
JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING 16, 158-171 (1992)

A so llem llution of the Cache Ping-Pong Prob
in Multiprocessor Systems

MI Lu*

Department of Electrical Engineering, Texas A&M University. College Station, Texas 77843

AND

JESSE ZHIXI FANG

Hewlett-Packurd Laboratories, Palo Alto, Cahfornia 94303

The cache ping-pong problem arises often in parallel processing
systems where each processor has its own local cache and employs
a copy-back protocol for the cache coherence. To solve the prob-
lem of large amounts of data moving back and forth between the
caches in different processors, techniques associated with parallel
compilers need to be developed. Based on the concept in [Fang,
J. Z., Proc. International Conference on Parallel Processing, Aug.
1990, pp. 11-271-R-275] regarding the relations between array
element accesses and enclosed loop indices in nested parallel
loops, we present an algorithm in this paper to reduce the unnec-
essary data movement between the caches for parallel loops with
multiple array subscript expressions. By analyzing the array sub-
script expressions in the nested parallel loop constructs, the com-
pilers can use the algorithm to prepare information at compile
time and let the processor execute the corresponding iterations of
parallel loops in terms of the data in its cache. It benefits the
parallel programs in which parallel loops are enclosed by a se-
quential loop and have multiple different subscript expressions for
the same array, whose elements are repeatedly used in the differ-
ent ikratiOnS of the outermost SeqUential loop. 0 1992 Academic PIW,

Inc.

1. INTRODUCTION

An important task of a parallel compiler is to identify
the parallel nature contained in a sequential program and
to generate parallel code implemented on a parallel archi-
tecture. Recently, parallel compilers such as the Illinois
PARAFRASE compiler [11, 13, 161 and the Rice Parallel
Fortran Converter 12, 3, 51 incorporating a new theory
and advanced technology have been developed.

It is assumed in most of the compiler systems that
shared memory architectures are provided and a large
memory block is directly addressable by all the proces-

* This research was supported by the Texas Advanced Technology
Program under Grant 999903-165 and partially supported by the Na-
tional Science Foundation under Grant MIP-8809328.

sors in equal time intervals. However, the hierarchical
memory system is widely applied in today’s parallel sys-
tems. In many new products such as MIPS, IBM RIOS,
SPARC, and Intel 860 which combine the semiconductor
with the compiler back-end technique, a private cache is
associated with each processor. To increase the memory
bandwidth, more than one level of cache may be used,
and the size of the cache may be very large. It should be
noted that the time to access a private cache is much
shorter than the time to access the global memory or the
caches of other processors.

Poor cache hit ratios in such hierarchical memory
multiprocessor systems are due to the following two rea-
sons: the data requested by a processor are in the global
memory and the data requested by a processor are in the
caches of other processors. The first case can be handled
by the traditional approach of cache utilization used in
uniprocessor systems, in which it is desirable to keep
frequently used data as much as possible in cache or local
memory. One of the hardware solutions for obtaining
high cache hit ratios is to provide large-size caches. How-
ever, when the parallel code is executing, the frequently
used data may be shared by multiple processors which
run the multiple threads of a parallel program at the same
time. Therefore, increasing cache size cannot improve
cache hit ratios in parallel program execution. A large
cache size may even result in severe inefficiency when a
parallel code requires that data move back and forth be-
tween the caches of different processors. This phenom-
ena is called “cache thrashing” in shared memory multi-
processor systems [6]. The time needed for a processor
to access the caches of other processors is close to that
needed to access the global memory, since both of them
must go through the data bus or interconnection network.
Furthermore, it may be even longer than the global mem-
ory access time because of the increase in the traffic on
the data bus or interconnection network and hence the
degradation of the bus or network bandwidth.

158
0743.73 15/92 $5.00
Copyright 0 1992 by Academic Press, Inc.
All rights of reproduction in any form reserved.

SOLUTION OF CACHE PING-PONG PROBLEM 159

Past research in this area has been focused on improv-
ing the data locality by restructuring the program, which
may enhance the cache hit ratio on both uniprocessor and
multiprocessor systems. Similar phenomena have been
studied for virtual memory systems. Abu-Sufah et al.
presented some source program transformation tech-
niques to improve the paging behavior of the programs
[11. These transformations, referred to as “loop-block,”
include breaking iterative loops into smaller loops (strip-
mining) and then recombining and reindexing these
smaller loops (loop-fusing and loop-interchange). Since
then, a number of loop-blocking algorithms have been
developed for different computer architectures such as
“loop-tilting” [17] and “loop-jam” [4]. These algorithms
exploited and took advantage of the high degree of data
reuse for the computation within a block. However, for
most of the parallel code with complicated program
structures, the benefit from blocking algorithms is very
limited. For instance, when a parallel loop nest is en-
closed by a serial loop and there is a loop-carried data
dependence in the outermost serial loop, if the data are
repeatedly used in the different iterations of the serial
loop, the blocking technique cannot avoid the cache ping-
pong for the data with dependence in the outer loop and
independence in the enclosed parallel loop.

Recent research on the cache or local memory ping-
pong problem by Fang [6] presented an overview of
mathematical concepts for the problem. The concept de-
fines the relation between the array element accesses and
the enclosed loop indices in nested parallel constructs.
The relation determined by an array subscript expression
can be used to partition the iteration space into equiva-
lence classes. All vectors in an equivalence class may
access some common array elements at execution time.
However, the method for calculating the next vector in
an equivalence class from the previous vectors [6] is
based on an assumption which allows only one subscript
expression for an array variable in the nested loop. This
assumption limits the results in [6] to be applied to real
application programs. In this paper, we present an algo-
rithm to solve the “cache ping-pong” problem for more
general nested parallel constructs, in which an array vari-
able may have more than one subscript expression in the
same or different statements of the loop body. The algo-
rithm is executed in an on-line fashion, finding for a linear
integer system the next vector from a sequence of the
stored vectors.

The rest of the paper is organized as follows. In Sec-
tion 2, the cache or local memory ping-pong problem on
our simple machine model is introduced. In addition, the
preliminary concepts and the overall approach to solving
the cache ping-pong problem on our simple program
model are presented. We describe in Section 3 the main
results in a simple case which has only a single array

subscript expression. These results are then extended to
the more complicated case which involves multiple sub-
script expressions or multiple array variables. Algo-
rithms for eliminating the unnecessary data movement
between the caches are presented. Section 4 shows the
experimental results in a parallel compiler prototype.
Parallel code is executed with or without the proposed
compiler strategy and the results are compared. Finally,
the paper concludes with Section 5.

2. BACKGROUND

2.1. Machine Model

In a shared memory multiprocessor system, a number
of processors and global memory modules are connected
by data-bus or interconnection network. Concurrent exe-
cution of multiple threads in parallel programming is en-
sured by a set of primitives, provided by the system,
including fetch/increment or semaphore instructions.

In most of the processor design, the cache has the
following characteristics: (1) local to a processor, (2) its
size is large enough, (3) it uses copy-back and coherence
strategy, (4) its line size is more than one word. In order
to simplify the presentation, in this paper we assume that
the cache memory is of one level and the line size is one
word.

2.2. Cache Ping-Pong Problem

In a parallel program, a thread is referred to as the
execution of a piece of code specified by parallel con-
structs [141. It can be viewed as a unit of programmer-
defined or parallel-compiler-specified work. As in a com-
mon parallel construct, a thread in a parallel loop is the
execution of an iteration (or a chunk of iterations if we
use strip-mining or other techniques) of the loop, and the
threads are spawned when entering the parallel-loop
merge at the end of the loop. The order in which the
iterations of the loop are performed is arbitrary, and the
processor on which the parallel loop is entered is not
necessarily the same one on which the code following the
parallel loop is executed.

In addition, parallel loops may be nested with sequen-
tial constructs when executed on multiprocessor sys-
tems, and some frequently used data may be repeatedly
used and modified by different threads. If the threads
accessing the same data are not assigned to the same
processor, the set of data may be unnecessarily moved
back and forth between the caches in the systems. This
phenomena is called the cache ping-pong phenomena in
shared memory multiprocessor systems.

The following example [6] shows the problem in a
nested parallel construct:

160 LU AND FANG

DIMENSION A(lOOO, 1000)

I=0
WHILE-DO 10, 100
1=1+1

.
PDO 20 J = 1, 100

.
DO30K = 1, 100

.
s: A(1 + 2”J + 5*K, I + J + 3°K)

= A(1 + 2*J + 5*K, I -t J + 3*K) + . . .
30 CONTINUE

.
20 CONTINUE

.
10 CONTINUE

In this example the statement S does not have any data
dependence in the DO .Z loop. If there is no other loop-
carried dependence between the statements of the loop
body, the J loop can be parallelized. There are a total of
10,000 threads TI,J in the execution of the parallel loop
(both Z and J range from 1 to 100). Each thread requests
100 elements of array A. Many of the array elements are
repeatedly accessed in these threads.

For instance, thread T1,, requests data A(8,5), A(13,8),
A(18,11), A(23,14), A(498,299),A(503,302) for the in-
nermost serial loop with index K from 1, . . . , 100, respec-
tively. Meanwhile, thread T2,3 requests data A(13,8),
A(18,11), A(23,14), A(498,299), A(503,302),
A(508,305) and thread T3,5 requests data A(18,l I),
A(23,14), A(503,302), A(508,305), A(513,308). It can
be observed that there exists a list of threads, T1,, , T2,3,
T3,5, TV, T49,99, which reuse most of the array ele-
ments accessed in the previous thread. If the threads of
the list are assigned to different processors, the data of
array A are unnecessarily moved back and forth between
caches in the system.

For instance, when Z = 1, thread T1,, is assigned to
processor 2. Note that loop Z is serial. After the first
iteration of loop Z is completed, the processors need to be
reassigned for the threads of the second iteration of loop Z
that contain a parallel loop J. If thread T2,3 is assigned to
processor 4, 99 array elements need to be moved from
the cache in processor 2 to the cache in processor 4. This
unnecessary data movement not only slows down the
execution, but also degrades the bus or network band-
width because it tremendously increases bus traffic. If
thread T3,5 is assigned to processor 2 in the third iteration
of loop I, these data need to be moved back from the
cache in processor 4 to the cache in processor 2.

In general, loops are the largest resource for parallel-

ization in application programs. Parallel loops are the
most common parallel program structures either defined
by user directives or detected by automatic parallel com-
pilers. The cache ping-pong phenomena shown in the
above example are very common in the parallel code for
scientific computations.

In order to gather evidence of the array access patterns
in a wide range of applications, we studied a large num-
ber of benchmark programs. They include the Linpack
benchmark, the Perfect Club benchmark, and application
programs in mechanical CAE, computational chemistry,
image and signal processing, and petroleum applications.
These benchmarks were analyzed by PROFILE to recog-
nize the most expensive routines and loop nests at execu-
tion time, which were chosen for future research. We
found that almost all of the most time-consuming loop
nests contain at least three level loops. About 60% of
these loop nests contain at least one level parallel loop
[7]. Ninety-five percent of the parallel loops can be
moved from the innermost loop after using the loop-
interchange technique. Only 6% of the parallelable
nested loops have the parallel outermost loop. Ninety-
four percent of parallel loops are enclosed by serial
loops; that includes the loop nests in which a parallel loop
appears in the outermost loop level in a subroutine, but
the subroutine is called by a call-statement contained in a
serial loop. Most of these loop nests are not perfect-
nested. Fifty-three percent of the nested loops involve
only one major array, which usually is two-dimensional
or three-dimensional with a small size in the third dimen-
sion. Most of the loop bounds are passed by parameters,
while there are a few simple triangular nested loops.
Eighty-three percent of the array variables in the parallel
program structures have more than one subscript expres-
sion either in the same parallel loop or in the different
parallel loops enclosed by the same serial loop. This pa-
per intends to solve the cache ping-pong problem in pro-
gram models in which parallel loops are enclosed by a
single serial loop and may contain other loops with multi-
ple array subscript expressions in the loop body. This
model can cover almost half the parallel loop nests in our
study for a wide range of benchmarks in applications. If
more than one serial loop encloses the parallel loops,
only the inner serial loop needs to be concerned in the
program model. If more than one level of loops, either
parallel or serial, are enclosed by the parallel loops, only
the outer loop needs to be concerned. The model allows
multiple subscript expressions in the parallel loops, but
only uses a single array variable. The multiple array vari-
ables with multiple subscript expressions are not in-
cluded in the model discussed in this paper. More re-
search is required to create a general rule to handle the
cache ping-pong problem in more general program
models.

SOLUTION OF CACHE PING-PONG PROBLEM 161

2.3. Preliminaries

In this section, the preliminary concepts relevant to the
iteration space and data dependence analysis are re-
viewed and the notations used in this paper are intro-
duced.

Standard definitions are used to analyze the array ac-
cesses [2, 3, 5, 11, 13, 161. Considering a nested parallel
construct of k loops in the following form:

DO I, = L.1, U1
.
DO I1 = Lz, Uz

.
DOZ, = Lk, Uk

.
s,: A(h(Z,, Z,, Zk) + a) = . . .

.
s*: . . . = A(g(Z,, Z2, Z,) + h) + . . .

.
30 CONTINUE

.
20 CONTINUE

.
10 CONTINUE

where array A is of dimension d, and both a and h are
offset vectors in Zd. It is not necessary that this loop be
perfect-nested. The loop bounds are not required to be
constants. The functions h and g are linear:

h,g:Zk-+Zd.

The iteration space denoted as C is defined by the prod-
uct n&l N,, where Nj is the range of the jth index, [Lj :
Uj]. The domain space denoted as D is defined by the
product nt, Mi, where 44; is the size of array A in the ith
dimension. Any array subscript expressions in the state-
ments of a parallel nested loop can be more precisely
defined by

h,g:C+D

or we say that the array subscript expressions define the
map

There exists a total order in the iteration space C de-
fined by the point in time at which the element is exe-
cuted. If we say a vector t is greater than a vector s,
where

t = (tl, t2, tk)

and

s = @I, s2, Sk),

then there is a point m, which is in the range from 1 to k,
such that ti = Si for i < m and t, > s,.

The standard data dependence definition [lo, 12, 151 is
given as follows. If two statements access the same mem-
ory location, we say that there is a data dependence be-
tween them.

In general, if a dependence is inside a loop, the depen-
dence is called loop-independent dependence. If a depen-
dence is across the iterations of a loop, it is called loop-
carried dependence.

Loop-independent dependence does not cause the
cache or local memory ping-pong problem if an iteration
of a parallel loop must be performed by one thread. Dis-
tance vector [2, 3, 131 in dependence analysis shows the
distance between two iterations that reference the same
memory location. If the distance is t, a loop-carried flow
dependence from Sr to S2 within a DO Z loop has at least
one variable which is computed in S1 and referenced in S2
after t iterations. The DO Z loop should be executed se-
quentially or synchronized by some additional synchro-
nizer to keep the execution order of the statements with
the dependence.

Dependence analysis associated with a distance vector
is a good approach to describing the data reference rela-
tionships between iterations in a loop. However, the
cache or local memory ping-pong problem involved in
multilevel loops in a nested parallel construct is more
complicated. Furthermore, some loops do not have an
explicit distance vector such as the example given in Sec-
tion 2.2, but they can be parallelized by the Banerjee test.
The dependence analysis approach is not enough to de-
scribe the nature of the cache ping-pong problem.

The overall nature of the cache or local memory ping-
pong problem in the simple program model in Section 2.2
is described below. If the outermost loop is a parallel one
in a nested parallel construct, there is no cache ping-pong
problem, because the different parallel loop iterations
never access the same memory location. If the outermost
loop is serial, and encloses parallel loops, the depen-
dences carried by the serial loop may cause the data to
move back and forth between the threads that execute
the parallel loops in the different iterations of the outer
serial loop. Some array elements may be reused in the
different iterations of the outermost serial loop due to the
loop-carried dependences. Meanwhile, these array ele-
ments need to be moved between the caches of proces-
sors in each iteration of the outermost serial loop due to
the parallel loops enclosed by the serial loop.

To help develop our algorithm to solve the cache ping-
pong problem, we put two major constraints on our pro-
gram model.

162 LU AND FANG

The first constraint is that this paper concentrates on
parallel nested constructs in which only one-level loops
are parallel or in which multilevel parallel loops may exist
but only one-level loops are parallelized. This constraint
is reasonable in order to match the simple machine model
described in Section 2.1, which does not have the hard-
ware processor cluster.

ily perfect-nested. There may exist more than one paral-
lel loop in the middle level enclosed by the single outer-
most serial loop. Loop bounds can be any variables.
These loops contain only one array variable with multiple
subscript expressions. The program structures are not
important as long as the data dependence uses a unique
iteration space.

The second constraint is that we assume all depen-
dences in the nested parallel construct use a unique itera-
tion space. Usually, this assumption is not acceptable in
application programs. If two parallel loops have different
loop bounds, the iteration spaces must be different for the
dependences carried by the loops. However, the map-
ping and transferring of iteration space will make the
main results too complicated. It will also make the proofs
tedious. The results presented in this paper can be ex-
tended to a general program model without the constraint
by applying the space transformation technique onto the
iteration spaces, which is similar to, but much more diffi-
cult than, the linear space transformation.

To simplify our discussion for the paper, we have the
following assumptions in the program model,

3.1. Mathematical Concepts

Most definitions and lemmas in this section are ex-
tended from the definitions and theorems given in [6] in
the sense of considering multiple array subscript expres-
sions rather than only a single expression.

DEFINITION 1. Reduced Iteration Space is a subspace
of the iteration space for the parallel constructs described
in Section 2.3 obtained by removing the dimension of the
innermost loop index. For the example program in Sec-
tion 2.2, the reduced iteration space is [l ... 1001 x
[I .*. 1001.

1. All functions representing array subscript expres-
sions are linear mapping: C + D.

2. There are only one-level parallel loops in the nested
parallel construct, which are enclosed by an outermost
serial loop.

A linear function h defined in the program model, i.e.,
specified by an array subscript expression, is a map from
the reduced iteration space, N x M, to the set of subsets
of the domain space

3. There may exist a one-level serial loop enclosed by
the parallel loops.

4. All data dependences in the nested parallel con-
struct use the same iteration space.

The program model on which we develop the main
results may have three loop levels, the outermost serial
loop, the middle parallel loop level, and the innermost
loop level, either serial or parallel. They are not necessar-

where the upper bounds of the outermost serial loop and
the middle parallel loop are N and M, respectively. The
dimensions of the array are Dr x &.

The following example illustrates the typical parallel
program structures, which contain three level loops and Y
different array subscript expressions.

DOi= 1,N
.
PDOj = 1, M

.
DOk =l,L

.

3. MAIN RESULTS

h : N x M + ZDlxD2,

A(ai,ii + br,ij + cl,tk + di,r, ai,zi + br,2j + c1,2k + d1,2) = . . .
.
. . . = A(az,ri + b2,lj + c2,lk + d2.1, a2,zi + &j + cz,zk + &,2) + . . .
.
A(a,ii + b,,ij + c,,,k + d,,i, ur,2i + br,2j + c,,& + dr,2) = . . .
.

30 CONTINUE
.

20 CONTINUE
.

10 CONTINUE

SOLUTIONOFCACHEPING-PONGPROBLEM 163

The linear function h, is

fm(L j, k) = a,,b + b,,l.i + cm,& + &,I

and

gd, j, k) = urn,4 + &,A + cm,& + &,2,

where m is in the range from 1 to Y, assuming there are r
different array subscript expressions in the parallel con-
struct .

To collect the sets of vectors in the reduced iteration
space, which may access common memory locations
within the corresponding threads, we define a set of ele-
ments of array A, which are accessed within thread TiO,j,,
by linear function h,(i, j, k) associated with the mth sub-
script expression as follows.

DEFINITION 2. For a given pair io and jO, the set of
elements A(fm(io,jo, k), g,(io,j,, k)) of array A, which are
accessed within thread TiO,jO by a statement subscripted by
the linear function h,(i, j, k), is denoted by A!‘$ where
lcrk5Landlsm<r.

Afzjo = Mf,Go, Jo, 4 g,(io,j~, W 1
for a given i. and jo, where k E [1, L]}.

Since bothf, and g, are linear in terms of i, j, and k, it
is obvious to have the following lemma, which is useful in
the rest of this section,

LEMMA 1. In a program structure described above, if
there exist two vectors in iteration space, (i, j, k) and
(i’, j’, k’), such that

f,(i, j, 4 = fm(i’, j’, k’)

and

g,kj, 4 = g&‘,j’, k’),

then for any constant no, we have a series of vectors in
the space, (i, j, k + no) and (i’, j’, k’ + no), satisfying the
equations

and

fm(i, j, k + no) = fm(i’, j’, k’ + no)

g,di,j, k + no) = g&i’,j’, k’ + no),

where 1 5 k’ + no 5 L and 1 5 k + no i L.

It is clear from Lemma 1 that if

then threads Ti,,j, and Ti2,j2 should be assigned to the same
processor, because they may access some common ele-
ments of array A subscripted by the linear function h,.

LEMMA 2. In the program model described in Section
2.3, we have two vectors (i, j, k) and (i’, j’, k’) holding the
equations

fmG,j, 6 = .M’,j’, k’)

and

gAi,j, k) = di’,j’, k’),

if they satisfy the following conditions:

.I 1 - i = (Y, = b,,,, c,,,~ - bm2 c,,,~ 3 , I 1

j ’ -J = Pm = am,2 cm,1 - am,1 cm.2

k’ - k = Y,,, = a,,,,] bm,2 - am,2 &,I.

In the example program shown in Section 2.2, m = 1,
(Y = 1, p = 2, and y = -1.

DEFINITION 3. For a given pair i. and jo, the data set
of elements of array A denoted by AiO,jO, which may be
accessed within thread Tio,j~ by the statements referring to
the array variable A, is the union of the sets AirjO, where
m ranges from 1 to r.

It is clear from the above description that if

then threads Ti,,jl and Ti2,j2 should be assigned to the same
processor, because they may access some common ele-
ments of array A at the execution of the parallel con-
struct.

DEFINITION 4. In the program model described in
Section 2.3, for a given pair io and jo, the common access
set UiO,jO denotes a set of vectors (i, j) in the reduced
iteration space of size N x M, satisfying the condition

Ui”,j, = {G, j> (Aio,jo n Ai,j f 0).

Using the program shown in Section 2.2 as an example,
ULI = {(l,l), (2,3), (3,5), (49,97), (50,99)}.

By Lemma 1, the definition can be described as

UiO,jO = {(i, j)) 3 ko and k, m. and m such that

fmo(io, jo, ko) = f,(i, j, k) and g,,(io, jo, ko) = g,(i, j, k)}.

UiO,jO is the set of threads that may access some com-
mon elements of array A. Actually, Definition 4 defines a
relation in the reduced iteration space. We call a relation

164 LUANDFANG

R in space SP satisfying the following condition an equiv-
alence relation:

if a R b and b R c, then a R c, for a, b, c E SP.

The equivalence relation can be used to partition the
space into several equivalence classes. They are disjoint
and cover the entire space. The relation defined in Defini-
tion 4 is an equivalence relation and Ui,,j, is an equiva-
lence class in the reduced iteration space. The detailed
proof can be found in [6] and [7]. The limitation of [6] is
that it only concentrates on a simple case-array A has
only a single subscript expression in the loop nest. This
paper describes an approach to solve the cache ping-pong
problem in a more complicated case-array A has more
than one subscript expression in the program model. This
approach provides an algorithm to calculate the next vec-
tor (i2,j2) from the current vector (i, ,jJ in an equivalence
class at execution time.

In order to develop an approach to compute the vector
series in set Ui~,j”, we need to introduce some necessary
notations. In the above example, for the linear function
h,, where 1 I m % Y, let us denote:

%I = hn,l cm,2 - bm,z cm,]

Pm = a,,~ cm,2 - am,2 cm,1

Ym = am,2 b,,l - a,,~ bm,2.

3.2. Partition of Iteration Space

As shown in Section 3.1, each linear function h,,
where 1 5 m 5 Y, gives a particular value of (Y,, Pm,
and y,,,.

Section 3.1 gave the definition of a set of vectors (i, j)
in the reduced iteration space, UiO,j,,, in which each vector
may access some elements of array A that are referenced
in thread TiO,jO for the given pair (io,jo).

LEMMA 3. The set of vectors (i, j) in Dejinition 4,
UiO,jO, is the same set shown below, if there is only one
linear function in the parallel construct, indicated by the
superscript (1).

Now we extend the definition from one linear function
to r linear functions in the parallel loop. As shown in the
program model in Section 3.1, there are r pairs of sub-
script expressions for an array variable. Hence, we have
a list of r triples: (al, PI, rl), (a2, P2, 721, (ah Pm, -yJ,

. ..) car, PI> rr).

If the relationship defined by the following definition
can partition the reduced iteration space, then the corre-
sponding threads may access some common elements of

the array that are stored in the local cache by thread Tio,jcl
for given (iO, j,).

DEFINITION 5. In reduced iteration space of loop i
and loop j, if there are r different pairs of subscript ex-
pressions for an array variable, we define the set of the
pairs of i and j so that the corresponding threads may
access some common elements of the array subscripted
by these linear functions, which are accessed in the cache
or local memory by thread Tio,jo.

Sf~~, = [(i, j) 1 i = i0 + i pm X CY, and j
I WI=1

=j0 + i pm x Pm forp,, PrEZ.
??I=1 I

THEOREM 1. The set of vectors in a reduced iteration
space of loop i and loop j, Sii:j,, dejined in Dejinition 5, is
a subset of the set of vectors Ui,,j, deJined in DeJinition 4.

The proof is straightforward following Lemma 2 and
Lemma 3. All the threads corresponding to the vectors in
Sii!jO may access some common array elements at the exe-
cution of the parallel construct. Since Definition 5 is only
a subset of Definition 4, the approach described in the
paper is not the optimal solution for the cache ping-pong
problem, but it can significantly reduce the cache ping-
pong phenomena at execution time. The following theo-
rem shows that the relation defined in the above defini-
tion can partition the reduced iteration space. Therefore,
we can reduce the unnecessary data moving between
processors and improve the system performance.

THEOREM 2. SfzjO is an equivalence class in the re-
duced iteration space of loop i and loop j.

Proof. If we have

then there exists (i, j) belonging to both Sji!j, and Si::, .
Therefore, there exist pI, p2, pr such that

i = io + i pm x cl,
m=I

j=.i0+ ipmxPm.
t??=l

Meanwhile, there exist pi, pi, pi such that

j=.h+ CpLx&.
fTl=l

SOLUTIONOFCACHEPING-PONGPROBLEM 165

So, we have

I
i,=i- i PL X ffm = i0 + C (pm - ph) x ff,

ITI=1 m=l

Therefore,

In the same way, we have

(i0, jo> E SI:!j,.

Finally, we have

By Theorem 2 and Definition 5, it is obvious that there
is less memory access from one processor to the caches
or local memories of other processors, if all the threads in
the same equivalence class are assigned to the same pro-
cessor. We describe the fact in Theorem 3 and omit the
proof.

THEOREM 3. Every thread Ti,j E Sfi!j, may reuse some
data in other threads belonging to the same equivalence
class S$f,, which can signijicantly reduce the access of
the data referenced by the threads belonging to other
equivalence classes.

3.3. Computing Vectors in an Equivalence Class

To assign all the threads belonging to the same equiva-
lence class to the same processor at execution time, an
iterative algorithm is designed to calculate the next vec-
tor in S~~!jO in terms of the current vector. The algorithm
can be used to compute the current loop index of the
middle parallel loop from the current outermost serial
loop index and the previous serial and parallel loop
indices.

The initial vector for each equivalence class, Sii!j”, or
the initial value of (p,, pJ needs to be prepared at
compilation time. The lower loop bound of the outermost
serial loop is the initial value for io. All the other indices
of the outermost loop, whose value is less than min(cwl,
. ..) CXJ, are initial too. For the given initial value of io, by
Definition 5, it may be required to find all the possible (p,,
. . .) pl.> such that x:‘,=I pm x CX,, = 0 to calculate the initial
value ofjo, but it is not necessary. In the program model
shown in Section 2.2, Loop .Z is parallel. For any fixed io,
there do not exist j, and j, such that

By this assumption, a string (~1, pJ satisfying the
above equation must satisfy another equation xh=, pm X
pm = 0.

Therefore the algorithm to compute the initial vector
for each equivalence class, S!zj,,, is straightforward. First
let io equal the lower bound of loop I; we have M initial
vectors (io, j), where j ranges from 1 to M in our program
model, for M equivalence classes. The list of (p,, . . . , pJ
satisfying the equation x.‘,=, pm x (Y, = 0 is computed,
which is useful in finding the initial value of jo as well as
the next vector in the equivalence class at the execution
time. Then increasing the value of io, we calculate the list
Of(Pl, .*., pJ in the same way as in the first step until the
value of io is equal to min(cY,, cu,). This computation
needs to solve the integer linear equation CL= I pm x Pm =
0. However, this is at the compilation time, so our ap-
proach does not affect the execution performance al-
though the algorithm to solve the integer linear equation
has high time complexity.

From Definition 5, we need to find the next vector in an
equivalence class in the increasing order of component i.
Assuming the initial vector is given, we are to compute
component j step by step. Let an integer linear system L :
{p, CY, I} be defined as follows:

p = (Pl, P2, *..> PrY

a: = (aI, ff2, . ..> 4

I=a.p

where 1 5 I I N with N being a positive integer, and (Y, p
are all r-dimensional positive integer vectors.

Consider the following problem: given initial p”, find p1
such that no p’ E Z+r satisfies a * p” < a * p’ < a * p’,
Furthermore, given pi, find pi+’ such that there exists no
p’ satisfying (Y . pi < (Y . p’ < (Y * pi+‘. We first give a graph
representation of the system.

DEFINITION 6. A labeled digraph G = (V, A, W) for
the above integer system is defined as

l v = {I’, 12, . . .) I”}, where I’ < Z* < . . . I”
l A = {(I’, I”)10 I 1 < 1’ 5 n and 3a, such that I” =

I’ + a,}
l {w(Z’, I ”) = am 1 z ” = I1 + a, for (I’, I”) E A}.

According to the definition, each arc (I’, I”) in G is
associated with a label, say (Y,. If u(Z’, I”) is an r-
dimensional mth unit vector, then (Y,,, = (Y * u(Z’, I”) for
(Z’, Z”) E A.

The following lemma describes the path which can be
found in the constructed graph in terms of unit vectors.

LEMMA 4. Let I” and I’ be the two nodes in the di-
graph dejked by Dejinition 6, and I” = CY . p” and I’ = CY .
p’. There is a path r from I” to I’ such that m = Z’l,Z’2, . . . ,
Z’P, where 1’1 = I” and Z’P = I’, if and only if

166 LUANDFANG

p-1

p’ = p” + 2 u(Z$ zlk+l).
k=l

Proof. From Definition 6, we have

I’ = Z/p-’ + W(Zb’, I’)

z/p-1 = I$-2 + w(Zlp-2, Z’p-1)

. . .

1’2 = I" + W(Z'l, 1'2)

p-1

1’ = 1” + 2 w(Zk, z’k+‘).
k=l

Notice that w(Z’k, Z/~+I) = (Y . u(zlk, z’k+l) and 1 = (Y . p, we

have

p-1

I’ = I” + 2 a * u(h, z/k+‘)
k-1

and

p-1
p’ = p” + 2 u(z’k, z/k+]). W

k=l

This exploited the relationship of p” and p’ such that
there exists a path from I” to I’. The definition below
defines the concepts of accessible node and addressable
digraph .

DEFINITION 7. Let G be a digraph described in Defi-
nition 6. A node I’ E V is accessible if and only if there
exists a path from I1 to I’.

If all the nodes in the digraph are accessible, the di-
graph is referred to as an addressable digraph.

As an example, the addressable digraph for Z = 3p, +
7p2 is shown in Fig. 1.

COROLLARY 1. In an addressable digraph, for any
node I’ with 1’ > 1, there exists another node I’ and
coejjjcient CY, such that the corresponding pi and p” sat-
isfy p” = p’ + u(a,).

Proof. In fact, 7~’ = Z/I, Z/2, Z&l is a subpath of
path rr = Z/i, Z/2, Zip defined in Lemma 4. If we let

3 6 7 9 IO 12 13 14

FIGURE1

I’ = Z/P-I and I” = Z/P, then applying Lemma 4 to the
subpath +, we have

p-2

p’~vl = p’l + 2 u(zlk, zIk+l).
k=l

Comparing it with

p-1

P’P = p” + c u(& zk+l),
k=l

we have p/p = p/p-l + u(Zlp-1, Z/P), that is, p” = p’ +
u(%J. n

This means, in an addressable digraph, I” can be al-
ways found from I’ by tracing the arc A(Z), I”). Corre-
spondingly, given the vector p’, we can always find p[by
applying the unit vector ~(a,), and vice versa.

LetZ1,Z2, I’, Zq be a sorted sequence of positive
integers for an integer linear system Z = a! . p satisfying
the condition that there exists no p E Z+” such that I’ <
CY * p < I’+’ for 1 = 1, 2, 9 - I. We consider the
following problem.

Given the initial vector p”, find p’ such that there is no
p’ satisfying (Y . p” < (Y * p’ < (Y * p’. Interactively, given
p’, find PI+’ such that there is no p” satisfying CY . p’ < a .
p” < a * p ‘+I This problem is to be solved in an on-line .
fashion.

According to Lemma 4 and the Corollary 1 described
previously, all the Z1+’ in the above sequence can be
found by Zk + (Y,,, for some k. Meanwhile, p’+’ can be
found by pk + ~(a,) correspondingly. Note that CY, may
not exist for some m = 1, 2, r.

Consider an addressable digraph representing the
above system. We first define the relationship between
the nodes I’ and I’+‘, and the relationship between the
nodes I’+’ and Zk as described.

DEFINITION 8. Given an addressable digraph as de-
fined in Definition 7 representing an integer linear sys-
tem, node I’+’ is referred to as a successive node of node
I’ if there is no p E Z +r suchthatZ’<a.p<L’+l,forl=
1, 2, . ..) q - 1, and is denoted as successiue(Z’). Node Zk
and node Zk’ are adjacent nodes if they are connected by
an arc pointed from Zk to Zk’. Zk is the start node of Zk’
associated with LX,,, denoted as start-nodea,(and Zk’ is
the end node of Zk associated with (Y,, denoted as end-
node,,JZk).

If Z’ = (Y . p’ and I’ = (Y . pl+l, then p’+’ is referred to as
the next vector of p’.

Note that the out-degree for each node I’, 1 I q -
max(al, (Ye}, is r where r is the dimension of the sys-
tem. However, the in-degree of a node could be less than
r in any case.

SOLUTION OF CACHE PING-PONG PROBLEM 167

,j ,j Ik Ik’ It

FIGURE 2

DEFINITION 9. If the in-degree of a node given in the
digraph defined in Definition 8 is equal to r with r being
the dimension of the vector p, then the node is referred to
as a fill node.

LEMMA 5. Let zj and Zk be the start nodes of I’ associ-
ated with oJ and (Yk, respectively. Assume the successive
nodes of Zj and I” are Zj’ and Zk’, respectively. In other
words, ZJ = start-nodeqj(Z’), I” = start-node,,(Z’), succes-
sive(ZJ) = Zj’, and successive(Zk) = Zk’ (see Fig. 2). ZfZf -
Zj < Zk’ - Zk, then end-node, - I’ < end-node,, - Zh.

Proof. Since

end-nodeaj(P’) = Zj’ + oj

end-node,,(Zk’) = Zk’ + (Yk,

end-nodeaj(Zj’) - I’ = If + ~j - I’
= ZY - Zj

and

end-nodea, - I’ = Zk’ - Zk

for the same reason. Thus Z-j’ - Zj < Zk’ - Zk results in
end-nodeaj - I’ < end-node,, - Zk. n

THEOREM 4. Suppose that node I’ is a full node and p’
corresponds to I’. Consider all the start-nodes,,,,(Z’), for
m = 1, 2, r, and successive(start-nodes,,(l’)). Zf
m = m. such that

successive(start-nodes~~O(Z’)) - start-nodes,r7,,(Z’) (1)

is the minimum, say Amin, then successive(Z’) = I’ + Amin.
Zf successive(start-nodes,m,(l’)) = ZjO and the corre-

sponding input of the system is pj, then the next vector of
I/ is $0 + ~(a,~).

This theorem can be proved by applying Lemma 5 in-
ductively

COROLLARY 2. Zf I’ is not a full node, and start-
nodes,m.(Z’) do not exist, then I’ - cy,,,’ should be used to
substitute it in (l), and successive(start-nodes&Z’))
should be node Ij such that Zj - (I’ - (Y,,) > 0 and ZJ -
(I’ - a,,,,) > 0 is the minimum, for all 0 5 j i q.

If we consider I’ - (Y,, as a virtual node, similar proof
as for Lemma 5 can be used for this corollary.

Given a vector p’ as described in Definition 7 and Defi-
nition 8, the next vector of p’, pl+‘, can be found by the
following algorithm.

ALGORITHM NEXT.
input: a sequence of vectors p’, p2, . . . , p’ {to the inte-

ger linear system }
output: p/+1 { next vector of p’}
1. I’ = (Y . p’ { as is executed on line, I’-‘, Z’-2, .,.

should be already calculated and stored in a sorted
order }

2. for m = 1 to r do
begin

3.
4.

5.

6.
7.

8.
9.

10.
11.

start-nodes&Z’) = I’ - CY,
ifP, f Odo

zj = successive(start-nodes,m(l’>)
else

find node zj such that zj-r
< start-nodes,,,,(Z’) < Zj

Am = Zj - start-nodes,JZ’)
if A,,, < A,-, do
begin

Amin = Am
m. = m

end {of if}
P '+I = pj + u((Y,~)

end {of for }

THEOREM 5. Algorithm NEXT3nds the next vector

P ‘+I of vector p’ correctly.

Proof. First, it is easy to see that I’ found in step 4 or
step 5 is a node in the addressable digraph. pj is a vector
such that (Y . p j = zj. According to the definition of the
successive node and the statement in step 5, Zj > start-
nodes,,(Z’). Since start-nodes,JZ’) = I’ - (Y, and, as
specified in step 2, zj > I’ - (Y, and Zj + (Y, > I’ for any
(Ye. Here Zj + (Y, is a node in the addressable digraph, and
pj + ~(a,) is the corresponding vector satisfying CY . (pj +
u((Y,)) = zj + (Y, according to Corollary 2.

Since m. E {mlm = 1, 2, r} (step 9) and p’+’ = pj +
u((Y,~) (step IO), we have proved that Zj + CY,~ is a node,
Zj + (Y,~ > I’, and p’+l = pj + u(amo) satisfies ff * p’+’ =
zj + (Y,~.

Now we prove that there is no vector p’ existing such
that I’ < CY . p’ < a . p’+‘.

(i) I’ cannot be accessed by (Y,~, otherwise I’ - (Y,~ is
a node. This is because zj < I’ < I’+‘, and I’ + (Y,,,,~ < I’ -
a,0 = Zj, which means that there is a node existing be-
tween I’ + (Y,~ and I’, thus contradicting the generation of
Zj stated in step 4 or step 5.

(ii) I’ cannot be accessed by (Y,‘, for m = 1, 2, r
except for mo. If I’ can be accessed by am’, for m’ E
{mlm = 1,2, r and m f mo}, then I’ - (Y,, is a node.
After executing the for loop in step 2 for m = m’, (I’ -
a,nf) - (1’ - a~,,) will be stored in A,, which is equal to

168 LU AND FANG

I’ - I[. Now, if I’ < I’ < I’+‘, then I’ - I’ < I’+’ - I’.
4nlm=,, < Amlm=m,,, which contradicts the execution of
step 7 to step 9. Thus I’ can not possibly exist such that
I’ < I’ < z/+1. n

In fact, by executing Algorithm NEXT, we examined
the possibility of accessing I/+’ from the found Z’s by
different (Y,‘s, for m = 1, 2, ,.., I-. For each specific (Y,,
we noticed that if I’ and II+’ are closest, I’ - (Y, and
Zl+l - (Y, are also closest. So, instead of finding the node
closest to I[, we search for the node closest to I’ - a!,,,, for
all them = 1, 2, r, utilizing the known information of
the found vectors and found nodes.

The on-line feature of the algorithm limited the mem-
ory used and thus reduced the execution time.

Let the largest entry in (Y be amU, form = 1,2, Y. To
examine the range of start-nodes,,&Z’), note that the
smallest start-nodes,m(Z[) = I’ - (Y,,,. Therefore, we
have I’ - a,,,,, < start-nodes,,,,(Z’) < I’.

In the integer system, there are at most (\I,,,, existing in
the interval between I’ - (Y,,, and I’. To compute a new
output, say Z’, it is sufficient to store the previous results
zj , Z’-*, I’-’ and the corresponding vectors pj, pje2,
P l-l such that j = I’ - ~~~~~

Step 2 shows that to find one next vector, the algorithm
needs to execute r times for a vector with Y dimensions.
Step 6 involves a binary search on a sequence of (Y,,,
data items. O(log (Y,,) time is hence needed. Other steps
take only constant time. So the time complexity of Algo-
rithm NEXT is O(rlog (Y,,,).

The results of this paper including Algorithm NEXT
have been implemented in our prototype compiler. The
detailed implementation can be found in [7] and [S]. The
prototype compiler employs a self-scheduling scheme
[9]. The application programs just need to be transformed
into a parallel form as generated by the regular parallel
compiler. PDO represents a parallel loop. Neither special
code transformation nor index variable reference modifi-
cation is required by our approach. Our prototype com-
piler only produces necessary information, such as (Y, p,
and the initial value of each equivalence class, and anno-
tates the information with the corresponding PDO loop.
For the example in Section 2.2, constants Q = 1, p = 2,
and initial value of equivalence class i0 = 1, j” = I, . . . , 100
are attached in the annotated list of PDO 20 J = 1, 100. At
execution time, in the initial first iteration of the outer-
most DO Z loop, when I = 1, the run-time library routine
randomly assigns the initial value of the equivalence
classes to the threads that are scheduled on the particular
processor. For instance, a processor is assigned the value
(1 ,l). It executes the thread T,,,; i.e., the first iteration of
PDO .Z loop in the first iteration of the outermost DO Z
loop. The processor saves i0 = 1, j, = 1 and CY = 1, p = 2
into its local memory of the physical processor rather
than to the logical thread. Then, when the second itera-
tion of the outermost DO Z loop is executed and i = 2, the

thread assigned to the processor, uses the results in this
paper to calculate the parallel loop index in terms of the
constants saved in its local memory, then determines
which iteration of the PDO J loop will be executed in the
second iteration of the outermost DO Z loop. The proces-
sor that executed Tr,r uses Next Algorithm to obtain j = 3
because i0 = 1, j0 = 1, i = 2, (Y = 1, and p = 2. It will
execute T2,3 and save the new value i0 = 2, j, = 3 in its
local memory. In the same way, the processor executes
T3,5 in the third iteration and T4,, in the fourth iteration of
the outermost DO Z loop. Gaussian Elimination, the code
of which is shown in the next section, is another exam-
ple, where (Y = 1 and p = 0. If a processor is assigned to
execute T],s, i.e., it executes the fifth iteration of PDO J
loop in the first iteration of the outermost DO K loop, it
stores the fifth column of array variable A in its cache
memory. In the second iteration of the DO K loop, it
calculates the corresponding PDO J loop index in terms
of the constants in its local memory i0 = 1, j0 = 5, CY = 1,
and /3 = 0. Then it executes T2,5, the fifth iteration of the
PDO .Z loop.

This approach doesn’t need to examine the data stored
in the local cache or local memory of a processor. It uses
the relationship between the loop indices and the data
accessed by the corresponding thread, which is shown in
this paper, to calculate the right parallel loop index and
then to execute the right iteration without unnecessary
data movement among the processors. It doesn’t require
the transformation of the code generated by parallel com-
pilers. The array reference, even the one in the innermost
loop, doesn’t need to be modified either.

Since the prototype compiler and the run-time library
is so immature, we are only able to compile simple pro-
grams. We show the experimental results of a couple of
simple benchmarks in the next section, although we ex-
amined a long list of benchmarks and applications in our
study.

4. EXPERIMENTAL RESULTS

We have implemented the results in this paper in a
parallel compiler prototype, which performs the depen-
dence analysis and parallel transformations for FOR-
TRAN programs. The prototype computes the (Y, p, y in
Theorem 1, and the initial value of the vectors at com-
piler time, then uses the information for dynamic sched-
uling [9] at the execution time. The parallel code gener-
ated by the prototype is run on a shared memory
multiprocessor simulator based on a commercial system
simulator. The system can simulate 4 to 16 processors,
various sizes of cache memories, various cache coher-
ence protocols, various cache line sizes and various
memory bandwidths of data bus, crossbar, or intercon-
nection network. The processor and the cache in the sim-
ulation system are based on MIPS R3000 and R4000. The

SOLUTION OF CACHE PING-PONG PROBLEM 169

prototype simulates different scheduling strategies also.
They include static scheduling, self-scheduling, and
guided-self-scheduling. The experimental results show
that these scheduling approaches are all slightly different
on the execution performance. However, the technique
presented in this paper to reduce cache ping-pong made a
significant improvement on the execution performance,
no matter which scheduling approach was used in the
experiments. We employ the self-scheduling scheme [9]
in our prototype and simulator, because it is the most
simple scheme in the implementation.

In our experiment, we made the worst-case assump-
tions. The experimental results shown in this section
were based on a machine model with a smaller cache
size, 256 kB, compared to the 32 MB main memory size,
and longer memory access latency, 30 machine cycles.
The bus bandwidth and the cache missing penalty were
supposed to have any hardware synchronization support.
This may be why it only speeds up 1.6 times on a four-
processor parallel processing system for IK X IK Lin-
pack. It should be noted that the purpose of these experi-
ments was not to improve the hardware design. The
purpose was to compare parallel performance on a poorly
designed hardware system with more cache ping-pong to
that of a system with less cache ping-pong using the
results in this paper.

We can see from the table below that by adopting the
proposed approach in our prototype compiler, a 60-70%
performance improvement can be achieved on average
without the enhancement of hardware support. Cache
ping-pong phenomena can destroy loop-blocking, be-

cause data will unnecessarily move back and forth be-
tween cache memories. The results in this paper can help
the blocking array in the multiprocessor, then signifi-
cantly enhance the performance. The approach to inte-
grating the two approaches is obviously beyond the scope
of this paper.

In examining the experimental results, we compared
the parallel code execution with or without the compiler
strategy presented in this paper for the cache ping-pong
problem and found significant enhancement by eliminat-
ing the unnecessary moving back and forth of data be-
tween processors. In the experiment, we assume that the
memory and crossbar bandwidth are proportionally im-
proved when the number of processors is increased.

Gaussian elimination. Gaussian elimination is a basic
matrix operation that is used in many application pro-
grams. We use a 1K x IK array in the experimental
benchmark. The following is the kernel code of the pro-
gram:

DOk= l,N
.
PDOj = k + I, N

DOi=k+l,N
. ..*
A(i, j) = A(i, j) - A(i, k)*A(k, j)lA(k, k)
.*

CONTINUE
CONTINUE

CONTINUE

Number Original
of serial

processors code

4 285.0s
8 285.3s

16 286.2s

Parallel code
with cache
ping-pong

163.5s
109.8s

83.6s

Speed-up
VS

uniprocessor

1.7
2.6
3.4

Parallel code
with less

cache ping-pong

102.2s
59.9s
39.8s

Speed-up
VS

uniprocessor

2.4
4.7
7.2

Improvement by
reducing cache

ping-pong

1.6
1.7
2.1

Linpack benchmark. Linpack benchmark consists of shows, our approach achieved better performance than
vectorized/parallelized code. We chose the loops con- the original parallel code that doesn’t have any consider-
taining SAXPY and SMXPY subroutine calls and inlined ation for the cache ping-pong problem. To make this
these routines in the loops, most of which have three measurement, we use the 1K X IK Linpack benchmark.
level loops: serial, parallel, serial. As the table below

Number Original Parallel code Speed-up Parallel code Speed-up Improvement by
of serial with cache vs with less vs reducing cache

processors code ping-pong uniprocessor cache ping-pong uniprocessor ping-pong

4 514.7s 327.5s 1.6 234.0s 2.2 1.4
8 514.3s 226.9s 2.3 151.3s 3.4 1.5

16 515.2s 161.0s 3.2 94.7s 5.5 1.7

170 LU AND FANG

Number
of

processors

Original
serial
code

Parallel code
with cache
ping-pong

Speed-up
VS

uniprocessor

Parallel code
with less

cache ping-pong

Speed-up
VS

uniprocessor

Improvement by
reducing cache

ping-pong

4 1732.0s 1415.6s 1.3 832.7s 2.1 1.7
8 1734.1s 843.2s 2.1 481.8s 3.6 I .75

16 1735.7s 557.8s 3.1 309.9s 5.6 1.8

A complete application. We also performed the test
on a complete application program benchmark, a compu-
tational chemistry application program. The kernel of the
most frequently used routine has the following form:

DO 100 K = 1, MAX-BOUND
.
PARALLEL DO I = 1, M

.
DO200J= 1,M

X(1 + K, J + I + K) =
.
. . . . = X(1 + K, J + I + K) *

200 CONTINUE
.*.

END- PARALLEL- DO
.

100 CONTINUE

general program models to solve the cache ping-pong
problem. It is not trivial to explore some common pat-
terns in complicated program structures. The second
constraint can be taken off by adding more module calcu-
lations into our results. It will make the theorems and
algorithms very complicated, however, and will tediously
increase the length of the paper. Of course, some mathe-
matical skill has to be introduced in the calculation, but
the idea will remain the same as in the paper. The com-
mon access set of the threads will be modified, as the set
of threads may access the same cache line. Although
research in this area is not completed yet, our efforts are
significant in the sense that they introduce the mathemat-
ical concepts, analyze the array subscript expressions,
and provide the effective approach as a basic solution for
further cache ping-pong elimination tasks in parallel pro-
cessing systems.

REFERENCES

The dimension of array X is 3K x 1K. The table above
shows the results when the modified approach is applied
to eliminate the cache ping-pong.

5. CONCLUSIONS

A compiler technique to solve the “cache ping-pong”
problem which is very interesting and very important in
parallel processing has been developed. In particular, a
very common parallel program structure has been stud-
ied in which parallel loops are enclosed by a serial loop
and the array elements are reused in the parallel loops in
different iterations of the enclosed serial loop. Efforts
have been made to reduce the data movement between
the caches for parallel programs. Methods of calculating
the appropriate parallel loop indices for each processor in
terms of the data stored in its cache have been used.

1. Abu-Sufah, W., Kuck, D. and Lawrie, D. On the performance
enhancement of paging systems through program analysis and
transformations. IEEE Trans. Comput. C-30, 5 (May 1981).

2. Allen, J. R., and Kennedy, K. PFC: A program to convert Fortran
to parallel form. Rep. MASC-TR82-6, Rice University, Mar. 1982.

3. Allen, J. R. and Kennedy, K. Automatic loop interchange. Proc.
ACM SIGPLAN 84 Symposium on Compiler Construction. June
1984, pp. 233-246.

The results in this paper were developed under two
constraints on machine models. We assumed that the
cache memory is of one level and the cache line size is
one word. The first constraint doesn’t affect the results in
our paper too much, because in general both the first
level cache and the second level cache are local to one
processor. If the system has the memory hierarchy and
processor cluster hierarchy, i.e., the second level cache
is shared by a cluster of processors, we have to study
more complicated program structures and set up more

4. Callahan, D., Carr, S., and Kennedy, K. Improving register alloca-
tion for subscripted variables. Proc. ACM SIGPLAN’90 Confer-
ence on Programming Language Design and Implementation.
White Plains, NY, June 20-22, 1990.

5. Callahan, D., Cooper, K. D., Kennedy, K., and Torczon, L. In-
terprocedural constant propagation. Proc. SIGPLAN 86 Sympo-
sium on Compiler Construction, July 1986, pp. 59-67.

6. Fang, J. Z. Cache or local memory thrashing and the compiler
strategy in parallel processing systems. Proc International Confer-
ence on Parallel Processing. Aug. 1990, pp. H-271-11-275.

7. Fang, J. Z., and Lu, M. An iteration partition approach for cache or
local memory thrashing on parallel processing. Tech. Rep. TAMU-
ECE 91-02, Department of Electrical Engineering, Texas A&M
University.

8. Fang, J. Z., Lu, M. An iteration partition approach for cache or
local memory thrashing on parallel processing, in preparation.

9. Fang, J. Z., Yew, C., Tang, T., and Zhu, C. Dynamic processor
self-scheduling for general parallel nested loops. IEEE. Trans.
Comput. 39, 7 (July 1990), 919-929.

10. Kennedy, K. Automatic translation of Fortran programs to vector
form. Tech. Rep. 476-029-4, Rice University, Houston, TX, Oct.
1980.

SOLUTION OF CACHE PING-PONG PROBLEM 171

Il.

12.

13.

14.

15.

16.

17.

Kuck, D. J. The Structure of Computers and Computations, Vol. 1.
Wiley, New York, 1978.
Kuck, D., Kuhn, R., Leasure, B., Padua, D., and Wolfe, M. De-
pendence graph and compiler optimizations. Conf. Record of 8th
ACM Symposium on Principles of Programming Languages. Jan.
1981.
Kuck. D. J., Kuhn, R. H., Leasure, B., and Wolfe, M. The struc-
ture of an advanced vectorizer for pipeline processor. Proc. IEEE
Computer Society Fourth International Computer Software and

Applications Conf., Oct. 1980.
Leasure, B., et. al. PCF Fortran: Language definition by the paral-
lel computing forum. Proc. International Conferences on Parallel
Processing, Aug. 1988.
Padua, D., and Kuck, D. High-speed multiprocessors and compila-
tion techniques. IEEE Trans. Comput., C-29 (Sept. 1980), 763-776.
Wolfe, M. J. Techniques for improving the parallelism in programs.
Rep. 78-929, Dept. of Computer Science, Univ. of Illinois at
Urbana-Champaign, July 1978.
Wolfe, M. Iteration space tiling for memory hierarchies. Proc. of
the Third SIAM Conf. on Parallel Processing, Los Angeles, CA,
Dec. 1-4, 1987.

MI LU received the B.S.E.E. degree from the Shanghai Institute of
Mechanical Engineering, China, in 1981. She received the M.S. and

Received November 5, 1991; revised April 30, 1992; accepted May 20,
1992

Ph.D. degrees in electrical and computer engineering from Rice Univer-
sity in 1984 and 1987, respectively. Mi Lu joined the Department of
Electrical Engineering, Texas A&M University, as an assistant profes-
sor in 1987. Her research interests include parallel computing, distrib-
uted processing, parallel computer architectures and applications, com-
putational geometry, and VLSI algorithms. Mi Lu is a member of the
IEEE Computer Society. She has published over 40 technical papers.
Her research was funded by NSF and by the Texas Advanced Technol-
ogy Program.

JESSE FANG received the B.S. degree in mathematics from Fudan
University, Shanghai, China, and the M.S. and Ph.D. degrees in com-
puter science from the University of Nebraska, Lincoln, in 1982 and
1984, respectively. After graduation, he taught in the Computer Science
Department at Wichita State University and was a visiting senior com-
puter scientist in the Center for Supercomputing Research and Devel-
opment at the University of Illinois, Urbana-Champaign. From 1986 to
1989, he was a consultant member of the technical staff at the Concur-
rent Computer Corporation. From 1989 to 1991, he worked on parallel/
vectorized compiler and supercomputing system design for CONVEX
Computer Corp. as a program manager in the Software Development
Department. He is currently working as a project manager at the
Hewlett-Packard Laboratories to develop compilers for the new gener-
ation of Hewlett-Packard RISC architecture. His research interests are
instruction-level parallel compiler technologies on RISC architecture,
superscalar and VLIW RISC architecture, parallel-processing systems,
parallel/vectorized compilers, and scheduling and synchronization.

