given a sequence of literals G, an environment ρ and an input substitution σ,

G[[G]]ρ σ gives the output substitution sequence obtained by evaluating σ(G) in environment ρ. In fact,

the two parts are not independent, since the first part involves defining the meaning of a clause, and

defining the meaning of the body of a clause requires the semantic function G[[ ]]. We use two auxiliary

functions, C[[ ]], which gives the meaning of a single clause, and L[[ ]], which gives the meaning of a

single literal in the body of a clause.

The function D[[ ]] takes a clause sequence and an environment and returns a new environment.

This can be written in curried form as

D[[ ]] : Clause* → Env → Env.

Intuitively, the idea behind D[[ ]] is that given some knowledge of what other predicates mean (as

specified by the input environment), we can extend our knowledge of those meanings by evaluating the

given clause sequence in that environment; this results in a new environment, which is ‘‘better defined’’

than the input environment. An empty sequence of clauses defines nothing, so we have

D[[nil]]ρ = λxλyλz.nil.

where x represents an input predicate name, y a tuple of terms and z a substitution.

If, on the other hand, we have a sequence of clauses c0 :: C, then according to Prolog’s computation

strategy, all the answers that can be generated using clause c0 are generated before any of the clauses C

are attempted. Thus, if the substitution sequence obtained using only cl0 is s0, and that obtained using

clauses C is s1, then the resuting substitution sequence is s0 $sometimes s1. More formally,

D[[c0 :: C]]ρ = λxλyλz.[(C[[c0]]ρx y z) $sometimes (D[[C]]ρx y z)]

where the parameters x, y and z are as in the previous case.

Finally, the meaning of a single clause is a function that takes a tuple of terms td and a finite substi-

tution σ, and returns a sequence of substitutions. The idea is to first rename variables in the clause uni-

formly, such that none of the new variables used appear in dom(σ), and unify σ(td) with the tuple of terms

8



appearing in the head of the renamed clause; then, evaluate the body of the clause after applying the

resulting substitution to it; and finally, return the substitution sequence obtained by projecting each sub-

stitution in the sequence obtained from the evaluation of the body on the set of variables dom(σ) that the

clause was called with. The reason for the projection is that while the ‘‘interesting’’ variables here are

the elements of dom(σ), the elements of the sequence returned by evaluating the body of the clause may

substitute for variables not in dom(σ). As discussed earlier, this is not desirable, and such extraneous ele-

ments should be projected away. The function C[[ ]] is therefore defined as follows:

C[[p(Td0) :− G0]]ρ =

p ← λSdλσ.[let (p(Td1) :− G1) = rename((p(Td0) :− G0), dom(σ));

θ = unify(σ(Sd), Td1);

in

if θ = fail then nil else (λx.x ↓ dom(σ)) || G[[G1]]ρ(θ°σ :: nil)].

The function G takes a sequence of literals, an environment defining the meanings of various predi-

cates, and a sequence of substitutions, and returns a sequence of substitutions. In curried form, this is

G[[ ]] : Goal → Env → FSubst$bottom
∞ → FSubst$bottom

∞ .

The empty goal represents a successful computation, and in this case the substitution stream

returned is the input stream:

G[[nil]]ρΘ = Θ.

The meaning of a sequence of literals L :: G is the stream of substitutions obtained by first solving L

with the input stream of substitutions, and ‘‘piping’’ the resulting substitution stream into G. This gives

the meaning of the goal L :: G given an environment ρ and substitution σ to be

G[[L :: G]]ρΘ = G[[G]]ρ(L[[L]]ρΘ).

The meaning of a single literal p(Td) in an environment ρ, given a finite substitution σ, is the substitution

sequence Θ obtained by calling the corresponding predicate in that environment for each substitution in

the input stream, and concatenating the resulting substitution streams in order. This is described by the

function L[[ ]]:

L[[p(Td)]]ρΘ = (ρ(p)(Td)) $circle Θ.

The semantic functions described are summarized in Figure 1.

Let ‘fix x.f(x)’ denote
n

$lubfn($bottom ). The meaning of a program $langle P, G$rangle , where P is

a sequence of clauses and G a goal, is then defined to be G[[G]]ρ0 (εV :: nil), where ρ0 is essentially fix

ρ.D[[P]]ρ, and V = vars(G). To define the limit environment ρ0 precisely, it is necessary to distinguish

between the bottom substitution sequence $bottom , which denotes nontermination, and the bottom

environment $bottomEnv , which maps every predicate defined in the program to λxλy.$bottom , and any

predicate not defined in the program to λxλy.nil. This is because in typical Prolog systems, execution

9



hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

D[[ ]] : Clause* → Env → Env.

(D1.1) D[[nil]]ρ = λxλyλz.nil.

(D1.2) D[[c0 :: C]]ρ = λxλyλz.[(C[[c0]]ρx y z) $sometimes (D[[C]]ρx y z)]

C[[ ]] : Clause → Env → Env.

(C1.1) C[[p(Td0) :− G0]]ρ =

p ← λSdλσ.[let (p(Td1) :− G1) = rename((p(Td0) :− G0), dom(σ));

θ = unify(σ(Sd), Td1);

in

if θ = fail then nil else (λx.x ↓ dom(σ)) || G[[G1]]ρ(θ°σ :: nil)].

G[[ ]] : Literal* → Env → FSubst$bottom
∞ → FSubst$bottom

∞ .

(G1.1) G[[nil]]ρΘ = Θ.

(G1.2) G[[L :: G]]ρΘ = G[[G]]ρ(L[[L]]ρΘ).

L[[ ]] : Literal → Env → FSubst∞ → FSubst∞.

(L1.1) L[[p(Td)]]ρΘ = (ρ(p)(Td)) $circle Θ.

Figure 1: The semantic functions D[[ ]] and G[[ ]] for Cut-free Prolog

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

fails if it encounters a predicate not defined in the program. Then, the limit environment defined by a pro-

gram P is defined to be ρ0 =
n

$lubDn[[P]]$bottomEnv . Notice that since G and D are both defined by the

composition of continuous functions and (in the case of G) simple recursion, they are continuous (see

[12]), and hence the fixpoint ρ0 exists.

10



3.2. Operational Semantics for Cut-free Prolog

The operational semantics is given by an interpreter that repeatedly transforms a state encoding a

‘‘leftmost’’ SLD-tree traversed as follows:

° At any point, select the leftmost atom of the current goal for resolution.

° When resolving a literal, try the clauses in the sequential order of occurrence in the program.

° If unification fails at any point, backtrack to the most recent choice point and resume execution with

the next alternative there.

This execution strategy in fact corresponds to a depth-first backtracking search of the leftmost

SLD-tree for the program.

A state of the interpreter consists of a runtime stack describing the state of the computation, and the

list of clauses comprising the program. The stack is a list of records, each record describing a path from

the root of the SLD-tree to some node in the tree. Each such record is a triple $langle FrameList, Subst,

Clauses$rangle , where FrameList is a sequence of Frames, and each Frame represents a goal to be

solved; Subst is the current (finite) substitution, being developed incrementally; and Clauses is a tail seg-

ment of the program, consisting of those clauses that are yet to be tried in solving the leftmost literal of

the corresponding goal. A Frame is a pair consisting of a goal (which is either the user’s query or the

right hand side of some clause used to solve the query) and a set of variables VarP, which is the set of

variables the parent of that goal is interested in. Any substitution resulting from the computation of the

goal is projected on the variables in VarP before being returned.

Frame ::= $langle Atom*, VarP$rangle

FrameList ::= nil | Frame :: FrameList

Stack ::= nil | $langle FrameList, Subst, Clause*$rangle :: Stack

State ::= Stack.

The interpreter is defined by the function interp, which maps a state to a (possibly infinite) sequence of

substitutions. The interpreter carries around the sequence of clauses that define the predicates in the pro-

gram:

interp : State × Clause* → FSubst∞.

Execution terminates when the runtime stack becomes empty:

interp(nil, P) = nil.

When the goal to be solved in the current frame becomes empty, a solution has been found. The current

substitution is therefore returned, and execution backtracks to search for other solutions:

interp($langle nil, φ, C$rangle :: St, P) = φ :: interp(St, P).

On the other hand, if there are no more program clauses to match against a (non-empty) goal, execution

fails and backtracking takes place:

interp($langle F0, φ, nil$rangle :: St, P) = interp(St, P), if F0 ≠ nil.

11



Given a non-empty goal and a non-empty sequence of clauses, the interpreter tries to solve the leftmost

literal in the goal with respect to those clauses. This corresponds to making a call to the procedure

defined by that predicate. If the head of the first clause, after appropriate renaming of clause variables,

unifies with the leftmost literal, the frame list is extended with a frame describing the subgoal consisting

of the body of that clause. The original goal, together with the untried clauses, is saved on the stack so

that alternative solutions may be found on backtracking.

interp($langle$langle L :: G, VP$rangle :: F0, φ, (H0 :− B0) :: C$rangle :: St0, P) =

interp($langle F2 :: F1 :: F0, θ°φ, P, $rangle :: St1, P), where

H1 :− B1 = rename((H0 :− B0), dom(φ));

θ = unify( φ(L), H1) (≠ fail);

VP ¢= dom(φ);

F2 = $langle B1, VP ¢$rangle ; F1 = $langle G, VP$rangle ;

St1 = $langle$langle L :: G, VP$rangle :: F0, φ, C$rangle :: St0.

On the other hand, if the head of the first clause does not unify with the leftmost literal, the clause is dis-

carded and the process repeated with the remaining clauses:

interp($langle Framelist, φ, (H0 :− B0) :: C$rangle :: St0, P) = interp($langle Framelist, φ, C$rangle :: St0, P).

When the goal in a frame becomes empty (there may still be other goals to be solved in the current for-

ward execution path), the current substitution is appropriately projected and computation continues with

this projected substitution and the remaining framelist. This corresponds to a return from a procedure.

Since new variables may have been introduced in the computation from which the return is being made,

any such variables occurring in the projected substitution must be taken into account for renaming pur-

poses as far as the remaining forward computation is concerned.

interp($langle$langle nil, VP$rangle :: F0, φ, C$rangle :: St, P) = interp($langle F0, φ ↓ VP, P$rangle :: St, P).

Evaluation of a goal G with respect to a clause sequence C that defines the relevant predicates is defined

by the expression

interp($langle$langle G, V$rangle :: nil, εV, P$rangle :: nil$rangle , P),

where V = vars(G) and εV is the identity finite substitution with domain V. The interpreter is summarized

in Figure 2.

3.3. Equivalence of Denotational and Operational Semantics

In this section we show that the meaning given to predicates, atoms and goals by the abstract inter-

preter described above is in fact that specified by the semantic functions described earlier. Before

proceeding with the proof of equivalence, however, we require some structural lemmas regarding the

behavior of the abstract interperter. The interpreter defines a function

interp : State × Clause* → Subst∞.

12



hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

interp : State × Clause* → Subst∞.

(I1.1) interp(nil, P) = nil.

(I1.2) interp($langle nil, φ, C$rangle :: St, P) = φ :: interp(St, P).

(I1.3) interp($langle F0 :: F1, φ, nil$rangle :: St, P) = interp(St, P).

(I1.4) interp($langle$langle L :: G, VP$rangle :: F0, φ, (H0 :− B0) :: C$rangle :: St0, P) =

interp($langle F2 :: F1 :: F0, θ°φ, P $rangle :: St1, P), where

H1 :− B1 = rename((H0 :− B0), dom(φ));

θ = unify( φ(L), H1) (≠ fail);

VP ¢= dom(φ);

F2 = $langle B1, VP ¢$rangle ; F1 = $langle G, VP$rangle ;

St1 = $langle$langle L :: G, VP$rangle :: F0, φ, C$rangle :: St0.

(I1.5) interp($langle$langle L :: G, VP$rangle :: F0, φ, (H0 :− B0) :: C$rangle :: St0, P) =

interp($langle$langle L :: G, VP$rangle :: F0, φ, C$rangle :: St0, P), where

H1 :− B1 = rename((H0 :− B0), dom(φ)), and unify( φ(L), H1 ) = fail.

(I1.6) interp($langle$langle nil, VP$rangle :: F0, φ, C$rangle :: St, P) = interp($langle F0, φ ↓ VP, P $rangle :: St, P).

Figure 2: Abstract Interpreter for Cut-free Prolog

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Moreover, since it is defined in terms of a set of disjoint cases where for each case, the right hand side of

each expression is built out of (i) continuous functions, (ii) the symbol interp, and (iii) composition of

symbols from (i) and (ii), interp defines a continuous functional, and we can use fixpoint induction to rea-

son about its least fixpoint.

The first lemma states that given an interpreter stack F :: St, the component F encodes the current

forward computation, while the remainder of the stack, St, encodes the remaining portion of the SLD-tree

that has to be searched:

Lemma 3.1: For any stack frame F and stack St,

interp(F :: St, P) ≡ interp(F :: nil, P) $sometimes interp(St, P).

13



Proof: By fixpoint induction on interp. $always

The next two lemmas state that the interpreter carries out a tuple at a time computation, solving the

literals in a goal in their left to right order. First, we show that the tuple at a time computation proceeds

with the frames in the current forward computation component of the stack being processed in their LIFO

order:

Lemma 3.2: For any frame F, framelist F1, substitution φ, and program P and clause list C,

interp($langle F :: F1, φ, C$rangle :: nil, P) ≡

[λθ.interp($langle F1, θ, P$rangle :: nil, P)] $circle interp($langle F :: nil, φ, C$rangle :: nil, P).

Proof: By fixpoint induction on interp. $always

The next lemma states that computation of the literals within a frame proceds a tuple at a time, in their

left to right order:

Lemma 3.3: For any goal L :: G, set of variables VP, framelist F, substitution φ, clause list C, and pro-

gram P,

interp($langle$langle L :: G, VP$rangle :: F, φ, C$rangle :: nil, P) ≡

(λθ.interp($langle$langle G, VP$rangle :: F, θ, P$rangle :: nil, P)) $circle interp($langle$langle L :: nil, dom(φ)$rangle

Proof : By fixpoint induction on interp. $always

Our final lemma concerns the projection away of extraneous substitutions at the return from a call in the

interpreter. The lemma states that this can be done in two steps. This is a purely technical lemma neces-

sary for the proof of Theorem 3.1.

Lemma 3.4: For any goal G, substitutions θ and φ, stack component St and program P with tail C,

interp($langle$langle G, dom(φ)$rangle :: nil, θ°φ, C$rangle :: St, P) ≡
(λσ.σ↓dom(φ)) || interp($langle$langle G, dom(θ°φ)$rangle :: nil, θ°φ, C$rangle :: St, P)

Proof: By simplification using the rules in Figure 2, and observing that dom(φ) ⊆ dom(θ°φ). $always

Finally, consider the effect of failures on substitution sequences. If a goal fails, it returns the empty sub-

stitution sequence. As mentioned in the previous section, given a goal L :: G, if the literal L fails, then the

entire goal fails. This is expressed by the following lemma:

Lemma 3.5: For any goal G and environment ρ, G[[G]] ρ nil = nil.

14



Proof: By structural induction on G. $always

We are now in a position to prove the main result of this section:

Theorem 3.1: For any goal G, literal L, program P with tail C, and substitution stream Θ,

G[[G]] ρ0 (L[[L]] D[[C]] ρ0 Θ) ≡ λσ.interp($langle$langle L :: G, dom(σ)$rangle :: nil, σ, C$rangle :: nil, P) $circle Θ.

Proof: By fixpoint induction on G[[ ]], D[[ ]] and interp. $always

Corollary (Equivalence of Denotational and Operational Semantics): For any goal G and program P, and

substitution sequence Θ,

G[[G]]ρ0 Θ ≡ λσ.interp($langle$langle G, dom(σ)$rangle :: nil, σ, P$rangle :: nil, P) $circle Θ.

4. Semantics of Prolog with Cut

4.1. The ‘‘Cut’’ Construct

One problem that can arise with the simple control strategy of the Prolog interpreter given earlier is

that execution may backtrack exhaustively through subtrees of the search tree that cannot contribute to a

solution (in extreme cases, exhaustive search through an infinite tree can lead to nontermination of logi-

cally correct programs). The cut construct returns some control over this backtracking behavior to the

user.

Operationally, the effect of a cut is to discard certain backtrack points, so that execution can never

backtrack into them. The behavior of cut is not universally agreed upon in all contexts [9]. In practice,

however, cuts are most frequently encountered in one of two static contexts: as part of the top-level con-

junction in a clause, or within a disjunction in a clause, i.e. either in a context

p :− . . .

p :− . . ., !, . . .

p :− . . .

or in a context

p :− . . .

p :− . . ., ( ( . . . !, . . . ) ;

( . . . )

), . . .

p :− . . .

Most current implementations of Prolog behave similarly in their treatment of cut in these contexts. The

expected behavior here is that the backtrack points discarded by a cut will consist of: all those set up by

literals to the left of the cut all the way to the beginning of the clause; and the backtrack point for the

parent predicate whose definition includes the clause containing the cut, i.e. all remaining alternative

15



clauses for this predicate. Cuts exhibiting this behavior are sometimes referred to as hard cuts; this is to

distinguish them from cuts which discard the backtrack points set up by literals to the left of the cut in the

clause but not the alternative clauses for the predicate, these being referred to as soft cuts. We will res-

trict our attention to cuts that occur statically in the above contexts, and assume them to be hard.

4.2. Denotational Semantics for Prolog with Cut

Since the effect of a cut is to modify the ‘‘rest of the computation’’, it is naturally modelled using a

continuation semantics. As before, each literal in the body of a clause acts as a transformer on streams of

substitutions: each literal receives a stream of substitutions from those on its left, and in turn feeds a

stream of substitutions to those on its right. The action of a cut fits smoothly into this picture: the cut

simply discards all but the first substitution from the sequence received from its left brothers. However,

this is not enough for modelling the effect of a cut with respect to the clauses that follow. To model the

notion of ‘‘remaining clauses’’, we introduce declaration continuations, DCont.

A declaration continuation is similar to an environment in that given a predicate name, it returns a

function which, when called with a tuple of terms and a substitution, returns a sequence of substitutions.

It differs from the environment in which a goal is evaluated in that while the environment reflects the

meaning of the ‘‘current’’ list of clauses to solve the goal with, the declaration continuation gives the

meaning of the ‘‘remaining’’ clauses, i.e. the alternatives that would be tried were execution to backtrack

from the first clause of the list.

Each literal now yields a boolean ‘‘cut flag’’: the value of the cut flag for a goal indicates whether

or not a cut was encountered in that goal. The value of the flag is unaffected by non-cut literals, while a

cut sets the flag to true. As before, semantic functions D[[ ]] and G[[ ]] give the meanings of clause and

literal sequences respectively, with the auxiliary functions C[[ ]] and L[[ ]] giving the meanings of indivi-

dual clauses and literals; they are now extended to incorporate cut flags.

The function D[[ ]] gives the meaning of a clause or a sequence of clauses in a given environment

and continuation. Given the empty program, the resulting environment is the empty one (to be precise,

the function which maps every predicate name to the function that returns the empty substitution

sequence for any input). Given a clause sequence c0 :: C, an environment ρ and continuation δ, we first

find the meaning ρ1 of C in the environment ρ and continuation δ. The environment ρ1 thus represents

the solutions that would be found for any predicate p were we to use only the clauses C to solve for p,

using environment ρ to solve for literals in the bodies of clauses in C. Thus, ρ1 represents the ‘‘rest of the

program’’ as far as c0 is concerned:

D[[c0 :: C]]$langle ρ, δ$rangle = C[[c0]] $langle ρ, (D[[C]]$langle ρ, δ$rangle )$rangle .

The meaning of a single clause given an environment ρ and a continuation δ is obtained as a func-

tion which takes, as arguments, a tuple of terms td and a finite substitution σ. It first renames variables in

the clause with respect to σ, then tries to unify σ(td) with its head. If unification succeeds, it tries to evalu-

ate the body of the clause in environment ρ, passing in the continuation δ. The result of evaluating the

16



body is a substitution sequence Φ and a cut flag. If the value of the cut flag is f, indicating that no cuts

were encountered, in the clause, then the continuation δ is evaluated with the input tuple of terms and

substitution, thereby computing the substitutions resulting from the remaining clauses for that predicate.

These substitutions are appended to the sequence Φ to give the full sequence of substitutions. On the

other hand, if the value of the cut flag t, then a cut must have been encountered in the clause body, so the

continuation is not activated. Thus, we have

C[[p(Td) :− B0]]$langle ρ, δ$rangle = ρ[p ← f], where

f = λSdλσ.[let (p(Td1) :− B1) = rename( (p(Td0) :− B0), dom(σ));

θ = unify(σ(Sd), Td1);

in

if θ = fail then δ(p)Sdσ
else ((λx.x ↓ dom(σ)) || Φ) $sometimes (if cflag then nil else δ(p)Sdσ),

where $langle Φ, cflag$rangle = G[[B1]]ρ $langle (θ°σ :: nil), f$rangle .

The semantic function G[[ ]] gives the meaning of a goal. It takes as arguments an environment in

which to look up predicate meanings for the literals in its body; and a pair consisting of a substitution

sequence (corresponding to the substitutions generated by literals to the left of the goal being evaluated)

and a boolean flag, the ‘‘cut flag’’. It returns a pair consisting of a substitution sequence (those generated

by the literals to its left and the goal itself) and a boolean, which has the value t if a cut has been encoun-

tered in the goal, f otherwise.

In any environment, the empty goal signals a successful computation, and the substitutions and con-

tinuation passed in from the left are returned unchanged. To solve a compound goal L :: G in an environ-

ment ρ, given the input substitution stream Θ and cut flag cflag, we first solve L in ρ with Θ and cut flag,

and use the resulting substitution stream and cut flag to solve G in environment ρ. Both these cases

involve only minor variations of the corresponding cases in the semantics of Prolog without cut given

earlier (see Figure 1).

An atom is evaluated by extracting the meaning of the corresponding predicate symnbol from the

environment and applying it to the input term and elements of the input substitution stream. In this case,

the ‘‘remaining clauses’’ are not affected in any way, so the input cut flag is returned unchanged:

L[[p(Td)]]ρ $langle Θ, cflag$rangle = $langle Φ, cflag$rangle , where Φ = ρ(p)(Td) $circle Θ.

On the other hand, if the literal is a cut, there are two possibilities: if the input substitution stream is

empty, then execution must have failed for some literal to the left of the cut, so that the cut is not exe-

cuted and therefore has no effect. In this case, clearly, execution would have continued by trying the

remaining clauses. Thus, the empty substitution sequence is returned, together with the input cut flag.

The cut becomes meaningful only if the input substitution sequence is nonempty. In this case, the output

substitution sequence is the singleton list consisting of the first element of the input stream. Also, since

the remaining clauses have to be discarded, the output cut flag value is t:

L[[ ! ]]ρ $langle Θ, cflag$rangle = if Θ = nil then $langle nil, cflag$rangle else $langle head(Θ), t$rangle

17



where the function head gives the first element of a nonempty sequence.

The limit environment ρ0 is now defined as fixρ.D[[P]]$langle ρ, ncont$rangle , where ncont =

λxλyλz.nil is the null continuation. The semantic functions are summarized in Figure 3.

4.3. Operational Semantics for Prolog with Cut

The interpreter has to be modified slightly to deal with cut. Since the effect of a cut is to discard

certain choice points, and choice points are maintained on the stack, the interpreter now maintains

pointers into the stack, at each level, to the point to cut back (i.e. discard choice points) to if a cut is

encountered. The Frame component is therefore extended with an additional Stack element, which we

will refer to as the dump.

Frame ::= $langle Atom*, VP, Stack$rangle .

FrameList ::= nil | Frame :: FrameList.

Stack ::= nil | $langle FrameList, Subst, Clause*$rangle :: Stack.

The actions of the interpreter also have to be modified slightly. There are two main points to note. First,

observe that for a cut encountered when evaluating the body of a clause, only those choice points set up

during and after the call that led to that clause will be discarded. Therefore in any invocation of a predi-

cate, it is enough to pass the stack component just before the call is made, into the call as the dump com-

ponent of the callee. The second is that when a cut is encountered, the backtrack stack should be set to

the current dump component, thereby resulting in some choice points at the top of the stack being dis-

carded. The resulting interpreter is summarized in Figure 4.

4.4. Equivalence of Denotational and Operational Semantics

In this section, we show that the meaning given to programs by the abstract interpreter defined

above, in the case of Prolog with cut, is the same as that given by the semantic functions.

Unfortunately, unlike the cut-free case, the non-local effects of cut preclude simple structural decomposi-

tions of the interpreter state as in Lemmas 3.1-3.5, and make the proof more complex. The main problem

is that once cuts are introduced, some of the substitutions generated while evaluating a goal may have to

be discarded if a cut was encountered during the execution of that goal; however, interp does not indicate

whether or not a cut was encountered during the execution of a goal. Moreover, the interpreter only

works on one substitution at a time, and encodes the other computation paths in a rather complicated

manner in its stack, the effect of cut being to discard certain backtrack points at the top of the stack. This

makes it difficult to find simple decomposition lemmas for interp in the presence of cuts. Instead of a

direct proof of equivalence, therefore, we resort to an intermediate function, tran, that mediates between

the denotational and the operational semantics. This is very similar to interp, except that tran works on

substitution sequences and uses a boolean flag to indicate whether a cut was encountered, much like the

semantic functions of Figure 3. This function is illustrated in Figure 5.

Top level goals are evaluated through the auxiliary semantic function Ĝ, which is similar to G[[ ]]

except that it takes as argument two environments − one to evaluate the leftmost literal of the goal in, and

18



hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

DCont = Predicate → Term → FSubst$bottom → FSubst$bottom
∞ .

D[[ ]] : Clause* → (Env × DCont) → Env

(D2.1) D[[nil]]$langle ρ, δ$rangle = λxλyλz.nil.

(D2.2) D[[c0 :: C]]$langle ρ, δ$rangle = C[[c0]] $langle ρ, (D[[C]]$langle ρ, δ$rangle )$rangle .

C[[ ]] : Clause → (Env × DCont) → Env

(C2.1) C[[p(Td) :− B0]]$langle ρ, δ$rangle = ρ[p ← f], where

f = λSdλσ.[let (p(Td1) :− B1) = rename( (p(Td0) :− B0), dom(σ));

θ = unify(σ(Sd), Td1);

in

if θ = fail then (δ(p)Yd)(σ)

else ([λx.x ↓ dom(σ)] || Φ) $sometimes (if cflag then nil else δ(p)Yd)(σ)),

where $langle Φ, cflag$rangle = G[[B1]]ρ $langle (θ°σ :: nil), f$rangle ].

G[[ ]] : Literal* → Env → (FSubst$bottom
∞ × Bool) → (FSubst$bottom

∞ × Bool)

(G2.1) G[[nil]]ρ $langle Θ, cflag$rangle = $langle Θ, cflag$rangle .

(G2.2) G[[L :: G]]ρ $langle Θ, cflag$rangle = G[[G]]ρ (L[[L]]ρ $langle Θ, cflag$rangle .

L[[ ]] : Literal → Env → (FSubst$bottom
∞ × Bool) → (FSubst$bottom

∞ × Bool)

(L2.1) L[[ ! ]]ρ $langle Θ, cflag$rangle = if Θ = nil then $langle nil, cflag$rangle else $langle head(Θ), t$rangle .

(L2.2) L[[p(Td)]]ρ $langle Θ, cflag$rangle = $langle Φ, cflag$rangle , where Φ = (ρ(p)(Td)) $circle Θ.

Figure 3: Semantic Functions for Prolog with Cut

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

19



hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

(I2.1) interp(nil, P) = nil.

(I2.2) interp($langle nil, φ, C$rangle :: St, P) = φ :: interp(St, P).

(I2.3) interp($langle F0 :: FRest, φ, nil$rangle :: St, P) = interp(St, P).

(I2.4) interp($langle$langle ! :: A, VP, D$rangle :: F0, φ, C$rangle :: St, P) = interp($langle$langle A, VP, D$rangle :: F

(I2.5) interp($langle$langle L :: G, VP, D$rangle :: F0, φ, (H0 :− B0) :: C$rangle :: St0, P) (L ≠ ‘!’) =

interp($langle F2 :: F1 :: F0, θ°φ, P$rangle :: St1, P), where

H1 :− B1 = rename((H0 :− B0), dom(φ));

θ = unify(φ(L), H1) (≠ fail);

VP ¢= dom(φ);

F2 = $langle B1, VP ¢, St0$rangle ; F1 = $langle G, VP, D$rangle ;

St1 = $langle$langle L :: G, VP, D$rangle :: F0, φ, C$rangle :: St0.

(I2.6) interp($langle$langle L :: G, VP, D$rangle :: F0, φ, (H0 :− B0) :: C$rangle :: St0, P) (L ≠ ‘!’) =

interp($langle$langle L :: G, VP, D$rangle :: F0, φ, C$rangle :: St0, P), where

H1 :− B1 = rename((H0 :− B0), dom(φ)), and unify( φ(L), H1 ) = fail.

(I2.7) interp($langle$langle nil, VP, D$rangle :: F0, φ, C$rangle :: St, P) = interp($langle F0, φ ↓ VP, P $rangle :: St, P).

Figure 4 : Abstract Interpreter for Prolog with Cut

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

20



hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

(T2.1) tran(nil, P) = nil.

(T2.2) tran($langle nil, Φ, C$rangle :: St, P) = Φ $sometimes tran(St, P).

(T2.3) tran($langle F :: FRest, Φ, nil$rangle :: St, P) = tran(St, P).

(T2.4) tran($langle$langle G1 $sometimes G2, VP, D$rangle :: FRest, Ψ, C$rangle :: St, P) =

let $langle Φ, cflag$rangle = Ĝ[[G1]]ρ0 (D[[C]]$langle ρ0, ncont$rangle ) $langle Ψ, f$rangle in

if Φ = nil then

tran( (if cflag then D else St), P);

if Φ ≠ nil then

tran($langle$langle G2, VP, D$rangle :: FRest, Φ, P$rangle :: (if cflag then D else St), P).

(T2.5) tran($langle$langle nil, VP, D$rangle :: FRest, Φ, C$rangle :: St, P) =

tran($langle FRest, (λx.x ↓ VP) || Φ, P$rangle :: St, P).

Figure 5

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

the other to evaluate the rest of the goal in.

Ĝ[[ ]] : Literal* → Env → Env → (FSubst$bottom
∞ × Bool) → (FSubst$bottom

∞ × Bool)

Ĝ[[L :: G]]ρ1 ρ2 $langle Φ, b$rangle = G[[G]]ρ1 (L[[L]]ρ2 $langle Φ, b$rangle ).

Ĝ[[nil]]ρ1 ρ2 $langle Φ, b$rangle = G[[nil]]ρ2 $langle Φ, b$rangle .

As before, we state some structural lemmas regarding G[[ ]] and tran. If a sequence A1 is a prefix of a

sequence A2, we will write A1 ≤ A2. It is easy to show that G[[ ]] is monotonic with respect to ≤:

Lemma 4.1: If Φ1 ≤ Φ2, $langle Ψ1, cf1$rangle = G[[G]]ρ $langle Φ1, cf0$rangle , and $langle Ψ2,

cf2$rangle = G[[G]]ρ $langle Φ2, cf0$rangle , then Ψ1 ≤ Ψ2.

Proof: By structural induction on G. $always

Lemma 4.2: Let $langle Ψ0, cf0$rangle = G[[G]]ρ $langle Φ1 $sometimes Φ2, f$rangle , $langle Ψ1,

cf1$rangle = G[[G]]ρ $langle Φ1, f$rangle , and $langle Ψ2, cf2$rangle = G[[G]]ρ $langle Φ2, f$rangle .

Then, if cf1 is false, then Ψ0 = Ψ1 $sometimes Ψ2.

Proof: By structural induction on G. $always

21



Lemma 4.3: Let $langle Ψ0, cf0$rangle = G[[G]]ρ $langle Φ1 $sometimes Φ2, f$rangle , and $langle Ψ1,

cf1$rangle = G[[G]]ρ $langle Φ1, f$rangle . Then, if cf1 is true and Ψ1 ≠ nil, then Ψ0 = Ψ1.

Proof: By structural induction on G. $always

Lemma 4.4: For any framelist F, substitution sequence Φ1 $sometimes Φ2, stack component St and pro-

gram P,

tran($langle F, Φ1 $sometimes Φ2, P$rangle :: St, P) = tran($langle F, Φ1, P$rangle :: $langle F, Φ2, P$rangle :: St,

Proof: By structural induction on F (see Appendix 2). $always

The equivalence of the denotational and operational semantics is then asserted by the following theorem:

Theorem 4.1: For any framelist F, substitution θ, clause list C, stack component St and program P,

interp($langle F, θ, C$rangle :: St, P) ≡ tran($langle F, θ :: nil, C$rangle :: St, P).

Proof: By fixpoint induction on interp, tran, G[[ ]] and D[[ ]]. $always

Corollary (Equivalence of Denotational and Operational Semantics): If

Φ = interp($langle$langle G, dom(θ), nil$rangle :: nil, θ, P$rangle :: nil, P), then

G[[G]]ρ0 $langle θ :: nil, f$rangle = $langle Φ, ncont$rangle .

where ρ0 = fix ρ. D[[P]]$langle ρ, ncont$rangle .

5. Applications

A central motivation for developing a denotational semantics for Prolog has been the need to justify

the correctness of transformations on Prolog programs. Typically, such justification is useful for validat-

ing transformations used in optimizing compilers. While there are plenty of ‘‘folk theorems’’, such as

that contiguous cuts are idempotent, i.e. ‘L1, !, !, L2’ ≡ ‘L1, !, L2’, none are firmly based on a semantics

that describes the computational behavior of programs. The need for a denotational formulation of the

semantics follows from its ability to support reasoning about the strong correctness of transformations.

This is particularly important in the case of Prolog, since many transformations involve the insertion of

cuts [2, 4, 8, 11], which may change the termination behavior of programs.

As an example, we prove the correctness of two transformations involving the manipulation of cuts.

The first involves the removal of cuts in certain contexts, while the second involves the insertion of cuts

to constrain the search space. A predicate (clause, literal) is determinate in a program if any call to it in

that program yields at most one substitution, i.e. the output sequence has length at most 1. By ‘P\q’ we

mean a sequence of clauses without any clause defining q.

The first theorem we prove states that if a cut appears as the last literal in the last clause of a predi-

cate, and that clause is determinate independently of the cut, then the cut can be discarded without

22



affecting the semantics of the program.

Theorem 5.1: Let P and Q be the programs

P = (p(Td11) :− q1(Td12) :: nil)) :: ... :: (p(Tdn 1) :− qn(Tdn 2) :: ! :: nil) :: P\p, and

Q = (p(Td11) :− q1(Td12) :: nil)) :: ... :: (p(Tdn 1) :− qn(Tdn 2) :: nil) :: P\p.

Then, if qn(Tdn 2) is determinate in both P and Q, then ρP ≡ ρQ, where ρP = fix ρ.D[[P]]$langle ρ,

ncont$rangle and ρQ = fix ρ.D[[Q]]$langle ρ, ncont$rangle .

Proof Outline: The proof is by fixpoint induction on ρP and ρQ, showing that for any tuple of terms Td and

substitution θ,

ρP(p) Td θ ≡ ρQ(p) Td θ.

For the interesting case, we need to show that

C[[p(Tdn 1) :− qn(Tdn 2) :: ! :: nil]]$langle ρP, δ$rangle p Td θ ≡ C[[p(Tdn 1) :− qn(Tdn 2) :: nil]]$langle ρQ , δ¢$rangle p Td θ.

where δ = D[[Pp]]$langle ρP, ncont$rangle , δ¢= D[[Pp]]$langle ρQ , ncont$rangle . There are two cases

that have to be considered:

Case I: Unification of Tdn 1 and θ(Td) fails: in this case, the left hand side is

δ(p) Td θ ≡ nil ≡ δ¢(p) Td θ

whence the left and right hand sides are equal.

Case II: Unification succeeds with unifier φ: in this case, the left hand side is

Θ $sometimes (δ1(p) Td θ), where $langle Φ, δ1$rangle = G[[qn(Tdn 2) :: ! :: nil]]ρP $langle φ°θ :: nil, δ$rangle .

Observe that qn is determinate in P and Q, whence it is easy to show that

$langle Φ, δ1$rangle = L[[qn(Tdn2)]]ρP $langle φ°θ :: nil, δ$rangle ,

and δ1(p) ≡ ncont(p), since δ is defined in terms of P\p, which does not contain any clauses for p. Thus,

the left hand side can be written as L[[qn(Tdn 2)]]ρP $langle φ°θ :: nil, ncont$rangle , and from the induc-

tion hypothesis, this is equal to L[[qn(Tdn 2)]]ρQ $langle φ°θ :: nil, ncont$rangle . The right hand side is

$langle Φ $sometimes δ¢(p) Td θ), where

$langle Φ, δ2$rangle = G[[q(Tdn 2) :: nil]]ρQ $langle φ°θ :: nil, δ¢$rangle ,

where δ2(p) ≡ ncont(p) from the definition of δ¢. This reduces to L[[qn(Tdn 2]]ρ0¢$langle φ°θ :: nil,

ncont$rangle , whence the left and right hand sides are equal, and the theorem holds. $always

We have considered the case where the last clause for p has a single literal in its body, but the generaliza-

tion to a list of literals is obvious. The practical utility of this result is that it makes possible the elimina-

tion of some redundant cuts, which in turn leads to improved space utilization because opportunities open

up for tail recursion optimization (in general, last goal optimization). For example, the predicate

23



append1([],L,L).

append1([H|L1],L2,[H|L3]) :− append1(L1,L2,L3), !.

is not tail recursive, and needs linear space to concatenate two lists. On the other hand, the predicate

append2([],L,L).

append2([H|L1],L2,[H|L3]) :− append2(L1,L2,L3).

is tail recursive, and can concatenate two lists using constant space. Both append1 and append2 are

determinate when called with the first two arguments as ground terms, and from the theorem above, any

call to append1 whose first two arguments are ground can be replaced by a call to append2 (information

regarding the instantiations of arguments in a call can be obtained via mode analysis, see [3]).

The second transformation we validate involves the insertion of cuts in determinate predicates to

reduce the amount of search. Similar transformations have been proposed by several researchers

[4, 8, 11], but none, to our knowledge, have been formally validated.

Theorem 5.2: Let P and Q be the programs

P = (p(Td11) :− q1(Td12) :: nil)) :: (p(Td21) :− q2(Td22) :: nil) :: ... :: (p(Tdn 1) :− qn(Tdn 2) :: nil) :: P\p,

Q = (p(Td11) :− q1(Td12)) :: ! :: nil) :: (p(Td21) :− q1(Td22) :: ! :: nil) :: ... :: (p(Tdn 1) :− qn(Tdn 2) :: nil) ::

P\p.

Then, if p is determinate in both P and Q, then ρP $le ρQ, where ρP = fix ρ.D[[P]]$langle ρ, ncont$rangle

and ρQ = fix ρ.D[[Q]]$langle ρ, ncont$rangle .

Proof Outline: The proof is by fixpoint induction on ρP and ρQ, showing that for any tuple of terms Td and

substitution θ,

ρP(p) Td θ $le ρQ (p) Td θ.

For the interesting case, we need to show that

C[[p(Td11) :− q1(Td12) :: nil]]$langle ρP, δ$rangle p Td θ $le C[[p(Td11) :− q1(Td12) :: ! :: nil]]$langle ρQ , δ¢$rangle p Td θ

where

δ = D[[(p(Td21) :− q2(Td22) :: nil) :: ... :: (p(Tdn 1) :− qn(Tdn 2) :: nil) :: P\p]]$langle ρP, ncont$rangle ,

and

δ¢= D[[(p(Td21) :− q1(Td22) :: nil) :: ! :: nil)) :: ... :: (p(Tdn 1) :− qn(Tdn 2) :: nil) :: P\p]]$langle ρQ ,

ncont$rangle

given ρP $le ρQ , δ $le δ¢. There are two cases to be considered:

Case I: Unification of Td11 and θ(Td) fails. In this case, the left hand side is

δ(p) Td θ $le δ¢(p) Td θ ≡ right hand side

whence the theorem holds.

24



Case II: Unification succeeds with unifier φ. The left hand side is Φ $sometimes (newcont(p) Td θ), where

$langle Φ, newcont$rangle = G[[q1(Td12¢) :: nil]]ρP $langle φ°θ :: nil, δ$rangle , and Td12¢is the appropri-

ate alphabetic variant of Td12. There are two subcases:

(a) Φ = nil. Then, $langle Φ, newcont$rangle = G[[q1(Td12¢) :: ! :: nil]] ρP $langle φ°θ :: nil, δ$rangle .

(b) Φ ≠ nil. Since p is determinate in P, we must have (newcont(p) Td θ) = $bottom or nil, and $langle Φ,

ncont$rangle = G[[q1(Td12¢) :: ! :: nil]] ρP $langle φ°θ :: nil, δ$rangle .

The right hand side is $langle Φ, newcont ¢$rangle = G[[q1(Td12¢) :: ! :: nil]]ρQ $langle φ°θ :: nil, δ¢$ran-

gle . From the inductive hypothesis and monotonicity, we then have

Φ $sometimes (newcont(p) Td θ) $le Φ¢$sometimes (newcont ¢(p) Td θ)

and the theorem holds. $always

Notice that the insertion of cuts can change the termination behavior of programs, so that an otherwise

nonterminating program may terminate once cuts have been inserted.

6. Conclusions

The semantics of Prolog has traditionally been given in terms of the model theory of first order

logic. However, such a semantics is often inadequate for reasoning about the computational behavior of

Prolog programs, and for validating the strong correctness of program transformations, since it does not

support reasoning about the computational behavior of such programs. The problem becomes even more

serious if we wish to deal with programs that contain ‘‘impure’’ features such as cut.

In this paper, we gave a denotational and operational semantics for Prolog, both with and without

cut; proved the congruence of these semantics; and demonstrated the utility of such a semantics by vali-

dating two optimizing transformations on Prolog programs. We believe that while the model theoretic

semantics is very useful for understanding Prolog programs, it is necessary to resort to a denotational

description such as this in order to reason about tools that manipulate and transform Prolog programs.

References

1. K. R. Apt and M. H. van Emden, Contributions to the Theory of Logic Programming, J. ACM 29, 3

(July 1982), pp. 841-862.

2. S. K. Debray, Towards Banishing the Cut from Prolog, in Proc. 1986 Int. Conf. on Computer

Languages, IEEE Computer Society, Miami Beach, Florida, Oct. 1986, pp. 2-12.

3. S. K. Debray and D. S. Warren, Automatic Mode Inference for Logic Programs, J. Logic

Programming 5, 3 (Sep. 1988), pp. 207-229.

4. S. K. Debray and D. S. Warren, Functional Computations in Logic Programs, ACM Transactions

on Programming Languages and Systems 11, 3 (July 1989), pp. 451-481.

25



5. G. Frandsen, Logic Programming, Substitutions and Finite Computability, DAIMI PB-186,

Computer Science Department, Aarhus University, Denmark, Jan. 1985.

6. G. Frandsen, Logic Programming and Substitutions, in Proc. International Conference on

Fundamentals of Computation Theory, Springer-Verlag, , 146-158. LNCS v. 199.

7. N. D. Jones and A. Mycroft, Stepwise Development of Operational and Denotational Semantics for

PROLOG, in Proc. 1984 Int. Symposium on Logic Programming, IEEE Computer Society, Atlantic

City, New Jersey, Feb. 1984, 289-298.

8. C. S. Mellish, Some Global Optimizations for a Prolog Compiler, J. Logic Programming 2, 1 (Apr.

1985), 43-66.

9. C. Moss, Results of Cut Tests, in Prolog Electronic Digest, Vol. 3, No. 42, Oct 9, 1985.

10. R. A. O’Keefe, On the Treatment of Cuts in Prolog Source-Level Tools, in Proc. 1985 Symposium

on Logic Programming, Boston, July 1985, 73-77.

11. H. Sawamura and T. Takeshima, Recursive Unsolvability of Determinacy, Solvable Cases of

Determinacy and Their Applications to Prolog Optimization, in Proc. 1985 Symposium on Logic

Programming, Boston, July 1985, 200-207.

12. J. E. Stoy, Denotational Semantics: The Scott-Strachey Approach to Programming Language

Theory, MIT Press, Cambridge, Mass., 1977.

13. M. H. van Emden and R. A. Kowalski, The Semantics of Predicate Logic as a Programming

Language, J. ACM 23, 4 (Oct. 1976), pp. 733-742.

26



Appendix 1: Proofs of Equivalence for Prolog without Cut

Lemma 3.1: For any goal G and environment ρ, G[[G]] ρ nil = nil.

Proof: By structural induction on G. The base case, G = nil, follows from the definition of G[[ ]]. In the

inductive case, consider a goal p(Td) :: G. From the definition of G[[ ]], this is equivalent to G[[G]]ρ
(L[[p(Td)]]ρ nil), where

L[[L]]ρ nil

= (ρ(p) Td) $circle nil

= nil (from the definition of $circle ).

This gives G[[p(Td) :: G]] ρ nil = G[[G]] ρ nil, whence the theorem follows from the inductive

hypothesis. $always

To simplify the notation in the proof of the next theorem, if an expression E0 reduces to an expression E1

by application of rule R, we will write this as

E0 $rarrow R E1.

Thus, for example, if E0 reduces to E1 from clause G1.1 of the definition of G[[ ]] and clause D1.2 of that

of D[[ ]], we will write

E0 $rarrow (G1.1, D1.2) E1.

Where the source of the reduction is obvious, these annotations will sometimes be omitted.

Theorem 3.1: For any goal G, literal L, program P with tail C, and substitution stream Θ,

G[[G]] ρ0 (L[[p(Td)]] D[[C]] ρ0 Θ) ≡

λσ.interp($langle$langle p(Td) :: G, dom(σ)$rangle :: nil, σ, C$rangle :: nil, P) $circle Θ.

Proof: By fixpoint induction on G[[ ]], D[[ ]] and interp. For the inductice step, there are six relevant

cases:

Case 1: G = nil, C = nil.

Case 2: G = nil, C = c0 :: C ¢, unification of p(Td) with the head of c0 succeeds.

Case 3: G = nil, C = c0 :: C ¢, unification of p(Td) with the head of c0 fails.

Case 4: G ≠ nil, C = nil.

Case 5: G ≠ nil, C = c0 :: C ¢, unification of p(Td) with the head of c0 succeeds.

Case 6: G ≠ nil, C = c0 :: C ¢, unification of p(Td) with the head of c0 fails.

The proof proceeds as follows:

27



Case 1: The left hand side is

G[[nil]] ρ0 (L[[p(Td)]] D[[nil]] ρ0 Θ)

$rarrow (G1.1, D1.1) L[[p(Td)]] λxλyλz.nil

$rarrow L1.1 (λxλyλz.nil p Td) $circle Θ

$rarrow nil.

The right hand side is

λσ.interp($langle$langle p(Td) :: G, dom(σ)$rangle :: nil, σ, nil$rangle :: nil, P) $circle Θ
$rarrow I1.3 λσ.interp(nil, P) $circle Θ

$rarrow I1.1 λσ.nil $circle Θ

$rarrow nil.

Case 2: The left hand side is

G[[nil]] ρ0 (L[[p(Td)]] D[[(H0 :− B0) :: C ¢]] ρ0 Θ)

$rarrow (G1.1, D1.2) L[[p(Td)]] (λxλyλz.(C[[H0 :− B0]]ρ0 x y z $sometimes D[[C ¢]]ρ0 x y z)) Θ)

$rarrow L1.1 (λxλyλz.((C[[H0 :− B0]]ρ0 x y z) $sometimes (D[[C ¢]]ρ0 x y z)) p Td) $circle Θ

$rarrow λz.((C[[H0 :− B0]]ρ0 p Td z) $sometimes D[[C ¢]]ρ0 p Td z)) $circle Θ

$rarrow C1.1 λz.((λx.x↓dom(z)) || G[[B1]]ρ0 θ°z :: nil) $sometimes (D[[C ¢]]ρ0 p Td z) $circle Θ, where

H1 :− B1 = rename((H0 :− B0), dom(z)), H1 = p(Sd), and

θ = unify(z(Td), Sd). (1)

The right hand side is

λσ.interp($langle$langle p(Td) :: nil, dom(σ)$rangle :: nil, σ, (H0 :− B0) :: C ¢$rangle :: nil, P) $circle Θ

$rarrow I1.4 λσ.interp($langle$langle B1, dom(σ)$rangle :: $langle nil, dom(σ)$rangle :: nil, θ°σ, P$rangle

H1 :− B1 = rename((H0 :− B0, dom(σ)), H1 = p(Sd),

θ = unify(σ(Td), Sd),

St = $langle$langle p(Td) :: nil, dom(σ)$rangle :: nil, σ, C ¢$rangle :: nil.

$rarrow Lemmas 3.1, 3.2 λσ.[((λψ.interp($langle$langle nil, dom(ψ)$rangle :: nil, ψ, P$rangle :: nil, P) $circle

interp($langle$langle B1, dom(σ)$rangle :: nil, θ°σ, P$rangle :: nil, P)) $sometimes

interp($langle$langle p(Td) ::nil, dom(σ)$rangle :: nil, σ, C ¢$rangle :: nil, P)] $circle Θ
$rarrow I1.6 λσ.[(λψ.ψ↓dom(σ) || interp($langle$langle B1, dom(σ)$rangle :: nil, θ°σ, P$rangle :: nil, P)) $sometimes

interp($langle$langle p(Td) :: nil, dom(σ)$rangle :: nil, σ, C ¢$rangle :: nil, P)] $circle Θ
$rarrow λσ.[(λψ.ψ↓dom(σ) ||

(λφ.interp($langle$langle B1, dom(φ)$rangle :: nil, φ, P$rangle :: nil, P) $circle θ°σ :: nil)) $sometimes

(λφ.interp($langle$langle p(Td) :: nil, dom(φ)$rangle :: nil, φ, C ¢$rangle :: nil, P) $circle σ :: nil))] $circle Θ

If B1 = nil, then this yields

28



$rarrow I1.6 λσ.[(λψ.ψ↓dom(σ) || (σ↓dom(σ) :: nil)) $sometimes

(λφ.interp($langle$langle p(Td) :: nil, dom(φ)$rangle , φ, C ¢$rangle :: nil, P) $circle σ :: nil)] $circle

$rarrow λσ.[(λψ.ψ↓dom(σ) || (θ°σ :: nil)) $sometimes

(λφ.interp($langle$langle p(Td) :: nil, dom(φ), C ¢$rangle :: nil, P) $circle σ :: nil)] $circle Θ

Now we have

λx.x↓dom(y) || G[[B1]]ρ0 (θ°σ :: nil)

$rarrow λx.x↓dom(y) || G[[nil1]]ρ0 (θ°σ :: nil)

$rarrow λx.x↓dom(y) || (θ°σ :: nil)

and from the induction hypothesis,

interp($langle$langle p(Td) :: nil, dom(φ)$rangle :: nil, φ, C ¢$rangle :: nil, P)

$rarrow BG[[nil]]ρ0(L[[p(Td)]] D[[C ¢]]ρ0 Θ)

$rarrow G1.1 L[[p(Td)]] D[[C ¢]]ρ0 Θ

$rarrow L1.1 (D[[C ¢]]ρ0 p Td) $circle Θ

whence (1) ≡ (2), and the theorem holds.

When B1 ≠ nil, assume B1 = R :: B2. From the induction hypothesis, (2) reduces to

λσ.[(λψ.ψ↓dom(σ) || G[[B2]] ρ0 L[[R]] D[[P]]ρ0 θ°σ :: nil) $sometimes

(G[[nil]]ρ0 L[[p(Td)]] D[[C ¢]]ρ0 σ :: nil)] $circle Θ

where ρ0 = D[[P]]ρ0 (being the fixpoint). This can therefore be rewritten, using G1.1, L1.1, as

λσ.[(λψ.ψ↓dom(σ) || G[[R :: B2]]ρ0 σ :: nil) $sometimes (D[[C ¢]]ρ0 p Td σ)] $circle Θ.

The theorem is therefore seen to hold.

Case 3: Here, unification of the literal with the head of the first clause fails. The left hand side is

G[[G]] ρ0 (L[[p(Td)]] D[[C]] ρ0 Θ)

$rarrow (G1.1, D1.2) λz.[(C[[H0 :− B0]]ρ0 p Td z) $sometimes (D[[C ¢]]ρ0 p Td z)] $circle Θ

$rarrow C1.1 λz.[nil $sometimes (D[[C ¢]]ρ0 p Td z)] $circle Θ.

$rarrow λz.[D[[C ¢]]ρ0 p Td z] $circle Θ.

The right hand side is

λσ.interp($langle$langle p(Td) :: nil, dom(σ)$rangle :: nil, σ, (H0 :− B0) :: C ¢$rangle :: nil, P) $circle Θ

$rarrow I1.5 λσ.interp($langle$langle p(Td) :: nil, dom(σ)$rangle :: nil, σ, C ¢$rangle :: nil, P) $circle Θ

which reduces, from the inductive hypothesis, to

G[[nil]]ρ0 (L[[p(Td) D[[C ¢]]ρ0 Θ)

$rarrow G1.1, C1.1) λz.[D[[C ¢]]ρ0 p Td z] $circle Θ.

29



Case 4: The left hand side is

G[[L :: G1]]ρ0 (L[[p(Td)]] D[[nil]]ρ0 Θ)

$rarrow (G1.2, D1.1, L1.1) G[[G1]]ρ0 (L[[L]]ρ0 nil)

$rarrow Lemma 3.5 nil.

The right hand side is

λσ.interp($langle$langle p(Td) :: L :: G1, dom(σ)$rangle :: nil, σ, nil$rangle :: nil, P) $circle Θ

$rarrow I1.3 λσ.interp(nil, P) $circle Θ

$rarrow I1.1 nil.

Case 5: The left hand side is

G[[L :: G1]]ρ0 (L[[p(Td)]] D[[(H0 :− B0) :: C ¢]]ρ0 Θ)

$rarrow (G1.2, D1.2, C1.1) G[[G1]]ρ0 (L[[L]]ρ0 (λz.[(λx.x↓dom(z) ||

G[[B1]]ρ0 θ°z :: nil) $sometimes (D[[C ¢]]ρ0 p Td z)] $circle Θ)), where

H1 :− B1 = rename((H0 :− B0), dom(z)), H1 = p(Sd), and

θ = unify(z(Td), Sd).

The right hand side is

λσ.interp($langle$langle p(Td) :: L :: G1, dom(σ)$rangle :: nil, σ, (H0 :− B0) :: C ¢$rangle :: nil, P) $circle Θ

$rarrow I1.4 λσ.interp($langle$langle B1, dom(σ)$rangle :: $langle L :: G1, dom(σ)$rangle :: nil, θ°σ, P$rangle ::

H1 :− B1 = rename((H0 :− B0), dom(z)), H1 = p(Sd),

θ = unify(σ(Td), Sd), and

St = $langle$langle p(Td) :: nil, dom(σ)$rangle :: nil, σ, C ¢$rangle :: nil.

That the theorem holds now follows from Lemmas 3.1, 3.2, 3.3 and the inductive hypothesis.

Case 6: Here, unification of the leftmost literal of the goal with the head of the first clause fails. The left

hand side is

G[[L :: G1]]ρ0 (L[[p(Td)]] D[[(H0 :− B0) :: C ¢]]ρ0 Θ)

$rarrow (G1.2, D1.2, L1.1) G[[G]]ρ0 (λy.[D[[C ¢]]p Td y] $circle Θ)).

The right hand side is

λσ.interp($langle$langle p(Td) :: L :: G1, dom(σ)$rangle :: nil, σ, (H0 :− B0) :: C ¢$rangle :: nil, P) $circle Θ

$rarrow I1.4 λσ.interp($langle$langle p(Td) :: L :: G1, dom(σ)$rangle :: nil, σ, C ¢$rangle :: nil, P) $circle Θ

and the theorem now follows from Lemma 3.3 and Case 3 above. $always

Corollary (Equivalence of Denotational and Operational Semantics): For any goal G and program P, and

substitution sequence Θ,

30



G[[G]]ρ0 Θ ≡ λσ.interp($langle$langle G, dom(σ)$rangle :: nil, σ, P$rangle :: nil, P) $circle Θ.

Proof: The case where G = nil follows directly from the definitions of G[[ ]] and interp. The case where

G ≠ nil follows from Theorem 3.1, with C = P. $always

31



Appendix 2: Proofs of Equivalence for Prolog with Cut

Lemma 4.4: For any framelist F, substitution sequence Φ1 $sometimes Φ2, stack component St and

program P,

tran($langle F, Φ1 $sometimes Φ2, P$rangle :: St, P) = tran($langle F, Φ1, P$rangle :: $langle F, Φ2, P$rangle :: St,

Proof: By structural induction on F.

The base case, with F = nil, follows directly from the definition of tran. For the induction step, consider

F = $langle G, VP, D$rangle :: FRest. The left hand side is

let $langle Ψ, cf$rangle = Ĝ[[G]]ρ0 ρ0 $langle Φ1 $sometimes Φ2, f$rangle in

if Ψ = nil then tran(if cf then D else St, P) (1)

else tran(FRest, (λx.x↓VP || Ψ), P$rangle :: (if cf then D else St), P). (2)

Since Φ1 ≤ Φ1 $sometimes Φ2, if $langle Ψ1, cf1$rangle = Ĝ[[G]]ρ0 ρ0 $langle Φ1, f$rangle then, from

Lemma 4.1, Ψ1 ≤ Ψ. Let Ψ = Ψ1 $sometimes Ψ2. Then (2) reduces to

tran($langle FRest, (λx.x↓VP) || Ψ1) $sometimes (λx.x↓VP || Ψ2), P$rangle :: (if cf then D else St), P)

$rarrow Inductive Hypothesis tran($langle FRest, (λx.x↓VP) || Ψ1, P$rangle ::

$langle FRest, (λx.x↓VP) || Ψ2, P$rangle :: (if cf then D else St), P) (3)

The right hand side is

let $langle Ψ1, cf1$rangle = Ĝ[[G]]ρ0 ρ0 $langle Φ1, f$rangle in

if Ψ1 = nil then tran(if cf1 then D else $langle F, Φ2, D$rangle :: St, P) (A)

else tran($langle FRest, (λx.x↓VP) || Ψ1, P$rangle :: (if cf1 then D else $langle F, Φ2, D$rangle :: St, P) (B)

We will now systematically show that cases (A) and (B) yield the same results as (1) and (3).

Case A: Ψ1 = nil:

(i) If cf1 is true then cf must also be true, whence (A) ≡ (1).

If cf1 is false then (A) reduces to

tran($langle$langle G, VP, D$rangle :: FRest, Φ2, P$rangle :: St, P)

$rarrow T2.4 let $langle Ψ¢, cf ¢$rangle = Ĝ[[G]]ρ0 ρ0 $langle Φ2, f$rangle in

if Ψ¢= nil then tran(if cf ¢then D else St, P) (A1)

else tran($langle FRest, (λx.x↓VP) || Ψ¢, P$rangle :: (if cf ¢then D else St), P). (A2)

If Ψ¢is nil, there are two possibilities: if cf ¢is true then cf is true, and (A1) reduces to tran(D, P), which

is the same as (1). On the other hand, if cf ¢is false, then cf is false, and (A1) reduces to tran(St, P),

which is again the same as (1).

32



If Ψ¢ ≠nil, then from Lemma 4.2, cf1 is false implies Ψ¢= Ψ2, and (A2) = (3) with Ψ1 = nil.

Case B: Ψ1 ≠ nil:

If cf1 is true then cf is also true. (B) reduces to tran($langle FRest, (λx.x↓VP) || Ψ1, P$rangle :: D,

P), while (2) reduces to tran($langle FRest, ((λx.x↓VP) || Ψ1) $sometimes ((λx.x↓VP || Ψ2), P$rangle :: D,

P). From Lemma 4.3, Ψ2 = nil, and (B) = (2).

If cf1 is false, then (B) reduces to tran($langle FRest, (λx.x↓VP) || Ψ1, P$rangle :: $langle F, Φ2,

P$rangle :: St, P), while (3) reduces to tran($langle FRest, (λx.x↓VP) || Ψ1, P$rangle :: $langle FRest,

(λx.x↓VP) || Ψ2, P$rangle :: St, P). From Lemma 4.2, observe that if cf1 is false then Ψ2 = Ψ¢, whence

(B) = (3). $always

Theorem 4.1: For any framelist F, substitution θ, clause list C, stack component St and program P,

interp($langle F, θ, C$rangle :: St, P) ≡ tran($langle F, θ :: nil, C$rangle :: St, P).

Proof: By fixpoint induction on interp and tran. The base case, where both tran and interp have empty

stacks, follows from their definitions. The inductive step has five cases:

Case 1: F = nil.

Case 2: F ≠ nil, C = nil.

Case 3: F = $langle G, VP, D$rangle :: FRest, C ≠ nil, G = ‘!’ :: G ¢.

Case 4: F = $langle G, VP, D$rangle :: FRest, C ≠ nil, G = p(Td) :: G ¢, unification of p(Td) with the

first clause of C fails.

Case 5: F = $langle G, VP, D$rangle :: FRest, C ≠ nil, G = p(Td) :: G ¢, unification of p(Td) with the

first clause of C succeeds.

The proof proceeds as follows:

Case 1: F = nil: the left hand side is interp($langle nil, θ, C$rangle :: St, P)

$rarrow I2.2 θ :: interp(St, P),

while the right hand side is tran($langle nil, θ :: nil, C$rangle :: St, P)

$rarrow T2.2 (θ :: nil) $sometimes tran(St, P)

$rarrow θ :: tran(St, P)

and from the induction hypothesis, the theorem holds.

Case 2: The left hand side is interp($langle F0 :: FRest, θ, nil$rangle :: St, P)

$rarrow I2.3 interp(St, P).

33



The right hand side is tran($langle F0 :: FRest, θ :: nil, nil$rangle :: St, P)

$rarrow T2.3 tran(St, P).

From the induction hypothesis, the theorem holds.

Case 3: The left hand side is

interp($langle$langle ‘!’ :: G, VP, D$rangle :: FRest, θ, C$rangle :: St, P)

$rarrow I2.4 interp($langle$langle G, VP, D$rangle :: FRest, θ, P$rangle :: D, P).

On right hand side, we have

$langle Φ, cflag$rangle = Ĝ[[! :: nil]]ρ0 (D[[C]]$langle ρ0, ncont$rangle ) $langle θ :: nil, f$rangle

$rarrow (G2.2, L2.2) $langle Φ, cflag$rangle = $langle θ :: nil, t$rangle

From this, the right hand side reduces to tran($langle$langle G, VP, D$rangle :: FRest, θ :: nil, P$rangle

:: D, P), and from the induction hypothesis, we are done.

Case 4: F = $langle p(Td) :: G, VP, D$rangle :: FRest, C = (H0 :− B0) :: C ¢, H1 :− B1 = rename((H0 :− B0),

dom(θ)), and unify(θ(p(Td)), H1) = fail.

The left hand side is

interp($langle$langle p(Td) :: G, VP, D$rangle :: FRest, θ, (H0 :− B0) :: C ¢$rangle :: St, P)

$rarrow I2.6 interp($langle$langle p(Td) :: G, VP, D$rangle :: FRest, θ, C ¢$rangle :: St, P)

$rarrow Induction Hypothesis tran($langle$langle p(Td) :: G, VP, D$rangle :: FRest, θ :: nil, C ¢$rangle :: St, P).

$rarrow T2.4 let $langle Φ, cflag$rangle = Ĝ[[p(Td) :: nil]]ρ0 (D[[C ¢]]$langle ρ0, ncont$rangle ) $langle θ :: nil, f$rangle

if Φ = nil then tran(if cflag then D else St, P);

if Φ ≠ nil then

tran($langle$langle G, VP, D$rangle :: FRest, Φ, P$rangle :: (if cflag then D else St), P) (1)

Now $langle Φ, cflag$rangle = Ĝ[[p(Td) :: nil]]ρ0 (D[[C ¢]]$langle ρ0, ncont$rangle ) $langle θ :: nil,

f$rangle

$rarrow (L2.2, G2.1) $langle ((D[[C ¢]]$langle ρ0, ncont$rangle ) p Td θ), f$rangle

and since cflag = f, (1) reduces to

if Φ = nil then tran(St, P) else tran($langle$langle G, VP, D$rangle :: FRest, Φ, P$rangle :: St, P).

The right hand side is

tran($langle$langle p(Td) :: G, VP, D$rangle :: FRest, θ :: nil, (H0 :− B0) :: C ¢$rangle :: St, P)

$rarrow T2.4 let $langle Φ, cflag$rangle = Ĝ[[p(Td) :: nil]]ρ0 (D[[(H0 :− B0) :: C ¢]]$langle ρ0, ncont$rangle ) $langle

in if Φ = nil then tran(if cflag then D else St, P);

if Φ ≠ nil then

34



tran($langle$langle G, VP, D$rangle :: FRest, Φ, P$rangle :: (if cflag then D else St), P)

Since unification of p(Td ) with the head of the first clause fails, it can effectively be discarded:

Ĝ[[p(Td) :: nil]]ρ0 (D[[(H0 :− B0) :: C ¢]]$langle ρ0, ncont$rangle ) $langle θ :: nil, f$rangle

$rarrow D2.2 Ĝ[[p(Td) :: nil]]ρ0 (C[[H0 :− B0]]$langle ρ0, D[[C ¢]]$langle ρ0, ncont$rangle$rangle ) $langle θ :: nil, f

$rarrow (L2.2, C2.1) $langle ((D[[C ¢]]$langle ρ0, ncont$rangle ) p Td θ), f$rangle .

Thus, from the above, the left and right hand sides are equal, so we are done.

Case 5: F = $langle p(Td) :: G, VP, D$rangle :: FRest, C = (H0 :− B0) :: C ¢,

H1 :− B1 = rename((H0 :− B0), dom(θ)), φ= unify(θ(p(Td)), H1) ≠ fail.

On the right hand side, we have

$langle Φ, cflag$rangle = Ĝ[[p(Td) :: nil]]ρ0 (D[[C]]$langle ρ0, ncont$rangle ) $langle θ :: nil, f$rangle

$rarrow (D2.2, C2.1, L2.2) $langle if cflag then λx.x↓dom(θ) || Ψelse (λx.x↓dom(θ) || Ψ) $sometimes Θ, f$rangle

where $langle Ψ, cflag0$rangle = G[[B1]]ρ0 $langle φ°θ :: nil, f$rangle , and

Θ = (D[[C ¢]]$langle ρ0, ncont$rangle ) p Td θ (2)

Since cflag = f, the right hand side therefore reduces to

if Φ = nil then tran(St, P) (3)

else tran($langle$langle G, VP, D$rangle :: FRest, Φ, P$rangle :: St, P). (4)

The left hand side is

interp($langle$langle p(Td) :: G, VP, D$rangle :: FRest, θ, C$rangle :: St, P)

$rarrow I2.5 interp($langle$langle B1, dom(θ), St$rangle :: $langle G, VP, D$rangle :: FRest, φ°θ, P$rangle :: St ¢,

where St ¢= $langle$langle p(Td) :: G, VP, D$rangle :: FRest, θ, C ¢$rangle :: St.

$rarrow Inductive Hypothesis let $langle Ψ, cflag0$rangle = G[[B1]]ρ0 $langle φ°θ :: nil, f$rangle

in

if Ψ = nil $and cflag0 then tran(St, P) (A)

else if Ψ = nil $and ¬cflag0 then tran(St ¢, P) (B)

else if Ψ ≠ nil $and cflag0 then

tran($langle$langle nil, dom(θ), St$rangle :: $langle G, VP, D$rangle :: FRest, Ψ, P$rangle :: St, P)

else if Ψ ≠ nil $and ¬cflag then

tran($langle$langle nil, dom(θ), St$rangle :: $langle G, VP, D$rangle :: FRest, Ψ, P$rangle :: St ¢, P)

We therefore have four subcases to consider:

(1) Ψ = nil $and cflag0: Then, Φ = nil, and (3) = (A). The theorem holds.

35



(2) Ψ = nil $and ¬cflag0: (B) is, from the definition of St ¢,

tran($langle$langle p(Td) :: G, VP, D$rangle :: FRest, θ :: nil, C ¢$rangle :: St, P.

Let $langle Ξ, cflag1$rangle = Ĝ[[p(Td) :: nil]]ρ0 (D[[C ¢]]$langle ρ0, ncont$rangle ) $langle θ :: nil, f$rangle

= $langle ((D[[C ¢]]$langle ρ0, ncont$rangle ) p Td θ), f$rangle .

Observe that Ξ = Θ. We therefore have, if Θ = nil, that

[Ψ = nil $and ¬cflag0 $and Θ = nil] implies Φ = nil

and (B) reduces to tran(St, P), which is the same as (3). On the other hand, if Θ ≠ nil, then

[Ψ = nil $and ¬cflag0 $and Θ ≠ nil] implies Φ ≠ nil

and (B) reduces to

tran($langle$langle G, VP, D$rangle :: FRest, Φ, P$rangle :: St, P)

which is equal to (3). Thus, the theorem holds.

(3) Ψ ≠ nil $and cflag0: Then, from (T2.5) in the definition of tran, (C) reduces to

tran($langle$langle G, VP, D$rangle :: FRest, ((λx.x↓dom(θ)) || Ψ), P$rangle :: St, P).

Observe that if cflag0 = t then, from (2), we have Φ = (λx.x↓dom(θ)) || Ψ, so that this becomes

tran($langle$langle G, VP, D$rangle :: FRest, Φ, P$rangle :: St, P),

which is the same as (4). Thus, the theorem holds.

(4) Ψ ≠ nil $and ¬cflag0: Then, from (T2.5) in the definition of tran, (D) reduces to

tran($langle$langle G, VP, D$rangle :: FRest, ((λx.x↓dom(θ)) || Ψ), P$rangle :: St ¢, P).

That the left and right hand sides are equal now follows from Lemma 4.4. $always

36


