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We address the problem of modifying a hypercube computer by 
the addition of spare nodes and links to improve its fault toler- 
ance, while maintaining a specified level of performance. The 
hypercube is modeled by a graph in which nodes represent proces- 
sors and edges represent communication links. A new graph- 
based measure of performance degradation is introduced. This 
characterizes a fault-tolerant hypercube as k-fault-tolerant (L-FT) 
g-step-degradable (g-SD) if the removal of any k nodes reduces the 
dimension of the largest fault-free subcube by at most g. We show 
how to construct k-FT g-SD hypercubes for values of k up to 16 
and g = 0, 1, or 2. Many of these designs are shown to be link- or 
degree-optimal. We also propose a construction method that uses 
small k-FT g-SD designs as seeds to construct k-IT g-SD designs 
of larger sizes. This results in fault-tolerant hypercubes in which 
reconilguration can be first done locally and then easily extended 
to the entire system. The small number of added links and nodes is 
shown to be useful not only in increasing the fault tolerance of the 
underlying hypercube, but also in reducing the average internode 
distance. Q 1992 Academic Press, Inc. 

1. INTRODUCTION 

Since hypercube architectures are very regular and 
scalable, programs for these computers are frequently 
designed with the dimension n of the host hypercube Qn 
treated as an input variable, so that the same program can 
be run without modification on hypercubes of different 
sizes. This scalability property of hypercube architecture 
makes it possible to tolerate faults gracefully by confining 
a program to a fault-free subcube of the host hypercube. 
The reduction of the effective cube size due to faults is a 
rough indication of the performance degradation, Based 
on this observation, we present a new characterization of 
fault-tolerant hypercube architectures that allows the 
performance degradation due to faults to be measured. 
We also develop some methods to modify Qn by the addi- 
tion of spare nodes and communication links in order to 
obtain designs whose performance degrades gracefully in 
the presence of node failures. 

* This work was supported by the Office of Naval Research under 
Contracts NOOO14-85K0531 and N00014-90J1860. 

Becker and Simon [2] have discussed the problem of 
finding the minimum number of faults needed to destroy 
every fault-free subcube Qk, in Qn, and give some ana- 
lytic bounds on these numbers. Graham et al. [6] have 
improved the bounds and obtained exact values for some 
cases. These results show that for n > k + 2, Q,, is a good 
fault-tolerant realization of Qk. For example, the num- 
bers of faults required to destroy every fault-free Qne3 
and Qn-4 in Qn, for n 2 6, are at least I2 and 24, respec- 
tively. However, in the worst case, two faults in antipo- 
da1 positions destroy every fault-free Qn-, and thus de- 
grade the maximum performance of Qn by a factor of 4. 
This leads to an interesting question which is the subject 
of this paper: How can Qn be modified efficiently so that 
its fault tolerance, measured by the number of faults re- 
quired to destroy every fault-free Qk, is increased? 

We define Q(n, k, g) to be a graph that contains Qn and 
is such that the removal of any k nodes from it results in a 
graph containing Qneg. It is notationally convenient to 
use Q<n, k, g) to denote the class of graphs of interest, as 
well as specific members of this class. The parameter k is 
the measure of fault tolerance, and we introduce the di- 
mension loss g to measure the performance degradation. 
A Q(n, k, g) is then termed a k-fault-tolerant g-step- 
degradable (k-FT g-SD) Qn. The fault-tolerance design 
problem for hypercubes can now be stated as follows: 
given n, k and g, find a Q(n, k, g) whose cost is a mini- 
mum. This cost may be measured by the number of nodes 
or links of Q(n, k, g), or by its maximum node degree. 
Since Q,, itself is a good realization of a Q(n, k, g) for n % 
g zz 3, the cases where g 5 2 are of most interest. 

Previous research [l, 11, 121 on fault-tolerant hyper- 
cube design has, in terms of our notation, only consid- 
ered the problem of constructing Q(n, k, 0). Most of the 
proposed designs, however, suffer from excessive maxi- 
mum node degrees. In this paper, we study the design of 
Q(n, k, g), where 0 5 g 5 2. We construct Q(a, k, g) by 
adding a small, preferably minimum, number of extra 
nodes and links to Qll. If a design with a minimum num- 
ber of nodes and links is not attainable, near-optimal so- 
lutions are sought. Another concern is to minimize the 
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maximum node degree of the modified hypercube. In a 
real computer system, the degree of a node represents 
the number of communication channels attached to it, 
and can significantly affect system cost. Furthermore, 
the degree of a node is limited by packaging constraints. 
Hence, in addition to minimizing the number of nodes 
and links, we also consider minimizing the maximum 
node degrees in our designs. 

To facilitate the discussion, the following standard no- 
tation is used [7]. The minimum degree among the nodes 
of G is denoted by 6(G), while the largest node degree is 
denoted by A(G). If all nodes have the same degree, i.e., 
6(G) = A(G) = r, then G is called regular of degree Y. The 
connectivity K = K(G) of a graph G is the minimum num- 
ber of nodes whose removal results in a disconnected or 
trivial graph. 

2. ZERO-STEP-DEGRADABLE DESIGNS 

Yanney [ 121 presents several fault-tolerant hypercube 
designs which, in our terminology, correspond to Q(rz, k, 
0) graphs. One of his approaches is based on the use of 
global spares, but unfortunately, is not appropriate for 
the fault-tolerant design of a large graph since it requires 
that the global spares connect to every node in the graph. 
It therefore results in an excessively high node degree for 
the spares. Rennels [I I] has proposed the implementa- 
tion of a global sparing method at the subcube level and 
the use of crossbar switches to reduce node degree. Yan- 
ney [12] also considers the use of local spares. A local 
spare can only be used to replace a subset of nodes in the 
graph. A fault-tolerant hypercube can be constructed if 
every node in the hypercube can be replaced by some 
spare node(s). However, this approach is also not appro- 
priate for higher-dimensional hypercubes, since the max- 
imum node degree is still intolerably high. 

Banerjee et al. [ 11 develop a different Q(rz, 1, 0) design, 
for rz 2 2. This design uses 2n-2 spares, where one spare 
is added to each of the 2*-2 disjoint Q2’s. Although its 
hardware overhead is higher (25%) than designs using 
global spares, the spares in this structure increase the 
maximum node degree by only 2. However, this design is 
restricted to the l-FT case. 

In the following, we describe our solutions to the Q(rz, 
k, 0) design problem. The designs of Q(rz, k, 0) for small n 
are obtained by using power graphs of loops. Then we 
propose a systematic construction method that uses 
Q(n, k, 0) with small IZ as a “seed” to construct Q(n, k, 0) 
for large n. This construction method is based on the 
product operation on graphs, and can be used for Q(rz, k, 
g), where g > 0, as well. The maximum node degrees of 
our designs are relatively small compared to those of 
previous designs. 

2.1. Minimum Node Designs 

We now present several promising Q(rr, 1, 0) designs 
for small n. Figure 1 shows designs for Q( 1, 1 , 0), Q(2, 1, 
0), Q(3. 1, O), and Q(4, 1, 0), all of which use the mini- 
mum number of spare nodes. A Q(n, k, 0) with the mini- 
mum number of spares is degree-optimal if the maximum 
node degree is the minimum possible. It can be easily 
seen that Fig. la is a degree-optimal Q(1, 1, 0) design. In 
general, the complete r-node graph K, is a degree-optimal 
Q(1, r - 2, 0), for r 2 3. 

The foregoing Q(n, k, 0) designs can all be interpreted 
as power graphs of loops (cycles). The mth power graph 
G” of G is constructed by adding edges to G such that 
every node x is connected to all nodes at distance d from 
x, for m 2 d 1 2. Let C, denote a loop with n nodes. 
Figures la, lb, lc, and Id demonstrate C!, C:, C$, and 
C:,, respectively. Our use of power graphs of loops as 
fault-tolerant designs of Qn is based on two facts: (1) Q,, is 
a subgraph of Ci:-‘; and (2) removing a node from C~:~~’ 
results in a graph containing CZI-‘, and hence containing 
Qn. Furthermore, the removal of any k nodes from CT]‘,‘” 
results in a graph containing C:I-‘. 

THEOREM 1. C:::lk is a Q(n, k, 0) design. 

The reconfiguration of these Q(n, k, 0) designs in the 
presence of faults is fairly simple. Suppose that we have a 
Ci:-:,‘” with t faults, where t I k. Let the nonfaulty nodes 
be labeled clockwise from 0 to 2” + k - t - 1. The 
subgraph composed of nodes 0 to 2” - 1 contains C::?. 

(4 0) (cl 

(d) 

FIG. 1. The Q(n, 1, 0) graphs: (a) C:, (b) C:, (c) C& and (d) C:,. 
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FIG. 2. (a) Proposed Q(3, 1,O) design with a faulty node. (b) Recon- 
figured Ci. (c) Fault-free Q3. 

Now we relabel each node x to construct a Q,, in C$-*. 
Let x = i x 2”-2 + rn, for some m 5 2”-2. For each node x 
in C;?, x is relabeled as 2m+1 + y, if m # 0, or as y, if m = 
0, where y is 0, 1, 3, and 2 when i is 0, 1, 2, and 3, 
respectively. To illustrate, Fig. 2a shows C; = Q(3, 1, 0), 
with a faulty (black) node present. Following the proce- 
dure described above, Ci is recovered as shown in Fig. 
2b. A fault-tree Q3 is obtained accordingly by relabeling 
the nodes and is depicted in Fig. 2c. 

Dutt and Hayes propose similar minimum node Q(n, k, 
0) designs using “circulant” graphs 151. The node degree 
of their design is similar to ours when n is small, but is 
smaller when n becomes larger. This reduction in node 
degree is, however, at the cost of a more complicated 
reconfiguration process. In the following, we describe a 
construction method that effectively reduces the required 
node degree without increasing the complexity in recon- 
figuration. 

2.2. Graph-Product Method 

Using the power graph of a loop as a fault-tolerant 
realization of a hypercube has the merit that the resultant 
graph is regular, and only simple reconfiguration is 
needed to recover a fault-free Q,,. The number of spare 
nodes used is also a minimum. However, the maximum 
node degree increases quickly with the size of hyper- 
cube. For example, the l-FT O-SD realization of Q6 by 
Ci: has node degree 34. This may make the design im- 
practical for large hypercubes. To address this problem, 

K2 Q4 

FIG. 3. The graph Q4 as the product of K2 and Q3. 

we introduce below a construction method that greatly 
reduces the maximum node degree by using more spare 
nodes than the minimum. Specifically, we show that 
Q(n + 1, k, 0) can be constructed systematically from the 
product graph of K2 and Q(n, k, 0). This novel construc- 
tion method is significant since it allows us to extend 
designs of smaller n, which are usually quite simple, to 
large 12. Furthermore, as is shown later, fault-tolerant 
designs constructed by this method can be easily recon- 
figured when faults occur. This construction method also 
applies to more general Q(n, k, g) designs, which are 
discussed in later sections. 

The product of Gi and G2 is a graph Gi x G2 with a 
node set V. Two nodes u = (ul, u2) and u = (u,, u2) in V 
are adjacent if u1 = uI and u2 is adjacent to u2 in G2, or if 
u2 = u2 and uI is adjacent to VI in Gi. Figure 3 shows the 
product of K2 and Q3. The resulting graph is, by defini- 
tion, Q4. The graph-product construction is characterized 
in the following theorem. 

THEOREM 2. Suppose that IGI 5 2”+‘. G’ = K2 X G is 
a Q(n + 1, k, 0) design if and only if G is a Q(n, k, 0) 
design, for n, k 2 2. 

Proof. (1) If: Let G’ be as shown in Fig. 4, where G, 
and G2 are two identical copies of G. Let nodes in G1 be 
denoted by xl, x2, . . . , and x,,,, and nodes in G2 be denoted 
byx;,x;, . . . . andxh. Node xi is connected to node xi, for 
i from 1 to m. Suppose that the faulty node set is {.xf,, xf~, 

FIG. 4. G’, a graph constructed as two copies of G. 
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. . . . xfj> u #j,,? xjj+2, . . . . x;~}. Now we generate a 
“pseudo-fault” set {xf,, xf*, . . . . ~4) u {.x~+~, x~+~, . . . . xfk}, 

where {xb+ I , xfj+z, . . . , 
xi.+*, ..‘, 

x~~} is the set of neighbors of {.x;j+, , 
x;~} in GI. Since G is a Q(n, k, 0) graph, we can 

always recover a Qn from G, so that none of the nodes in 
the recovered Qn belong to the pseudo-fault set. Also, in 
consequence of the definition of the pseudo-fault set, the 
neighbors in Gz of the recovered Qn in G1 are nonfaulty. 
Thus combining the two en’s, we obtain a fault-free Qn+, 
in G’ for the given k faults. 

(2) Only if: Suppose that Gi is not a Q(n, k, 0) graph. 
We show that k faults can destroy every fault-free Qn+, in 
G’. We first find a fault set F1 = {xi, x2, . . . . xk} that 
destroys every fault-free Q,, in Gi. We can specify a sec- 
ondfaultsetF2={al,az ,..., ai,a;+r )..., a;},whereaj=xj 
and a; = xi, for some i, 1 5 j I i < 1 I k. F2 is obtained by 
moving some of the nodes in F1 from Gt to their direct 
neighbors in Gz. With fault set F2 present, there can be no 
fault-free Qn+ i in either G, or G2 since each contains only 
2”+* nodes. There is also no fault-free Q,,,, consisting of a 
fault-free Qn in Gi combined with a fault-free Q,, in Gz. 

We claim that there are no other configurations of 
fault-free Q,,+,‘s in G’ under fault set F2, To prove this, 
first suppose that there exists a fault-free Qn+i in the 
faulty G’ that consists of a set Si of i nodes in Gi, and a 
set S2 of 2”+i - i nodes in Gz. Neither S, nor SZ forms a 
Qn. Each node in Si has at most one link connected to S2, 
since each node in Gi has only one link connected to Gz. 
At least two nodes in Si are connected to nodes in SZ for 
IE L 2, since Q,, is Hamiltonian. 

Now we show that every node in Si must have one link 
connected to a node in Sz. Suppose that this is not true. It 
is easy to find a node x in Si that connects to a node x’ in 
Sz, and has a neighbor x1 in Si that has no neighbor in Sz. 
Let the dimension between x and x’ be m, and that be- 
tween x and xl be j. We can also find a node xi in S2 
connecting to x’ along dimensionj, hence x’, x, xl, and xi 
must form a Q2. This violates the assumption that x1 has 
no neighbor in Sz. Hence each node in Si must have a 
neighbor in &. This fact also implies (Si 1 = I&( = 2”. 

Again assume that x in S, connects to node x’ in Sz 
along dimension m. Since neither Si nor SZ forms a Q,, 
and each node in S1 connects to a node in SZ, we can find 
a neighboring node x1 of x in Si such that xl connects to x 
along dimension j, and x1 connects to node xi in Sz along a 
dimension other than m and j, say 1. Let ~2 be the neigh- 
boring node of x in S, along dimension 1. It is apparent 
that x2 should connect to xi along dimension j. But xi is 
already connected to x1, which leads to a contradiction. 
Hence S1 and S2 must form en’s and Gi and G2 are re- 
quired to be Q(n, k, 0) graphs. n 

This theorem implies that we can use Q(n, k, 0) designs 
of small n as seeds to build up Q(n, k, 0) designs of large 
n. Figure 5a illustrates a Q(4, 1, 0) that is constructed 

(a) 

(b) 

FIG. 5. (a) A Q(4, 1. 0) constructed as the product of K2 and 
Q(3, 1, 0). (b) A recovered fault-free Q4 in the presence of a faulty 
node x. 

using Q(3, 1, 0) taken from Fig. Ic as a seed. Larger 
designs are obtained by applying the graph-product oper- 
ations several times. Suppose that a Q(ni, k, 0) is used as 
a seed and its maximum node degree is d. The maximum 
node degree of a Q(n, k, 0) produced by the foregoing 
construction method is then d + n - nl, which is consid- 
erably smaller than that of Q(n, k, 0) developed using 
other methods. The number of nodes and links of the 
proposed designs and some of their topological proper- 
ties are listed in Table I. As can be seen, the designs span 
a broad spectrum with different amounts of redundancy 
and maximum node degrees. 

Another advantage of the Q(n, k, 0) designs con- 
structed by the graph-product operation is that recon- 
figuration around faults is fairly simple and efficient. It 
can first be done locally within a seed and then applied to 
the whole structure. Suppose that F = {xl, x2, . . . , xj} is 
the fault set. We generate a pseudo-fault set F’ by pro- 
jecting the faults into a seed Q(ni, k, 0). Taking the case 
in Fig. 5b as an example, the product graph Q(4, 1, 0) 
contains two copies of Q(3, 1, 0) which serve as seeds. 
We project the faulty node x into the left seed and create 
a pseudo-fault x’. Now we can easily find a pseudo-fault- 
tree Q3 in that seed using the method described in Section 
2.1. It is clear that the corresponding Q3 in the other seed 
of the Q(4, 1, 0) is also fault-free. Together, the two Q3’s 
form a fault-free Q4. 
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TABLE I 
Topological Properties of Some Q(n, k, 0) Designs Constructed by the 

Graph Product Method 

Graph Seed 
Number 
of nodes 

Maximum 
node degree Diameter 

Number 
of links 

Qh 1, 0) 
Qh 1, 0) 
Qh 1, 0) 
Qh 1, 0) 

Qh 2, 0) 
Qh 2, 0) 
Qh 2, 0) 
Qh 2, 0) 

Qh 3, 0) 
Qh 3, 0) 
Qh 3, 0) 

Q(l, 1, 0) 2” + P-1 n+l 
Q(2, 1, 0) 2” + 2”-2 n+2 
Q(3, 1, 0) 2” + P-3 n+3 

Q(4, 1, 0) 2” + P-4 n+6 

Q(l, 2, 0) 2”+2x2-1 n+2 

Q(2, 2, 0) 2” + 2 x 2”-2 n+3 
Q(3, 2, 0) 2” + 2 x 2-3 n+5 

Q(4, 2, 0) 2” + 2 x 2”-4 n+8 

Q(l, 3, 0) 2” + 3 x 2-’ n+3 
Q(3, 3, 0) 2” -t 3 x 2-3 n+l 
Q(4, 3, 0) 2” + 3 x 2n-4 n + 10 

n 3 x 2”-*(n + 1) 
n-l 5 X 2”-)(n + 2) 

n-l 9 X Pm4(n + 3) 

n-2 17 x Pe5(n + 6) 

n 4 X 2n-Z(n + 2) 

n-l 6 x 2”-)(n + 3) 
n-l 10 X Pe4(n + 5) 

n-2 18 x 2’-S(n + 8) 

n 5 X 2”-‘(n + 3) 

n-2 I1 X Pm4(n + 7) 

n-2 19 x 2qn + 10) 

3. ONE-STEP-DEGRADABLE DESIGNS 

Qn can tolerate any single fault while maintaining a 
fault-free subgraph en-i. However, two faults in antipo- 
da1 positions destroy every Qn-, in Qn. Figure 6 demon- 
strates the situation where two faulty nodes 0000 and 
1111 in Q4 destroy every Q3. Therefore Qn is itself a 
Q(n, 1, 1) design. In this section, we discuss the design of 
k-FT I-SD hypercubes by adding redundant links to the 
basic Qn. Our approach is different from that in the pre- 
vious section where both nodes and links are added to the 
underlying hypercube structures. 

Let Qi denote an n-dimensional hypercube with extra 
links. Qi is said to be k-fault-tolerant g-step-degradable 
if Qi - F contains Qnmg, where F is any set of k faulty 
nodes. A k-FT g-SD QJ is denoted by Q+(n, k, g). Thus 
Q+(n, k, g) is a Q(n, k, g) graph by definition. We con- 
struct Q+(n, k, 1) by adding a small, preferably minimum, 
number of extra links to Q,. If a graph with a minimum 

0011 0111 1011 1111 

FIG. 6. Example where two node failures destroy every fault-free 
Q3 in Q4. 

number of links is not attainable, near-optimal solutions 
will be sought. Also, for practical reasons, we are inter- 
ested in finding designs with low maximum node degrees. 

3.1. Q+(n, k, 1) Designs for 2 5 k 5 4 

We start with designs with small values of n. The fol- 
lowing lemma sets lower bounds for the number of links 
in link-optimal designs for Q’(2, 2, 1) and Q’(3, 2, 1). 

LEMMA 1. Link-optimal Q’(2, 2, 1) and Q’(3, 2, 1) 
graphs contain at least 6 and 14 links, respectively. 

Proof. We prove the lemma by considering the mini- 
mum number of links that must be added to Q2 and Q3 to 
form Q’(2, 2, 1) and Q’(3, 2, I), respectively. In each 
case, the number of extra links needed is greater than 
one. Suppose that, by way of contradiction, only one link 
is added, and let one of its end nodes be x. We can de- 
stroy every fault-free Q2 by removing nodes x and y, 
where y is at distance two (three in the Q3 case) from x. 
Hence the minimum number of extra links required is 
two for each of the designs. Since Q2 and Q3 have 4 and 
12 links, respectively, the minimum numbers of links re- 
quired for Q+(2,2, 1) and Q+(3,2, 1) are 6 and 14, respec- 
tively. n 

Next, we present Q’(2, 2, 1) and Q’(3, 2, 1) with two 
extra links in each case. Both of these designs are link- 
optimal by Lemma 1. 

THEOREM 3. The graphs S = K4 and W shown in 
Fig. 7 are link-optimal realizations of Q’(2, 2, 1) and 
Q’(3, 2, l), respectively. 

Proof. (1) K4 clearly implements Q’(2, 2, 1). K4 has 
two links more than Q2; therefore, by Lemma 1, this 
design is link-optimal. 
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(4 (b) 

FIG. 7. (a) A link-optimal Q’(2, 2, 1) graph S = K4. (b) A link- 
optimal Q’(3, 2, 1) graph W. 

(2) Removing from W any two nodes that are distance 
two or less apart in the underlying Q3 will not destroy all 
fault-free Q2’s in W. Hence there are four pairs of nodes, 
(0, 71, (3, 4}, (1, 61, and (2, 5}, whose removal may de- 
stroy each Q2. We consider the cases for {0,7} and {3,4}; 
the cases for { 1, 6) and (2, 5) follow directly from symme- 
try. The two maximum subgraphs obtained after each 
node set is removed from W are shown in Fig. 8; the 
corresponding Q2’s recovered are shown in heavy lines. 
Hence W is a Q’(3, 2, 1) design. In addition, since the 
number of links added to the basic graph Q3 is two, W is 
link-optimal by Lemma 1. n 

Both the Wand the S designs have the merits of using a 
minimum number of links and increasing the maximum 
node degree by one only. W is not regular, however. We 
next describe two regular and node-symmetric graphs 
that are also Q’(3, 2, 1) graphs with the same maximum 
node degree as W. These two regular graphs also reveal 
the fact that a degree-optimal Q+(n, k, 1) is not unique. 

LEMMA 2. Graphs R and U defined in Fig. 9 are 
degree-optimal regular realizations of Q’(3, 2, 1). 

64 (b) 

FIG. 8. The maximum subgraphs after removing node sets {0,7} and 
{3, 4) from W. The recovered Qz’s are shown in heavy lines. 

6 4 

7 5 7 5 

(a) lb) 
FIG. 9. Two regular degree-optimal Q’(3, 2, 1)‘s (al R and (b) u. 

Proof. W (Fig. 7b) is a subgraph of U, hence U is a 
Q’(3, 2, 1) graph. The proof for R has two parts: First, if 
the two faulty nodes in R are not distance three apart in 
the embedded Q3, the fault-tolerance property of Q3 guar- 
antees the existence of a fault-free Q2. Second, suppose 
that the two faulty nodes are distance three apart in the 
embedded Q3. Without loss of generality, choose nodes 0 
and 7 as the faulty nodes. The recovered fault-free QZ 
after nodes 0 and 7 are removed is shown in Fig. 10. The 
other cases follow from symmetry. n 

In the following, we develop the two fault-tolerant de- 
signs B = Q+(3, 3, 1) and D = Q’(3, 4, 1) shown in Fig. 
11. To prove the desired fault-tolerance properties of B 
and D, we need the following lemmas. 

LEMMA 3. A four-node connected graph G with 
6(G) 2 2 is Hamiltonian. 

Proof, Let the four nodes be x1, x2, x3, and x4. If XI 
connects to both x2 and x3, and node x4 is connected to x2 
and x3, then the four nodes form a cycle. Hence G is 
Hamiltonian. Other alternatives are that x4 is connected 
to x2 and x1, or to x3 and xl. Consider the case where x4 is 
connected to x3 and x1. Then x2 must be connected to 
either x3 or x4 since x2’s node degree is at least two. In 
either case, there is a cycle of length four in G; thus G is 
Hamiltonian. The case where x4 is connected to x2 and XI 
follows the same reasoning. m 

6 

FIG. 10. The recovered Q2 in R with nodes 0 and 7 removed. 
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6 4 

(4 (b) 

FIG. 11. (a) The Q’(3, 3, 1) graph B. (b) The Q’(3, 4, 1) graph D. 

LEMMA 4. A jive-node connected graph G contains 
Q2 ifs(G) L 2 and at least two of its nodes have degree 
three or more. 

Proof. Let Ci denote a cycle with i nodes. Suppose 
that G does not contain Q2. Then G must contain either 
C5 or C3 since 6(G) L 2. Consider the case where G 
contains Cs. Since two nodes must have degree greater 
than two, at least one more link not in CS must exist. This 
links must connect two nodes of C5 resulting in a graph 
containing Cd = Q2, hence G contains Q2. Now consider 
the case where G contains C, but not CS. Since there are 
five nodes in G, there exist at least two C3’s in G. The 
intersection of two Cj’s can include one or two nodes, 
depending on whether the C~‘S share a link. When this 
intersection contains exactly two nodes, then the non- 
shared links form a Q2. Suppose that the intersection is a 
single node, say x. The configuration is shown in Fig. 12. 
In this case, there is only one node of degree greater than 
two, hence a link must be added to the graph to meet our 
initial assumptions for G. It is obvious that adding a link 
between any nonadjacent nodes results in a graph con- 
taining Q2 as a subgraph. Hence the lemma follows. n 

Since both B and D contain only eight nodes, it is easy 
to verify by exhaustion that there exist five (six) node- 
disjoint paths between any pair of nodes in B (0). By a 
variation of Menger’s Theorem [7], K(B) 2 5 and K(D) 2 

A w 
X 

FIG. 12. Two triangles intersect at one node. 

6. Therefore removing any three (four) nodes from B (D) 
results in a connected subgraph. 

Now we prove the basic fault-tolerance properties of B 
and D using Lemmas 3 and 4. 

THEOREM 4. Graphs B and D dejned in Fig. 11 real- 
ize Q’(3, 3, 1) and Q’(3, 4, l), respectively. 

Proof. 

Case 1. 6(B) = A(B) = 5. The number of links in B is 
20. Let N(X) denote the set of neighboring nodes of x. We 
observe that for any three nodes x, y, and z in B, IN(x) U 
N(y) U N(z)1 2 7. This implies at least two of any three 
nodes in B are directly connected. As a result, the re- 
moval of three nodes can remove at most 14 links from B 
and produces a graph B’ which contains five nodes with 
no less than 6 links. Note that 6(B’) 1 2 since 6(B) = 5. 
We now claim that at least two nodes in B’ have degree 
three or more. Suppose that it is not the case. Then there 
are only three possibilities to be considered: first, the 
node degree of each node in B’ is two; second, four nodes 
in B’ have degree two and one node has degree three; and 
third, four nodes have degree two and one node has de- 
gree four. The first case is ruled out since it requires B’ to 
have only five links. The second is also impossible since 
there exists a single node of odd degree. The third implies 
that the three removed nodes have four common neigh- 
bors in B. However, one can quickly verify that for any 
three nodes x, y, and z in B, IN(x) II N(y) n N(z)1 5 3. 
The third case is then impossible, hence the claim is true. 
By Lemma 4, B’ contains Q2, and accordingly B is a 
Q’(3, 3, 1) graph. 

Case 2. 6(D) = A(D) = 6. The removal of any four 
nodes from D results in a four-node connected graph D’ 
with 6(D’) at least two. Therefore by Lemma 3, D’ con- 
tains Q2. n 

The minimum node degree of any Q+(3,4, 1) is six. For 
if the minimum node degree is less than six, we can easily 
remove four nodes and make the resulting four-node 
graph contain a node of degree less than two. In that 
case, it is impossible to form a Q2. The maximum node 
degree of D is six, hence we conclude that D is degree- 
optimal. 

3.2. Q+(n, k, 1) Designs for 5 5 k TS 16, n 5 5 

On examining the designs in the previous section, we 
see that a Q+(n, k + 1, 1) graph can, in general, be con- 
structed by adding some links to a Q+(n, k, 1) design. For 
instance, the Q’(3, 4, 1) graph D in Fig. lib is a super- 
graph of the Q’(3, 3, 1) graph B in Fig. Ila, and the 
Q+(3, 3, 1) graph B is a supergraph of the Q+(3, 2, 1) 
graph R shown in Fig. 9. Based on this observation, we 
now devise a procedure to generate Q+(n, k, 1) for more 
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FIG. 13. A Q+(4, 5, 1) graph generated by ADD-LINKS. 

general cases. The algorithm ADD-LINKS given below 
uses two copies of &“-I, and adds some links between 
them in a systematic way. Since K2”-1 is a1so.a Q(rr - 1, 
2n-Z, 1) graph, by connecting the corresponding nodes in 
the two &-I’S, a Q(n, 2n-2, 1) is formed, which is a good 
starting point to construct a Q(rz, 2”-* + 1, I), where 1 d 1 
5 p-2 

ALGORITHM ADD-LINKS: {To generate a I-SD Qn 
graph Q(rz, 2”m2 + 1, I)} 

(1) Construct two copies of K2"-1, denoted Si and S2. 
Nodes in Si are labeled from 0 to 2”-’ - 1; nodes in S2 are 
labeled from 2”-’ to 2” - 1 

(2) Connect each node i’in Si with all nodes j in S2, 
where j = i + m (mod 2”-l), and 0 % m I 1. 

Figure 13 demonstrates the Q+(4, 5, 1) graph generated 
by ADD-LINKS. Nodes 0, 1,2,3,4,5,6, and 7 form KS, 
and nodes 8, 9, 10, 11, 12, 13, 14, and 15 form another 
copy of KS. Node 0 connects to nodes 8 and 9, node 1 
connects to nodes 9 and 10, and so on. 

The following are some properties of the interconnec- 
tion between S1 and S2 that are useful in later proofs. Let 
a be a node in Si in a given Q(rz, k, 1) graph, where k = 
2”-* + 1. N(a) is the neighboring node set of a in S2; 
NN(a) is the fault-free neighboring node set of a in S2. 

PROPERTY Pl. IN(u)\ = 1 + 1. 

PROPERTY P2. For any given i node in S1, 1 + i 5 
1-J’ N(a)J 5 2”-1. 

PROPERTY P3. Suppose that there are j faults in S, 
and 2n-2 + 1 - jfuults in S2, 15 j I 2n-2. For any given i 
nonfaulty nodes in S1, 1 5 i I 2”-*, we have ) U’ ZVN(u)l - 
(i + j - 2n-2) 2 (I+ i) - (2n-2 + 1 -j) - (i + j - 2a-2) = 0. 

Properties Pl and P2 can be easily verified from the pro- 
cedure itself. P3 states that for any i nonfaulty nodes in Si 
that contain j faults, the union of the fault-free neighbor- 
ing sets of these i nodes contains at least i + j - 2”-* 
elements. This property can be derived from P2. 

The proofs of several of our results involve some tech- 
niques from the theory of systems of distinct representa- 
tives (SDRs), which is concerned with finding a distinct 
representative for each set in a collection of sets. We 
briefly summarize here the key results we need, following 
the presentation of [4]. Let B be an arbitrary set and let B; 
be a subset of B. A set {Bl, B2, . . . . Bj} is said to have a 
system of distinct representatives if there exists bi, i = 1, 
2 , . . . , j, such that bi belongs to Bi, and bi # bj if i # j. 

Condition Cl. A set {B,, B2, . . ., Bj} is said to satisfy 
Condition Cl if Bi, U Bi2 U . . . U Bik contains at least k 
elements for k = 1, 2, . . . . j, and for each choice of il, i2, 
. . . . ik with 1 % il < i2 < . . . < ik I j. 

Condition C2. Let r be a positive integer with r 5 j. A 
set {Bl, Bz, . . . . Bj} is said to satisfy Condition C2 if Bi, U 
B;, U . . . U Bik contains at least k - (j - r) elements for 
k = 1, 2, . . . . j, and for each choice of il, iz, . . . . ik with 1 % 
i, < i2 < . . . < ik % j. 

THEOREM 5 (Hall’s Theorem). {B1, B2, . . . , Bj} has an 
SDR if and only if it satisfies Condition Cl. 

COROLLARY 1. Let r be a positive integer with r I j. 
Then there are r sets in the family {Bl, B2, . .., Bj} which 
together have an SDR ifund only if{Bl, B2, . . . , Bj} sutis- 
$es Condition C2. 

Next we show that Algorithm ADD-LINKS can gen- 
erate Q+(n, k, 1) correctly for 5 I k 5 16. 

THEOREM 6. ADD-LINKS generates Q+(n, k, l), for 
5 5 k 5 16, n 5 5. 

The proof of this theorem is rather lengthy and can be 
found in [9]. We sketch the proof for a representative 
case (k = 10) here to illustrate how ADD-LINKS is able 
to generate Q+(5, 10, 1). In this case, the generated 
Q(5, 10, 1) contains two copies Si and S2 of KM. Each 
node x in Sl connects to three nodes in S2 and vice versa. 
Since a Q(5, 10, 1) graph constructed this way always 
contains Q(5, 9, 1) as subgraph, we will focus on the 
cases where there are 10 faults in the system. 

Suppose that all 10 faults lie either in Si or else in S2. 
Since S, and S2 are copies of K16, it is clear that either S2 
or S1 should contain a fault-free Q4 in this case. Now 
suppose nine faults are in S1 and one in SZ. We can find 
one nonfaulty node a in S1 which connects to three non- 
faulty nodes in S2. The subgraph induced by node a and 
the nonfaulty nodes in S2 contains a fault-free Q4. 

Next, suppose there are j faults in S1 and 10 - j faults 
in SZ, j 2 2. Let a denote a fault-free node in Sl. By 
Property P3 above, IU’ NN(u)l - (i + 10 - 8) = 
1 U’ NN(u)l - i + 2 2 0, for any given i nonfaulty nodes in 
S1, 1 5 i 5 16 - j. Therefore by Corollary 1, we can find 
eight nonfaulty nodes in Si each of which has a distinct 
nonfaulty neighbor in S2. The graph induced by these 
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TABLE II 
The Increase in the Node Degree in the Q(n, k, 1) Graphs Generated by 

ADD-LINKS, 2 5 k 5 16 

Fault tolerance k: 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
Increased degree: 1 2 3 5 6 7 8 12 13 14 15 16 17 18 19 

nodes and their distinct nonfaulty neighbors contains a 
fault-free Q4. The cases for other fault patterns follow by 
symmetry. 

ADD-LINKS is not limited to generating the design 
specified in Theorem 6; it can also generate Q+(n, k, 1) 
for some larger k’s, as stated in the next theorem. This 
leads us to the conjecture that an ADD-LINKS-like al- 
gorithm can generate Q+(n, k, 1) for arbitrary k. 

THEOREM 7. ADD-LINKS generates Q+(n, 2fl-2 + 1, 

The graph-product construction preserves the fault- 
tolerance property of the seed graph. Suppose that G E 
{R, U, B, D}; we define G, recursively as follows: G3 = 
G, and G,,+, = K2 X G,. By Corollary 2, Lemma 2, and 
Theorem 4, R,, U,, B,, and D, are Q+(n, 2, l), 
Q+(n, 2, l), Q+(n, 3, l), and Q+(n, 4, 1) graphs, respec- 
tively. They are illustrated for 12 = 4 in Fig. 14. A great 
advantage of this construction method is that the increase 
in the node degree of a design compared to Qn is the same 

I), n 2 2. 

Proof. 

Case 1. There are no more than 2n-2 faults. The 
graph created by ADD-LINKS contains K2 x K2n, which 
is a realization of Q+(n, 2n-2, 1). Therefore if the number 
of faults does not exceed 2n-2, a fault-free Qn-, is present. 

Case 2. There are 2”p2 + 1 faults, all of which lie in 
either SI or SZ. In this case, & or S1 contains a fault-free 
Q4. 

Case 3. There are j faults in S1 and 2”-2 + 1 - j faults 
in S2. Given i nonfaulty nodes in Si, by Property P3, 
[U’ NN(a)l - (i + k - 2”-2) 5 0. By Corollary 1, we can 
find 2*-2 nonfaulty nodes in Si, each of which has a non- 
faulty distinct neighboring node in S?. The 2n-2 nodes in 
S1 form a Qne2 and so do their corresponding nonfaulty 
neighbors in &. Together, these two Qnp2’s form a fault- 
free en-,. All other cases follow by symmetry. n 

The node degree of the Q(n, k, 1) graphs generated by 
this procedure is n + (2“ + k - d - 2), where 2d < k 5 
2d+‘. This node degree increases by 2d + k - d - 2 
compared to Qn. Table II lists the increase in the node 
degree of the Q(n, k, 1) graphs, where 2 5 k I 16. It 
shows that the node degree increases at a moderate rate 
with the fault-tolerance parameter k. 

B4 

3.3. Q+(n, k, 1) Designs for Large n 

The discussion so far has focused on Q+(n, k, 1) for 
small n, e.g., n 5 5. As in the Q(n, k, 0) case, these 
smaller designs can be used to construct larger ones by 
the product method, as characterized in the next corol- 
lary. The proof of this result is similar to that of Theorem 
2 and thus omitted. 

D4 

COROLLARY 2. G’ = K2 x G is a Q+(n, k, 1) graph if FIG. 14. Examples of Q’(4, k, 1) graphs: R4 and U, are Q’(4, 2, 1) 
and only if G is a Q+(n - 1, k, 1) graph, for n, k 2 2. designs; B4 and D4 are Q’(4, 3, 1) and Q’(4, 4, 1) designs, respectively. 
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FIG. 15. The recovered Qj (heavy lines) in a faulty R4. 

as that of its seed. For instance, the node degree of B4 is 
six. The increase in the node degree is two compared to 
Q4, and is the same as the node degree increase of &, its 
seed, compared to Q3. 

Designs of this form can be easily reconfigured when 
faults occur. Consider the case of the Q+(4,2, 1) graph R4 
which appears in Fig. 15. Suppose that two nodes 0011 
and 1100 are faulty. The subcube 0*** is a Q’(3, 2, 1) 
seed. We can project the faults into the seed to obtain a 
pseudo-fault set F’ = (0011, 0100). Since the seed is rela- 
tively small, it is simple to recover a fault-free Q2. In this 
specific example, it is easy to find the four pseudo-fault- 
free nodes 0110, 0101, 0001, and 0010 which form a 
pseudo-fault-free Q2. The neighbors of these four nodes 
in the other seed l*** are also pseudo-fault-free. To- 
gether they form a fault-free Q3, which is shown in Fig. 
15 by heavy lines. 

3.4. Topological Properties 

The spare links added to Q,, to construct Q+(n, k, 1) not 
only increase fault tolerance with respect to en-r, but 
also improve some useful topological properties of Q,,. 
These links reduce the diameter and shorten the average 
internode distance of the graph. They also allow some 
useful graphs to be embedded compactly in the proposed 
structures. 

The topological characteristics of the proposed designs 
are summarized and compared with those of Qn in Table 

III. It is easily seen that if the diameter of G is d, then the 
diameter of G’ = Kz x G is d + 1. Using this property 
together with the observation that the diameter of the 
graphs R, U, B, and D is two, the diameters of R,, U,, B,, 
and D, can be shown to be n - 1. The number of links in 
each graph can be determined from the following result 
[7]. If G, = (V,, El) and GZ = (V,, &), then the number of 
links in graph G1 x G2 is IV,1 l&l + IV*/ IElI. 

The link overhead of a fault-tolerant design Qi is de- 
fined to be the ratio of the number of redundant links in 
Qi to the number of links in the underlying Qn. Table III 
shows that the link overhead in each of our designs is 
small. For instance, the link overhead is l/n in R, and U,; 
it is 5l2n in B, and 3/n in D,. 

Let d(u,, u2) be the distance between nodes UI and ~2. 
The average distance of G = (V, E) is defined as 

2 d(ui, uj> 
IriSjjalVl 

( 1 

“11 . 

The distance parameters of the proposed Q+(n, k, 1) de- 
signs are also listed in Table III for comparison with Q,,. 
Note that with a small increase in the number of links and 
the node degrees, the fault-tolerance capabilities of the 
proposed structures are increased, while the average in- 
ternode distance is decreased. 

The proposed structures embed more graphs than Qn. 
Any cubical graph can also be embedded in the four 
Q+(n, k, 1) graphs, since Qn is a subgraph of R,, U,,, B,, 
and D,. Furthermore, R, can embed a cycle Ci for any i, 
while Q,, can only embed Ci for even i’s. B, and D, have 
this property as well, since each contains R, as a sub- 
graph. In addition, T,,, the full binary tree of height 12, can 
be embedded in R,, B,, and D, more compactly than in 
hypercubes. It is known that T, can be embedded in Qn+2 
but not in Q,,,, . Nebesky [lo] defines Q,” to be the graph 
Qn + rt - s, where r, s, and tare nodes of Qn such that rs 
and st are distinct edges of Qn. He then shows that T, is a 
spanning subgraph of Q,“, , , for n 2 1. Since Ql,, is a 
subgraph of R,+ ,, T,, can be embedded in R,+, , and there- 
fore also in B,+l and Dn+,. 

TABLE III 
Topological Properties of Qn, R,, B,, and D, 

Graphs 
Fault Number 

tolerance of nodes 
Number 
of links 

Maximum 
node degree Diameter 

Average 
distance 

Q. Q+h 1, 1) 2” n2”-’ n n an/2 
R” Q+b, 2, 1) 2” (n + 1)2fl-’ n+l n-1 ==n/2 - l/4 
B” Q+h 3, 1) 2” (n + 2)2”-’ n+2 n-l =n/2 - 112 
Dll Q+(n, 4, 1) P (n + 3)2”-’ n+3 n-1 =n/2 - 518 
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4. TWO-STEP-DEGRADABLE DESIGNS 

We show in this section that the proposed Q+(n, k, 1)‘s 
can serve as 2-SD hypercubes Q+(n, k, 2) with high levels 
of fault tolerance. To facilitate the discussion, we use 
Rx, W3, and 03 to denote the Q(3, 2, 1), Q(3, 3, l), and 
Q(3, 4, 1) graphs presented previously; see Figs. 9 and 
Il. The Q(n, k, 1) graphs derived from these graphs using 
the product method are termed R,, W,, , and D,, . 

To begin, we demonstrate the 2-SD fault-tolerance 
property of R3, B3, and D3. It is not hard to see that R3, 
B3, and D, can tolerate up to five faults, while a fault-free 
subgraph Q2 exists. The reason is that each of them con- 
tains two copies of &. It takes three faults to destroy a 
fault-free Qt in K4. Therefore it takes at least six faults to 
destroy every fault-free Ql . Fault sets that destroy every 
fault-free Qr in R 3, B3, and 03 are shown in Fig. 16. 
Therefore R3, B3, and 03 are Q(3, 5, 2) graphs. 

In general, it is not easy to determine the number of 
faults that a Q(q k, 1) graph can tolerate while allowing a 
en-z to be recovered. However, if Q(n, k, 1) is con- 
structed by the graph-product method, a lower bound on 
this number can be obtained, which is characterized in 
the next theorem. 

THEOREM& ZfG, is a Q<n, k, 1) graph, then K2 x G, 
is a Q(n + 1, 2k + 1, 2) graph G,+, . 

The theorem can be explained as follows. G,+l consists 
of two disjoint copies of G,. Since G, is a Q(n, k, 1) 

(b) (c) 

FIG. 16. Faults sets that destroy every fault-free Q, in (a) R,, (b) B,, 
and (c) D3. 

(4 

(b) 

FIG. 17. Fault sets that destroy every fault-free Qz and Q, in (a) W., 
and (b) W,, respectively. 

graph, it takes at least k + 1 faults to destroy every fault- 
free Qn-i in each copy of G,. It takes at least 2(k + 1) 
faults to destroy every fault-free Qn-i in G,+, . Thus G,+, 
can tolerate at least 2k + 1 faults while a fault-free sub- 
graph G,-i exists. Therefore G,+i is a Q(n + 1, 2k + 1,2) 
graph. 

It is not clear, however, whether 2k + 1 faults is the 
maximum number that G,, i can tolerate while a fault-free 
Qn-, is present. Nevertheless, in some special cases, 
2k + 1 can be proved to be the maximum by explicitly 
constructing the fault set. For instance, Fig. 17 demon- 
strates how eight faults can destroy every fault-free Qz 
and Q3 in W, and WS, respectively. 

Theorem 8 implies that the Q+(n, k, 1) designs can be 
taken as two-step-degradable structures with a high level 
of fault tolerance. For example, it takes at least 8, 9, and 
10 faults to destroy every fault-free Qn-* in R,, W,,, and 
D,. Many of the advantages of our previous designs, such 
as low increase in node degree and ease of reconfigura- 
tion, also apply to such designs. We list in Table IV the 
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TABLE IV 
The Fault Tolerance of the 

Q(n, k, 1) Designs with Re- 
spect to Qnw2 

Graph 

Qh 2, 1) 
Qh 3, 1) 
Q(n, 4, 1) 
Qh 5, 1) 
Qh 6, 1) 
Qh 7, 1) 
Qh 8, 1) 
Qh 9, 1) 
Qh 10, 1) 

Fault tolerance 
with respect to 

Q.-z 

25 
27 
29 
211 
213 
215 
217 
219 
221 

corresponding fault tolerance of the Q(n, k, 1) designs 
used as two-step-degradable structures. 

5. CONCLUSIONS 

We have presented a novel characterization of fault- 
tolerant hypercube structures that allows the perfor- 
mance degradation due to faults to be quantified. We 
developed specific fault-tolerant designs for zero-, one-, 
and two-step degradation. We showed that by using a 
graph-product construction, a large fault-tolerant design 
can be developed using a small design as a seed. Most of 
our designs are regular and node-symmetric, and are 
quite efficient in terms of the overhead associated with 
the spare links and the maximum node degree. 

The graph-product construction technique can be ex- 
tended to other systems defined by product graphs. Sup- 
pose that G = Gi x G2, and G; is a k-FT realization of Gr . 
Then G’ = G; x GZ is a k-FT realization of G. We can 
illustrate this for an m x n mesh M = P,,, x P,. Cm+l, a 
loop with m + 1 nodes, is a I-FT realization of P,. M’ = 
c m+l x P, is then a l-FT realization of M. This method 
provides a way to construct general fault-tolerant designs 
efficiently and systematically. 
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