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Cost-Optimal Parallel Algorithms for Constructing 2-3 Trees * 

BIING-FENG WANG AND GEN-HUEY CHEN 
Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan, Republic of China 

In this paper, two cost-optimal parallel algorithms are 
presented for constructing 2-3 trees from sorted lists of data 
items. The two parallel algorithms are designed on a shared- 
memory SIMD computer; one, based on the EREW model, uses 
N/log log N processors and requires U( log log N) time and the 
other, based on the CREW model, uses Nprocessors and requires 
O( 1) time, where N is the number of data items in the input 
sorted list. o 1991 Academic press, hc. 

1. INTRODUCTION 

Search trees [ 61 such as binary search trees, m-way search 
trees, and 2-3 trees are efficient data structures for repre- 
senting sorted lists. Search, insertion, and deletion with re- 
spect to a balanced search tree of N data items can be done 
in expected time 0( log N). The problem of constructing a 
balanced search tree from a sorted list of N data items is to 
create a corresponding search tree with minimal height to 
represent the sorted list. To create such a tree, the data items 
kept in each node must be determined and the links between 
nodes must be set up properly. 

Optimal sequential algorithms for constructing balanced 
binary search trees in O(N) time can be found in [ 3, 4 1. 
Recently, based on the EREW shared-memory model, Moi- 
tra and Iyengar [ 7,8 ] have proposed parallel algorithms that 
use N processors to construct balanced binary search trees 
in 0( 1) time. Further, based on the same model, Dekel et 
al. [ 5 ] have designed parallel algorithms that use N processors 
to construct balanced m-way search trees. The time com- 
plexities of Dekel et af.‘s algorithms are 0( 1) under an as- 
sumption that computing the kth, 0 < k < log N, power of 
m takes 0( 1) time. 

The main disadvantage of the m-way search tree is that it 
may become unbalanced when it is not static [ 1, 61, and 
thus logarithmic accessing time can not be guaranteed. For 
example, let us consider a sequence of updating operations, 
such as insertion and deletion, on a balanced m-way search 
tree. The tree may become unbalanced after these operations 
have been completed and then the accessing time of the tree 
may become proportional to the tree size in the worst case. 

* This research is supported by the National Science Council of the Re- 
public of China under Grant NSC-78-0408-E-002-02. 

Therefore, rebalancing is indispensable to an m-way search 
tree after some updating operations are performed on it. This 
leads to the unsuitability of on-line processing of the m-way 
search tree. As an alternative to the m-way search tree, some 
other trees have been proposed, for example, AVL tree [ 61, 
weight-balanced tree [ 61, and 2-3 tree [ 11. Among them, the 
2-3 tree is the most attractive one for the following reasons. 
First, rebalancing is unnecessary. Second, logarithmic ac- 
cessing time is guaranteed for on-line processing. Third, ac- 
cessing the 2-3 tree is easy to do. Fourth, as compared with 
the AVL tree and the weight-balanced tree, the 2-3 tree is 
free of additional information for keeping itself balanced. 
Finally, in addition to being an alternative representation of 
a sorted list, the 2-3 tree has the capabilities of concatenating 
and splitting lists. More description about the 2-3 tree can 
be found in [l, 21. 

In this paper, we present two parallel algorithms for con- 
structing 2-3 trees to represent sorted lists of data items. The 
two parallel algorithms are designed on the shared-memory 
SIMD (single instruction, multiple data) computer; one, 
based on the EREW (exclusive read, exclusive write) model, 
uses N/log log N processors and requires 0( log log N) time, 
and the other, based on the CREW (concurrent read, exclu- 
sive write) model, uses N processors and requires 0( 1) time, 
where N is the number of data items in the input sorted list. 
Both parallel algorithms are cost-optimal. 

The rest of this paper is organized as follows. In the next 
section, the shapes of the constructed 2-3 trees are uniquely 
specified. Furthermore, some notations and definitions that 
are used throughout this paper are introduced. In Section 3, 
some properties of the constructed 2-3 trees are described. 
In Section 4, two cost-optimal parallel algorithms for con- 
structing 2-3 trees are presented. Finally, concluding remarks 
are given in Section 5. 

2. NOTATION AND DEFINITIONS 

A 2-3 tree is a tree in which every nonleaf node has two 
or three children and every path from the root to a leaf node 
is of the same length. A nonleaf node of the 2-3 tree owns 
one data item if it has two children and owns two data items 
if it has three children. A leaf node of the 2-3 tree owns one 
or two data items. Therefore, the number of data items that 
is contained in a 2-3 tree of height n ranges from 2” - 1 to 
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3 * - 1 (we define the height of a tree as the number of its 
levels). The 2-3 tree can be used as a heap or as a search 
tree [l]. As a search tree, the data items contained in the 
2-3 tree are arranged in such a way that if we traverse the 
2-3 tree in in order traversal, we can get their sorted sequence. 
In this paper, we consider the 2-3 tree to be a search tree. 

For the convenience of description, we use notation ( i, 
j) to denote the jth node from the left at the ith level (see 
Fig. 1). A node (i, j) is said to be the lowest common ancestor 
ofnode(i,,j,)andnode(iz,j*)if(i,,j,)and(i;!,j2)are 
in different subtrees of ( i, j) . Moreover, if node ( i, j) con- 
tains one data item k,, then k, is said to be the split data 
item of node (i, , jr) and node ( i2, j2). On the other hand, 
if node ( i, j) contains two data items k, and k2 (assume k, 
< k2) and node (i,, j,) and node ( iz, j2) are contained 
respectively in the left subtree and the middle subtree of (i, 
j), then kl is the split data item of (i, , jr) and ( iz, j2). 
Likewise, kz is the split data item of (i, , j, ) and ( iz, jz) if 
they are contained in the middle subtree and the right subtree 
of ( i, j) , respectively. 

Note that more than one 2-3 tree can represent the same 
sorted list. For example, Fig. 1 shows two 2-3 trees that rep- 
resent the sorted list ( 1,2,3, . . . ,26,27). Thus, it is necessary 
to specify the exact one that the proposed algorithms will 
construct. For a given sorted list of Ndata items, the uniquely 
constructed 2-3 tree has a minimal height n = flogj(N + 1 )l . 
And there exists a unique pair of intergers c and 1, where 1 
G c G n and 1> 1, such that all the nodes above the cth level 
own two data items, all the nonleaf nodes at and below the 
cth level own one data item, the leftmost 1 leaf nodes own 
two data items, and the other leaf nodes own one data item. 
For example, the 2-3 tree that the proposed algorithms will 

~4, I> <4,2> <4,3><4,4>~4,5><4,6><44.7><4,8~4,9><4, 10><4, 11><4. 12> 

(a) 

<4. I> <4,2> <4,3> ~4.4, <4.5> <4,6> ~4.7, ~4.8, <4,9><4, 10><4, 1 ,>c4, ,2,<4, 13, 

03 

FIG. 1. Two different 2-3 trees that represent the sorted list ( 1, 2, 
3 ,..-, 26, 27). 

construct for the sorted list ( 1, 2, 3, . . . , 26, 27) is shown 
in Fig. la, where c = 2 and 1 = 4. The existence and unique- 
ness of the constructed 2-3 trees are proved in the next sec- 
tion. 

In the following, we define notations that are used 
throughout this paper. 

N: The size of the input sorted list. We assume N > 3. 
TN: The 2-3 tree that is constructed by the proposed al- 

gorithms for an input sorted list of size N. 
n: The height of TN, which is defined as the number of 

levels of T,. Note that n = rlog3(N + 1 )l. 
c: The marked level of TN. That is, in Tn;, all the nodes 

above the cth level own two data items and all the nonleaf 
nodes at and below the cth level own one data item. 

1: The number of leaf nodes in Tn: that own two data 
items. Note that 1 > 1. 

VN: The number of nodes in TN. 
LCHILD,((i, j))(MCHILD,((i, j)), RCHILD,((i, 

j))): The left (middle, right) child of node (i, j) in TN. (If 
node (i, j) has only two children, then MCHILDN( (i, ,j)) 
is undefined.) 

RANKI,(( i, j))(RANK2N(( i, j))): The rank of the 
smaller (greater) data item of node ( i, j) in the input sorted 
list. It equals the number of data items (inclusive of the 
smaller (greater) data item itself) that precede the smaller 
(greater) data item of node (i, j) in inorder traversal. (If 
node (i, j) owns only one data item, then RANK2,v( (i, j)) 
is undefined.) 

Ll,((i, j))(LZ,((i, j))): The number ofleaf nodes in 
TN that precede the smaller (greater) data item of node (i, 
j) in in-order traversal. (If node (i, j) owns only one data 
item, then L2N( (i, j)) is undefined.) 

For example, let us consider Fig. la again, where N = 27, 
n=4,c=2,1=4,V,,=22,LCHILD2,((2,2))=(3,3), 
RCHILD2,( (2, 2)) = (3, 4)) MCHILD2,( (2, 2)) is un- 
defined, RANKI,,(( 1, 1)) = 12, K4NK22,(( 1, 1)) = 20, 
L12,( ( 1, 1)) = 4, and L227( ( 1, 1)) = 8. The lowest common 
ancestor of node (4,4) and node (4,5 ) is node ( 1, 1) and 
their split data item is 12. 

3. SOME PROPERTIES OF THE CONSTRUCTED 
2-3 TREES 

In this section we first prove that TN uniquely exists and 
then introduce some properties of TN which constitute the 
kernel of the proposed algorithms. 

THEOREM 1. T, uniquely exists for N > 3. 

Proof: Note that according to the definition of TN, Tn: 
is uniquely specified by the pair c and I while the height of 
T, is n = flog,( N + 1)l. Therefore, to complete the proof, 
we show that for an arbitrary N, there exists a unique pair 
of c and I satisfying the following equation and constraints: 
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N= 2*(1 + 3 + - - 6 + 3c-2) 

+1*3c-‘*(1+2+ *** +2”-‘)+1 (1) 

1 s I < 3’-‘*2”-’ (2) 

l<CGtZ. (3) 

Equation ( 1) means that the total number of data items 
contained in TN equals N; constraint (2) means that I may 
not be greater than the number of leaf nodes. 

Combining ( 1) and (2)) we have 

3c-I *2n-c+1 - 1 < N < 3’*2”-‘- 1, (4) 

from which 

c - 1 < 1og3,z((N + 1)/2”) < c 

can be derived. 

(5) 

Clearly, rlog3,2((N + 1)/2”)1 is the unique solution of c 
that satisfies (5). To show that it also satisfies (3) is equivalent 
to showing the inequation 

0 < log3,2((N + 1)/2”) < n. 

Since n = llog,(N + l)l, we have 

(6) 

3”-’ < N < 3” - 1, 

which assures (6) for N > 3. 
On the other hand, 

1 = N - 3C-l*2”-C+I + 1 (7) 

can be derived from ( 1) . By combining (4) and ( 7 ) , ( 2 ) can 
be proved. n 

COROLLARY 1. For the uniquely constructed 2-3 tree 
TN, n = llog,(N + l)l, c = llog3,2((N + 1)/2”)1, 1 = N 
- 3C-‘*2n-C+1 + 1, and V, = (3C-1*(2npC+2 - 1) - 1)/2. 

According to the definition of TN, the following lemma 
can be derived. 

LEMMA 1. For each node ( i, j) in TN. 
(a) when 1 < i < c, LCHZLDN((i, j)) = (i + 1, 3*j 

- 2),MCHILD,((i,j))=(i+ 1,3*j- l),andRCHZLDN 
<(iJ)> = (i + 1, 3*j), 

(b) when c < i < n, LCHZLDN((i, j)) = (i + 1, 2*j 
- 1 ), MCHILDN( (i, j)) is undejned, and RCHILD,(( i, 
j)) = (i + 1, 2*j), and 

(c) when i = n, LCHILDN( (i, j)), MCHILDN( (i, j)), 
and RCHILD,( ( i, j)) are all undefined. 

Let us consider a node (i, j) in TN. If 1 G i < c, the leaf 
nodes that precede the smaller (greater) data item of node 

(i, j) in inorder traversal are those that are contained in the 
subtrees with roots at (i + 1, 1 ), (i + 1, 2), . . . , (i + 1, 
3*j-2)((i+ l,l),(i+ 1,2) ,..., (i+ 1,3*j- l)), 
respectively. If c =Z i < n, the leaf nodes that precede the 
data item(s) of node (i, j) in inorder traversal can be de- 
termined similarly. Therefore, we have the following lemma. 

LEMMA 2. Ll,((i, j)) = (3*j - 2)*3C-1-i*2n-c if1 
< i < c, (2*j - 1)*2”-‘-l ifc < i < n, andj - 1 ifi = n. 
And, L2,((i, j)) = (3*j - 1)*3C-1-‘*2n-C if1 < i < c, 
undejined ifc < i < n or (i = n and j > l), and j - 1 if i = n 
and j < 1. 

Note that the shape of a constructed 2-3 tree is uniquely 
determined by the values of n and c. Since the leaf nodes of 
a constructed 2-3 tree may contain one or two data items, 
T, may have the same shape for some different values of N. 
For example, let Nmin = N - I + 1 and N,,,, = N + 3 ‘- ’ * 2”-’ 
- 1. TNrmu ( TN,,,,) is the constructed 2-3 tree containing most 
(least) data items that has the same shape as TN (that is, 
each leaf node in TN,,“, except for ( n , 1)) contains one data 
item, and each leaf node in TN,, contains two data items). 
In the following, we introduce some properties of TN,, . 

LEMMA 3. In TN,-, the subtree with root at node (i, j) 
contains 3 c-r+’ * 2”-c - ldataitemsifl <i<cand3*2”-’ 
- ldataitemsifc<i<n. 

Proofi When 1 =G i < c, the number of data items that 
are contained in the subtree with root at node (i, j) is com- 
putedasthesumof2*(l+3+32+~~~+3C-’-’)+3”-i*(l 
+2+22+ -* . + 2”-‘-‘) + 2*(3C-i*2n-c), which can be 
simplified to 3 ‘-‘+I * 2”-” - 1. When c G i < n, the com- 
putation is similar. n 

Since the data items that precede the smaller data item of 
node (i, 1) are those contained in the subtree with root at 
node (i + 1, 1)) the following lemma can be derived from 
Lemma 3. 

LEMMAS. RANKZ N,,((i. 1))=3’-‘*2”-“if1 <i<c, 
3*2”-i-’ ifc -S i < n, and 1 ifi = n. 

LEMMA 5. RANK1 Nmyx((ij j + 1)) = RANK~N,,,u((i 
j)) + 3’-‘+I*2 “-‘ifl<i<c,RANKl,~~((i,j))+3*2”-’ 
ifc ,i i < n, and RANKINmu(( i, j)) + 3 ifi = n. 

Proof: The data items that are between the smaller data 
item of node (i, j) and the smaller data item of node (i, j 
+ 1 ), while traversing TN,, in inorder traversal, include 
five parts: (i) the data items in the subtree with root at the 
middle child of (i, j), (ii) the greater data item of (i, j), 
(iii) the data items in the subtree with root at the right child 
of(i,j), (iv) the split data item of (i, j) and (i,j + l), 
and (v) the data items in the subtree with root at the left 
child of (i, j + 1). Part (i) and part (ii) are empty if i = n 
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or ( i, j) contains one data item. Part (iii) and part (v) are 
empty if i = IZ. By counting the above data items with the 
aid of Lemma 1 and Lemma 3, the lemma follows. n 

Similarly, we have the following lemma. 

LEMMA 6. RANK2Nm,<(i, j)) = MNKINma((i, j)) 
+ 3’-‘* 2”-’ if 1 =S i < c, undejned tf c < i < n, and 
RANKI,ti( (i, j)) + 1 ifi = n. 

LEMMA 8. For 1 < k G V,, NODE,(k) = (&. jk), where 
(ik,jk)=(rlog,(2*k+ l)l, k- (3ik-’ - 1)/2)ifl <k<(3’ 
- 1)/2, and (f(log*((k - 3”-‘)/(2*3’-‘) + 1)) + cl, k 
_ (3c-le(2ik-c+l _ 1) - 1)/2) if(3’- 1)/2 + 1 < k< V,. 

Since each node of TN is uniquely represented by an ele- 

By Lemma 4, Lemma 5, and Lemma 6, RANKZNmU( (i, 
j)) and RANK2NmU( (i, j)) can be computed as follows. 

THEOREM 2. RANK1 N,,((i,j))=(3*j-2)*3c-i*2”-c 
if 1 i i < c, (2*j - 1)*3*2”-‘-’ ifc < i < n, and 3*j - 2 
tfi = n. And, RANK2Nmm((i, j)) = (3*j- 1)*3’-‘*2”-‘if 
l<i<c,unde$nedifc&i<n,and3*j-lifi=n. 

Note that T,and TN,, are of the same shape, but different 
in the number of data items that are kept in the leaf nodes. 
Only the leftmost 1 leaf nodes of TN own two data items, 
while every leaf node of TN,, owns two data items. There- 
fore, we have the following theorem. 

ment of a linear array of length V,, we have to determine 
for each element of the linear array which node of TN it 
represents, which data items in the input sorted list it 
will keep, and which elements of the linear array are its 
children, in order to construct TN. Clearly, these can be 
done independently for all the elements of the linear array. 
Thus, TN can be constructed in parallel as follows: first, n, 
c, 1, and I’, are computed according to Corollary 1; 
then, RANKIN( NODE,( k)), RANKZ,( NODE,( k)), OR- 
DERN( LCHILDN( NODE,( k))), ORDERN( MCHILDN- 
(NODE,(k))), and ORDER,( RCHILD,( NODE,( k))) are 
computed for all k = 1,2, . . . , V, simultaneously according 
to Lemma 1, Lemma 7, Lemma 8, and Theorem 3. 

THEOREM 3. RANKId(i, j)> = RANKl~mm((i7 j)) 
- max(0, Ll,((i, j)) - 1). And, RANKZ,((i, j)) 
= RANK2~myx<(i, j)> - max{O, L2,((i, j)) - l} if1 C i 
< c, undefined if c < i < n or (i = n and j > I), and 
RANKZN,-(( i, j)) ifi = n and j G 1. 

Suppose NODEN( k) = ( ik, jk), where 1 < k < V,, and 
let sk = (2n, 3c-1, 2npc+l 2n-c+2 3ik-1, 21k-c+l 

3c-I-&, 2n-c, 2n-‘k-1, 3c-ik } . Cl ly ;he time required:: ear , ’ 
process the kth element is dependent on how fast the set Sk 
can be computed. In the following, we propose the parallel 
construction algorithms on the shared-memory SIMD com- 
puter under both the EREW model and the CREW model. 

4. PARALLEL CONSTRUCTION ALGORITHMS 

4. I. Parallel Construction Algorithms Under the ERE W 
Model 
A simple parallel algorithm for constructing TN under the 

In this section, we assume that TN is to be stored in a 
linear array of length I’,. Before presenting the parallel con- 
struction algorithms, we need to specify a linear ordering for 
the nodes of T, such that the node with order k, 1 < k =S V., 
is represented by the kth element of the linear array. A simple 
approach to do so is to number the nodes according to their 
breadth-first search order. For example, Table I shows the 
specified linear ordering for the nodes of the 2-3 tree that 
was depicted in Fig. la. Let ORDERN( (i, j)) denote the 
order of node ( i, j) in T, and NODEN( k) denote the node 
with order k. According to the specification of the linear 
ordering, they can be determined as follows. 

EREW model is to let each processor Pk, 1 c k < V,, process 
the kth element simultaneously. The time complexity is 
0( log log N) ( =0( log n)), which is the time required for 
processor Pk to compute the set Sk. Since VN G N processors 
are needed, the parallel algorithm is not cost-optimal. 
However, a cost-optimal parallel algorithm that uses V,/ 
log log N processors and runs in 0( log log N) time can be 
derived according to the following fact. 

Fact 1. Let NODEN( k) = ( ik, jk) and NODE,( k + 1) 
= (ik+l,.ik+l ). Then, i,++, - ik = 0 or 1. That is, NODEN 
and NODE,( k + 1 )are two nodes at the same level or at the 
adjacent level. 

LEMMAS. ORDERN((i, j)) = (3’-’ - 1)/2 + jifl =G i As a result of Fact 1, set Sk+ I can be computed in additional 
< ~and(3’-‘*(2’-‘+’ - l)- 1)/2+jifc<i<n. constant time after set Sk has been computed. The cost-op- 

Node (i, j) 
Order k 

Node (i, j) 

Order k 

(‘3 ‘> 
I 

(432) 

12 

TABLE I 

The Specified Linear Ordering for the Nodes of the 2-3 Tree Depicted in Fig. la 

(23 '> (292) (233) (3% ‘> (3,2) (333) (3.4) (335) 

2 3 4 5 6 I 8 9 

(433) (494) (4,5> (426) (4.7) (4% 8) (499) (4, IO) 

13 14 15 16 17 18 19 20 

(336) (4, ‘> 

10 I1 

(4, 1 I) (4, 12) 

21 22 
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timal parallel algorithm is simply to let each processor process 
log log Nconsecutive elements. Each processor processes the 
assigned elements in increasing order of their indices and 
therefore it takes O(log log N) time for the first one and 
0( 1) time for each of the others. 

THEOREMS. TN can be constructed in 0( log log N) time 
on an EREW shared-memory SIMD computer with Vn/ 
log log N < N/log log Nprocessors, which is cost-optimal. 

4.2. Parallel Construction Algorithm Under the CREW 
Model 
Under the CREW model, TN can be constructed in 0( 1) 

time by the aid of two tables, POWERI[ l..n] and 
POWER-S[l..n],wherePOWER2[i]andPOWER_3[i], 
1 < i f n, store the values of 2 ’ and 3 ‘, respectively. The 
table POWER_3[l..n] can be filled in by N processors as 
follows. Each processor Pk, 1 & k < N, first computes uk 
=llog,(k + 1)l and lk = llog,(k + 1)~ and fills 
POWER-3[ Uk] with k + 1 if t.& = lk. Then (since 3”-r < N 
=s 3” - I), processor PN fills PO WER3 [ n ] with 
3*POWERS[n - I]. Table POWER-2[l..n] can be filled 
in similarly. After the two tables have been established, TN 
can be constructed in 0( 1) time by letting each processor 
Pk, 1 < k < V,, process the kth element simultaneously. 
Now each set Sk can be computed in 0( 1) time by looking 
up the tables. 

THEOREM 5. T, can be constructed in O( 1) time on a 
CREW shared-memory SIMD computer with N processors, 
which is cost-optimal. 

5. CONCLUDING REMARKS 

The advantages of the 2-3 tree over the binary and m-way 
search trees mainly come from the flexibility of its structure. 
But the flexibility also makes it difficult to design parallel 
algorithms for constructing it. In this paper, we have pro- 
posed two cost-optimal parallel algorithms for constructing 
2-3 trees on the shared-memory SIMD computer under both 
the EREW model and the CREW model. Furthermore, it is 
not difficult to see that the proposed parallel algorithms can 
be adapted to a fixed number, say p, of processors, in which 

Received May 9, 1990: accepted October 8, 1990 

case the proposed parallel algorithms run in 0( N/p) time. 
As an extension of this paper, the authors are now working 

on deriving parallel algorithms for constructing B-trees [ 91. 

REFERENCES 

1. 

2. 

Aho, A. V., Hopcroft, J. E., and Ullman, J. D. The Design and Analysis 
of Computer Algorithms. Addison-Wesley, Reading, MA, 1974. 
Brown, M. R., and Tarjan, R. E. Design and analysis of data structures 
for representing sorted lists. SIAM J. Comput. 9, 3 (Aug. 1980), 594- 
614. 

3. 

4. 

Chang, H., and Iyengar, S. S. Efficient algorithm to globally balanced 
binary search trees. Comm. ACM 27, 7 (July 1984), 695-702. 
Day A. C. Balancing a binary tree. Cornput. J. 19 (Nov. 1976), 360- 
361. 

5. 

6. 

I. 

Dekel, E., Peng, S., and lyengar, S. S. Optimal parallel algorithms for 
constructing and maintaining a balanced m-way search tree. Int. J. Pur- 
allel Programming 15, 6 ( 1986), 503-528. 
Knuth, D. E. The Art of Computer Programming. Vol. 3. Sorting and 
Searching. Addison-Wesley, Reading, MA, 1973. 
Moitra, A., and Iyengar, S. S. A maximally parallel balancing algorithm 
for obtaining complete balanced binary trees. IEEE Trans. Comput. C- 
34,6 (June 1985), 563-565. 

8. Moitra, A., and Iyengar, S. S. Derivation of a parallel algorithm for 
balanced binary trees. IEEE Trans. Software Eng. SE-12,3 (Mar. 1986), 
442-449. 

9. Wang, B. F., and Chen, G. H. Efficient parallel algorithms for con- 
structing B-trees, in preparation. 

BIING-FENG WANG was born in Taiwan, on January 15, 1965. He 
received the B.S. degree in computer science from National Chiao-Tung 
University, Taiwan, in June 1988. Since September 1989, he has been work- 
ing toward a Ph.D. degree in computer science at National Taiwan University, 
Taiwan. His current research interests include design and analysis of algo- 
rithms, parallel and distributed computation, and computer networks. 

GEN-HUEY CHEN was born in Taiwan, on October 10, 1959. He re- 
ceived the B.S. degree in computer science from National Taiwan University, 
Taiwan, in June 198 I and the M.S. and Ph.D. degrees in computer science 
from National Tsing Hua University in June 1983 and January 1987, re- 
spectively. In February 1987, he joined the faculty of National Taiwan Uni- 
versity and he is now an associate professor in the Department of Computer 
Science and Information Engineering. His current research interests include 
design and analysis of algorithms, distributed algorithms, parallel compu- 
tation, and parallel computer architectures. 


