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The cache ping-pong problem arises often in parallel processing 
systems where each processor has its own local cache and employs 
a copy-back protocol for the cache coherence. To solve the prob- 
lem of large amounts of data moving back and forth between the 
caches in different processors, techniques associated with parallel 
compilers need to be developed. Based on the concept in [Fang, 
J. Z., Proc. International Conference on Parallel Processing, Aug. 
1990, pp. 11-271-R-275] regarding the relations between array 
element accesses and enclosed loop indices in nested parallel 
loops, we present an algorithm in this paper to reduce the unnec- 
essary data movement between the caches for parallel loops with 
multiple array subscript expressions. By analyzing the array sub- 
script expressions in the nested parallel loop constructs, the com- 
pilers can use the algorithm to prepare information at compile 
time and let the processor execute the corresponding iterations of 
parallel loops in terms of the data in its cache. It benefits the 
parallel programs in which parallel loops are enclosed by a se- 
quential loop and have multiple different subscript expressions for 
the same array, whose elements are repeatedly used in the differ- 
ent ikratiOnS of the outermost SeqUential loop. 0 1992 Academic PIW, 

Inc. 

1. INTRODUCTION 

An important task of a parallel compiler is to identify 
the parallel nature contained in a sequential program and 
to generate parallel code implemented on a parallel archi- 
tecture. Recently, parallel compilers such as the Illinois 
PARAFRASE compiler [ 11, 13, 161 and the Rice Parallel 
Fortran Converter 12, 3, 51 incorporating a new theory 
and advanced technology have been developed. 

It is assumed in most of the compiler systems that 
shared memory architectures are provided and a large 
memory block is directly addressable by all the proces- 

* This research was supported by the Texas Advanced Technology 
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sors in equal time intervals. However, the hierarchical 
memory system is widely applied in today’s parallel sys- 
tems. In many new products such as MIPS, IBM RIOS, 
SPARC, and Intel 860 which combine the semiconductor 
with the compiler back-end technique, a private cache is 
associated with each processor. To increase the memory 
bandwidth, more than one level of cache may be used, 
and the size of the cache may be very large. It should be 
noted that the time to access a private cache is much 
shorter than the time to access the global memory or the 
caches of other processors. 

Poor cache hit ratios in such hierarchical memory 
multiprocessor systems are due to the following two rea- 
sons: the data requested by a processor are in the global 
memory and the data requested by a processor are in the 
caches of other processors. The first case can be handled 
by the traditional approach of cache utilization used in 
uniprocessor systems, in which it is desirable to keep 
frequently used data as much as possible in cache or local 
memory. One of the hardware solutions for obtaining 
high cache hit ratios is to provide large-size caches. How- 
ever, when the parallel code is executing, the frequently 
used data may be shared by multiple processors which 
run the multiple threads of a parallel program at the same 
time. Therefore, increasing cache size cannot improve 
cache hit ratios in parallel program execution. A large 
cache size may even result in severe inefficiency when a 
parallel code requires that data move back and forth be- 
tween the caches of different processors. This phenom- 
ena is called “cache thrashing” in shared memory multi- 
processor systems [6]. The time needed for a processor 
to access the caches of other processors is close to that 
needed to access the global memory, since both of them 
must go through the data bus or interconnection network. 
Furthermore, it may be even longer than the global mem- 
ory access time because of the increase in the traffic on 
the data bus or interconnection network and hence the 
degradation of the bus or network bandwidth. 
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Past research in this area has been focused on improv- 
ing the data locality by restructuring the program, which 
may enhance the cache hit ratio on both uniprocessor and 
multiprocessor systems. Similar phenomena have been 
studied for virtual memory systems. Abu-Sufah et al. 
presented some source program transformation tech- 
niques to improve the paging behavior of the programs 
[ 11. These transformations, referred to as “loop-block,” 
include breaking iterative loops into smaller loops (strip- 
mining) and then recombining and reindexing these 
smaller loops (loop-fusing and loop-interchange). Since 
then, a number of loop-blocking algorithms have been 
developed for different computer architectures such as 
“loop-tilting” [17] and “loop-jam” [4]. These algorithms 
exploited and took advantage of the high degree of data 
reuse for the computation within a block. However, for 
most of the parallel code with complicated program 
structures, the benefit from blocking algorithms is very 
limited. For instance, when a parallel loop nest is en- 
closed by a serial loop and there is a loop-carried data 
dependence in the outermost serial loop, if the data are 
repeatedly used in the different iterations of the serial 
loop, the blocking technique cannot avoid the cache ping- 
pong for the data with dependence in the outer loop and 
independence in the enclosed parallel loop. 

Recent research on the cache or local memory ping- 
pong problem by Fang [6] presented an overview of 
mathematical concepts for the problem. The concept de- 
fines the relation between the array element accesses and 
the enclosed loop indices in nested parallel constructs. 
The relation determined by an array subscript expression 
can be used to partition the iteration space into equiva- 
lence classes. All vectors in an equivalence class may 
access some common array elements at execution time. 
However, the method for calculating the next vector in 
an equivalence class from the previous vectors [6] is 
based on an assumption which allows only one subscript 
expression for an array variable in the nested loop. This 
assumption limits the results in [6] to be applied to real 
application programs. In this paper, we present an algo- 
rithm to solve the “cache ping-pong” problem for more 
general nested parallel constructs, in which an array vari- 
able may have more than one subscript expression in the 
same or different statements of the loop body. The algo- 
rithm is executed in an on-line fashion, finding for a linear 
integer system the next vector from a sequence of the 
stored vectors. 

The rest of the paper is organized as follows. In Sec- 
tion 2, the cache or local memory ping-pong problem on 
our simple machine model is introduced. In addition, the 
preliminary concepts and the overall approach to solving 
the cache ping-pong problem on our simple program 
model are presented. We describe in Section 3 the main 
results in a simple case which has only a single array 

subscript expression. These results are then extended to 
the more complicated case which involves multiple sub- 
script expressions or multiple array variables. Algo- 
rithms for eliminating the unnecessary data movement 
between the caches are presented. Section 4 shows the 
experimental results in a parallel compiler prototype. 
Parallel code is executed with or without the proposed 
compiler strategy and the results are compared. Finally, 
the paper concludes with Section 5. 

2. BACKGROUND 

2.1. Machine Model 

In a shared memory multiprocessor system, a number 
of processors and global memory modules are connected 
by data-bus or interconnection network. Concurrent exe- 
cution of multiple threads in parallel programming is en- 
sured by a set of primitives, provided by the system, 
including fetch/increment or semaphore instructions. 

In most of the processor design, the cache has the 
following characteristics: (1) local to a processor, (2) its 
size is large enough, (3) it uses copy-back and coherence 
strategy, (4) its line size is more than one word. In order 
to simplify the presentation, in this paper we assume that 
the cache memory is of one level and the line size is one 
word. 

2.2. Cache Ping-Pong Problem 

In a parallel program, a thread is referred to as the 
execution of a piece of code specified by parallel con- 
structs [ 141. It can be viewed as a unit of programmer- 
defined or parallel-compiler-specified work. As in a com- 
mon parallel construct, a thread in a parallel loop is the 
execution of an iteration (or a chunk of iterations if we 
use strip-mining or other techniques) of the loop, and the 
threads are spawned when entering the parallel-loop 
merge at the end of the loop. The order in which the 
iterations of the loop are performed is arbitrary, and the 
processor on which the parallel loop is entered is not 
necessarily the same one on which the code following the 
parallel loop is executed. 

In addition, parallel loops may be nested with sequen- 
tial constructs when executed on multiprocessor sys- 
tems, and some frequently used data may be repeatedly 
used and modified by different threads. If the threads 
accessing the same data are not assigned to the same 
processor, the set of data may be unnecessarily moved 
back and forth between the caches in the systems. This 
phenomena is called the cache ping-pong phenomena in 
shared memory multiprocessor systems. 

The following example [6] shows the problem in a 
nested parallel construct: 



160 LU AND FANG 

DIMENSION A(lOOO, 1000) 

I=0 
WHILE-DO 10, 100 
1=1+1 

. . . . . . 
PDO 20 J = 1, 100 

. . . . . . 
DO30K = 1, 100 

. . . . . . 
s: A(1 + 2”J + 5*K, I + J + 3°K) 

= A(1 + 2*J + 5*K, I -t J + 3*K) + . . . 
30 CONTINUE 

. . . . . . 
20 CONTINUE 

. . . . . . 
10 CONTINUE 

In this example the statement S does not have any data 
dependence in the DO .Z loop. If there is no other loop- 
carried dependence between the statements of the loop 
body, the J loop can be parallelized. There are a total of 
10,000 threads TI,J in the execution of the parallel loop 
(both Z and J range from 1 to 100). Each thread requests 
100 elements of array A. Many of the array elements are 
repeatedly accessed in these threads. 

For instance, thread T1,, requests data A(8,5), A(13,8), 
A(18,11), A(23,14), . . . . A(498,299),A(503,302) for the in- 
nermost serial loop with index K from 1, . . . , 100, respec- 
tively. Meanwhile, thread T2,3 requests data A(13,8), 
A( 18,11), A(23,14), . . . . A(498,299), A(503,302), 
A(508,305) and thread T3,5 requests data A(18,l I), 
A(23,14), . . . . A(503,302), A(508,305), A(513,308). It can 
be observed that there exists a list of threads, T1,, , T2,3, 
T3,5, TV, . . . . T49,99, which reuse most of the array ele- 
ments accessed in the previous thread. If the threads of 
the list are assigned to different processors, the data of 
array A are unnecessarily moved back and forth between 
caches in the system. 

For instance, when Z = 1, thread T1,, is assigned to 
processor 2. Note that loop Z is serial. After the first 
iteration of loop Z is completed, the processors need to be 
reassigned for the threads of the second iteration of loop Z 
that contain a parallel loop J. If thread T2,3 is assigned to 
processor 4, 99 array elements need to be moved from 
the cache in processor 2 to the cache in processor 4. This 
unnecessary data movement not only slows down the 
execution, but also degrades the bus or network band- 
width because it tremendously increases bus traffic. If 
thread T3,5 is assigned to processor 2 in the third iteration 
of loop I, these data need to be moved back from the 
cache in processor 4 to the cache in processor 2. 

In general, loops are the largest resource for parallel- 

ization in application programs. Parallel loops are the 
most common parallel program structures either defined 
by user directives or detected by automatic parallel com- 
pilers. The cache ping-pong phenomena shown in the 
above example are very common in the parallel code for 
scientific computations. 

In order to gather evidence of the array access patterns 
in a wide range of applications, we studied a large num- 
ber of benchmark programs. They include the Linpack 
benchmark, the Perfect Club benchmark, and application 
programs in mechanical CAE, computational chemistry, 
image and signal processing, and petroleum applications. 
These benchmarks were analyzed by PROFILE to recog- 
nize the most expensive routines and loop nests at execu- 
tion time, which were chosen for future research. We 
found that almost all of the most time-consuming loop 
nests contain at least three level loops. About 60% of 
these loop nests contain at least one level parallel loop 
[7]. Ninety-five percent of the parallel loops can be 
moved from the innermost loop after using the loop- 
interchange technique. Only 6% of the parallelable 
nested loops have the parallel outermost loop. Ninety- 
four percent of parallel loops are enclosed by serial 
loops; that includes the loop nests in which a parallel loop 
appears in the outermost loop level in a subroutine, but 
the subroutine is called by a call-statement contained in a 
serial loop. Most of these loop nests are not perfect- 
nested. Fifty-three percent of the nested loops involve 
only one major array, which usually is two-dimensional 
or three-dimensional with a small size in the third dimen- 
sion. Most of the loop bounds are passed by parameters, 
while there are a few simple triangular nested loops. 
Eighty-three percent of the array variables in the parallel 
program structures have more than one subscript expres- 
sion either in the same parallel loop or in the different 
parallel loops enclosed by the same serial loop. This pa- 
per intends to solve the cache ping-pong problem in pro- 
gram models in which parallel loops are enclosed by a 
single serial loop and may contain other loops with multi- 
ple array subscript expressions in the loop body. This 
model can cover almost half the parallel loop nests in our 
study for a wide range of benchmarks in applications. If 
more than one serial loop encloses the parallel loops, 
only the inner serial loop needs to be concerned in the 
program model. If more than one level of loops, either 
parallel or serial, are enclosed by the parallel loops, only 
the outer loop needs to be concerned. The model allows 
multiple subscript expressions in the parallel loops, but 
only uses a single array variable. The multiple array vari- 
ables with multiple subscript expressions are not in- 
cluded in the model discussed in this paper. More re- 
search is required to create a general rule to handle the 
cache ping-pong problem in more general program 
models. 
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2.3. Preliminaries 

In this section, the preliminary concepts relevant to the 
iteration space and data dependence analysis are re- 
viewed and the notations used in this paper are intro- 
duced. 

Standard definitions are used to analyze the array ac- 
cesses [2, 3, 5, 11, 13, 161. Considering a nested parallel 
construct of k loops in the following form: 

DO I, = L.1, U1 
. . . . . . 
DO I1 = Lz, Uz 

. . . . . . 
DOZ, = Lk, Uk 

. . . . . . 
s,: A(h(Z,, Z,, . . . . Zk) + a) = . . . 

. . . . . . 
s*: . . . = A(g(Z,, Z2, . . . . Z,) + h) + . . . 

. . . . . . 
30 CONTINUE 

. . . . . . 
20 CONTINUE 

. . . . . . 
10 CONTINUE 

where array A is of dimension d, and both a and h are 
offset vectors in Zd. It is not necessary that this loop be 
perfect-nested. The loop bounds are not required to be 
constants. The functions h and g are linear: 

h,g:Zk-+Zd. 

The iteration space denoted as C is defined by the prod- 
uct n&l N,, where Nj is the range of the jth index, [Lj : 
Uj]. The domain space denoted as D is defined by the 
product nt, Mi, where 44; is the size of array A in the ith 
dimension. Any array subscript expressions in the state- 
ments of a parallel nested loop can be more precisely 
defined by 

h,g:C+D 

or we say that the array subscript expressions define the 
map 

There exists a total order in the iteration space C de- 
fined by the point in time at which the element is exe- 
cuted. If we say a vector t is greater than a vector s, 
where 

t = (tl, t2, . . . . tk) 

and 

s = @I, s2, . . . . Sk), 

then there is a point m, which is in the range from 1 to k, 
such that ti = Si for i < m and t, > s,. 

The standard data dependence definition [lo, 12, 151 is 
given as follows. If two statements access the same mem- 
ory location, we say that there is a data dependence be- 
tween them. 

In general, if a dependence is inside a loop, the depen- 
dence is called loop-independent dependence. If a depen- 
dence is across the iterations of a loop, it is called loop- 
carried dependence. 

Loop-independent dependence does not cause the 
cache or local memory ping-pong problem if an iteration 
of a parallel loop must be performed by one thread. Dis- 
tance vector [2, 3, 131 in dependence analysis shows the 
distance between two iterations that reference the same 
memory location. If the distance is t, a loop-carried flow 
dependence from Sr to S2 within a DO Z loop has at least 
one variable which is computed in S1 and referenced in S2 
after t iterations. The DO Z loop should be executed se- 
quentially or synchronized by some additional synchro- 
nizer to keep the execution order of the statements with 
the dependence. 

Dependence analysis associated with a distance vector 
is a good approach to describing the data reference rela- 
tionships between iterations in a loop. However, the 
cache or local memory ping-pong problem involved in 
multilevel loops in a nested parallel construct is more 
complicated. Furthermore, some loops do not have an 
explicit distance vector such as the example given in Sec- 
tion 2.2, but they can be parallelized by the Banerjee test. 
The dependence analysis approach is not enough to de- 
scribe the nature of the cache ping-pong problem. 

The overall nature of the cache or local memory ping- 
pong problem in the simple program model in Section 2.2 
is described below. If the outermost loop is a parallel one 
in a nested parallel construct, there is no cache ping-pong 
problem, because the different parallel loop iterations 
never access the same memory location. If the outermost 
loop is serial, and encloses parallel loops, the depen- 
dences carried by the serial loop may cause the data to 
move back and forth between the threads that execute 
the parallel loops in the different iterations of the outer 
serial loop. Some array elements may be reused in the 
different iterations of the outermost serial loop due to the 
loop-carried dependences. Meanwhile, these array ele- 
ments need to be moved between the caches of proces- 
sors in each iteration of the outermost serial loop due to 
the parallel loops enclosed by the serial loop. 

To help develop our algorithm to solve the cache ping- 
pong problem, we put two major constraints on our pro- 
gram model. 
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The first constraint is that this paper concentrates on 
parallel nested constructs in which only one-level loops 
are parallel or in which multilevel parallel loops may exist 
but only one-level loops are parallelized. This constraint 
is reasonable in order to match the simple machine model 
described in Section 2.1, which does not have the hard- 
ware processor cluster. 

ily perfect-nested. There may exist more than one paral- 
lel loop in the middle level enclosed by the single outer- 
most serial loop. Loop bounds can be any variables. 
These loops contain only one array variable with multiple 
subscript expressions. The program structures are not 
important as long as the data dependence uses a unique 
iteration space. 

The second constraint is that we assume all depen- 
dences in the nested parallel construct use a unique itera- 
tion space. Usually, this assumption is not acceptable in 
application programs. If two parallel loops have different 
loop bounds, the iteration spaces must be different for the 
dependences carried by the loops. However, the map- 
ping and transferring of iteration space will make the 
main results too complicated. It will also make the proofs 
tedious. The results presented in this paper can be ex- 
tended to a general program model without the constraint 
by applying the space transformation technique onto the 
iteration spaces, which is similar to, but much more diffi- 
cult than, the linear space transformation. 

To simplify our discussion for the paper, we have the 
following assumptions in the program model, 

3.1. Mathematical Concepts 

Most definitions and lemmas in this section are ex- 
tended from the definitions and theorems given in [6] in 
the sense of considering multiple array subscript expres- 
sions rather than only a single expression. 

DEFINITION 1. Reduced Iteration Space is a subspace 
of the iteration space for the parallel constructs described 
in Section 2.3 obtained by removing the dimension of the 
innermost loop index. For the example program in Sec- 
tion 2.2, the reduced iteration space is [l ... 1001 x 
[I .*. 1001. 

1. All functions representing array subscript expres- 
sions are linear mapping: C + D. 

2. There are only one-level parallel loops in the nested 
parallel construct, which are enclosed by an outermost 
serial loop. 

A linear function h defined in the program model, i.e., 
specified by an array subscript expression, is a map from 
the reduced iteration space, N x M, to the set of subsets 
of the domain space 

3. There may exist a one-level serial loop enclosed by 
the parallel loops. 

4. All data dependences in the nested parallel con- 
struct use the same iteration space. 

The program model on which we develop the main 
results may have three loop levels, the outermost serial 
loop, the middle parallel loop level, and the innermost 
loop level, either serial or parallel. They are not necessar- 

where the upper bounds of the outermost serial loop and 
the middle parallel loop are N and M, respectively. The 
dimensions of the array are Dr x &. 

The following example illustrates the typical parallel 
program structures, which contain three level loops and Y 
different array subscript expressions. 

DOi= 1,N 
. . . . . . 
PDOj = 1, M 

. . . . . . 
DOk =l,L 

. . . . . . 

3. MAIN RESULTS 

h : N x M + ZDlxD2, 

A(ai,ii + br,ij + cl,tk + di,r, ai,zi + br,2j + c1,2k + d1,2) = . . . 
. . . . . . 
. . . = A(az,ri + b2,lj + c2,lk + d2.1, a2,zi + &j + cz,zk + &,2) + . . . 
. . . . . . 
A(a,ii + b,,ij + c,,,k + d,,i, ur,2i + br,2j + c,,& + dr,2) = . . . 
. . . . . . 

30 CONTINUE 
. . . . . . 

20 CONTINUE 
. . . . . . 

10 CONTINUE 
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The linear function h, is 

fm(L j, k) = a,,b + b,,l.i + cm,& + &,I 

and 

gd, j, k) = urn,4 + &,A + cm,& + &,2, 

where m is in the range from 1 to Y, assuming there are r 
different array subscript expressions in the parallel con- 
struct . 

To collect the sets of vectors in the reduced iteration 
space, which may access common memory locations 
within the corresponding threads, we define a set of ele- 
ments of array A, which are accessed within thread TiO,j,, 
by linear function h,(i, j, k) associated with the mth sub- 
script expression as follows. 

DEFINITION 2. For a given pair io and jO, the set of 
elements A(fm(io,jo, k), g,(io,j,, k)) of array A, which are 
accessed within thread TiO,jO by a statement subscripted by 
the linear function h,(i, j, k), is denoted by A!‘$ where 
lcrk5Landlsm<r. 

Afzjo = Mf,Go, Jo, 4 g,(io,j~, W 1 
for a given i. and jo, where k E [ 1, L]}. 

Since bothf, and g, are linear in terms of i, j, and k, it 
is obvious to have the following lemma, which is useful in 
the rest of this section, 

LEMMA 1. In a program structure described above, if 
there exist two vectors in iteration space, (i, j, k) and 
(i’, j’, k’), such that 

f,(i, j, 4 = fm(i’, j’, k’) 

and 

g,kj, 4 = g&‘,j’, k’), 

then for any constant no, we have a series of vectors in 
the space, (i, j, k + no) and (i’, j’, k’ + no), satisfying the 
equations 

and 

fm(i, j, k + no) = fm(i’, j’, k’ + no) 

g,di,j, k + no) = g&i’,j’, k’ + no), 

where 1 5 k’ + no 5 L and 1 5 k + no i L. 

It is clear from Lemma 1 that if 

then threads Ti,,j, and Ti2,j2 should be assigned to the same 
processor, because they may access some common ele- 
ments of array A subscripted by the linear function h,. 

LEMMA 2. In the program model described in Section 
2.3, we have two vectors (i, j, k) and (i’, j’, k’) holding the 
equations 

fmG,j, 6 = .M’,j’, k’) 

and 

gAi,j, k) = di’,j’, k’), 

if they satisfy the following conditions: 

.I 1 - i = (Y, = b,,,, c,,,~ - bm2 c,,,~ 3 , I 1 

j ’ -J = Pm = am,2 cm,1 - am,1 cm.2 

k’ - k = Y,,, = a,,,,] bm,2 - am,2 &,I. 

In the example program shown in Section 2.2, m = 1, 
(Y = 1, p = 2, and y = -1. 

DEFINITION 3. For a given pair i. and jo, the data set 
of elements of array A denoted by AiO,jO, which may be 
accessed within thread Tio,j~ by the statements referring to 
the array variable A, is the union of the sets AirjO, where 
m ranges from 1 to r. 

It is clear from the above description that if 

then threads Ti,,jl and Ti2,j2 should be assigned to the same 
processor, because they may access some common ele- 
ments of array A at the execution of the parallel con- 
struct. 

DEFINITION 4. In the program model described in 
Section 2.3, for a given pair io and jo, the common access 
set UiO,jO denotes a set of vectors (i, j) in the reduced 
iteration space of size N x M, satisfying the condition 

Ui”,j, = {G, j> ( Aio,jo n Ai,j f 0). 

Using the program shown in Section 2.2 as an example, 
ULI = {(l,l), (2,3), (3,5), . . . . (49,97), (50,99)}. 

By Lemma 1, the definition can be described as 

UiO,jO = {(i, j) ) 3 ko and k, m. and m such that 

fmo(io, jo, ko) = f,(i, j, k) and g,,(io, jo, ko) = g,(i, j, k)}. 

UiO,jO is the set of threads that may access some com- 
mon elements of array A. Actually, Definition 4 defines a 
relation in the reduced iteration space. We call a relation 
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R in space SP satisfying the following condition an equiv- 
alence relation: 

if a R b and b R c, then a R c, for a, b, c E SP. 

The equivalence relation can be used to partition the 
space into several equivalence classes. They are disjoint 
and cover the entire space. The relation defined in Defini- 
tion 4 is an equivalence relation and Ui,,j, is an equiva- 
lence class in the reduced iteration space. The detailed 
proof can be found in [6] and [7]. The limitation of [6] is 
that it only concentrates on a simple case-array A has 
only a single subscript expression in the loop nest. This 
paper describes an approach to solve the cache ping-pong 
problem in a more complicated case-array A has more 
than one subscript expression in the program model. This 
approach provides an algorithm to calculate the next vec- 
tor (i2,j2) from the current vector (i, ,jJ in an equivalence 
class at execution time. 

In order to develop an approach to compute the vector 
series in set Ui~,j”, we need to introduce some necessary 
notations. In the above example, for the linear function 
h,, where 1 I m % Y, let us denote: 

%I = hn,l cm,2 - bm,z cm,] 

Pm = a,,~ cm,2 - am,2 cm,1 

Ym = am,2 b,,l - a,,~ bm,2. 

3.2. Partition of Iteration Space 

As shown in Section 3.1, each linear function h,, 
where 1 5 m 5 Y, gives a particular value of (Y,, Pm, 
and y,,,. 

Section 3.1 gave the definition of a set of vectors (i, j) 
in the reduced iteration space, UiO,j,,, in which each vector 
may access some elements of array A that are referenced 
in thread TiO,jO for the given pair (io,jo). 

LEMMA 3. The set of vectors (i, j) in Dejinition 4, 
UiO,jO, is the same set shown below, if there is only one 
linear function in the parallel construct, indicated by the 
superscript (1). 

Now we extend the definition from one linear function 
to r linear functions in the parallel loop. As shown in the 
program model in Section 3.1, there are r pairs of sub- 
script expressions for an array variable. Hence, we have 
a list of r triples: (al, PI, rl), (a2, P2, 721, . . . . (ah Pm, -yJ, 

. ..) car, PI> rr). 

If the relationship defined by the following definition 
can partition the reduced iteration space, then the corre- 
sponding threads may access some common elements of 

the array that are stored in the local cache by thread Tio,jcl 
for given (iO, j,). 

DEFINITION 5. In reduced iteration space of loop i 
and loop j, if there are r different pairs of subscript ex- 
pressions for an array variable, we define the set of the 
pairs of i and j so that the corresponding threads may 
access some common elements of the array subscripted 
by these linear functions, which are accessed in the cache 
or local memory by thread Tio,jo. 

Sf~~, = [ (i, j) 1 i = i0 + i pm X CY, and j 
I WI=1 

=j0 + i pm x Pm forp,, . . . . PrEZ. 
??I=1 I 

THEOREM 1. The set of vectors in a reduced iteration 
space of loop i and loop j, Sii:j,, dejined in Dejinition 5, is 
a subset of the set of vectors Ui,,j, deJined in DeJinition 4. 

The proof is straightforward following Lemma 2 and 
Lemma 3. All the threads corresponding to the vectors in 
Sii!jO may access some common array elements at the exe- 
cution of the parallel construct. Since Definition 5 is only 
a subset of Definition 4, the approach described in the 
paper is not the optimal solution for the cache ping-pong 
problem, but it can significantly reduce the cache ping- 
pong phenomena at execution time. The following theo- 
rem shows that the relation defined in the above defini- 
tion can partition the reduced iteration space. Therefore, 
we can reduce the unnecessary data moving between 
processors and improve the system performance. 

THEOREM 2. SfzjO is an equivalence class in the re- 
duced iteration space of loop i and loop j. 

Proof. If we have 

then there exists (i, j) belonging to both Sji!j, and Si::, . 
Therefore, there exist pI, p2, . . . . pr such that 

i = io + i pm x cl, 
m=I 

j=.i0+ ipmxPm. 
t??=l 

Meanwhile, there exist pi, pi, . . . . pi such that 

j=.h+ CpLx&. 
fTl=l 
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So, we have 

I 
i,=i- i PL X ffm = i0 + C (pm - ph) x ff, 

ITI=1 m=l 

Therefore, 

In the same way, we have 

(i0, jo> E SI:!j,. 

Finally, we have 

By Theorem 2 and Definition 5, it is obvious that there 
is less memory access from one processor to the caches 
or local memories of other processors, if all the threads in 
the same equivalence class are assigned to the same pro- 
cessor. We describe the fact in Theorem 3 and omit the 
proof. 

THEOREM 3. Every thread Ti,j E Sfi!j, may reuse some 
data in other threads belonging to the same equivalence 
class S$f,, which can signijicantly reduce the access of 
the data referenced by the threads belonging to other 
equivalence classes. 

3.3. Computing Vectors in an Equivalence Class 

To assign all the threads belonging to the same equiva- 
lence class to the same processor at execution time, an 
iterative algorithm is designed to calculate the next vec- 
tor in S~~!jO in terms of the current vector. The algorithm 
can be used to compute the current loop index of the 
middle parallel loop from the current outermost serial 
loop index and the previous serial and parallel loop 
indices. 

The initial vector for each equivalence class, Sii!j”, or 
the initial value of (p,, . . . . pJ needs to be prepared at 
compilation time. The lower loop bound of the outermost 
serial loop is the initial value for io. All the other indices 
of the outermost loop, whose value is less than min(cwl, 
. ..) CXJ, are initial too. For the given initial value of io, by 
Definition 5, it may be required to find all the possible (p,, 
. . . ) pl.> such that x:‘,=I pm x CX,, = 0 to calculate the initial 
value ofjo, but it is not necessary. In the program model 
shown in Section 2.2, Loop .Z is parallel. For any fixed io, 
there do not exist j, and j, such that 

By this assumption, a string (~1, . . . . pJ satisfying the 
above equation must satisfy another equation xh=, pm X 
pm = 0. 

Therefore the algorithm to compute the initial vector 
for each equivalence class, S!zj,,, is straightforward. First 
let io equal the lower bound of loop I; we have M initial 
vectors (io, j), where j ranges from 1 to M in our program 
model, for M equivalence classes. The list of (p,, . . . , pJ 
satisfying the equation x.‘,=, pm x (Y, = 0 is computed, 
which is useful in finding the initial value of jo as well as 
the next vector in the equivalence class at the execution 
time. Then increasing the value of io, we calculate the list 
Of(Pl, .*., pJ in the same way as in the first step until the 
value of io is equal to min(cY,, . . . . cu,). This computation 
needs to solve the integer linear equation CL= I pm x Pm = 
0. However, this is at the compilation time, so our ap- 
proach does not affect the execution performance al- 
though the algorithm to solve the integer linear equation 
has high time complexity. 

From Definition 5, we need to find the next vector in an 
equivalence class in the increasing order of component i. 
Assuming the initial vector is given, we are to compute 
component j step by step. Let an integer linear system L : 
{p, CY, I} be defined as follows: 

p = (Pl, P2, *..> PrY 

a: = (aI, ff2, . ..> 4 

I=a.p 

where 1 5 I I N with N being a positive integer, and (Y, p 
are all r-dimensional positive integer vectors. 

Consider the following problem: given initial p”, find p1 
such that no p’ E Z+r satisfies a * p” < a * p’ < a * p’, 
Furthermore, given pi, find pi+’ such that there exists no 
p’ satisfying (Y . pi < (Y . p’ < (Y * pi+‘. We first give a graph 
representation of the system. 

DEFINITION 6. A labeled digraph G = (V, A, W) for 
the above integer system is defined as 

l v = {I’, 12, .  . . )  I”}, where I’ < Z* < . . . I” 
l A = {(I’, I”)10 I 1 < 1’ 5 n and 3a, such that I” = 

I’ + a,} 
l {w(Z’, I ” )  = am 1 z ” = I1 + a, for (I’, I”) E A}. 

According to the definition, each arc (I’, I”) in G is 
associated with a label, say (Y,. If u(Z’, I”) is an r- 
dimensional mth unit vector, then (Y,,, = (Y * u(Z’, I”) for 
(Z’, Z”) E A. 

The following lemma describes the path which can be 
found in the constructed graph in terms of unit vectors. 

LEMMA 4. Let I” and I’ be the two nodes in the di- 
graph dejked by Dejinition 6, and I” = CY . p” and I’ = CY . 
p’. There is a path r from I” to I’ such that m = Z’l,Z’2, . . . , 
Z’P, where 1’1 = I” and Z’P = I’, if and only if 
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p-1 

p’ = p” + 2 u(Z$ zlk+l). 
k=l 

Proof. From Definition 6, we have 

I’ = Z/p-’ + W(Zb’, I’) 

z/p-1 = I$-2 + w(Zlp-2, Z’p-1) 

. . . 

1’2 = I" + W(Z'l, 1'2) 

p-1 

1’ = 1” + 2 w(Zk, z’k+‘). 
k=l 

Notice that w(Z’k, Z/~+I) = (Y . u(zlk, z’k+l) and 1 = (Y . p, we 

have 

p-1 

I’ = I” + 2 a * u(h, z/k+‘) 
k-1 

and 

p-1 
p’ = p” + 2 u(z’k, z/k+]). W 

k=l 

This exploited the relationship of p” and p’ such that 
there exists a path from I” to I’. The definition below 
defines the concepts of accessible node and addressable 
digraph . 

DEFINITION 7. Let G be a digraph described in Defi- 
nition 6. A node I’ E V is accessible if and only if there 
exists a path from I1 to I’. 

If all the nodes in the digraph are accessible, the di- 
graph is referred to as an addressable digraph. 

As an example, the addressable digraph for Z = 3p, + 
7p2 is shown in Fig. 1. 

COROLLARY 1. In an addressable digraph, for any 
node I’ with 1’ > 1, there exists another node I’ and 
coejjjcient CY, such that the corresponding pi and p” sat- 
isfy p” = p’ + u(a,). 

Proof. In fact, 7~’ = Z/I, Z/2, . . . . Z&l is a subpath of 
path rr = Z/i, Z/2, . . . . Zip defined in Lemma 4. If we let 

3 6 7 9 IO 12 13 14 

FIGURE1 

I’ = Z/P-I and I” = Z/P, then applying Lemma 4 to the 
subpath +, we have 

p-2 

p’~vl = p’l + 2 u(zlk, zIk+l). 
k=l 

Comparing it with 

p-1 

P’P = p” + c u(& zk+l), 
k=l 

we have p/p = p/p-l + u(Zlp-1, Z/P), that is, p” = p’ + 
u(%J. n 

This means, in an addressable digraph, I” can be al- 
ways found from I’ by tracing the arc A(Z), I”). Corre- 
spondingly, given the vector p’, we can always find p[ by 
applying the unit vector ~(a,), and vice versa. 

LetZ1,Z2, . . . . I’, . . . . Zq be a sorted sequence of positive 
integers for an integer linear system Z = a! . p satisfying 
the condition that there exists no p E Z+” such that I’ < 
CY * p < I’+’ for 1 = 1, 2, . . . . 9 - I. We consider the 
following problem. 

Given the initial vector p”, find p’ such that there is no 
p’ satisfying (Y . p” < (Y * p’ < (Y * p’. Interactively, given 
p’, find PI+’ such that there is no p” satisfying CY . p’ < a . 
p” < a * p ‘+I This problem is to be solved in an on-line . 
fashion. 

According to Lemma 4 and the Corollary 1 described 
previously, all the Z1+’ in the above sequence can be 
found by Zk + (Y,,, for some k. Meanwhile, p’+’ can be 
found by pk + ~(a,) correspondingly. Note that CY, may 
not exist for some m = 1, 2, . . . . r. 

Consider an addressable digraph representing the 
above system. We first define the relationship between 
the nodes I’ and I’+‘, and the relationship between the 
nodes I’+’ and Zk as described. 

DEFINITION 8. Given an addressable digraph as de- 
fined in Definition 7 representing an integer linear sys- 
tem, node I’+’ is referred to as a successive node of node 
I’ if there is no p E Z +r suchthatZ’<a.p<L’+l,forl= 
1, 2, . ..) q - 1, and is denoted as successiue(Z’). Node Zk 
and node Zk’ are adjacent nodes if they are connected by 
an arc pointed from Zk to Zk’. Zk is the start node of Zk’ 
associated with LX,,, denoted as start-nodea,( and Zk’ is 
the end node of Zk associated with (Y,, denoted as end- 
node,,JZk). 

If Z’ = (Y . p’ and I’ = (Y . pl+l, then p’+’ is referred to as 
the next vector of p’. 

Note that the out-degree for each node I’, 1 I q - 
max(al, . . . . (Ye}, is r where r is the dimension of the sys- 
tem. However, the in-degree of a node could be less than 
r in any case. 
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DEFINITION 9. If the in-degree of a node given in the 
digraph defined in Definition 8 is equal to r with r being 
the dimension of the vector p, then the node is referred to 
as a fill node. 

LEMMA 5. Let zj and Zk be the start nodes of I’ associ- 
ated with oJ and (Yk, respectively. Assume the successive 
nodes of Zj and I” are Zj’ and Zk’, respectively. In other 
words, ZJ = start-nodeqj(Z’), I” = start-node,,(Z’), succes- 
sive(ZJ) = Zj’, and successive(Zk) = Zk’ (see Fig. 2). ZfZf - 
Zj < Zk’ - Zk, then end-node, - I’ < end-node,, - Zh. 

Proof. Since 

end-nodeaj(P’) = Zj’ + oj 

end-node,,(Zk’) = Zk’ + (Yk, 

end-nodeaj(Zj’) - I’ = If + ~j - I’ 
= ZY - Zj 

and 

end-nodea, - I’ = Zk’ - Zk 

for the same reason. Thus Z-j’ - Zj < Zk’ - Zk results in 
end-nodeaj - I’ < end-node,, - Zk. n 

THEOREM 4. Suppose that node I’ is a full node and p’ 
corresponds to I’. Consider all the start-nodes,,,,(Z’), for 
m = 1, 2, . . . . r, and successive(start-nodes,,(l’)). Zf 
m = m. such that 

successive(start-nodes~~O(Z’)) - start-nodes,r7,,(Z’) (1) 

is the minimum, say Amin, then successive(Z’) = I’ + Amin. 
Zf successive(start-nodes,m,(l’)) = ZjO and the corre- 

sponding input of the system is pj, then the next vector of 
I/ is $0 + ~(a,~). 

This theorem can be proved by applying Lemma 5 in- 
ductively 

COROLLARY 2. Zf I’ is not a full node, and start- 
nodes,m.(Z’) do not exist, then I’ - cy,,,’ should be used to 
substitute it in (l), and successive(start-nodes&Z’)) 
should be node Ij such that Zj - (I’ - (Y,,) > 0 and ZJ - 
(I’ - a,,,,) > 0 is the minimum, for all 0 5 j i q. 

If we consider I’ - (Y,, as a virtual node, similar proof 
as for Lemma 5 can be used for this corollary. 

Given a vector p’ as described in Definition 7 and Defi- 
nition 8, the next vector of p’, pl+‘, can be found by the 
following algorithm. 

ALGORITHM NEXT. 
input: a sequence of vectors p’, p2, . . . , p’ {to the inte- 

ger linear system } 
output: p/+1 { next vector of p’} 
1. I’ = (Y . p’ { as is executed on line, I’-‘, Z’-2, .,. 

should be already calculated and stored in a sorted 
order } 

2. for m = 1 to r do 
begin 

3. 
4. 

5. 

6. 
7. 

8. 
9. 

10. 
11. 

start-nodes&Z’) = I’ - CY, 
ifP, f Odo 

zj = successive(start-nodes,m(l’>) 
else 

find node zj such that zj-r 
< start-nodes,,,,(Z’) < Zj 

Am = Zj - start-nodes,JZ’) 
if A,,, < A,-, do 
begin 

Amin = Am 
m. = m 

end {of if} 
P '+I = pj + u((Y,~) 

end {of for } 

THEOREM 5. Algorithm NEXT3nds the next vector 

P ‘+I of vector p’ correctly. 

Proof. First, it is easy to see that I’ found in step 4 or 
step 5 is a node in the addressable digraph. pj is a vector 
such that (Y . p j = zj. According to the definition of the 
successive node and the statement in step 5, Zj > start- 
nodes,,(Z’). Since start-nodes,JZ’) = I’ - (Y, and, as 
specified in step 2, zj > I’ - (Y, and Zj + (Y, > I’ for any 
(Ye. Here Zj + (Y, is a node in the addressable digraph, and 
pj + ~(a,) is the corresponding vector satisfying CY . (pj + 
u((Y,)) = zj + (Y, according to Corollary 2. 

Since m. E {mlm = 1, 2, . . . . r} (step 9) and p’+’ = pj + 
u((Y,~) (step IO), we have proved that Zj + CY,~ is a node, 
Zj + (Y,~ > I’, and p’+l = pj + u(amo) satisfies ff * p’+’ = 
zj + (Y,~. 

Now we prove that there is no vector p’ existing such 
that I’ < CY . p’ < a . p’+‘. 

(i) I’ cannot be accessed by (Y,~, otherwise I’ - (Y,~ is 
a node. This is because zj < I’ < I’+‘, and I’ + (Y,,,,~ < I’ - 
a,0 = Zj, which means that there is a node existing be- 
tween I’ + (Y,~ and I’, thus contradicting the generation of 
Zj stated in step 4 or step 5. 

(ii) I’ cannot be accessed by (Y,‘, for m = 1, 2, . . . . r 
except for mo. If I’ can be accessed by am’, for m’ E 
{mlm = 1,2, . . . . r and m f mo}, then I’ - (Y,, is a node. 
After executing the for loop in step 2 for m = m’, (I’ - 
a,nf) - (1’ - a~,,) will be stored in A,, which is equal to 
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I’ - I[. Now, if I’ < I’ < I’+‘, then I’ - I’ < I’+’ - I’. 
4nlm=,, < Amlm=m,,, which contradicts the execution of 
step 7 to step 9. Thus I’ can not possibly exist such that 
I’ < I’ < z/+1. n 

In fact, by executing Algorithm NEXT, we examined 
the possibility of accessing I/+’ from the found Z’s by 
different (Y,‘s, for m = 1, 2, ,.., I-. For each specific (Y,, 
we noticed that if I’ and II+’ are closest, I’ - (Y, and 
Zl+l - (Y, are also closest. So, instead of finding the node 
closest to I[, we search for the node closest to I’ - a!,,,, for 
all them = 1, 2, . . . . r, utilizing the known information of 
the found vectors and found nodes. 

The on-line feature of the algorithm limited the mem- 
ory used and thus reduced the execution time. 

Let the largest entry in (Y be amU, form = 1,2, . . . . Y. To 
examine the range of start-nodes,,&Z’), note that the 
smallest start-nodes,m(Z[) = I’ - (Y,,,. Therefore, we 
have I’ - a,,,,, < start-nodes,,,,(Z’) < I’. 

In the integer system, there are at most (\I,,,, existing in 
the interval between I’ - (Y,,, and I’. To compute a new 
output, say Z’, it is sufficient to store the previous results 
zj , . . . . Z’-*, I’-’ and the corresponding vectors pj, . . . . pje2, 
P l-l such that j = I’ - ~~~~~ 

Step 2 shows that to find one next vector, the algorithm 
needs to execute r times for a vector with Y dimensions. 
Step 6 involves a binary search on a sequence of (Y,,, 
data items. O(log (Y,,) time is hence needed. Other steps 
take only constant time. So the time complexity of Algo- 
rithm NEXT is O(rlog (Y,,,). 

The results of this paper including Algorithm NEXT 
have been implemented in our prototype compiler. The 
detailed implementation can be found in [7] and [S]. The 
prototype compiler employs a self-scheduling scheme 
[9]. The application programs just need to be transformed 
into a parallel form as generated by the regular parallel 
compiler. PDO represents a parallel loop. Neither special 
code transformation nor index variable reference modifi- 
cation is required by our approach. Our prototype com- 
piler only produces necessary information, such as (Y, p, 
and the initial value of each equivalence class, and anno- 
tates the information with the corresponding PDO loop. 
For the example in Section 2.2, constants Q = 1, p = 2, 
and initial value of equivalence class i0 = 1, j” = I, . . . , 100 
are attached in the annotated list of PDO 20 J = 1, 100. At 
execution time, in the initial first iteration of the outer- 
most DO Z loop, when I = 1, the run-time library routine 
randomly assigns the initial value of the equivalence 
classes to the threads that are scheduled on the particular 
processor. For instance, a processor is assigned the value 
(1 ,l). It executes the thread T,,,; i.e., the first iteration of 
PDO .Z loop in the first iteration of the outermost DO Z 
loop. The processor saves i0 = 1, j, = 1 and CY = 1, p = 2 
into its local memory of the physical processor rather 
than to the logical thread. Then, when the second itera- 
tion of the outermost DO Z loop is executed and i = 2, the 

thread assigned to the processor, uses the results in this 
paper to calculate the parallel loop index in terms of the 
constants saved in its local memory, then determines 
which iteration of the PDO J loop will be executed in the 
second iteration of the outermost DO Z loop. The proces- 
sor that executed Tr,r uses Next Algorithm to obtain j = 3 
because i0 = 1, j0 = 1, i = 2, (Y = 1, and p = 2. It will 
execute T2,3 and save the new value i0 = 2, j, = 3 in its 
local memory. In the same way, the processor executes 
T3,5 in the third iteration and T4,, in the fourth iteration of 
the outermost DO Z loop. Gaussian Elimination, the code 
of which is shown in the next section, is another exam- 
ple, where (Y = 1 and p = 0. If a processor is assigned to 
execute T],s, i.e., it executes the fifth iteration of PDO J 
loop in the first iteration of the outermost DO K loop, it 
stores the fifth column of array variable A in its cache 
memory. In the second iteration of the DO K loop, it 
calculates the corresponding PDO J loop index in terms 
of the constants in its local memory i0 = 1, j0 = 5, CY = 1, 
and /3 = 0. Then it executes T2,5, the fifth iteration of the 
PDO .Z loop. 

This approach doesn’t need to examine the data stored 
in the local cache or local memory of a processor. It uses 
the relationship between the loop indices and the data 
accessed by the corresponding thread, which is shown in 
this paper, to calculate the right parallel loop index and 
then to execute the right iteration without unnecessary 
data movement among the processors. It doesn’t require 
the transformation of the code generated by parallel com- 
pilers. The array reference, even the one in the innermost 
loop, doesn’t need to be modified either. 

Since the prototype compiler and the run-time library 
is so immature, we are only able to compile simple pro- 
grams. We show the experimental results of a couple of 
simple benchmarks in the next section, although we ex- 
amined a long list of benchmarks and applications in our 
study. 

4. EXPERIMENTAL RESULTS 

We have implemented the results in this paper in a 
parallel compiler prototype, which performs the depen- 
dence analysis and parallel transformations for FOR- 
TRAN programs. The prototype computes the (Y, p, y in 
Theorem 1, and the initial value of the vectors at com- 
piler time, then uses the information for dynamic sched- 
uling [9] at the execution time. The parallel code gener- 
ated by the prototype is run on a shared memory 
multiprocessor simulator based on a commercial system 
simulator. The system can simulate 4 to 16 processors, 
various sizes of cache memories, various cache coher- 
ence protocols, various cache line sizes and various 
memory bandwidths of data bus, crossbar, or intercon- 
nection network. The processor and the cache in the sim- 
ulation system are based on MIPS R3000 and R4000. The 
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prototype simulates different scheduling strategies also. 
They include static scheduling, self-scheduling, and 
guided-self-scheduling. The experimental results show 
that these scheduling approaches are all slightly different 
on the execution performance. However, the technique 
presented in this paper to reduce cache ping-pong made a 
significant improvement on the execution performance, 
no matter which scheduling approach was used in the 
experiments. We employ the self-scheduling scheme [9] 
in our prototype and simulator, because it is the most 
simple scheme in the implementation. 

In our experiment, we made the worst-case assump- 
tions. The experimental results shown in this section 
were based on a machine model with a smaller cache 
size, 256 kB, compared to the 32 MB main memory size, 
and longer memory access latency, 30 machine cycles. 
The bus bandwidth and the cache missing penalty were 
supposed to have any hardware synchronization support. 
This may be why it only speeds up 1.6 times on a four- 
processor parallel processing system for IK X IK Lin- 
pack. It should be noted that the purpose of these experi- 
ments was not to improve the hardware design. The 
purpose was to compare parallel performance on a poorly 
designed hardware system with more cache ping-pong to 
that of a system with less cache ping-pong using the 
results in this paper. 

We can see from the table below that by adopting the 
proposed approach in our prototype compiler, a 60-70% 
performance improvement can be achieved on average 
without the enhancement of hardware support. Cache 
ping-pong phenomena can destroy loop-blocking, be- 

cause data will unnecessarily move back and forth be- 
tween cache memories. The results in this paper can help 
the blocking array in the multiprocessor, then signifi- 
cantly enhance the performance. The approach to inte- 
grating the two approaches is obviously beyond the scope 
of this paper. 

In examining the experimental results, we compared 
the parallel code execution with or without the compiler 
strategy presented in this paper for the cache ping-pong 
problem and found significant enhancement by eliminat- 
ing the unnecessary moving back and forth of data be- 
tween processors. In the experiment, we assume that the 
memory and crossbar bandwidth are proportionally im- 
proved when the number of processors is increased. 

Gaussian elimination. Gaussian elimination is a basic 
matrix operation that is used in many application pro- 
grams. We use a 1K x IK array in the experimental 
benchmark. The following is the kernel code of the pro- 
gram: 

DOk= l,N 
. . . . . . . . . 
PDOj = k + I, N 

DOi=k+l,N 
. ..* . . . . . 
A(i, j) = A(i, j) - A(i, k)*A(k, j)lA(k, k) 
.* . . . . . . . 

CONTINUE 
CONTINUE 

CONTINUE 

Number Original 
of serial 

processors code 

4 285.0s 
8 285.3s 

16 286.2s 

Parallel code 
with cache 
ping-pong 

163.5s 
109.8s 

83.6s 

Speed-up 
VS 

uniprocessor 

1.7 
2.6 
3.4 

Parallel code 
with less 

cache ping-pong 

102.2s 
59.9s 
39.8s 

Speed-up 
VS 

uniprocessor 

2.4 
4.7 
7.2 

Improvement by 
reducing cache 

ping-pong 

1.6 
1.7 
2.1 

Linpack benchmark. Linpack benchmark consists of shows, our approach achieved better performance than 
vectorized/parallelized code. We chose the loops con- the original parallel code that doesn’t have any consider- 
taining SAXPY and SMXPY subroutine calls and inlined ation for the cache ping-pong problem. To make this 
these routines in the loops, most of which have three measurement, we use the 1K X IK Linpack benchmark. 
level loops: serial, parallel, serial. As the table below 

Number Original Parallel code Speed-up Parallel code Speed-up Improvement by 
of serial with cache vs with less vs reducing cache 

processors code ping-pong uniprocessor cache ping-pong uniprocessor ping-pong 

4 514.7s 327.5s 1.6 234.0s 2.2 1.4 
8 514.3s 226.9s 2.3 151.3s 3.4 1.5 

16 515.2s 161.0s 3.2 94.7s 5.5 1.7 
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Number 
of 

processors 

Original 
serial 
code 

Parallel code 
with cache 
ping-pong 

Speed-up 
VS 

uniprocessor 

Parallel code 
with less 

cache ping-pong 

Speed-up 
VS 

uniprocessor 

Improvement by 
reducing cache 

ping-pong 

4 1732.0s 1415.6s 1.3 832.7s 2.1 1.7 
8 1734.1s 843.2s 2.1 481.8s 3.6 I .75 

16 1735.7s 557.8s 3.1 309.9s 5.6 1.8 

A complete application. We also performed the test 
on a complete application program benchmark, a compu- 
tational chemistry application program. The kernel of the 
most frequently used routine has the following form: 

DO 100 K = 1, MAX-BOUND 
. . . . . . . . . . . . . . . . . 
PARALLEL DO I = 1, M 

. . . . . . . . . . . . . . . . . 
DO200J= 1,M 

X(1 + K, J + I + K) = . . . . . . 
. . . . . . . . . . . . . . . . . 
. . . . = X(1 + K, J + I + K) * . . . . . . . 

200 CONTINUE 
. . . . . . . . . . . ...*. 

END- PARALLEL- DO 
. . . . . . . . . . . . . . . . . 

100 CONTINUE 

general program models to solve the cache ping-pong 
problem. It is not trivial to explore some common pat- 
terns in complicated program structures. The second 
constraint can be taken off by adding more module calcu- 
lations into our results. It will make the theorems and 
algorithms very complicated, however, and will tediously 
increase the length of the paper. Of course, some mathe- 
matical skill has to be introduced in the calculation, but 
the idea will remain the same as in the paper. The com- 
mon access set of the threads will be modified, as the set 
of threads may access the same cache line. Although 
research in this area is not completed yet, our efforts are 
significant in the sense that they introduce the mathemat- 
ical concepts, analyze the array subscript expressions, 
and provide the effective approach as a basic solution for 
further cache ping-pong elimination tasks in parallel pro- 
cessing systems. 
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