
Research Institute for Advanced Computer Science
NASA Ames Research Center

Ordered Fast Fourier
Massively Parallel Hypercube

Multiprocessor

9 ioI

Transforms on a 6 30

Charles Tong and Paul N. Swarztrauber

December 1989

Research Institute for Advanced Computer Science

NASA Ames Research Center

I_IACS Technical ReporL 89.50

NASA Cooperative Agreement Number NCC 2-387

(NASA-CR-188899) ORDERED FAST FOURIER
TRANSFORM5 ON A MASSIVELY PARALLEL HYPERCUBE

MULTIPROCESSOR (Research Inst. for Advanced

Computer Science) 30 p CSCL 09P

N92-I1700

Unclas

G3/62 0043101

\

- 1D

Ordered Fast Fourier Transforms on a
Massively Parallel Hypercube

Multiprocessor

Charles Tong and Paul N. Swarztrauber

December 1989

Research Institute for Advanced Computer Science

NASA Ames Research Center

RIACS Technical Report 89.50

NASA Cooperative Agreement Number NCC 2-387

Ordered Fast Fourier Transforms on a
Massively Parallel Hypercube

Multiprocessor

Charles Tong and Paul N. Swarztrauber

Research Institute for Advanced Computer Science
NASA Ames Research Center - MS: 230-5

Moffett Field_ CA 94035

RIACS Technical Report 89.50

December 1989

Tile Research Institute of Advanced Computer Science is operated by Universities Space Research

Association, The American City Building, Suite 311, Columbia, MD 244, (301)730-2656

Work reported herein was supported in part by Cooperative Agreements NCC 2-387 between tile National

Aeronautics and Space Administration (NASA) and the Universities Space Research Association (USRA).

Ordered Fast Fourier Transforms on a Massively

Parallel Hypercube Multiprocessor

by

Charles Tong i,s and Paul N. Swarztrauber _,s

December 1989

AB S TRA C T

We examine design alternatives for ordered FFT algorithms on massively parallel

hypercube multlprocessors such as the Connection Machine. Particular emphasis
is placed on reducing communication which is known to dominate the overall

computing time. To this end we combine the order and computational phases of
the FFT and also use sequence to processor maps that reduce communication.

The class of ordered transforms is expanded to include any FFT in which the
order of the transform is the same as that of the input sequence. Two such ord-
erings are examined, namely, Wstandard-ordern and "A-order n which can be

implemented with equal ease on the Connection Machine where orderings are

determined by geometries and _riorities. If the sequence has N = 2" elements
and the hypercube has P = 2 processors then a standard-order FFT can be

implemented with d + r/2+1 parallel transmissions. An A-order sequence can be
transformed with 2d-r/2 parallel transmissions which is r--d + 1 fewer than the

standard order. A parallel method for computing the trigonometric coefllcients is

presented that does not use trigonometric functions or interprocessor communica-
tion. A performance of 0.9 GFLOPS was obtained for an A-order transform on
the Connection Machine.

2

Department of Computer Science, University of Callfornia at Los Angles, Los Angles, Call-
fornia 90024-1598.

National Center for Atmospheric Research, Boulder, Colorado 80307, which is sponsored by
the National Science Foundation.

This work was supported by the NAS Systems Division via Cooperative Agreement NCC 2-

387 between NASA and the University Space Research Association (USRA). It was per-
formed while the authors were visiting the Research Institute for Advanced Computer Sci-
ence (RIACS), NASA Ames Research Center, Moffett Field, CA 94035.

-3- PRECEDING PAGE BLANK NOT FILMED

1. Introduction

The increased availability of various parallel architectures poses many chal-

lenges for algorithm development. One notable example is the Fast Fourier

Transform (FFT) with many variants that are targeted for different types of

computers. The main difference between these variants is the order of the inter-

mediate sequences which have been selected to favor certain architectural charac-

teristics. For example, orderings that result in long vectors with unit stride are

selected for vector computers [6]. Orderings that minimize communication are

selected for hypercube multiprocessors [7]. Interprocessor communication is the

major source of'performance degradation on hypercube multiprocessors.

In this paper we examine efficient implementation of ordered FFTs on mas-

sively parallel hypercube computers such as the Connection Machine. The con-

cept of an ordered transform is expanded to include any transform in which the

ordering of the input sequence matches that of its transform. This is a reason-

able consideration on the Connection Machine where orderings can be selected

with equal ease by the specification of geometries and priorities. Two nordered"

transforms are considered, namely, standard-order and A-order transforms.

These transforms differ in communication complexity and their suitability will

likely depend on the application. If a standard-order transform is not required

then an A-order transform with less communication may be appropriate.

The standard-order transform was considered earlier [7] where it was

demonstrated that a sequence with JV = 2 r elements could be transformed with

r/2+d+l parallel transmissions on a hypercube with P = 2 _ processors if

d > r/2. Here we show that an A-order transform can be computed with

2d-r/2 parallel transmissions. Both orderings belong to the class of orderings

called index-digit permutations [1]. Besides reducing the amount of communica-

tion, we also show that this algorithm facilitates the parallel computation of the

-..... -£;4 -

trigonometric coefficientswithout evaluating the trigonometric functions or hater-

processor communication. Although we will consider only WorderedW transforms

in the expanded sense, it is important to note that an unordered transform can

be computed with only d parallel transmissions.

In section 2, we begin with a class of orderings called index-digit permuta-

tions. In particular, we review the concept of i-cycle which is central to the

implementation of ordered hypercube FFT as well as the general index-dlgit per-

mutation. In particular, we examine the standard-order FFT and the A-order

transform which is yet to be defined. In section 3, we firstdiscuss differentways

of computing the trigonometric coef_cients and then present a new parallel

method for the direct computation of the trigonometric coefficients.Next we

show that this method isparticularly suited to a hypercube implementation using

i-cycles. The performance results of these FFTs are presented in section 4.

2. Parallel Hypercube FFTs

2.1 Introduction

In this paper we consider the implementation of ordered FFTs on hypercube

multiprocessors. It is assumed that the number of physical processors ks P -- 2d

where d ks the dimension of the hypercube. Each processor has its own local

memory (also called distributed-memory system). It ks also assumed that the

number of elements to be transformed is N - 2r and that NIP is a small con-

stant (massively parallel version of the original hypercube FFT [7]). Moreover, if

N/P > 2 (number of elements ksmore than twice the number of physical proces-

sors),the elements are mapped to virtual processors which then contain exactly

two elements, (after the Connection Machine model). It is known that interpro-

cessor communication consumes a substantial amount of time and hence its

minimization is of primary concern. Communication between virtual processors

located ha the same physical processor does not contribute to haterprocessor

-5-

communication. Throughout the text we willuse the followingnotation.

If zn has N = 2r elements then itcan be mapped into the multidimensional

array z(__v''',io) where ir_lir_2'''i o is the binary form of n. The FFT

can then be looselydescribed as a sequence of 2r-1 transforms of length two in

each of r dimensions. An example for the case N = 16 ksgiven in Table I.below.

Table I :Intermediate Orderings for Cooley-Tukey FFT,

N--16, using Subscript Notation

Z(io, il,i2,is)

XO)(io,i_,i2,ks)

g(2)(io,il,k_,ks)

_a)(io,/cl,k2,/c s)

X(4)(ko, k:,k2,ks)

gO')(ks,k2,k_,_o)

The originalsequence isgiven as the Rrst entry in Table I. The transform

in the dimension is isdesignated by replacing is by ks in the second entry. Sub-

sequent multiple 1-D transforms correspond to subsequent entries in Table I.

The FFT requiresthe multiple 1-D transforms to be computed In the order of

decreasing indices,i.e.,is,i_,ii,and i0. The lastentry corresponds to the bit-

reversalthat is necessary to order the FFT. Between each of the multiple 1-D

transforms the sequence zn is multiplied by certainroots of unity. For example,

XO)(io,ii,is,ks)iscomputed from

XO)(io,ivi2,0)- Z(io,ii,i2,0) + z(io,il,i2,1)

X(1)(io, il,i_,l) ioi,i_= _o [z(io,i_,i_,o)- z(io,il,i2,1)]

-6-

--i_/4
where _ - e

We will adopt the binary notation in place of the subscript notation to avoid

conversions between the two. Table II is the binary equivalent of the subscript

notation that is used in Table I. Element locations are then given directly in

binary form.

Table II : Intermediate Orderings for Cooley-Tukey FFT,

N--16 Binary Notation

Z(I"3 f2 fl Z'O)

_1)(/c 3 i2 il io)

_s)(k3 ks il io)

._3)(k3 ks kl io)

_4)(/c 3 k, k1 ko)

4)(ko kl kz k3)

The last two entries in Table H correspond to a reordering in which the ele-

ment in position ks]cJ¢lk o binary is moved to position kolClksk s. This illustrates

the advantage of the binary notation which provides the locations directly

without reversing the order of the subscripts.

The last entry in Tables I and II is an example of an index-digit permuta-

tion [1], called a bi_-reversal. Other examples include the perfect shuffle and

matrix transpositions. The time required for communication is known to contri-

bute substantially to the overall computing time. It is also known to depend

significantly on how the sequence z n is mapped to the processors. We will begin

with perhaps the most common mapping in which the first N/P elements are

-7-

mapped to the _rst processor, the second N/P elements are mapped to the

second processor and so forth.

Definition 1 : A standard sequence to processor map

z(i,_I --- s'r_dI ir___I ... i0) is one ".m which the element zn with

• • • • • . •

n- sr_isr_2""s0 (binary) has address ,r___itr___2 "i0 in processor

number It_lit_ 2 it_ d.

Both a processor number and address are required to identifya particular

element in the sequence• The partition I isintroduced for expositorypurposes to

separate the address on the right from the processor number on the left. For

example if r = 4 and d = 2 then the element zn with n = ,ss2szs0 has address

ili0 and is located in processor number s'si2 and the mapping is designated by

z(*'s s'21 *'1 io)"

Definition 2 : An index-digit permuted sequence to processor map is one in

which the indices s'j are permuted• That is, the element z n with

n = s'r_lir_2""s" 0 (binary) has address _(r___1)_(r___2) • • • era(0) in processor

number s'=(r_l)S'(,_2) • • • i{r__) where re(j) is an arbitrary permutation of the

integers 0, • • • ,r-1.

From the last two entries in Table H it is evident that a method will be

needed for converting between index-digit permuted maps on the hypercube. To

that end we introduce a specific class of communication tasks.

Definition 3 : An i-cycle is an index-digit permutation of z n in which the most

significant digit of the address (called the pivot) is exchanged with any other

digit, either in the address or the processor number.

For example, if a standard sequence to processor map is used for zn, an i-

cycle is a reordering that exchanges the digit in position r-d-1 with any other

digit. Two i-cycle examples are given in Table HI.

-8-

Table HI : Sample i-cycles for the case d -- 2 and r - 4

X(i 8 s'2 I 11 S'o)

X(,'3¢2 I ioi 1)

x(io_ I *'3i,)

The second entry in Table IT[is obtained from the first by an i-cycle that

exchanges the first and second (pivot) digits. The third entry is obtained from

the second by an i-cycle that exchanges the second and fourth digits.

For N-= 16 and P -= 4 the data exchanges for two sample i-cycles are

given in Table IV below.

-9-

Table IV : Sample i-cycle communication paths for N=16 and P=4

X(¢ 3 i 2 I iI io) X(i_ ¢2 I i 1 io)

X(¢ 3 i 1 I ¢2 ¢o) X(¢_ ¢2 1 is ¢o)

13S2Sl| 0 13|1|210 P 13121110 11121310

0000 0000 0 0000 0000

0001 0001 0 0001 0001

0010 0100 0 0010 1000

0011 0101 0 0011 1001

0100 0010 1 0100 0100

0101 0011 1 0101 0101

0110 0110 1 0110 1100

0111 0111 1 0111 1101

i000 i000 2 I000 0010

I001 I001 2 I001 0011

i010 II00 2 i010 I010

1011 1101 2 1011 1011

1100 1010 3 1100 0110

ii01 1011 3 1101 0111

1110 1110 3 1110 11"10

1111 1111 3 1111 1111

- 10-

The i-cycles consist of parallel exchanges of packets with N/(2P) elements.

The i-cycle on the left side of Table IV consists of two exchanges. The last two

elements in processor 0 are exchanged with the fist two elements in processor 1

and the last two elements in processor 2 are exchanged with the first two ele-

ments in processor 3. The i-cycle on the right side of Table IV also consists of

two exchanges. The last two elements in processor 0 are exchanged with the fist

two elements in processor 2 and the last two elements in processor 1 are

exchanged with the fist two elements in processor 3.

The i-cycle has three properties that make it useful for the development of

parallel communication algorithms on the hypercube.

I-cttcle property A :

An i-cycle may or may not require interprocessor communication, depending

on whether or not the digit is in the processor number. For example, the first i-

cycle in Table HI does not require interprocessor communication because the pro-

cessor number is unchanged. However the second i-cycle does require interpro-

cessor communication because the processor number is changed. When interpro-

cessor communication is required it is between processors that are directly con-

nected because the processor numbers differ in only one bit. Through this discus-

sion we are assuming that the sequence to processor map is an index-digit per-

muted map. A direct connection would not be established if the underlying map

was (for example) a'binary Gray code.

I-c_tcle property B :

It can be shown that at each stage of the FFT the packets transmitted

between processors each contains 2 r-d-1 - N/(2P) elements and that P/2 pack-

ets are exchanged in parallel.

I-cycle property C :

- 11-

Any index-digit permutation can be implemented as a sequence of i-cycles.

To see this, First decompose the permutation into disjoint cycles. Next decom-

pose each cycle into i-cycles by interchanging the first position with the pivot

position and restore it following the completion of the cycle. For example, if the

cycle is (2,8,7,5) and the pivot is in position 3, then this cycle is equivalent to the

i-cycles (3,2)(3,8)(3,7)(3,5)(3,2) applied from left to right. Any index permutation

can be implemented in no more than 1.Sd i-cycles [7].

2.2 The Standard-order FFT

Consider now the implementation of a standard-order FFT. The i-cycles are

given in Table V below for the case r -- 8 and d - 5. The subscripts of the

digits are increasing for a transform in standard order llke the last entry in Table

II. The letter "a" in the superscript indicates an ordering rather than computa-

tional step and an "*" following an entry indicates that a parallel transmission

was necessary for that step. The sequence of i-cycles is selected based on the

theory presented in [7] where it is shown that for even r > d/2 a total of

r/2+ d+l = 10 parallel transmissions are required.

- 12 -

Table V : Intermediate Orderings for a standard order FFT

forN- 256 andP = 32

2.3 The A-order FFT

The mapping of a sequence onto the processors is known to significantly

influencethe time that is required for communication and hence mappings that

reduce communication are of considerableinterest.The di_culty with selectinga

map that minimizes communication for a particularalgorithm isthat itmay not

be optimum for a differentpart of the overall computation. However without

knowledge of the other algorithms,and theiroptimal maps, itis not unreason-

able to permit orderings other than the standard order. If order is Rot a con-

sideration then it is known that the FFT can be performed with d parallel

- 13 -

transmissions. However it is likely that the other parts of the overall computation

will expect the order of the transform and the input sequence to be the same,

particularly if utilities and subroutines are used. Therefore we define an

ordered transform as any transform in which the order of the sequence and its

transform are the same.

In this section we will consider a variant of the parallel FFT presented

above in which the input sequence and transform are A-ordered. Communication

is reduced and, as mentioned in the introduction, it is just as simple to select this

order as the standard order on the Connection Machine using geometry and

priorities.

Definition 4 : An A-order sequence to processor map

z(i__ 1 "" • iol i,_1"" • ia) is one in which the element z n with n = s"_is' _2--.i 0

(binary) has address tr_lsr_ z " id in processor number sd_ls 1 • i 0.

An A-order FFT is an ordered FFT according to the definition that was

given in section I and it requires fewer parallel transmissions than a standard-

order FFT. An example is given in Table VI below for the case N = 256 and

P = 32. As before, the locations that correspond to the digits on the right of the

partition '[' reside in the same physical processor• The digits on the left of the

partition correspond to the processor number. An entry that ends with a '*' indi-

cates a parallel transmission and the lines with superscripts that end with a 'a'

involve only communication.

- 14-

Table VI : Intermediate Orderings for an A-order FFT with

N ffi256 andP = 32

=(i4 is i z i I io I

X_1)(i4i 3i 2i li o i

X(_)(i,i 3i:i li o 1

X(s)(i 4i_i 2i Ii o I

X(4)(k 5i 3i si li 0 I

X_)Ck s k 4 i s i 1 io I

X(5_)(l% k4 is il io I

X(8)(/%/% k s i 1 io I

i7 i6 is)

k7 i6 i5)

k8 k7 i5)

k 5 k 7 ke)

/c4 k 7 k6)*

k 3 k7 k6)*

k5 k7 k5)*

k s k_ k_)*

X(o')(_:3 k4 ks ix io I k e k7 k 2)

X(7)(k ak 4k sk 6i o t k lk 7k 2)*

.XO")(k ak 4k sk_i o I k_k xk 2)

x(s)(k 3 k 4 k s k 6 k 7 I ko k x k s)*

The communication complexity for an A-order FFT on parallel hypercube is

given in the following lemma.

Lemma : An A-order FFT of length N = 2 r can be implemented on a hyper-

cube of dimension d (where d _ r/2) with 2d - r/2 parallel transmissions if r is

even and 2d - (r- 1)/2 parallel transmissions if r is odd.

Proof :

The normal i-cycles require d parallel transmissions since every physical pro-

cessor address digit has to be transferred into the pivot position. The extra

i-cycles are performed on the most significant r/2 digits, r/2-(r-d) of

which are located in the processor address. Thus, a total of

- 15-

d + r/2 - (r-d)) = 2d - r/2 parallel transmissions is needed. A similar

proof can be developed for odd r.

The A-order transform in Table VI requires six parallel transmissions com-

pared with ten for the standard-order FFT in Table V. In general the A-order

FFT requires anywhere from d to 1.5d parallel transmissions and the standard-

order FFT requires anywhere from 1.5d to 2d parallel transmissions. More

specifically, for d > r/2, the A-order FFT requires 2d-r/2 transmissions com-

pared to d+r/2+l for the standard-order FFT. Therefore the A-order FFT

requires r-d+ 1 fewer parallel transmissions than the standard-order FFT. For

the finest grain computations with d = r-1 they differ by only two parallel

transmissions. Nevertheless this difference will likely be noticeable because the

total communication time is proportional to O(logN) which is also a small

integer.

The FFT is often a part of a larger computation that isposed on a grid so it

is reasonable to ask about the compatibility of the Binary Reflected Gray code

ordering and A-ordering. In both the standard-order and the A-order transform

the processors can be mapped so that nearest neighbors are at a distance of one,

but at the expense of the i-cyclesbeing conducted at a distance of two.

2.4 The Algorithm

The parallel hypercube FFT algorithm, written in pseudocode (similar to

CM FORTRAN) is included in the following. The variable declaration and ini-

tializationhave not been included.

C Parallel Hypercube FFT using the A-orderTransform

C K:log2(N)-I

SUBROUTINE FFT

DOI= K,O,-I

IF (I_ K) CALL ICYCLE (I) /* I-cycle */

- 16-

for */

CALL CALCULATE_TWIDDLE /* Calculate trigonometric fac-

TEMP = DATA1 + DATA2 /* Compute new data points */

DATA2 = (DATA1 -DATA2) * TWIDDLE

DATA1 = TEMP

w (I <= n/2 AND I_0) THEN

CALL IOYCLE (n-I-i)

END IF

END DO

END

/* Extra I-cycles */

3. Computing the Trigonometric Coefficients

There are a few alternative methods for computing the trigonometric

coeffcienta depending on the available memory, I/O bandwidth, and processing

capabilities [3].

a. Recursion All of the trigonometric coeffcients at each stage are generated

by recursion. This scheme requires only 0(1) storage and is popular on a

uniprocessor or vector processors. However, the computation is highly

sequential and not suitable for multiprocessors.

b. Table look-up The trigonometric coeffcients are precomputed and stored

in each processor. This scheme has an advantage for many FFTs since the

trigonometric coefficients would be available for use without recalculation.

However, this scheme also requires a" large amount of memory proportional

to log N in each of the N processors. This may not be desirable for massive

parallel computers where memory is limited.

c. Direct calculation The trigonometric coefficients can be computed directly

from the equation W -k = ,os(2ka-r/N)- i sin(2k_rk/N). However, the

calculation of the trigonometric functions on each stage is very time consum-

ing. Particularly since the F_ itself requires only a few 0peratious.

- 17-

d. Permutation Initially,the trigonometric coef_cients are distributed among

the processors according to the calculations required in the firststage. In the

subsequent stages, half of the trigonometric coefficientsare permuted each to

two other processors'. This scheme may be inei_cient on parallel machine

such as the Connection Machine where communication isexpensive.

None of these methods are completely satisfactory on massively parallel

computers if memory is limited and communication is expensive. However, by

performing a few additional operations at each stage, the trigonometric

coefficientscan be computed in parallel without any communication.

Consider the following example of a 1G-point FFT (unordered transform)

and suppose that element i is mapped to processor i,then the trigonometric fac-

tors needed at each stage are as in Table VII below. The entries in each column

correspond to k in the trigonometric factor]¥-k. Entries with the form (k) refer

to the exponent of a coefficientthat isnot used at the current stage but is needed

to compute the coefficientsat a subsequent stage of the FFT.

- 18 -

Table VII : Trigonometric Coefficients for a 16-point unordered FFT -

Processor

Processor Number (binary)

0000

0001

0010

0011

0100

0101

0110

0111

1000

I001

1010

1011

1100

1101

1110

1111

Stage 1

(o)

{I)

C_)

(3)

(4)

(5)

(6)

(7)

0

1

2

3

4

5

6

7

Value of k in W -k

Stage 2

0

2

4

6

(o)

(2)

(4)

(6)

0

2

4

6

Stage 3

(0) (0)

(2) (4)

(4) 0

(6) 4

(o)

(4)

0

4

(o)

(4)

0

4

(o)

(4)

0

4

Stage 4

(o)

0

(o)

0

(o)

0

(o)

0

(o)

0

(o)

0

(o)

0

(o)

0

It can be seen that the integers in each coi_ are twice (rood N/2) the

integers in the previous column and hence the trigonometric coefficients can be

computed from the identities.

cos 20 -- cos20 - sin_0 , and (3)

° 19 -

sin 20 = 2 cos O sin O . (4)

Thus, we can calculatethe trigonometric coeflicientsfor the current stage from

the previous stage by four multiplicationsand one addition (or three multiplica-

tions and two additions).This method can alsobe used to generate the table for

the table look-up scheme. It can also be used to compute the coef_cientsfor the

ordered (both A-order and standard-order) parallelhypercube FFT presented in

section 2 with a slightmodification for the initialtrigonometric factor calcula-

tions.Table VIII below contains the exponents for the A-order transform with

N= 16.An initialstandard sequence to processormap isassumed.

- 20 -

Table VIII : Trigonometric Coefficients for a 16-point

parallel hypercube FFT using A-order and i-cycles

Processor

Processor Number (binary)

0000

0001

0010

0011

0100

0101

0110

0111

I000

1001

1010

1011

1100

1101

1110

1111

Value of k in W -k

Stage 1

0

1

2

3

4

5

6

7

Stage 2

w

0

2

4

6

0

2

4

6

Stage 3

0

4

0

4

0

4

0

4

Stage 4

m

0

0

0

0

0

0

0

0

Fewer computations are required because every trigonometric coefficient is

used and therefore a factor of two is saved compared to the unordered FFT. In

general, this method of computing trigonometric coefficients can be used if the

order of the npt-yet-transformed bits (_.) is preserved. The characteristics of the

- 21 -

methods for computing the trigonometric coefficientsare summarized in Table IX

below.

Table IX :Characteristics of Different Methods for Computing

Trigonometric Coefficients

Method

recursion

table look up

permutation

direct calculation

new method

storage

0(I)

0 (N log N)

O(N)

O(N)

O(N)

computation

0 (N log N)

0 (log N)

O(iogN)

O(IogN)

communication

0

0

0 (log N)

0

0

comment

highly sequential

reuseability

use sin 2z cos

no sin & cos

4. Performance of the Parallel Hypercube FFTs on the CM-2

4.1 Performance results for the TMC FFT

Consider firstthe performance of the TMC FFT that is currently available

on the Connection Machine. The execution times of both the ordered and unor-

dered FFT is presented in table X. FFT (A) and FFT (B) correspond to the

unordered and ordered FFTs respectively and the results were obtained on a 32k

processor CM-2. The entry '-' means that the result could not be computed

because it required more memory than what was available. The M:FLOPS are

computed from the formula MFLOPS -- 5Mog N/time which does not include

the precomputed trigonometric coefficients.

- 22 -

Table X : Execution times for TMC FFT (32k)

size FFT

65536

131072

262144

524288

1048576

2097152

4194304

8388608

FFT CA)(sec)

0.02

0.04

MFLOPS(32k) FFT (B)(sec)

0.09

0.17

0.35

0.69

1.40

2.81

262

279

0.03

0.08

262

293

300

319

330

343

0.22

0.56

1.79

6.21

MFLOPS(32k)

175

139

107

89

59

35

FFT (A) is the TMC FFT without bit-reversal

FFT (B) is the TMC FFT with bit-reversal

- memory was exceeded

The difference between the time for FFT (A) and FFT (B) is due to the

additional communication that is required to bit-reverse the results of FFT(A).

From the table it is clear that performing bit-reversal is expensive and that per-

formance deteriorates for larger problems.

4.2 Performance of a CM FORTRAN version of the standard-order

FFT

In this subsection we will examine the performance of the standard-order

FFT using i-cycles in the intermediate phases of the algorithm. The program

was written in the beta release version of the CM FORTRAN with partial optim-

ization using compiler options. At present, the system software will use a binary

- 23 -

reflected Gray code mapping of the logical processors onto the physical proces-

sors. Therefore most i-cycles will communicate over a physical distance (Ham-

ming distance) of two which requires twice the communication of a map in which

the logical and physical processors have the same number. The latter case will

be discussed in the next subsection.

The execution times and MFLOPS for the FORTRAN version are listed in

Table XI.

Table XI : Execution times for the CM FORTRAN standard-order FFT (32k)

size FFT

65536

131072

262144

524288

1048576

2097152

4194304

8388608

Execution time (sec)

0.08

0.16

0.32

0.66

1.34

2.81

5.67

11.68

MFLOPS(32k)

98

104

111

113

117

118

122

124

The MFLOPS in Table XI above are calculated from MFLOPS --

7.51Vlog N/time (which includes 2.5 N log N operations for computing the tri-

gonometric coefficients). Comparing Table X and XI it can be observed that for

small N, the ordered TMC FFT is about twice as fast as the standard-order

FFT, (e.g. 0.08 sec versus 0.16 sec for 131072-point FFT). However for large N,

the standard-order FFT using i-cycles outperforms the ordered TMC FFT (e.g.

- 24 -

2.81 sec versus 6.21 sec for 2M-point FFT). Also, from Table X, the execution

times for FFT (B) triples when the size of the input doubles. On the other hand,

from Table XI, the execution times for standard-order FFT using i-cycles approx-

imately doubles when the size of the input doubles.

From these comparisons we conclude that the standard-order FFT using i-

cycles provides enhanced performance compared to an FFT with separate bit,-

reversal and butterfly phases. It should be mentioned that the TMC FFT was

written in lower level languages while the results in Table XI were obtained with

a high level language (CM FORTR.kN) which is also in its beta release. Thus,

further improvement is expected for an implementation in a optimized low level

languages or with a mature FORTRAN compiler.

Even though the FFT has been implemented with an efficient communica-

tion algorithm using i-cycles, over 80 percent of the execution time is still spent

in communication. In the next section, communication will be further reduced

by avoiding the binary reflected Gray code mapping of the logical to physical

processors.

4.3 A Comparison of three FFTs on the Connection Machine.

In the previous subsection we examined the performance of a CM FOR-

TRAN version of the FFT in which the binary reflected Gray code was used to

map logical processors to physical processors. Although this map is ideal for

nearest neighbor communication, it slows the i-cycle communication for the FFT

by a factor of two. In this section we will consider the performance of three

ordered FFTs on a hypercube whose logical and physical processor numbers are

the same. _ :....

1. The standard-order FFT which combines the bit-reversal and the butterfly

- 25 -

2. The A-order FFT which also combines the bit-reversaland the butterfly

phases.

3. An FFT written by Hertz [2] which separates the bit-reversaland the

butterflyphases.

Using CM FORTRAN/PARIS it is possibleto equate logicaland physical

processor numbers. That is,any referenceto processor i__I • • • i0 is a reference

to a processorwith the same binary representationin the hypercube and not to a

processorwhose number isthe binary reflectedGrey code map of f_-1 " " " f0" A

signi_cantimprovement isobtained because the key communication task (i-cycle)

isconducted at a physicaldistanceof at most oneusing news communication for

alli-cycles.The programs were written in CM FORTRAN/PARIS and run on a

32k CM-2. The times for differentsize FFT are listedin Table XII and the

corresponding MFLOPS counts are listedin Table XIII.

- 26 -

Table XII : Computing time in seconds for three ordered FFTs

size FFT

131072

262144

524288

1048576

2097152

262144

524288

1048576

2097152

4194304

524288

1048576

2097152

4194304

8388608

machine size

8k

8k

8k

8k

8k

16k

16k

16k

16k

16k

32k

32k

32k

32k

32k

FFT (I)

0.22

0.45

0.94

1.92

3.95

0.23

0.49

1.01

2.07

4.23

0.25

0.52

1.09

2.22

4.55

FFT (2)

0.16

0.32

0.67

1.39

2.89

0.17

0.36

0.72

1.50

3.07

0.19

0.39

0.80

1.59

3.29

FFT (1) standard order FFT.

FFT (2) A-order FFT.

FFT (3) P. Hertz FFT [2].

FFT (3)

i

0.688

1.40

2.95

6.10

12.68

- 27 -

Table XIH : MFLOPS for three ordered FFTs

size FFT

131072

262144

524288

1048576

2097152

262144

524288

1048576

2097152

4194304

524288

1048576

2097152

4194304

8388608

machine size

8k

8k

8k

8k

FFT (1)

76

79

79

82

FFT (2)

104

111

112

113

8k

16k

16k

16k

16k

16k

32k

32k

32k

32k

32k

84 114

154 208

152 208

156 218

160 220

164 225

299 393

302 403

303 413

318 435

318 44O

'7

FFT (1) standard order FFT.

FFT (2) A-order FFT.

FFT (3) P. Hertz FFT [2].

- data not available

FFT (3)

51

53

53

54

55

Note : The MFLOPS for (3) is calculated using the same formula as (1) and

(2). In reality, method (3) requires more than 7.5 operation per point

and thus the MFLOPS count should be higher.

- 28 -

These results demonstrate the attributes of A-ordering, i-cycles, and the new

parallel method of computing the trigonometric coeffcients. From Table XIII,

we estimate a performance of about .9 GFLOPS for a 16M-point FFT on a full

64k CM-2.

5. Summary and Conclusion

First, the experimental results in section 4 demonstrate that performance

can be improved by using the ordered parallel FFTs that reduce communication

by combining the communication and computational phases [7]. Although this

result has been demonstrated on the Connection Machine it would also be true

for any hypercube because communication time is a significant part of the overall

computing time. Second, the A-order FFT has performance that is superior to

the standard-order FFT and is therefore recommended where applicable. In addi-

tion, a parallel algorithm for computing the trigonometric coeffcients was

presented that represents an attractive compromise between the communication,

computation, mad memory constraints that exist on the Connection Machine. The

use of the i-cycle, A-ordering, and the new parallel algorithm for computing the

trigonometric coefficients have resulted in the development of a high performance

ordered FFT for the Connection Machine.

References :

1. D. Fraser, WArray permutation by index-digit permutation w, d. ACM,

22(1976), pp. 298-306.

2. P. Hertz, WAtt Algorithm for the Fast Fourier Transform On the Connection

Machine w, accepted by Computers in Physics, June 1989.

3. R.A.. Kamin Ill, and G.B. Adams HI, WFast Fourier Transform Algorithm

Design and Tradeoffs on the CM n, Proceedings of the Confer,nee on

