
A SYSTOLIC ARRAY PARALLELIZING COMPILER

THE KLUWER INTERNATIONAL SERIES IN
ENGINEERING AND COMPUTER SCIENCE

HIGH PERFORMANCE COMPUTING
Systems, Networks and Alrogrithms

Consulting Editor

H.T. Kung

A SYSTOLIC ARRAY
P ARALLELIZING COMPILER

by

Ping-Sheng Tseng
Bell Communications Research, Inc.

with a foreword by

H.T. Kung

KLUWER ACADEMIC PUBLISHERS
Bostoo/Dordrecht/Loodoo

Distrlbuton for North America:
Kluwer Academic Publishers
101 Philip Drive
Assinippi Park
Norwell, Massachusetts 02061 USA

Distrlbuton for all other countries:
Kluwer Academic Publishers Group
Distribution Centre
Post Office Box 322
3300 AH Dordrecht, THE NETHERLANDS

Ubrary of Congress Cataloging-in-Publication Data

Tseng, Ping-Sheng, 1959-
A systolic array parallelizing compiler I by Ping-Sheng Tseng.

p. cm. - (The Kluwer international series in engineering and
computer science; #106. High performance computing)

Revision of the author's thesis (Ph.D.)-Carnegie Mellon
University.

Includes bibliographical references and index.
lSBN-I3:978-1-4612-8835-0 e-ISBN-I3:978-1-4613-1559-9
DOl: 10.1007/978-1-4613-1559-9

1. Parallel processing (Electronic computers) 2. Compilers
(Computer programs) I. Title. II. Series: Kluwer international
series in engineering and computer science; SECS 106. III. Series:
Kluwer international series in engineering and computer science.
High performance computing.

QA76.58.T74 1990
005.4 '53-dc20 90-4751

Copyright © 1990 by Kluwer Academic Publishers
Softcover reprint of the hardcover 1st edition 1990

CIP

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system
or transmitted in any form or by any means, mechanical, photocopying, recording, or other
wise, without the prior written permission of the publisher, Kluwer Academic Publishers, 101
Philip Drive, Assinippi Park, Norwell, Massachusetts 02061.

Contents

Contents

Foreword

Acknowledgements

1 Introduction

2 Systolic array programming
2.1 The Warp machine
2.2 The W2 programming language.
2.3 The AL programming language
2.4 Related work

3 Data relations
3.1 Linear data relations
3.2 Joint data compatibility classes ..
3.3 Scope of data compatibility classes
3.4 Summary

4 Loop Distribution
4.1 Intercell communication
4.2 The basic loop distribution scheme
4.3 Distributed loop parallelism.

4.3.1 Intraloop parallelism
4.3.2 Interloop parallelism

4.4 Optimization
4.4.1 Load balancing ...

v

xi

xv

1

5
6
8

11
18

21
24
28
32
35

37
38
41
44
44
45

48
48

vi

4.4.2 Communication scheduling
4.5 Related work

5 Implementation
5.1 External interface.
5.2 Compiling DO* loops
5.3 The ALIGN* statement
5.4 Parallel accumulation
5.5 Program debugging.

6 Evaluation
6.1 Matrix computations.

6.l.1 LU decomposition
6.l.2 QR decomposition
6.l.3 Singular value decomposition

6.2 2D Fast Fourier Transform
6.3 Partial differential equation solvers

6.3.1 SOR
6.3.2 Line SOR .. .
6.3.3 Two-color SOR .

6.4 Summary

7 Conclusions

Bibliography

A Linear data relations in Livermore Loops

B Benchmark programs
B.1 LU decomposition .

B .l.1 Single cell . .
B.l.2 Multiple cells

B.2 QR decomposition .
B.2.1 Single cell ..
B.2.2 Multiple cells

B.3 Singular value decomposition
B.3.1 Single cell

Contents

49
56

59
59
61
62
64
67

69
73
73
81
85
89
92
92
93
95
99

101

105

109

115
· 115
.115

· 116
· 118
· 118
· 118
· 120
· 120

Contents vii

B.3.2 Multiple cell · 121
B.4 2D Fast Fourier Transform · 123

B.4.1 Single cell · 123
B.4.2 Multiple cell · 124

B.5 Partial differential equation solvers · 125
B.5.1 SOR · 125
B.5.2 Line SOR 126
B.5.3 Two-color SOR . · 127

Index 129

List of figures ix

List of Figures

2.1 The Warp systolic array 6
2.2 The Warp cell architecture 7
2.3 A W2 matrix multiplication program . 12
2.4 An AL matrix multiplication program 13
2.5 An AL compiler generated W2 program: matrix fac-

torization 17

3.1 Maximal compatibility classes 22

4.1 Blocking. 42
4.2 Interloop parallelism 47
4.3 Communication scheduling 52
4.4 An AL compiler generated W2 program: a relaxation

loop 54
4.5 Communication scheduling: a relaxation loop 55

6.1 LU decomposition: 100 x 100 matrix. . . 74
6.2 LU decomposition: 180 x 180 matrix . . . 75
6.3 LU decomposition with parallel pivoting: 100 x 100

matrix. 79
6.4 LU decomposition with parallel pivoting: 180 X 180

matrix. 80
6.5 QR decomposition: 100 x 100 matrix . . . 83
6.6 QR decomposition: 180 x 180 matrix. . . 84
6.7 SVD bidiagonalization: 100 x 100 matrix 87
6.8 SVD bidiagonalization: 175 x 175 matrix 88
6.9 2D FFT, 64x64 complex image 90

x

6.10 SOR
6.11 Line SOR .. .
6.12 Two-color SOR

List of figures

94
96
98

Foreword Xl

Foreword

Widespread use of parallel processing will become a reality only if the

process of porting applications to parallel computers can be largely

automated. Usually it is straightforward for a user to determine how

an application can be mapped onto a parallel machine; however,

the actual development of parallel code, if done by hand, is typically

difficult and time consuming. Parallelizing compilers, which can gen

erate parallel code automatically, are therefore a key technology for

parallel processing.

In this book, Ping-Sheng Tseng describes a parallelizing compiler

for systolic arrays, called AL. Although parallelizing compilers are

quite common for shared-memory parallel machines, the AL compiler

is one of the first working parallelizing compilers for distributed

memory machines, of which systolic arrays are a special case. The

AL compiler takes advantage of the fine grain and high bandwidth

interprocessor communication capabilities in a systolic architecture

to generate efficient parallel code.

xii Foreword

While capable of handling an important class of applications,

AL is not intended to be a general-purpose parallelizing compiler.

Instead, AL is designed to be effective for a special class of computa

tions that use arrays and loops. AL relies on the fact that for these

computations, the user can easily provide "hints" or mapping strate

gies to guide the compiler to distribute data structures and loop

iterations. Using these hints, the AL compiler generates the local

program for each processor, manages the interprocessor communica

tion, and parallelizes the loop execution. A fundamental contribution

of AL, which goes beyond its current implementation, is the identi

fication of what to capture in these hints that the user can easily

provide and the compiler can effectively use.

AL has proven to be extremely effective in programming the Warp

systolic array developed by Carnegie Mellon. AL was used to port the

nontrivial LINPACK QR (SQRDC), SVD (SSVDC), LU (SGEFA),

and back substitution (SGESL) routines to Warp all in one person

week. AL has been used in several applications, including the port

ing of a large Navy signal processing application to Warp. The AL

compiler has also been used to generate parallel code for automatic

schedulers that map a large set of high-level signal processing tasks

onto Warp.

Carnegie Mellon's experience in programming Warp clearly indi-

Foreword xiii

cates the effectiveness of special-purpose parallelizing compilers such

as AL. These tools, which we also call parallel program generators,

can improve a programmer's productivity by several orders of mag

nitude. In fact, some applications would never have been brought up

on Warp if the user did not have access to AL; for these applications

explicit programming of interprocessor communication is simply too

difficult to be done by a human being. Besides AL, the Warp project

has developed several other parallel program generators. One of

them, called Apply, has been extensively used to generate parallel

code for image processing applications. Both AL and Apply gener

ally produce code better than or as good as hand-written code.

The success of parallel program generators such as AL is encour

aging. With them we are assured that programming parallel ma

chines can be as easy as programming sequential machines for some

important application areas. In this sense, these programming tools

have helped legitimatize our effort in building parallel computers.

Besides providing useful tools for programming parallel machines for

special applications, these parallel program generators are also sig

nificant in giving insights into information that more general-purpose

parallelizing compilers of the future need to capture.

The book is an outgrowth of Ping-Sheng Tseng's Ph.D thesis

from Carnegie Mellon. The book gives a complete treatment of the

xiv Foreword

design, implementation and evaluation of AL. I am pleased to write

the Foreword for this outstanding piece of work and hope that the

book will inspire researchers to further this very important area of

parallel processing.

H. T. Kung
April, 1990
Pittsburgh, PA

Acknowledgements xv

Acknowledgements

This work evolved from my thesis research at Carnegie Mellon Uni

versity. I want to thank my thesis advisor H. T. Kung. When I

started this research project, Kung was the only one who believed

that I could make this thesis happen. Without his vision, support

and encouragement, I might have changed my thesis topic before

I started. Thanks to Monica Lam and Peter Lieu. Monica imple

mented the W2 compiler directives for me. Peter has been very

responsive to my W2 bug reports. Without their help, all the exper

imental work might have never been completed. The members of my

thesis committee are H. T. Kung, Gary Koob, Thomas Gross, and

George Cox. Their invaluable comments helped me to improve the

quality of this presentation. I want to thank my former officemate

Robert Cohn. Robert read my manuscript several times and helped

me to make this presentation much more readable. I would also like

to thank the Defense Advanced Research Projects Agency for sup

porting this work. Finally, I would like to thank my wife Ly-June

xvi Acknowledgements

and my father Po and my mother Sou-Sou for their support in my

graduate study.

A SYSTOLIC ARRAY PARALLELIZING COMPILER

