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Foreword 

Widespread use of parallel processing will become a reality only if the 

process of porting applications to parallel computers can be largely 

automated. Usually it is straightforward for a user to determine how 

an application can be mapped onto a parallel machine; however, 

the actual development of parallel code, if done by hand, is typically 

difficult and time consuming. Parallelizing compilers, which can gen

erate parallel code automatically, are therefore a key technology for 

parallel processing. 

In this book, Ping-Sheng Tseng describes a parallelizing compiler 

for systolic arrays, called AL. Although parallelizing compilers are 

quite common for shared-memory parallel machines, the AL compiler 

is one of the first working parallelizing compilers for distributed

memory machines, of which systolic arrays are a special case. The 

AL compiler takes advantage of the fine grain and high bandwidth 

interprocessor communication capabilities in a systolic architecture 

to generate efficient parallel code. 
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While capable of handling an important class of applications, 

AL is not intended to be a general-purpose parallelizing compiler. 

Instead, AL is designed to be effective for a special class of computa

tions that use arrays and loops. AL relies on the fact that for these 

computations, the user can easily provide "hints" or mapping strate

gies to guide the compiler to distribute data structures and loop 

iterations. Using these hints, the AL compiler generates the local 

program for each processor, manages the interprocessor communica

tion, and parallelizes the loop execution. A fundamental contribution 

of AL, which goes beyond its current implementation, is the identi

fication of what to capture in these hints that the user can easily 

provide and the compiler can effectively use. 

AL has proven to be extremely effective in programming the Warp 

systolic array developed by Carnegie Mellon. AL was used to port the 

nontrivial LINPACK QR (SQRDC), SVD (SSVDC), LU (SGEFA), 

and back substitution (SGESL) routines to Warp all in one person

week. AL has been used in several applications, including the port

ing of a large Navy signal processing application to Warp. The AL 

compiler has also been used to generate parallel code for automatic 

schedulers that map a large set of high-level signal processing tasks 

onto Warp. 

Carnegie Mellon's experience in programming Warp clearly indi-
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cates the effectiveness of special-purpose parallelizing compilers such 

as AL. These tools, which we also call parallel program generators, 

can improve a programmer's productivity by several orders of mag

nitude. In fact, some applications would never have been brought up 

on Warp if the user did not have access to AL; for these applications 

explicit programming of interprocessor communication is simply too 

difficult to be done by a human being. Besides AL, the Warp project 

has developed several other parallel program generators. One of 

them, called Apply, has been extensively used to generate parallel 

code for image processing applications. Both AL and Apply gener

ally produce code better than or as good as hand-written code. 

The success of parallel program generators such as AL is encour

aging. With them we are assured that programming parallel ma

chines can be as easy as programming sequential machines for some 

important application areas. In this sense, these programming tools 

have helped legitimatize our effort in building parallel computers. 

Besides providing useful tools for programming parallel machines for 

special applications, these parallel program generators are also sig

nificant in giving insights into information that more general-purpose 

parallelizing compilers of the future need to capture. 

The book is an outgrowth of Ping-Sheng Tseng's Ph.D thesis 

from Carnegie Mellon. The book gives a complete treatment of the 
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design, implementation and evaluation of AL. I am pleased to write 

the Foreword for this outstanding piece of work and hope that the 

book will inspire researchers to further this very important area of 

parallel processing. 

H. T. Kung 
April, 1990 
Pittsburgh, PA 
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