
JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING l&257-261 (199 t)

Cost-Optimal Parallel Algorithms for Constructing 2-3 Trees *

BIING-FENG WANG AND GEN-HUEY CHEN
Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan, Republic of China

In this paper, two cost-optimal parallel algorithms are
presented for constructing 2-3 trees from sorted lists of data
items. The two parallel algorithms are designed on a shared-
memory SIMD computer; one, based on the EREW model, uses
N/log log N processors and requires U(log log N) time and the
other, based on the CREW model, uses Nprocessors and requires
O(1) time, where N is the number of data items in the input
sorted list. o 1991 Academic press, hc.

1. INTRODUCTION

Search trees [61 such as binary search trees, m-way search
trees, and 2-3 trees are efficient data structures for repre-
senting sorted lists. Search, insertion, and deletion with re-
spect to a balanced search tree of N data items can be done
in expected time 0(log N). The problem of constructing a
balanced search tree from a sorted list of N data items is to
create a corresponding search tree with minimal height to
represent the sorted list. To create such a tree, the data items
kept in each node must be determined and the links between
nodes must be set up properly.

Optimal sequential algorithms for constructing balanced
binary search trees in O(N) time can be found in [3, 4 1.
Recently, based on the EREW shared-memory model, Moi-
tra and Iyengar [7,8] have proposed parallel algorithms that
use N processors to construct balanced binary search trees
in 0(1) time. Further, based on the same model, Dekel et
al. [5] have designed parallel algorithms that use N processors
to construct balanced m-way search trees. The time com-
plexities of Dekel et af.‘s algorithms are 0(1) under an as-
sumption that computing the kth, 0 < k < log N, power of
m takes 0(1) time.

The main disadvantage of the m-way search tree is that it
may become unbalanced when it is not static [1, 61, and
thus logarithmic accessing time can not be guaranteed. For
example, let us consider a sequence of updating operations,
such as insertion and deletion, on a balanced m-way search
tree. The tree may become unbalanced after these operations
have been completed and then the accessing time of the tree
may become proportional to the tree size in the worst case.

* This research is supported by the National Science Council of the Re-
public of China under Grant NSC-78-0408-E-002-02.

Therefore, rebalancing is indispensable to an m-way search
tree after some updating operations are performed on it. This
leads to the unsuitability of on-line processing of the m-way
search tree. As an alternative to the m-way search tree, some
other trees have been proposed, for example, AVL tree [61,
weight-balanced tree [61, and 2-3 tree [11. Among them, the
2-3 tree is the most attractive one for the following reasons.
First, rebalancing is unnecessary. Second, logarithmic ac-
cessing time is guaranteed for on-line processing. Third, ac-
cessing the 2-3 tree is easy to do. Fourth, as compared with
the AVL tree and the weight-balanced tree, the 2-3 tree is
free of additional information for keeping itself balanced.
Finally, in addition to being an alternative representation of
a sorted list, the 2-3 tree has the capabilities of concatenating
and splitting lists. More description about the 2-3 tree can
be found in [l, 21.

In this paper, we present two parallel algorithms for con-
structing 2-3 trees to represent sorted lists of data items. The
two parallel algorithms are designed on the shared-memory
SIMD (single instruction, multiple data) computer; one,
based on the EREW (exclusive read, exclusive write) model,
uses N/log log N processors and requires 0(log log N) time,
and the other, based on the CREW (concurrent read, exclu-
sive write) model, uses N processors and requires 0(1) time,
where N is the number of data items in the input sorted list.
Both parallel algorithms are cost-optimal.

The rest of this paper is organized as follows. In the next
section, the shapes of the constructed 2-3 trees are uniquely
specified. Furthermore, some notations and definitions that
are used throughout this paper are introduced. In Section 3,
some properties of the constructed 2-3 trees are described.
In Section 4, two cost-optimal parallel algorithms for con-
structing 2-3 trees are presented. Finally, concluding remarks
are given in Section 5.

2. NOTATION AND DEFINITIONS

A 2-3 tree is a tree in which every nonleaf node has two
or three children and every path from the root to a leaf node
is of the same length. A nonleaf node of the 2-3 tree owns
one data item if it has two children and owns two data items
if it has three children. A leaf node of the 2-3 tree owns one
or two data items. Therefore, the number of data items that
is contained in a 2-3 tree of height n ranges from 2” - 1 to

257
0743-73 I s/9 1 $3.00

Copyright 0 199 I by Academic Press, Inc.
All rights of reproduction in any form reserved.

258 WANG AND CHEN

3 * - 1 (we define the height of a tree as the number of its
levels). The 2-3 tree can be used as a heap or as a search
tree [l]. As a search tree, the data items contained in the
2-3 tree are arranged in such a way that if we traverse the
2-3 tree in in order traversal, we can get their sorted sequence.
In this paper, we consider the 2-3 tree to be a search tree.

For the convenience of description, we use notation (i,
j) to denote the jth node from the left at the ith level (see
Fig. 1). A node (i, j) is said to be the lowest common ancestor
ofnode(i,,j,)andnode(iz,j*)if(i,,j,)and(i;!,j2)are
in different subtrees of (i, j) . Moreover, if node (i, j) con-
tains one data item k,, then k, is said to be the split data
item of node (i, , jr) and node (i2, j2). On the other hand,
if node (i, j) contains two data items k, and k2 (assume k,
< k2) and node (i,, j,) and node (iz, j2) are contained
respectively in the left subtree and the middle subtree of (i,
j), then kl is the split data item of (i, , jr) and (iz, j2).
Likewise, kz is the split data item of (i, , j,) and (iz, jz) if
they are contained in the middle subtree and the right subtree
of (i, j) , respectively.

Note that more than one 2-3 tree can represent the same
sorted list. For example, Fig. 1 shows two 2-3 trees that rep-
resent the sorted list (1,2,3, . . . ,26,27). Thus, it is necessary
to specify the exact one that the proposed algorithms will
construct. For a given sorted list of Ndata items, the uniquely
constructed 2-3 tree has a minimal height n = flogj(N + 1)l .
And there exists a unique pair of intergers c and 1, where 1
G c G n and 1> 1, such that all the nodes above the cth level
own two data items, all the nonleaf nodes at and below the
cth level own one data item, the leftmost 1 leaf nodes own
two data items, and the other leaf nodes own one data item.
For example, the 2-3 tree that the proposed algorithms will

~4, I> <4,2> <4,3><4,4>~4,5><4,6><44.7><4,8~4,9><4, 10><4, 11><4. 12>

(a)

<4. I> <4,2> <4,3> ~4.4, <4.5> <4,6> ~4.7, ~4.8, <4,9><4, 10><4, 1 ,>c4, ,2,<4, 13,

03

FIG. 1. Two different 2-3 trees that represent the sorted list (1, 2,
3 ,..-, 26, 27).

construct for the sorted list (1, 2, 3, . . . , 26, 27) is shown
in Fig. la, where c = 2 and 1 = 4. The existence and unique-
ness of the constructed 2-3 trees are proved in the next sec-
tion.

In the following, we define notations that are used
throughout this paper.

N: The size of the input sorted list. We assume N > 3.
TN: The 2-3 tree that is constructed by the proposed al-

gorithms for an input sorted list of size N.
n: The height of TN, which is defined as the number of

levels of T,. Note that n = rlog3(N + 1)l.
c: The marked level of TN. That is, in Tn;, all the nodes

above the cth level own two data items and all the nonleaf
nodes at and below the cth level own one data item.

1: The number of leaf nodes in Tn: that own two data
items. Note that 1 > 1.

VN: The number of nodes in TN.
LCHILD,((i, j))(MCHILD,((i, j)), RCHILD,((i,

j))): The left (middle, right) child of node (i, j) in TN. (If
node (i, j) has only two children, then MCHILDN((i, ,j))
is undefined.)

RANKI,((i, j))(RANK2N((i, j))): The rank of the
smaller (greater) data item of node (i, j) in the input sorted
list. It equals the number of data items (inclusive of the
smaller (greater) data item itself) that precede the smaller
(greater) data item of node (i, j) in inorder traversal. (If
node (i, j) owns only one data item, then RANK2,v((i, j))
is undefined.)

Ll,((i, j))(LZ,((i, j))): The number ofleaf nodes in
TN that precede the smaller (greater) data item of node (i,
j) in in-order traversal. (If node (i, j) owns only one data
item, then L2N((i, j)) is undefined.)

For example, let us consider Fig. la again, where N = 27,
n=4,c=2,1=4,V,,=22,LCHILD2,((2,2))=(3,3),
RCHILD2,((2, 2)) = (3, 4)) MCHILD2,((2, 2)) is un-
defined, RANKI,,((1, 1)) = 12, K4NK22,((1, 1)) = 20,
L12,((1, 1)) = 4, and L227((1, 1)) = 8. The lowest common
ancestor of node (4,4) and node (4,5) is node (1, 1) and
their split data item is 12.

3. SOME PROPERTIES OF THE CONSTRUCTED
2-3 TREES

In this section we first prove that TN uniquely exists and
then introduce some properties of TN which constitute the
kernel of the proposed algorithms.

THEOREM 1. T, uniquely exists for N > 3.

Proof: Note that according to the definition of TN, Tn:
is uniquely specified by the pair c and I while the height of
T, is n = flog,(N + 1)l. Therefore, to complete the proof,
we show that for an arbitrary N, there exists a unique pair
of c and I satisfying the following equation and constraints:

CONSTRUCTING 2-3 TREES 259

N= 2*(1 + 3 + - - 6 + 3c-2)

+1*3c-‘*(1+2+ *** +2”-‘)+1 (1)

1 s I < 3’-‘*2”-’ (2)

l<CGtZ. (3)

Equation (1) means that the total number of data items
contained in TN equals N; constraint (2) means that I may
not be greater than the number of leaf nodes.

Combining (1) and (2)) we have

3c-I *2n-c+1 - 1 < N < 3’*2”-‘- 1, (4)

from which

c - 1 < 1og3,z((N + 1)/2”) < c

can be derived.

(5)

Clearly, rlog3,2((N + 1)/2”)1 is the unique solution of c
that satisfies (5). To show that it also satisfies (3) is equivalent
to showing the inequation

0 < log3,2((N + 1)/2”) < n.

Since n = llog,(N + l)l, we have

(6)

3”-’ < N < 3” - 1,

which assures (6) for N > 3.
On the other hand,

1 = N - 3C-l*2”-C+I + 1 (7)

can be derived from (1) . By combining (4) and (7) , (2) can
be proved. n

COROLLARY 1. For the uniquely constructed 2-3 tree
TN, n = llog,(N + l)l, c = llog3,2((N + 1)/2”)1, 1 = N
- 3C-‘*2n-C+1 + 1, and V, = (3C-1*(2npC+2 - 1) - 1)/2.

According to the definition of TN, the following lemma
can be derived.

LEMMA 1. For each node (i, j) in TN.
(a) when 1 < i < c, LCHZLDN((i, j)) = (i + 1, 3*j

- 2),MCHILD,((i,j))=(i+ 1,3*j- l),andRCHZLDN
<(iJ)> = (i + 1, 3*j),

(b) when c < i < n, LCHZLDN((i, j)) = (i + 1, 2*j
- 1), MCHILDN((i, j)) is undejned, and RCHILD,((i,
j)) = (i + 1, 2*j), and

(c) when i = n, LCHILDN((i, j)), MCHILDN((i, j)),
and RCHILD,((i, j)) are all undefined.

Let us consider a node (i, j) in TN. If 1 G i < c, the leaf
nodes that precede the smaller (greater) data item of node

(i, j) in inorder traversal are those that are contained in the
subtrees with roots at (i + 1, 1), (i + 1, 2), . . . , (i + 1,
3*j-2)((i+ l,l),(i+ 1,2) ,..., (i+ 1,3*j- l)),
respectively. If c =Z i < n, the leaf nodes that precede the
data item(s) of node (i, j) in inorder traversal can be de-
termined similarly. Therefore, we have the following lemma.

LEMMA 2. Ll,((i, j)) = (3*j - 2)*3C-1-i*2n-c if1
< i < c, (2*j - 1)*2”-‘-l ifc < i < n, andj - 1 ifi = n.
And, L2,((i, j)) = (3*j - 1)*3C-1-‘*2n-C if1 < i < c,
undejined ifc < i < n or (i = n and j > l), and j - 1 if i = n
and j < 1.

Note that the shape of a constructed 2-3 tree is uniquely
determined by the values of n and c. Since the leaf nodes of
a constructed 2-3 tree may contain one or two data items,
T, may have the same shape for some different values of N.
For example, let Nmin = N - I + 1 and N,,,, = N + 3 ‘- ’ * 2”-’
- 1. TNrmu (TN,,,,) is the constructed 2-3 tree containing most
(least) data items that has the same shape as TN (that is,
each leaf node in TN,,“, except for (n , 1)) contains one data
item, and each leaf node in TN,, contains two data items).
In the following, we introduce some properties of TN,, .

LEMMA 3. In TN,-, the subtree with root at node (i, j)
contains 3 c-r+’ * 2”-c - ldataitemsifl <i<cand3*2”-’
- ldataitemsifc<i<n.

Proofi When 1 =G i < c, the number of data items that
are contained in the subtree with root at node (i, j) is com-
putedasthesumof2*(l+3+32+~~~+3C-’-’)+3”-i*(l
+2+22+ -* . + 2”-‘-‘) + 2*(3C-i*2n-c), which can be
simplified to 3 ‘-‘+I * 2”-” - 1. When c G i < n, the com-
putation is similar. n

Since the data items that precede the smaller data item of
node (i, 1) are those contained in the subtree with root at
node (i + 1, 1)) the following lemma can be derived from
Lemma 3.

LEMMAS. RANKZ N,,((i. 1))=3’-‘*2”-“if1 <i<c,
3*2”-i-’ ifc -S i < n, and 1 ifi = n.

LEMMA 5. RANK1 Nmyx((ij j + 1)) = RANK~N,,,u((i
j)) + 3’-‘+I*2 “-‘ifl<i<c,RANKl,~~((i,j))+3*2”-’
ifc ,i i < n, and RANKINmu((i, j)) + 3 ifi = n.

Proof: The data items that are between the smaller data
item of node (i, j) and the smaller data item of node (i, j
+ 1), while traversing TN,, in inorder traversal, include
five parts: (i) the data items in the subtree with root at the
middle child of (i, j), (ii) the greater data item of (i, j),
(iii) the data items in the subtree with root at the right child
of(i,j), (iv) the split data item of (i, j) and (i,j + l),
and (v) the data items in the subtree with root at the left
child of (i, j + 1). Part (i) and part (ii) are empty if i = n

260 WANG AND CHEN

or (i, j) contains one data item. Part (iii) and part (v) are
empty if i = IZ. By counting the above data items with the
aid of Lemma 1 and Lemma 3, the lemma follows. n

Similarly, we have the following lemma.

LEMMA 6. RANK2Nm,<(i, j)) = MNKINma((i, j))
+ 3’-‘* 2”-’ if 1 =S i < c, undejned tf c < i < n, and
RANKI,ti((i, j)) + 1 ifi = n.

LEMMA 8. For 1 < k G V,, NODE,(k) = (&. jk), where
(ik,jk)=(rlog,(2*k+ l)l, k- (3ik-’ - 1)/2)ifl <k<(3’
- 1)/2, and (f(log*((k - 3”-‘)/(2*3’-‘) + 1)) + cl, k
_ (3c-le(2ik-c+l _ 1) - 1)/2) if(3’- 1)/2 + 1 < k< V,.

Since each node of TN is uniquely represented by an ele-

By Lemma 4, Lemma 5, and Lemma 6, RANKZNmU((i,
j)) and RANK2NmU((i, j)) can be computed as follows.

THEOREM 2. RANK1 N,,((i,j))=(3*j-2)*3c-i*2”-c
if 1 i i < c, (2*j - 1)*3*2”-‘-’ ifc < i < n, and 3*j - 2
tfi = n. And, RANK2Nmm((i, j)) = (3*j- 1)*3’-‘*2”-‘if
l<i<c,unde$nedifc&i<n,and3*j-lifi=n.

Note that T,and TN,, are of the same shape, but different
in the number of data items that are kept in the leaf nodes.
Only the leftmost 1 leaf nodes of TN own two data items,
while every leaf node of TN,, owns two data items. There-
fore, we have the following theorem.

ment of a linear array of length V,, we have to determine
for each element of the linear array which node of TN it
represents, which data items in the input sorted list it
will keep, and which elements of the linear array are its
children, in order to construct TN. Clearly, these can be
done independently for all the elements of the linear array.
Thus, TN can be constructed in parallel as follows: first, n,
c, 1, and I’, are computed according to Corollary 1;
then, RANKIN(NODE,(k)), RANKZ,(NODE,(k)), OR-
DERN(LCHILDN(NODE,(k))), ORDERN(MCHILDN-
(NODE,(k))), and ORDER,(RCHILD,(NODE,(k))) are
computed for all k = 1,2, . . . , V, simultaneously according
to Lemma 1, Lemma 7, Lemma 8, and Theorem 3.

THEOREM 3. RANKId(i, j)> = RANKl~mm((i7 j))
- max(0, Ll,((i, j)) - 1). And, RANKZ,((i, j))
= RANK2~myx<(i, j)> - max{O, L2,((i, j)) - l} if1 C i
< c, undefined if c < i < n or (i = n and j > I), and
RANKZN,-((i, j)) ifi = n and j G 1.

Suppose NODEN(k) = (ik, jk), where 1 < k < V,, and
let sk = (2n, 3c-1, 2npc+l 2n-c+2 3ik-1, 21k-c+l

3c-I-&, 2n-c, 2n-‘k-1, 3c-ik } . Cl ly ;he time required:: ear , ’
process the kth element is dependent on how fast the set Sk
can be computed. In the following, we propose the parallel
construction algorithms on the shared-memory SIMD com-
puter under both the EREW model and the CREW model.

4. PARALLEL CONSTRUCTION ALGORITHMS

4. I. Parallel Construction Algorithms Under the ERE W
Model
A simple parallel algorithm for constructing TN under the

In this section, we assume that TN is to be stored in a
linear array of length I’,. Before presenting the parallel con-
struction algorithms, we need to specify a linear ordering for
the nodes of T, such that the node with order k, 1 < k =S V.,
is represented by the kth element of the linear array. A simple
approach to do so is to number the nodes according to their
breadth-first search order. For example, Table I shows the
specified linear ordering for the nodes of the 2-3 tree that
was depicted in Fig. la. Let ORDERN((i, j)) denote the
order of node (i, j) in T, and NODEN(k) denote the node
with order k. According to the specification of the linear
ordering, they can be determined as follows.

EREW model is to let each processor Pk, 1 c k < V,, process
the kth element simultaneously. The time complexity is
0(log log N) (=0(log n)), which is the time required for
processor Pk to compute the set Sk. Since VN G N processors
are needed, the parallel algorithm is not cost-optimal.
However, a cost-optimal parallel algorithm that uses V,/
log log N processors and runs in 0(log log N) time can be
derived according to the following fact.

Fact 1. Let NODEN(k) = (ik, jk) and NODE,(k + 1)
= (ik+l,.ik+l). Then, i,++, - ik = 0 or 1. That is, NODEN
and NODE,(k + 1)are two nodes at the same level or at the
adjacent level.

LEMMAS. ORDERN((i, j)) = (3’-’ - 1)/2 + jifl =G i As a result of Fact 1, set Sk+ I can be computed in additional
< ~and(3’-‘*(2’-‘+’ - l)- 1)/2+jifc<i<n. constant time after set Sk has been computed. The cost-op-

Node (i, j)
Order k

Node (i, j)

Order k

(‘3 ‘>
I

(432)

12

TABLE I

The Specified Linear Ordering for the Nodes of the 2-3 Tree Depicted in Fig. la

(23 '> (292) (233) (3% ‘> (3,2) (333) (3.4) (335)

2 3 4 5 6 I 8 9

(433) (494) (4,5> (426) (4.7) (4% 8) (499) (4, IO)

13 14 15 16 17 18 19 20

(336) (4, ‘>

10 I1

(4, 1 I) (4, 12)

21 22

CONSTRUCTING 2-3 TREES 261

timal parallel algorithm is simply to let each processor process
log log Nconsecutive elements. Each processor processes the
assigned elements in increasing order of their indices and
therefore it takes O(log log N) time for the first one and
0(1) time for each of the others.

THEOREMS. TN can be constructed in 0(log log N) time
on an EREW shared-memory SIMD computer with Vn/
log log N < N/log log Nprocessors, which is cost-optimal.

4.2. Parallel Construction Algorithm Under the CREW
Model
Under the CREW model, TN can be constructed in 0(1)

time by the aid of two tables, POWERI[l..n] and
POWER-S[l..n],wherePOWER2[i]andPOWER_3[i],
1 < i f n, store the values of 2 ’ and 3 ‘, respectively. The
table POWER_3[l..n] can be filled in by N processors as
follows. Each processor Pk, 1 & k < N, first computes uk
=llog,(k + 1)l and lk = llog,(k + 1)~ and fills
POWER-3[Uk] with k + 1 if t.& = lk. Then (since 3”-r < N
=s 3” - I), processor PN fills PO WER3 [n] with
3*POWERS[n - I]. Table POWER-2[l..n] can be filled
in similarly. After the two tables have been established, TN
can be constructed in 0(1) time by letting each processor
Pk, 1 < k < V,, process the kth element simultaneously.
Now each set Sk can be computed in 0(1) time by looking
up the tables.

THEOREM 5. T, can be constructed in O(1) time on a
CREW shared-memory SIMD computer with N processors,
which is cost-optimal.

5. CONCLUDING REMARKS

The advantages of the 2-3 tree over the binary and m-way
search trees mainly come from the flexibility of its structure.
But the flexibility also makes it difficult to design parallel
algorithms for constructing it. In this paper, we have pro-
posed two cost-optimal parallel algorithms for constructing
2-3 trees on the shared-memory SIMD computer under both
the EREW model and the CREW model. Furthermore, it is
not difficult to see that the proposed parallel algorithms can
be adapted to a fixed number, say p, of processors, in which

Received May 9, 1990: accepted October 8, 1990

case the proposed parallel algorithms run in 0(N/p) time.
As an extension of this paper, the authors are now working

on deriving parallel algorithms for constructing B-trees [91.

REFERENCES

1.

2.

Aho, A. V., Hopcroft, J. E., and Ullman, J. D. The Design and Analysis
of Computer Algorithms. Addison-Wesley, Reading, MA, 1974.
Brown, M. R., and Tarjan, R. E. Design and analysis of data structures
for representing sorted lists. SIAM J. Comput. 9, 3 (Aug. 1980), 594-
614.

3.

4.

Chang, H., and Iyengar, S. S. Efficient algorithm to globally balanced
binary search trees. Comm. ACM 27, 7 (July 1984), 695-702.
Day A. C. Balancing a binary tree. Cornput. J. 19 (Nov. 1976), 360-
361.

5.

6.

I.

Dekel, E., Peng, S., and lyengar, S. S. Optimal parallel algorithms for
constructing and maintaining a balanced m-way search tree. Int. J. Pur-
allel Programming 15, 6 (1986), 503-528.
Knuth, D. E. The Art of Computer Programming. Vol. 3. Sorting and
Searching. Addison-Wesley, Reading, MA, 1973.
Moitra, A., and Iyengar, S. S. A maximally parallel balancing algorithm
for obtaining complete balanced binary trees. IEEE Trans. Comput. C-
34,6 (June 1985), 563-565.

8. Moitra, A., and Iyengar, S. S. Derivation of a parallel algorithm for
balanced binary trees. IEEE Trans. Software Eng. SE-12,3 (Mar. 1986),
442-449.

9. Wang, B. F., and Chen, G. H. Efficient parallel algorithms for con-
structing B-trees, in preparation.

BIING-FENG WANG was born in Taiwan, on January 15, 1965. He
received the B.S. degree in computer science from National Chiao-Tung
University, Taiwan, in June 1988. Since September 1989, he has been work-
ing toward a Ph.D. degree in computer science at National Taiwan University,
Taiwan. His current research interests include design and analysis of algo-
rithms, parallel and distributed computation, and computer networks.

GEN-HUEY CHEN was born in Taiwan, on October 10, 1959. He re-
ceived the B.S. degree in computer science from National Taiwan University,
Taiwan, in June 198 I and the M.S. and Ph.D. degrees in computer science
from National Tsing Hua University in June 1983 and January 1987, re-
spectively. In February 1987, he joined the faculty of National Taiwan Uni-
versity and he is now an associate professor in the Department of Computer
Science and Information Engineering. His current research interests include
design and analysis of algorithms, distributed algorithms, parallel compu-
tation, and parallel computer architectures.

