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CHAPTER 1
INTRODUCTION

Digital signal processing is a field of study concerned with the
processing of information represented in digital form. Certain
techniques in the field can be traced back to numerical algorithms
performed in the seventeenth and eighteenth century. However, the
advent of modern high-speed digital computing devices has caused a
revolution in applications of the theory to a variety of problems.
Signal processing is used in such areas as biomedical data processing
[1], sonar and radar processing [2], speech processing [3], data
communication [4], seismic signal processing [5], adaptive system
identification [6], adaptive control applications [7], and a host of
other applications [8-11]. One of the most interesting aspects of
digital signal processing is this wide variety of applications. This has
served to create a vitality in the field that is often missing in other
scientific fields of study.

Digital signal processing has become an increasingly significant
field because of the technology associated with digital computers. A
digital computer used to process signals offers a tremendous
advantage in flexibility. The emergence of parallel processing and
very large scale integration (VLSI) motivated the researchers in the

field of digital signal processing to find and explore new ways to



implement and design efficient and highly parallel algorithms [11-
18].

The conventional sequential digital computers suffer from one
serious drawback: the von Neumann bottleneck. This phenomenon
accounts for the sometimes slow and inefficient use of conventional
serial processor resources. In a sequential computer, a single
memory buffer serves as the only gate between the high-speed
memory and the central processing unit (CPU). This makes it\
necessary to organize all computational tasks in a strictly sequential
fashion. Processing speed is limited not by tﬁe speed of the CPU but
the narrow pathway between the CPU and memory. Parallelism is
one of the major innovations in the hardware design of digital
computers that have permitted the circumventing of the von
Neumann bottleneck so as to attain high speeds [19-20].

A parallel processing computer, simply defined, is one that can
perform operations using more than one processor simultaneously.
The central problem parallel processing systems face is how to
effectively and efficiently use more than one processor at the same
time. The effectiveness of the systém depends on whether one can
identify a problem that lends itself to parallelism, determine the
algorithm, and map it onto a suitable architecture. There are no
established principles revealing how to automate the arduous
kmanual task of partitioning any real-world problem so that it can be
parcelled out to many processors simultaneously [21-22].

The main objective of this research is to explore the different
techniques of mapping digital signal processing algorithms onto

advanced computer architectures. It is impossible to cover all



algorithms and all architectures. The spectrum of the algorithms
covered was limited to those which can be characterized as one
dimensional, batch, and time domain. As for the architectures, the
availability of such systems was the major limitation. The goal of
this research is to discover the types of computer architectures
which are best suited for signal processing.

This dissertation contains six chapters each of which is dedicated
to present a concise set of ideas. The rest of this chapter
concentrates on presenting a preliminary system identification
theory that sets the stage for the second chapter. Chapter II
discusses the batch algorithms that are used for inverse filtering and
concentrates on the similarities between these algorithms. An
algorithm is selected for parallel implementation since it is a good
representative of this group of algorithms. Chapter III presents the
different advanced computer architectures and discusses in detail
those architectures that are used in this research. Chapter IV
discusses the implementations of the algorithm chosen on a selected
number of advanced computer architectures. Chapter V contains the
performance analysis performed on the results obtained in chapter
IV. A ranking of the machines is presented. Finally, chapter VI
summarizes the main ideas presented in this work followed by some

general conclusions.

Inverse Filtering

A problem of great importance is determining the parameters of

a model given observations of the physical process being modeled



[23]. In control theory this problem is often called the system
identification problem [6]; one of the most important applications of
identification methods is adaptive estimation and control. Parameter
identification problems also arise in several digital signal processing
algorithms; applications include seismic signal processing and the
analysis, coding, and synthesis of speech. In seismic signal
processing the problem is termed deconvolution [3], while it is
termed linear prediction in speech processing [5]. Other names have
been used like parameteric spectrum analysis and inverse scattering
[8-9]. Inverse filtering is a more natural term to use and is adopted
throughout this report.

In this report we address the problem of inverse filtering for a
particular underlying time series model, namely the autoregressive
(AR) process . The general form for an AR process of order p is given

by equation (1-1).

Z[=¢1 zt_1+...+¢pzt_p+et (1_1)

The current value of the process z¢ is expressed as a weighted sum of
past values plus a random white noise et with a variance of Ge2.
Thus zt can be considered to be regressed on the p previous z's,
hence the name. The weights on the previous z's are called the AR
parameters. The right hand side of equation (1-1), excluding the
white noise, is called the prediction of z¢ based on zt-1 thru zt-p,
and the white noise is termed the prediction error. The inverse

filtering problem is summarized as follows: given the set of



observations for the process, or the time series z¢, find the
underlying AR parameters that best characterize the process.

The AR process given by equation (1-1) can be represented in a
block diagram form as shown in Figure 1.1. The blocks with z-1
indicate unit delay. The structure depicted here is sometimes

referred to as a tapped delay line or direct form I implementation.

White Noise
Driving Sequence

Observed Sequence

Figure 1.1 Autoregressive Process of Order p

It should be noted that an AR process has an all-pole transfer
function given by equation (1-2). This property justifies the use of

AR processes to model spectra with sharp peaks.
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H(z)= =) ) -
1+ ¢,z + ¢oz +...+¢pzp (1-2)

A plethora of inverse filtering methods are discussed in the
literature which are based on the autocorrelation function, the
partial autocorrelation function, and the generalized partial
autocorrelation function [24-25]. The methods based on the first two
functions are of major interest in this research.

The autocorrelation function of the AR process given by equation
(1-1) can be determined by first multiplying equation (1-1) by z¢-k
to get equation (1-3), then taking the expected values to get

equation (1-4).
Zy kZt= 0121k Zp1 F o Op Zy i Zop + Z4 € (1-3)

Yie = 01 Yie-1+ 92 Vi1 + oo Op Yip +{ o k=0}
0 , k0

(1-4)
If the estimated order of the process is denoted by m we can rewrite

equation (1-4) with an extra index for the ¢'s as shown in equation

(1-5).

2
Y = Om1 Yi-1 + Om2 Ye—1 oo+ Oym Viem +{ o, k=0}
0 , k>0 (1-5)

The parameter ¢mm is called the partial autocorrelation function at

lag m. If we let k vary from 0 to m in equation (1-5) we get a set of



linear equations for the ¢'s in terms of the y's. Equation (1-6) shows

the resulting equations organized within matrices.

(Yo Y1 Y || 1] =%
1 Y% - Ym-1 %}‘1 0
_'Ym Ym-1 Y0 ‘_¢mm_ 0 (1 6)

Equation (1-6) is called the Yule-Walker or normal equation [23].
The matrix that contains the autocorrelations is called the
autocorrelation matrix. This matrix is both symmetric and Toeplitz.

If m is the true order of the AR process (i.e., m=p) then
dm1=901,-.0mm=9¢m. Therefore one technique for inverse filtering is
to substitute estimated values for the autocorrelation function in
equation (1-6) and to solve for ¢m1,...,6mm and ce2.

In chapter II, we explore several algorithms for inverse
filtering. We will be investigating these algorithms looking for the
commonality among them and choosing an algorithm that represents

this class of algorithms.



CHAPTER II
BATCH INVERSE FILTERING ALGORITHMS

The previous chapter presented the problem of inverse filtering
and the Yule-Walker or normal equation was discussed. This chapter
presents some batch algorithms that solve the normal equation
efficiently. By solving the normal equation, an estimate of the AR
process parameters can be obtained thus achieving the goal of the
inverse filtering problem.

The objective of this chapter is to study the batch algorithms,
identify their similarities and differences, and finally, choose one
algorithm that is representative of this class of algorithms. The
selected algorithm will be the one to be implemented on advanced
computer architectures. The results of implementing the selected
algorithm on the different machines will be applicable to other batch

algorithms.
The Levinson Algorithm

The Levinson algorithm is an efficient algorithm for solving the
normal equation without inverting the autocorrelation matrix.
Instead of solving the normal equation directly, the Levinson
algorithm imbeds this problem into a whole class of similar

problems; namely, of determining the best linear predictors of



ascending orders. The name linear prediction originate from the
formulation of the model; the basic assumption is that the next
sample in a sequence can be estimated from a linearly weighted sum
of previous samples [26-28].

The solution is obtained in an iterative manner, by solving a
family of matrix equations of lower dimensionality. Starting at the
upper left corner of the autocorrelation matrix (the first element in
the first row), i.e. first order equation, and successively increasing
the order until the desired dimension is reached. The solution of
each problem is obtained in terms of the solution of the previous one.
In this manner, the final solution is gradually built up. In the
process, one also finds all the lower order prediction error filters.
Order determination is inherently performed by the Levinson
algorithm.

The iteration is based on two key properties of the
autocorrelation matrix: first, the autocorrelation matrix of a given
size contains as subblocks all the lower order autocorrelation
matrices; and second, the autocorrelation matrix is symmetric and
Toeplitz, i.e., it is reflection invariant [29].

Equation (2-1) is the AR process of mth order discussed in the

previous chapter [30].

m
X +a7 X4+ -+ +amXp_m = en (2-1)

Using the approach followed in the previous chapter. the normal
equation can be rewritten as shown in equation (2-2). This equation

is equivalent to equation (1-6) but uses different variable names.
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R(k) is the autocorrelation function, the a's are the AR parameters,

and Py, is the variance of the white noise en .

RO R(-) - REm) [ 17 [Pn
RE1) H(:O) R(1:-m) ai" _ ? (2-2)
R(m) R(m-1) - RO Jam] [0

Consider the case of having solved equation (2-2) and wanting to
increase the order of the model. Equation (2-3) shows the AR

process of increased order , namely, m+l1.

m+1 m+1 m+1 m+1
Xp+tay Xpq+ -+ +a85" Xpom +8034Xp—m-1 = €p (2 - 3)

Using equation (2-3) the new normal equation is shown by

equation (2-4).

[ R(0) R(-1) -+ R(-m) R(-m-10T 1 Post]
R(1) R(0) - R(1-m) R(-m) [a" 0
: : : : A P (2-4)
Rm) R(m-1 .- R(0) R(-1) |am*! 0

Rm+1) R(m) - R() R(O) Jamii] L 0

Comparing equations (2-2) and (2-4) it is clear that the new
autocorrelation matrix consists of the old matrix plus an extra row
and column. Equation (2-4) can be rewritten as shown in equation
(2-5). This expression is valid since the first and last rows of the
autocorrelation matrix are reverses, the second and next to last

rows are reverses, etc. ( R(k) = R(-k) ).
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[ R0O) R(-1) -+ R(-m) R(-m-1][ 1] [0 )
R(1) R(0) - R(1-m) R(-m) |||af am
: : : : S Femal I
R(m) R(m-1) --- R(0) R(-1) |||am ay’
[Rm+1) R(m) -- R R() ||l O 1]
[ I:’m 1 _Qm+1-
0 10
=4 ¢t |+emd I} (2-5)
0 0
\_Qm+1d | Pm A

By inspection of equation (2-5) the following equation can be

written:
m
Qust = ZR(m+1—n) am (2-6)
n=0
Now let
= - S Q, Pn=0 2-7
Cm+ = or m-+1 +Cm+1 m= ( )
m

Equation (2-5) will have the same form as equation (2-4), in which
the first element of the left hand column vector is unity and the last
m+1 elements of the right hand column vector are zero. We have
thus found a solution to equation (2-4), and if we assume that the
autocorrelation matrix is positive definite the solution must be

unique [30] . The solution is given by equation (2-8):
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RREER (0]
am!| |af am
o=t |+Cmul f (2-8)
am| |am|  [a
amd] [ 0] | 1]

where cm+1 is obtained from equation (2-7). By comparing

equations (2-4) and (2-5) we can also see that:

Pm+1 =P +Cms1 Qmit =P +Cg ('Cm+1 Pm) =Pn (1 - C§1+1) (2-9)

The parameter cm+1 is called the reflection coefficient or the
partial autocorrelation function. Equation (2-8) indicates the
relationship of the reflection coefficients to the AR parameters. If
the reflection coefficients are used instead of the AR parameters to
realize an AR process, an interesting filter structure results as shown
in Figure 2.1. Figure 2.1 is the lattice form realization of the AR
process as opposed to Figure 1.1 that illustrates the direct form I
realization. The lattice filter is an important structure in signal
processing due to its modular structure and special features. The
derivation of the Burg algorithm in the next section describes the
equations that result in this interesting filter structure.

To summarize, the Levinson algorithm consists of equations (2-
6), (2-7), (2-8), and (2-9). It is a recursive algorithm for
estimating the coefficients of an AR process without a-priori
knowledge of the process order. At the k-th iteration of the

algorithm we obtain the AR coefficients of the k-th order model:

k k k
a1,a ,...,ak.
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Figure 2.1 Lattice Filter Implementation
of a 2nd Order AR process

The Burg Algorithm

The Burg algorithm is similar to the Levinson algorithm in that it
estimates the coefficients of an AR process which are updated
recursively using equation (2-8). The Burg differs from the Levinson
algorithm in the way it calculates the reflection coefficients [30-31].

To derive the Burg algorithm, first consider the forward
prediction error of the m.-l-lth order AR model: ( the prediction is
forward in the sense that the prediction for the current data sample

is a weighted sum of previous samples)

m-+1 m+1

m+1 m+1
€ =Xptay Xpqt o +a8m Xp-m t8metXn-m-1 (2-10)

If equation (2-8) is used to obtain the coefficients, equation (2-10)

can be rewritten as:
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ent =x, +(a§" + Cra a',}}) Xn_q+ -
m
+(a$ +Cms1 &4 ) Xp-m * Cm+1 Xp-m-1 (2-11)
Now consider the forward prediction error of the mth order model:

en =Xp+aiXp_1+ -+ +aXn_m (2-12)

There is an equivalent backward prediction model: ( the prediction
is backward in the sense that the prediction for the current data

sample is a weighted sum of future samples)
bW—m—1 = Xn-m-1 +al1nxn—m + - +amxn—1 (2- 13)

It can be shown that the statistics of this model are equivalent to
those of the forward prediction model.
By comparing equation (2-11) with equations (2-12) and (2-13),

we can see that:

e = Cra1 D1+ €] (2-14)
Likewise, we could show:

bm+1

n-m-1 = b?—m—1 +Cm+1 e? (2-15)

The Burg algorithm chooses cm+1 so as to minimize the sum of

squares of the forward and backward prediction errors:
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M

= D (em ) (bt (2-16)

n=m-+2
If equations (2-14) and (2-15) are used in equation (2-16) we can
rewrite the latter as:

M
J= Z(enm +Crm+1 brT—m-—1 )2 + (bw—m—1 *Crma1 e? )2 (2 -17)

n=m+2

To minimize equation (2-17) we take its derivative with respect

to cm+1 , set it equal to zero, and solve for cm+1 . The derivative is
given by:
22(9:1“ +Cm1 bL“.m_1) brm-1+ ZZ(b?-mq +Cm 921) en (2-18)

Rearranging equation (2-18) and setting it equal to zero result in

equation (2-19).

Z(erTbgl—mJ + bm—m—1e:1n ) *Cm+ Z((bw—m—1)2 + ( 9? )2) =0 (2-19)

Solving for cm+1 result in the reflection coefficients that minimize

the sum of squares of the forward and backward errors:

M
-2 Zenm brT—m—1
Crmet = —p o2 (2-20)

() + (o)

n=m+2
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To summarize, the Burg algorithm consists of two steps: 1)
update the forward and backward prediction errors using equations
(2-14) and (2-15); 2) calculate the reflection coefficient using
equation (2-20) and then repeat step 1) . If the AR parameters are
desired they are calculated using equation (2-8), as in the Levinson
algorithm. This implies that the lattice filter implementation of the
AR process is valid when the Burg algorithm is used. In fact, the
forward and backward prediction errors given by equations (2-14)
and (2-15) constitute the lattice structure shown in Figure 2.1.

The Burg algorithm uses equation (2-8) from the Levinson
algorithm to update the coefficients of the AR model, but it differs
from the Levinson algorithm in that it chooses the reflection
coefficient, cm+1 , SO as to minimize the sum of squares of the
forward and backward prediction errors.

Notice that equations (2-14) and (2-15) involve a time shift of
the b sequence relative to the e sequence, and that equation (2-20)
involves three inner product operations. This combination of
operations is found in all algorithms which use convolution or

correlation.
The Method of Least Squares

The least squares method is one of the most popular and useful
techniques for obtaining parameter estimates of an unknown system
or signal model. The convergence properties of least squares

estimates have been well established [23].
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We begin by discussing the general problem and the proposed
solution. Consider the problem of finding a vector x €R" such that
Ax=b where A € X" and b €R™ are given and m>n. When there
are more equations than unknowns, we say that the system Ax=b is
overdetermined. Usually an overdetermined system has no exact
solution.

This suggests that we strive to minimize |Ax-blp for some
suitable choice of p. Different norms render different optimum
solutions. Minimization in the 1-norm and ~-norm is complicated by
the fact that the function |Ax-blp is not differentiable for those
values of p. However, the next section discuss the case where
1<sp<2 4pqd present efficient techniques to solve the problem. On
the other hand, |Ax-bl2 is a continuously differentiable function of x
[32].

The least squares formulation can be applied to the problem of
estimating the parameters of an autoregressive process. Assume the
data sequence Xo, ... , XN-1 is used to find the mth order AR
parameter estimates. Recall equation (2-1) that describes an mth
order AR process. Equation (2-21) is equivalent to equation (2-1)
rewritten to express the output in terms of the weighted sum of the

previous output values and the white noise process.
Xp = ‘a;nxn—1 - _armnxn—m +e’r? (2-21)
We can evaluate ©n in equation (2-21) for n=1 to n=N+m-2 if

one assumes the terms outside the measurements are zero, i.e.,

xn=0 for n<0 and n>N-1. Notice the existence of an implied
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windowing of the data sequence in order to extend the index range
from 1 to N+m-2. Using a matrix formulation we can rewrite

equation (2-21) for the specified range as shown in equation (2-22).

Y X E
[ x4 I Xo 7T 0 ] A [ e, ]
. ~ - Ry am .
Xm Xm_1 ees veo XO X3 :1 em
X x| s L+l |e-22)
XN-1 XN_—? st XNem—1 X4 m en_1
0 .. : 8m :
0 Y 0 - o

en =Xp—X, = —Za{" Xnei ; where aj' =1 (2—24)

Notice that the forward linear predictor error is equivalent to the

white process, i.e. the E vector in equation (2-22), given that the

process is autoregressive.

Using equation (2-22), we can solve for the residual vector:

=Y-XA (2-25)
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Notice that ETE is simply the sum of squares of the residuals or
errors. In the least squares method the objective is to minimize the
sum of squares of the errors, i.e. ETE. Thus the cost function to be

minimized is given by:
J = ETE = (Y-XA)T(Y-XA) = YTY-YTXA-ATXTY+ATXTXA (2-26)

Differentiating J with respect to the vector A, setting it to zero, and

rearranging will give the following system of normal equations:
OKTX) A = XiTY ‘ (2-27)

The subscript k indicates which data matrix is used. There are four
different possibilities, illustrated in equation (2-22), for the
selection of the data matrix [28]. Hence, k takes on the values 1, 2,
3, or 4 depending on our windowing choice to indicate the selection
of the covariance, the autocorrelation, the prewindowed, or the
postwindowed formulation, respectively. Solving for A in equation

(2-27) will result in the least squares solution given by:
A= (XTx)1 xTy (2-28)

In practice, the vector A is not computed using equation (2-28) since
the computation of the inverse is fraught with numerical difficulties.
Instead, the normal equation (2-27) is solved using numerically

stable algorithms that involve orthogonal transformations. Hence,
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equation (2-28) is a useful "theoretical" formula but is not a useful
computational formula [23].

Equation (2-27) has the same structure as the Yule-Walker
equations; however, the data matrix product (XkTXk) is not
necessarily Toeplitz as are the Yule-Walker equations [32]. Notice
that the subscript k is used to indicate the data matrix selected as
mentioned earlier.

If the data matrix X1 is selected, the normal equations are
termed the covariance equations or formulation, often encountered
in linear predictive coding (LPC) of speech [28]. The (X1TX1) matrix
is symmetric but not Toeplitz. The square root method or Cholesky
decomposition is used in this case for computing the A vector [33].
The Cholesky decomposition factors the data matrix product, which
has the properties of a covariance matrix, to solve the system given
by equation (2-22). Cholesky decomposition states that: if a matrix
A is symmetric positive definite, then there exists a lower triangular

matrix G with positive diagonal entries such that [32] :

A=LDLT=(LD12)(D1/2.T) = gGT (2-29)

To avoid square root computations, the factors L and D are computed
rather than the factor G. L is a unit lower triangular and D is a
diagonal matrix with positive elements. The elements of L and D can
be determined by equating the elements of both sides in equation
(2-29). If the first i-1 columns of L and D have been determined

then the i-th column can be determined as:
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i—1

¢ = & - Y dfi (2-30)
k=1
i—1 ,

lji = (aji '—de llk lik)/di i< ] <n (2—31)
k=1

The Cholesky decomposition requires n3/6 operations which is more
than required by the Levinson algorithm, namely, 2n2 operations
[32].

If the data matrix X2 is selected, the normal equations are
called the autocorrelation equation or formulation since the product
matrix (X2TX2)/N reduces exactly to the Yule-Walker equations, for
which the biased autocorrelation estimator has been used instead of
the known autocorrelation function [28]. Notice that a data window
has been assumed for this case. In this case, the (XzTX2) matrix is
Toeplitz and the A vector can be solved for using the Levinson
algorithm discussed in section 2.1 .

If the data matrix X3 is seiected, the normal equations are
termed the prewindowed normal equations due to the zero value
assumptions made for the missing data prior to Xo .

If the data matrix X4 is selected, the normal equations are
termed the postwindowed normal equations since a zero data
assumption is made for the data beyond xN-1.

It would appear that only the data matrix X2 will yield normal
equations with Toeplitz structure to permit an efficient recursive

solution (namely, the Levinson algorithm). However, even though
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the product matrix (XkTXk) may not be Toeplitz, each of the four

matrices Xk have Toeplitz structure.
The Lp Techniques

In the previous section the least squares method was
investigated to explore the possibilities of using such method in
inverse filtering. The main idea in setting up the least squares
formulation is to minimize the sum of squared residuals or errors.
The residuals are the difference between the actual data and the
model. The solution obtained is the least squares solution which can
be termed the L2 solution. The number 2 indicates the residual
terms are raised to the second power before summing.

In the previous section it was indicated that in general, one
could raise the residual terms to some arbitrary pth power and
perform the minimization to get the Lp solution. In Lp techniques,
the values of p other than two may offer some advantages in a
number of ways. For example, the L1 (absolute value) solution
tends to ignore outliers while the L2 solution tries to satisfy all
points as best it can. In general, values of p between one and two
blend these characteristics somewhat [34-39].

Other values for p, such as p<l and even negative p, can be
considered but unfortunately the results obtained for this range do
not have a mathematical basis, as Lp is not a normed linear space.
The solutions for p>2 are more sensitive to aberrant noise. The

parameter p controls the trade-off between emphasizing and
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deemphasizing aberrant noise. The L1 solution is considered to be
robust for its low sensitivity to aberrant noise [38].

The previous section described some of the algorithms to get the
least squares solution efficiently. Unfortunately there is no simple
solution for the Lp case but speciaj iterative algorithms were
developed to efficiently thain the solution. Linear programming
was used to get the L] solution but could not be used to obtain the
general Lp solution. The iterativé reweighted least squares (IRLS)
algorithm can be used to get the Lp solution, but in general, the p-
normed solution can be efficiently solved by using the residual
steepest descent (RSD) algorithm which is a steepest descent method
with an adaptive stepsize [34,37,39].

Linear programming formulations have two drawbacks: for a
large data set linear programming requires an excessive amount of
memory, in addition, it does not guarantee selection of a reasonable
prediction error filter from the several possible solutions. By
contrast, the IRLS algorithm starts from the least squares solution
and iterate toward a solution from there. Each iteration solves a new
L2 problem by employing the weighted fesiduals of the previous
iteration in the current one [34, 37, 39]. The rest of this section will
describe the IRLS and the RSD algorithms.

The IRLS algorithm is based on the least squares solution. It is
an iterative algorithm that uses a weighted least squares to solve the
Lp formulation. The equation (2-22) , used in the previous section
to set up the least squares problem, is also used here as the basis to
set up the formulation. Equation (2-32) is equivalent to equation (2-

22) repeated here in matrix notation.
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Y=XA+E (2-32)
The problem again is to estimate the A vector. The IRLS algorithm
estimates the A vector for a selected p value iteratively. The first
step in the IRLS is to compute [34,37,39]:

A(k+1) = (XT W) XT)-1 XTw(k) Y (2-33)

where W(k) is a diagonal matrix with its diagonai entries, Wiji(k),

given by:

Wn(k)={I géﬂlp—z Im I: (2-34)
where rj(k), the residual, is given by:

rifk) = (Y - X A(k) )i (2-35)

and ¢ is some small positive number. Notice that if p=2, the W
matrix will be equivalent to the identity matrix and equation (2-33)
will be equivalent to the least squares solution given by equation (2-
28). In fact the least squares solution can be used as an initial vector
to solve for an arbitrary Lp solution.

Although the IRLS is a fast convergent algorithm, it still
requires the computation of an inverse for a matrix at each stage k.

Fast IRLS algorithms, based on fast Fourier transforms, were
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developed to reduce the number of computations where the matrix X
takes a special form [34].

The RSD algorithm uses fewer number of operations per iteration
than the IRLS algorithm. The RSD solves the problem iteratively by
the recursion [34,37,39]:

A(k+1) = A(k) - Ak (XTX)-1 XT v(k) (2-36)
where

v(k) =col [vi(k) v2(k) .. VN+m-2(K)] (2-37)
with

vi(k) =| (X A(k) - Y), ["'1 sgn(X A(k) - ), (2-38)

where sgn(t)=+1 (-1) if t>0 (t<0). When t=0, one can arbitrarily
choose sgn(t) to be either +1 or -1. The step size or the scale factor

Ak is determined by minimizing:

=Y + XA®R) - Ak X (XTX)T XT v(K) ||p (2-39)
with respect to Ak in the Lp sense. In equation (2-39), since the
only unknown is Ak and it is a scalar, we can use the IRLS algorithm
to solve for Ak . Notice that in the RSD algorithm we need to compute
the matrix inverse only once, thus, reducing dramatically the
number of computations required when compared to the IRLS

algorithm.
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Selection of a Representative Algorithm

In this chapter a description of the various batch inverse
filtering algorithms was presented. The algorithms were derived to
study their computational structure to select the algorithm that best
represents this class of algorithms.

The algorithms seem to have a common computational structure,
namely, a time shift/inner product operation. In fact, this operation
is a key step in performing all signal processing algorithms which
involve convolution or correlation.

The Burg algorithm is selected to represent this class of
algorithms for several reasons. The time shift/inner product
operation constitutes a large portion of the algorithm. The Burg
algorithm generates models that are always stable and yield a
solution in terms of reflection coefficients. The lattice structure
embedded in the Burg algorithm makes it modular and stable.

The Levinson recursion was shown to be embedded in the Burg
algorithm. The least squares solution using the autocorrelation
formulation can be solved efficiently using the Levinson algorithm.
Notice that the least squares autocorrelation formulation is always
guaranteed to yield a stable filter, by contrast, the covariance
formulation does not.

In the general Lp problem, no formulation mentioned so far can
assure stability except for the autocorrelation form with p=2; other
values of p may yield unstable models, no matter which method is
used. In particular, the autocorrelation model is always stable for p

less than three and greater or equal to two, but there may exist
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some po in the interval 1<pp<2 for which the prediction filter may

not be stable. In that case, stability is not assured for any model
generated in the range 1<p<po [37,38]. Filter stability can be assured
by using a different formulation of the linear prediction problem,
namely, the lattice or Burg algorithm. In fact, generalized Burg

algorithms which ensure filter stability for the Lj solution were

investigated in the literature [37,40].



CHAPTER III

PARALLEL PROCESSING COMPUTER
ARCHITECTURES

The basic definition of parallelism is the ability to do more than
one activity at once. Doing n different activities at once; doing one
activity in n simultaneous parts; doing n activities staggered in time;
using k resources for n jobs; and k resources for one job - all of the
above represent instances of parallelism. The common thread that
_runs through these examples is the utilization of multiple resources
in an instance of time to increase the amount of work performed per
unit of time.

Despite early intellectual flirtations with parallelism, until
recently it has remained largely a concept. During the past two
decades, several parallel processor prototypes have been built. One
of particular note was the ILLIAC IV, conceived at the University of
Illinois by Daniel Slotnick in 1966 as quadrants of 64 processing
elements, but reduced down to one by 1972 because of technical
difficulties. Recently, we are starting to see more and more parallel
designs successfully executed and commercially available.

This chapter describes a classification scheme for computers and
selectively describes, in detail, seven advanced computer systems.
The seven computer systems described represent different

architectures: the Denelcor HEP, a shared memory (tightly coupled)

28



29

multiple-instruction stream multiple-data stream (MIMD) machine
with switch network interconnect architecture; the Cray X-MP/48, a
shared memory (tightly coupled) MIMD supercomputer with direct
connect interconnect architecture; the Intel iPSC/2 hypercube
computer, a distributed memory (loosely coupled) MIMD machine;
the Alliant FX/8, a shared memory (tightly coupled) MIMD machine
with a bus interconnect architecture; the NASA/Goodyear MPP, a
massively parallel SIMD machine with mesh interconnect
architecture; the Connection Machine model CM-2, a massively
parallel SIMD machine with hypercube interconnect architecture;
and the Cray-2 supercomputer, a tightly coupled MIMD machine
with direct connect interconnect architecture and is the latest Cray to
be produced. These architectures are considered to be
representative of the commercially available parallel computer
architectures. The selected algorithm was implemented on these
machines and the results are reported in chapter IV.

All of the architectures described in this chapter have one goal,
to incr;:ase computational power by using replicated processing
elements that are connected to and can communicate over some type
of network. This goal results from the bounds on performance in

traditional von Neumann architectures.

Computer Architecture Classification

Scheme

One of the oldest and still most widely used methods of

classifying computer systems was developed by Flynn in 1966[19].
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Figure 3.1 illustrates Flynn's classification which is based on program
and data parallelism, i.e. the multiplicity of instruction streams and
data streams in a computer system. In a conventional sequential
computer, at any instant of time, there can be but a single command
in the command register, and this command can effect an arithmetic
or logical operation upon a single datum stored in the accumulator.
Such a machine organization is termed single-instruction stream,
single-data stream, or SISD [19]. Most SISD machines are pipelined
and can have more than one functional unit under the supervision of
one control unit.

In one widely used approach to parallelism, a multiplicity of
concurrently operating processing elements is provided, where each
processing element consists of an ALU and a memory unit. The
arithmetic and memory units are interconnected to form a network
or an array. The system contains only one program control unit
which can activate any or all of the arithmetic units. Each active
element of the array performs the same arithmetic or logic operation
under command of the control unit. Each arithmetic element may be
operating on different data in executing the instruction resident in
the control unit. For this reason, this type of structure is termed
single-instruction stream, multiple-data stream, or SIMD. SIMD

machines are also called array processors [19].
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In the third approach, each processing element contains a
control unit as well as an ALU and memory unit. The elements of the
network can therefore function as full-fledged independent digital
computers, and during any instruction cycle each processing element
can carry out a different arithmetic or logic operation. For this
reason systems of this type are termed multiple-instruction stream,
multiple-data stream, or MIMD. Most multiprocessor systems and
multiple computer systems can be classified in this category. MIMD
machines are considered tightly coupled if there is a shared memory
and the degree of interactions among the processors is high,
otherwise, they are considered loosely coupled. Loosely coupled
systems employ distributed memory with a low degree of
interactions among the processors.

Since Flynn published his classification scheme, new parallel
computer architectures have emerged which incorporated a variety
of new architectural concepts. Currently, Flynn's classification
scheme is still used but other classification schemes were developed
mainly to augment Flynn's classification scheme making it more
complete and accurate when used to classify new architectures.
Some of the classification schemes are based on data sharing
mechanism, synchronicity of operation, or granularity of
computations [41]. Other schemes have emphasized a particular class
of machines, like MIMD machines categorizing them as either
switched systems or networks [42-43].

The aforementioned classification schemes of advanced
computer architectures are only a few of the currently existing

schemes. A variety of other classification schemes exist that adds to
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the complexity of placing a given computer system within a definite
class. The science of computer classification schemes is by no means
complete and the necessity for a more clear and accurate scheme still
exists.

In this research, Flynn's classification is used along with a new
classification scheme [21]. The classification scheme is based on
three essential issues that must be considered for a parallel
architecture: the granularity of the processing elements; the
topology of the interconnections between processing elements; and
the distribution of control across the processing elements.
Granularity refers to the power of each processing element in the
architecture ranging from many single-bit processors to a few
powerful general purpose ones. Topology refers to the pattern and
density of the connections that exist between the processing
elements. Control distribution is concerned with allocating tasks to
the processing elements and synchronizing their interactions. Figure
3.2 illustrates the so called organizational space of parallel computer
systems with these three variables as the axes.

In describing each computer architecture in this chapter, an
attempt is made to place each system in relative perspective by
illustrating their approximate position within the space. The criteria
used in placing these systems are somewhat subjective and
qualitative. The architectures described are so different in their
structure and operations that it is virtually impossible to establish a
one-to-one comparison of their features. It should be emphasized
that the placing criteria largely depend on the way each machine is

used in this research.
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Figure 3.2 Organizational Space of Parallel
Computer Systems

Description of Selected Advanced

Computer Systems

In this section a selected group of advanced computer
architectures are described in detail. The hardware, software, and
classification of each system are discussed in detail. The computer
systems described here represent a variety of interesting

architectures.

The Heterogeneous Element Processor (HEP)

The Heterogeneous Element Processor (HEP) was first developed

for the Army Ballistic Research Laboratories at Aberdeen by
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Denelcor, Inc. The HEP is a large scale scientific parallel computer
employing shared resource (tightly coupled) MIMD architecture. The
processors used in the HEP are pipelined to support many concurrent
processes, with each pipeline segment responsible for a different
phase of instruction interpretation. Each processor has its own
program memory, general purpose registers, and functional units; a
number of these processors are connected to shared data memory
modules by means of a very high speed pipelined packet switching
network [19,44]. |

The extensive use of pipelining in conjunction with the shared
resource idea result inv a flexible and effective architecture. For
example, the switch used to interconnect processors and memories is
modular, and is designed to allow a given system to be expanded as
needed. The increased memory access times that result from greater
physical distances can be compensated for by using more processes
in each processor because the switch is pipelined.

An overall block diagram of a typical HEP configuration is shown
in Figure 3.3. The switch network shown has 28 nodes; it
interconnects four processors, four data memory modules, and 1/O
processor and devices. Systems of this kind can be built to include as
many as 16 processors and 128 data memory modules. Each
processor performs 10 million instructions per second (MIPS), and
the switch bandwidth is 10 million 64 bit words per second per
network link. All instructions and data words in the HEP are 64 bits
wide, although data references within each processor can access

halfword, quarterword, and bytes [19,44].
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Parallel processing and MIMD architecture, as implemented in
HEP, allow up to 100 independent (or cooperating) instruction
streams executing in parallel at any given time. In the HEP, these
instructions are called processes, and 50 processes can be active at
one time in a single processor. Each process can have its own unique
data stream. With a number of processes executing concurrently, it
is practical to separate an application problem into its component
parts and execute the parts in parallel, with intermediate results

passed between the cooperating processes as necessary [19,44,45].

Processor Processor Processor Processor

Data Memory Data Memory Data Memory Data Memory

To I/O

Figure 3.3 Four-Processor HEP System
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Figure 3.4 illustrates the routing control in the bidirectional 3-
ported switch node. The switch is synchronous and modular
employing packet switching. Each node is connected by three full
duplex ports. Each node receives three message every 100ns and
route them for optimal destination, i.e. with minimal delay. Each
node has three routing tables, one per port; tables are indexed by
destination address and contain the identification of the preferred
port out of which the packet should be sent [19,44].

A unique feature of each switching node is it does not enqueue
messages in case a conflict for a port occurs; instead, it routes all
messages immediately to output ports. It is the responsibility of the
neighbors of the node to make sure that incorrectly routed messages

eventually reach their correct destinations.

! { {

Port A Input Port B Input Port C Input
 p— | | p— |
Request Request Request
RAM RAM RAM
Routing Logic
Port A Output Port B Output Port C Output

| Y Y

Figure 3.4 Routing Control in the 3-ported Switch Node
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The HEP main programming language is HEP/UPX FORTRAN 77
which incorporates two kinds of extensions to FORTRAN 77: CREATE
and RESUME statements which are syntactically equivalent to CALL
and RETURN statements in FORTRAN 77 but used here for the
creation and termination of processes, and access states of the
asynchronous variables for synchronization between processes.
Synchronization is required for handling data dependencies among
user-created instruction streams. The user is responsible for
establishing proper synchronization within his program using
asynchronous variables that can be set to an access state, namely full
or empty. PURGE stétement is used to unconditionally set the access
state of a synchronous variable to ‘empty. Reading and writing to a
synchronous variable will set it empty and full respectively. The
HEP read and write instructions are controlled by these access states.
By manipulating the access states, multiple instruction streams can
be synchronized to access common memory locations [45].

Figure 3.5 illustrates the position of the HEP system in the
organizational space. The packet switched network connecting the
proc;éssors and the resources is considered to be lightly
interconnected while the granularity of the HEP is relatively coarse
since each 64 bit processor is general purpose. The resources within
the system are shared making the control of communications among

resources relatively tight.



39

Finé
Granularity —
— Tight
Control
Coarse ’
ng/h - — Loose
y cavily

Interconnected TOPOIOgy Interconnected

Figure 3.5 HEP Position in the Organizational Space

The Cray X-MP/48

The Cray-1 computer was first delivered in 1976 to Los Alamos
National Laboratory and since then it has been the industry standard
in very high-speed computing. The success of the Cray-1 can be
attributed to its innovative vector architecture, dense packaging,
and advanced cooling technology [19-22,46].

The Cray-1 design employs many state-of-the-art architectural
features such as: pipelining in memory access and function units,
utilization of vector registers and operations chaining, concurrent
execution of multiple functional units, interleaved memory,
instruction cache and lookahead, and massive use of parallel logic to

shorten the execution time of functional units.
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The Cray X-MP/48 or Experimental Multi-Processor is a
multiprocessor extension of the Cray-1 that was completed in 1983.
The Cray X-MP/48 is a tightly coupled MIMD supercomputer. It
contains four Cray-1 like processors that share memory and I/O
subsystems and has a clock cycle of about 9.5 nanoseconds (vs. 12.5
nanoseconds of Cray-1). Most often the four CPU's’function
independently, but their instruction streams can be synchronized. »

Figure 3.6 illustrates the overall system of the X-MP/48.
Although built upon the basic architecture of the Cray-1, the X-
MP/48 processor is totally redesigned. All processors share a central
memory of 8 million (64-bit) words, organized in interleaved
memory banks. All banks can be accessed independently and in
parallel during each machine clock period. Each processor has four
parallel memory ports (four times that of Cray-1) connected to the
central memory: two for memory loads, one for memory stores, and
one for independent I/O operations.

The multiport memory“ has built-in conflict resolution hardware
to minimize access delay and to maintain the integrity of all memory
references from different ports to the same bank at the same time.
The multiport memory design, coupled with a shorter memory cycle
time, provides a high performance memory organization with up to
16 times the memory bandwidth of a Cray-1. The improved memory
bandwidth balances the multiple-pipelined computing power of the
CPU and the data streaming ability of the memory. For each
processor, this capability, coupled with reduced clock period, gives

a performance speedup over the Cray-1 of up to 4 [19-22,46].
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Figure 3.6 The Cray X-MP/48 Overall System Organization

The processors, which share the I/O ports, are controlled
synchronously by a central clock. The scalar performance of each
processor is improved through faster machine clock, shorter
memory access, larger instruction buffers ( twice that of the Cray-1),
multiple data paths, and multiple processors. The vector
performance of each processor is improved through faster machine
clock, parallel memory ports, and a hardware automatic flexible
chaining feature. The machine allows simultaneous memory fetches,
a /sequence of computations, and meméry store in a series of related
vector operations.

The Cray X-MP/48, like the Cray-1, achieves low-level
parallelism through vectorization. The Cray FORTRAN compiler (CFT)



42

analyzes innermost DO loops to detect vectorizable sequences and
then generates code to take advantage of the processor organization.
The vectorization performed by the compiler is automatic, providing
increased performance without restructuring or handcoding. In
addition, the Cray X-MP/48 can achieve high-level parallelism via
multitasking. All of the processors can cooperate to solve a problem
by running separate tasks in parallel.

Any required synchronization must be specified by the
programmer via calls to the multitasking library. Multitasking
requires careful consideration of the algorithm at hand and data
dependencies that may exist. A variety of facilities are provided to
support multitasking: compiler linkage protocols, wutilities, memory
management facilities, and multitasking synchronization routines.

A task is defined as a‘prog.ram unit capable of being
independently assigned a processor. All tasks of a program share the
same FORTRAN common memory area, but each task is allocated a
private environment for its local variables. All programs consist
initially of one task. Any task can create a number of other tasks.
All tasks created as descendants of the initial task run logically in
parallel, but actual parallel processing across the two processors
depends on instantaneous machine loading and available resources.
Hence, it is not possible to easily determine for a particular run
whether separate tasks actually ran in parallel.

Finally, Figure 3.7 illustrates the position of the Cray X-MP/48
in the organizational space. Low-level parallelism is used in
determining the apﬁroximate placement location. The processors are

of fine granularity because they operate on multibit elements. The
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because communication is

performed at a low level and without the need for contention to

access a communication path. The operation of the X-MP/48 is

tightly coupled.
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Figure 3.7 Cray Position in the Organizational Space

The Intel iPSC/2 Hypercube

A cube is defined as a set of n processors,

where n is a power of

two, that are interconnected in such a way that the processors are

located at the corners of a cube and the interconnections form the

cube edges.

There are several types of cubes,

all variations on the
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basic architecture, called the Boolean n cube, or binary cube. Each
of the n nodes contains log n connections to its neighbor nodes. Each
node is numbered in such a way that there is one binary digit
difference between any node and its log n neighbors.

Cubes with dimensions greater than three are generally called
hypercubes. Higher dimension cubes/hypercubes are constructed

using lower dimension cubes/hypercubes as shown in Figure 3.8.

Dimension Nodes Channels/INode Channels Topology
0D 1 0 0
1D 2 1 1
2D 4 2 4
3D 8 3 12
4D 16 4 32
o~

Figure 3.8 The Hypercube Topology



45

The basic concept for the Intel iPSC computer was proposed by
and developed at the California Institute of Technology, under a
project called the Cosmic Cube [47]. The project was sponsored by
the United States Department of Energy and DARPA. Under a license
from Caltech, Intel developed its own hypercube-based architecture,
utilizing existing Intel microcomputer and communication
components.

The Intel iPSC/2 computer consists of a hypercube based
architecture along with an associated host processor called the cube
manager. The iPSC/2 used in this research is a five dimensional
hypercube. The iPSC/2 is expandable to a seven dimensional
hypercube. The connection scheme of the hypercube is robust since
tﬁere are several different paths that exist between any two nodes in
the cube [21].

Each iPSC/2 node contains a 32-bit microcomputer based on the
Intel 80386 processor with a fast scalar floating-point unit. Each
node has its own memory and therefore the iPSC/2 is considered to
be loosely coupled MIMD 'machine.

Nodes communicate with other nodes by sending and receiving
messages. Message passing is the only means available for internode
communication and synchronization, since the iPSC/2 has no shared
memory. A Direct-Connect routing module is present in each node
for high-speed message passing within the system's hypercube
communication network. Each routing module provides an eighth
channel for high-speed external communication (only seven are
needed to connect up to 128 nodes). Messages on the iPSC/2 can

either be synchronous or asynchronous. A call to the synchronous
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message passing routines blocks until the message is sent or received
before returning and allowing program execution to continue. On the
other hand, a call to the asynchronous message passing routines
returns immediately and does not block until the message is sent or
received. The user has complete control over message passing using
FORTRAN or C language extensions.

Figure 3.9 places the iPSC/2 hypercube architecture in the
organizational space. The node processors are capable of performing
a full range of operations since they incorporate general-purpose 32-
bit microprocessors. For this reason, the iPSC/2 is considered to be
fairly coarse grained. Since the complexity of the interconnection at
each node is a maximum of five channels (for the 5-dimensional
hypercube), and the communication between nodes does not have to
be synchronized, the topology of the hypercube is of medium
interconnection complexity. The iPSC/2 is an MIMD machine with
each node having its own local instruction stream and communication

is locally controlled making the overall system loosely coupled.
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Figure 3.9 Hypercube Position in the
Organizational Space

The Alliant FX/8

The Alliant FX/8 was designed to exploit parallelism found in
scientific programs automatically. The intent was to allow parallel
processing on existing FORTRAN programs with minimal or no
changes to the source code. Figure 3.10 illustrates the hardware
architecture of the Alliant FX/8. It consists of eight processors called
Computational Elements (CEs), and 12 Interactive Processors (IPs).
A common memory bus is employed for communication among
resources. The CEs are connected via a crossbar switch to the cache
modules attached to the memory bus. All access by the CEs and IPs

to the bus occurs through cache memory modules. The CEs are also
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connected directly to each other via a concurrency control bus. The
Alliant FX/8 is a tightly coupled MIMD machine.

The CE is the computational building block of the Alliant FX/8
system. Each CE is a microprogrammed pipelined processor
(compatible with MC68000 architecture) with integrated floating
point and vector instruction sets. In general, the CEs are used to
perform computation-intensive processes that can benefit from
vectorization or loop-level concurrency, whereas the IPs are used to
perform interactive processes and handle ‘I/O between the memory
and peripherals. The CEs are referred to as the computational

complex and can be devoted to the execution of a single program.

Shared Memory Shared Memory Shared Memory
Module Module ,® ® ° Module
Memory Bus
Cache Cache Cache Cache Cache Cache
Crossbar Switch
CE1]. . «|CE 8 IP 1 o o . IP 12

CE - Computational Element
Concurrency Control Bus IP - Interactive Processor

Figure 3.10 The Architecture of the Alliant FX/8
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FORTRAN , C, and Pascal are supported on the FX/8 but only the
FX/FORTRAN compiler provides optimization for concurrency and
vectorization. Concurrency refers to the concurrent execution of
loops and array operations by more than one CE. Vector operations
are distributed across the CEs for concurrent execution in the same
way as scalar operations.

When the FX/FORTRAN compiler recognizes an opportunity for
concurrency, it generates concurrent code only as long as it can
guarantee that this will not change the outcome of the program. In
most cases, the compiler is very conservative in this regard. It
bases its decision on the type of statements within a loop and the
way variables are used, since the latter often affects the degree to
which the iterations of the loop can be overlapped.

Concurrency is applied to DO loops by executing the different
iterations on different CEs. Since there are eight processors, up to
eight iterations can be active at one time. If necessary, the compiler
inserts synchronization points into the object code to ensure that
variables within a loop are updated and accessed in the correct order
and to guarantee that the program statements following a loop do not
execute until all iterations of the loop are finished.

Figure 3.11 illustrates the position of the Alliant FX/8 in the
organizational space. The computer is a tightly coupled MIMD
machine. The CEs are powerful processors that employ pipelining
and vectorization suggesting that the FX/8 is of medium granularity.
The interconnection between the CEs is simply a bus (concurrency
bus). The CEs are connected via a crossbar switch to the cache

memory modules which in turn connected to the shared memory via
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a bus. For these reasons, the FX/8 is considered to be lightly

connected. The control is fairly tight since a shared memory is used.

SIS
:
Fine &L
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/ Control
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Lightly Heavily
Interconnected Topology Interconnected

Figure 3.11 Alliant Position in the
Organizational Space

The Massively Parallel Processor (MPP)

Among the experimental machines successfully built is the
massively parallel processor (MPP) which was designed to process
satellite imagery at high rates. In 1971, NASA Goddard Flight Center
in Greenbelt,Md., initiated research for a high speed computer to

process the data generated by orbital imaging sensors. Data rates of
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1013 bits/day is expected to result in 109-1010 operations/sec
workload. Designed and built for $6.7 million by the Goodyear
Aerospace Corp. in Akron, Ohio, the MPP was delivered to NASA in
May 1983. |

One of MPP's first tests involved analyzing data from the
"thematic mapper" aboard Landsat 4. By studying the million or so
pixels making up a typical image, the MPP automatically finds out
whether each spot represents water or land, forest or field, stream or
street - all in 20 seconds. A conventional computer would take hours
to analyze the same picture and produce a similar classification

scheme.

The MPP_ Architecture [48]

The MPP owes its speed to the unusual way in which the
machine's parts are organized. Its network of 16384 simple
processors allows a problem to be divided up so that each processor
performs the same operation on different pieces of data at the same
time (SIMD architecture).

Figure 3.12 depicts the overall system block diagram. There are
five main subsystems: The array unit (ARU), the array control unit
(ACU), the program and data management unit (PDMU), the staging

memories (SM), and the host computer.
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Figure 3.12 Overall Block Diagram of the MPP

The Array Unit. The ARU of the MPP is organized with a
number of 16384 -element planes to handle the two-dimensional
data processing at high speed. Each plane is a square with 128 rows
and 128 columns. Figure 3.13 shows 1 column of the ARU. The ARU

contains one S-plane (used to handle data input and output for the
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ARU), 1024 memory planes, and 35 processing planes for a total of
1060 planes. Each plane also has 4 spare columns to bypass faulty

hardware.:

-
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Figure 3.13 The ARU
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Instructions operate on a whole plane of data in parallel. The
ARU can treat data of arbitrary precision since the processing is bit-
serial. Black-white images are stored and processed as arrays of
single-bit pixels, images with 256 grey levels are stored and
processed as arrays of 8-bit pixels.

Each plane is organized in a mesh with nearest neighbor
communication between the elements in that plane. This architecture
facilitates data accessability and is easy to implement in hardware.
The edge connectivity is programmable offering the user eight
different topologies. Figure 3.14 illustrates these topologies. For the
East-West edges there are 4 possible options: open, cylindrical, open
spiral, or closed spiral. For the North-South edges there are 2
possible options: open or connected.

Programmability is achieved using the topology register in the
ACU. Note that topologies 4-7 convert the two-dimensional ARU into
one-dimensional structure that can be used for one-dimensional
signal processing problems.

Processing elements in the ARU are designed with two-row by
four-column custom made VLSI chips (HCMOS technology). The
processing element array has 128 rows and 132 columns that are
divided into 33 groups, each of which consists of 128 rows by 4
columns. Each of the 33 groups has an independent group-disable
control line from the ACU that is activated if a faulty processing
element is detected. Arbitrary disable is used if no fault is detected.
The programmer does not need to alter the program when the

disabled group is changed since logical addresses are used.
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Figure 3.14 Topologies Available on the MPP's ARU



56

Figure 3.15 shows one processing element (PE) in the ARU. The
PE has six 1-bit registers (A,B,C,G,P,and S), a planar shift register with
a programmable length (2,6,10,14,18,23,26,or 30), RAM, data bus,
full adder, and some logic circuits. The S-register is part of the S-
plane that handles data input and output for the ARU. On input, the
S-plane accumulates a plaﬁe of data, column by column and then
transfers the data plane to a memory plane. On output, the S-plane
receives the contents of a memory plane and then transfers the
plane out column by column. Input and output can be handled

simultaneously.

SUM  GARRY
FULL ADDER c M

I I - L S _J + —

SHIFT REGISTER | P
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Figure 3.15 The Processing Element
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The A-register is part of the A-plane that receives the output of
the planar shift register. It can be considered to be a one-plane
extension to the depth of the planar shift register. The B-plane is the
sum plane in arithmetic operations, while the C-plane is the carry
plane. The G-plane is used to mask activity in the other processing
planes, while the P-plane is used for logic and routing operations.

The RAM stores 1024 bits per PE with addresses in the range 0
to 1023. The ACU generates 16-bit addresses so that ARU storage can
be expanded to 65536 bits per PE. Memory faults are detected using
parity check that sets an error flip-flop associated with the 2 by 4
subarray.

The S-plane and the processing planes are implemented with
2112 custom VLSI circuits. The memory planes are implemented
with 4752 standard bipolar RAM integrated circuits- each RAM
circuit contains 4 data bits or 4 parity bits of all 1024 memory
planes. Twenty four VLSI circuits and 54 RAM circuits are packaged
on one printed-circuit board to make up a 16 row by 12 column
section of the ARU planes. The 128 row by 132 column ARU requires
88 printed-circuit boards. Another 8-boards are used for the
topology switches around the edges of the P-plane and to distribute

the control signals from the ACU.

The Array Control Unit. The ACU controls the operations in the
ARU and performs the arithmetic on any scalars required to support
operations on data arrays in the ARU. Figure 3.16 shows a block

diagram of the ARU that consists of: the processing element control
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unit (PECU), the input/output control unit (IOCU), the main control
unit(MCU), a queue, and memory for both the PECU and the MCU.

—| PECU MEMORY [ PECU ——
FROM ARU
PDMU | *

QUEUE
MCU
—! MCU MEMORY *
FROM
PDMU TO
IOCU —>ARU

Figure 3.16 The Array Control Unit

The PECU controls operations in the processing planes of the
ARU. It generates all ARU instructions except fhose pertaining to the
S-register. It executes microcoded routines stored in its program
memory to perform all array operations required by application
programs. The PECU contains 8 index registers, a 64 bit common
register for scalar data, a topology register, a program counter, a
subroutine stack, and an instruction register.

The IOCU controls the shifting of I/O data through the ARU S-

registers as well as the transfer of I/O data between the S-registers
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and the ARU memory. It executes I/O channel control programs
stored in the MCU program memory.

The MCU executes the application program stored in its program
memory. It performs the scalar arithmetic operations required, calls
the PECU for all array logic and arithmetic operations. Both sets of
calls are queued to await execution while the MCU moves on to
generate other calls.

The queue holds calls to the array processing routines until they
are executed by the PECU. A call enters the queue when inserted by
the MCU and remains there until the PECU has executed all
previously called routines, then the PECU jumps to the called

routine. Up to 16 calls can be held in the queue at one time.

The Program and Data Management Unit. The PDMU is a DEC
PDP11/34A minicomputer. It controls the overall flow of

programmed data in the system and it has the RSX-11M real time
multiprogramming operating system. The PDMU executes the
program development software package written in FORTRAN. This
package includes the main assembler, the PE control assembler, a
linker, and a control and debug module.

The main assembler is used to develop application- programs
executing in main control, while the PE control assembler is used to
develop array processing routines for PE control. The linker is used
to form load modules for the ACU. Finally, the control and debug
module is used to load programs into the ACU, control and supervise
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