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ABSTRACT

In this paper we introduce an approximation method for uncertainty propaga-
tion which is based on a modification of the stratified simulation. The method uses a
deterministic or perfect sample and calculates the number of times simulated instan-
tiations are selected avoiding the repetition of identical instantiations which occurs
in the standard stratified simulation method. A theoretical analysis to evaluate the
performance of the method as compared with the stratified simulation scheme and
to select the required step for the estimation of probabilities with a given error is
presented. Some experimental studies compare the proposed with other simulation
methods and show a much better performance not only in computer time but also
in simulation errors.
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1 Introduction

Bayesian belief networks offer a practical methodology for handling uncertainty in
knowledge based systems which have a firm theoretical foundation in statistics. One of
Bayesian networks main applications is the usage as inference engine; the calculation
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of beliefs of events given the observation of other events which is called evidence. For
a Bayesian belief network, this task consists of the calculation of the probability of
the occurrence of some events given the evidence.

Several algorithms exist for the exact calculation of these probabilities, [14, 11, 15].
However, these algorithms are not generally applicable due to computational limita-
tions. All these algorithms have difficulties with certain types of network structures.
This is not surprising since the task has been proven to be NP-hard [3].

A widely used method for handling the computational burden in decision theory
and Bayesian statistics is the use of approximation methods. Instead of the exact
calculation of probabilities, representative samples of the variables in the Bayesian
network can be generated [10, 13, 16]. These so called simulation algorithms have
the advantage that the run time is known in advance and that their performance is
hardly influenced by the network structure. However, the problem of approximating
the probability of an event given the evidence when a given error-bound is required
has also been proven to be NP-hard [6]. Another problem with simulation algorithms
is their sensitivity to the selection of non-representative samples, a problem that has
been recognized for simulation algorithms in Bayesian networks [4].

A well known method for selecting more representative samples in statistics is
the use of stratification. The stratified simulation method for Bayesian networks
was initially suggested by Bouckaert [2] who presented several variants. These al-
gorithms give more representative samples and, due to the possibility of an efficient
implementation, are faster than the previously known simulation algorithms. The
most successful version chooses a deterministic sample consisting in equally spaced
sample values. Here we present an improved version of his optimal stratification al-
gorithm, which saves computational effort. We analyze theoretically the performance
of the algorithm and the influences of the improvement and we make an experimental
analysis.

In Section 2, we start with a general description of sampling methods and their
application to inference in Bayesian networks. In Section 3, the stratified sampling
algorithm is explained in detail and some improvements are introduced. In Section
4, we make a theoretical analysis of the performance of the algorithm and how this
is influenced by the imposed improvements. In Section 5, experimental test results
are presented and interpreted. And, we conclude with some final considerations and
suggestions for further research in Section 6.

2 Sampling

Sampling is a method for the approximation of
∑

x∈X f(x) for some function f . In-
stead of performing the summation over all elements in X, randomly a set of values
S, called the sample, is chosen. An instantiation is an element of a sample. Only for
the instantiations in the sample, the value of f is calculated. The obtained values are
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added and the result is the score c. By normalizing the score we obtain c · |X|/|S|
(where |.| denotes the cardinality of a set), which is an estimate of

∑
x∈X f(x).

The selection of samples of X influences the quality of the approximation consid-
erably; when f(s) is close to zero for almost all instantiations s ∈ X but very large
for only a few, one should have some of the latter instantiations to get a satisfactory
score.

A method to select more representative samples is by selecting instantiations s
with probability proportional to f(s). The probability with which s is chosen from
X is called the sampling distribution denoted as PS. To compensate for the extra
selection of instantiations with large values of f, the score is not updated with f(s)
but with the weighted value of f(s),

f(s)/PS(s). (1)

A Bayesian belief network B over a set of variables V = {x1, . . . , xn} is a pair
(BS, BP ). BS is a directed acyclic graph over V , called network structure. The parents
of a node xi in the network structure are denoted by πi. BP is a set of conditional
probabilities, one for each variable in V given its parents, called assessment functions.
A Bayesian belief network defines a probability distribution [14]

PB(V ) =
n∏

i=1

P (xi|πi). (2)

It is this probability distribution PB that is used in knowledge based systems.
Inference in such knowledge based systems over V consists of the calculations of the
marginals of the represented distribution for each variable in V . In other words,
inference is the calculation for each xi ∈ V of the function

∑
xj∈V \xi

PB(V ), where PB

is the probability distribution defined by the Bayesian network. However, the task is
different when evidence is observed, that is, when values of certain variables E ⊂ V
are known to have values ei for xi ∈ E. The nodes in E are called evidence nodes.
With observed evidence, inference is the task of calculating for each xi ∈ V \E the
probability P (xi|E), that is, the function

∑
xj∈V \Exi

PB(V |E), (3)

where PB(V |E) is the probability distribution defined by the Bayes network in which
the variables in E are instantiated according to their observed values.

The function (3) can be approximated by sampling, as we just described. Figure
1 shows the general framework of sampling algorithms for inference in Bayesian net-
works. After a sampling scheme dependent initialization step, m instantiations are
generated. An instantiation S is a value assignment to all the variables in V \E. A
value of Formula (1) is calculated as the quotient of the value of the function that
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Initialize
for i← 1 to m do

S ← generate instantiation i
p = PB(S)/PS(S)
update scores p

Normalize scores

Figure 1: General sampling framework.

is approximated, that is, the probability of the sample according to the distribution
represented by the belief network PB(S), and the sampling distribution PS(S).

So, there are three components in a sampling algorithm for Bayesian networks:

1. a sampling distribution,

2. an instantiation generation method, and

3. a scoring method.

In all known simulation methods for Bayesian networks, the sampling distribu-
tion can be written as the product of the sampling distributions of the nodes that
are sampled. So let U ⊆ V be the set of sampled nodes and PS(xi) the sampling
distribution of node xi for xi ∈ U , then

PS(V ) =
∏

xi∈U

PS(xi). (4)

In most generation schemes, all nodes but the evidence nodes are sampled. We differ-
entiate four different sampling distributions for nodes: the uniform distribution, the
forward sampling distribution, the backward sampling distribution, and the Markov
blanket distribution.

The uniform distribution assigns an equal probability to each value of a variable,
that is, PS(xi) = 1

|xi| [10]. For an instantiation that is chosen with uniform distribu-

tions, we have p =
∏

xi∈U PB(xi|πi). This distribution leads to unsatisfactory results
since many non-representative samples are generated.

A forward sampling distribution for xi, is a distribution that uses the assessment
function of the Bayesian network for node xi [10]. Condition is that all parents of
xi must have been assigned a value already. The parents could have got their values
either because they are evidence nodes or because they have been forward sampled
before. The sampling distribution is the part of the assessment function that applies
to the instantiation of the parents, so PS(xi) = PB(xi|πi). For instantiations chosen
with the forward sampling, we have p =

∏
xi∈V \U PB(xi|πi). The method results in
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good samples as long as the probability of the observed evidence is not very close to
zero.

The backward sampling distribution is a recently introduced distribution [9] where
values of the parents of a node xi get assigned a value under the condition that node
xi already has a value. Node xi may have taken this value either because it is an
evidence node or because it is backward sampled before. The values of πi are generated
according to the assessment function of node xi, namely with probability PS(πi) =
PB(xi|πi)

αi
, where αi is a normalizing constant to make the sampling distribution sum to

unity. The backward sampling distribution is much less sensitive to probabilities close
to zero than the other distributions. Since not all nodes can be backward sampled,
for example, because there is no evidence yet, backward sampling must be mixed
with another sampling method like for example forward sampling. Of course, the
score have to be compensated for this action. In [9] it was shown that this can be
calculated by p =

∏
xi∈E\B P (xi|πi)

∏
xj∈B αj, where B is the set of nodes on which

backward sampling was applied and αj the normalizing constants as in the sampling
distribution.

In the Markov blanket sampling distribution, the value of a node xi is chosen with
probability proportional to the product of the probabilities of its so called Markov
blanket Mi [13]. Mi is the set of parents of xi, children of xi, and parents of the children
of xi except xi itself. Condition for sampling xi is that all nodes in the Markov blanket
have been assigned a value. It is usual to take the values in the previous instantiation.
So, xi is chosen according to the sampling distribution PS(xi) = αi

∏
xj∈Mi

PB(xj|πj),
where αi is a normalizing constant to make the sampling distribution add to unity
and xi and πi are instantiated conform the previous instantiation. The score p is 1.
Also this distribution results in good samples, as long as the probability tables do
not contain values close to zero.

The second component of a simulation algorithm for Bayesian networks is the
generation of instantiations. When all nodes are sampled with a uniform sampling
distribution, in random order the variables can be assigned a value. This method is
known as equiprobable sampling.

When all but the evidence nodes are forward sampled, we speak of logic sampling
[10], evidence weighting [8, 16], or likelihood weighing. In this paper, we use the last
term. Likelihood weighing is performed by first assigning values to the root nodes (if
they are not evidence nodes), and then assigning values to nodes of which all parents
have been assigned a value, until all nodes have been assigned a value.

When nodes are interchangingly forward and backward sampled, we have an order-
ing that may be completely different from the topological ordering on the nodes; the
ordering start at the parents of a node with evidence and proceeds upwards against
the direction of the arcs. Actually, the three requirements on the ordering are:

1. A node that is backward sampled must be instantiated.
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2. A node that is forward sampled must have instantiated parents.

3. A node that is not in the ordering is a predecessor of a backward sampled node.

The nodes are assigned a value in the order that fulfills the three requirements.
When all nodes are sampled with a Markov blanket sampling distribution, an

initial instantiation need to be generated. This can be done by one of the other
simulation methods. The nodes can be assigned a value in random order for the next
instantiation.

The third component of a sampling algorithm is the scoring method. Since an
instantiation has a value of all variables in V \E, the score of the instantiation con-
tributes to all variables; for all variables and for each value a score is updated by
adding p to the value that the variable has in the instantiation S. Another scoring
method, is to add p weighted by the product of probabilities over the nodes in the
Markov blanket. This is computational more expensive when likelihood weighing is
used. However, for Gibbs sampling the weighing values are already computed for
generating the instantiation, so there is no significant computational cost.

3 Stratified Simulation

Stratified simulation is a well known statistical technique which leads to a better
performance of the simulation avoiding rare or desequilibrated samples, and samples
with outliers. The basic idea is to divide the sample space into several so called strata
and choose in each stratum a previously selected optimal number of samples. This
leads to a better representation of the sample space than that obtained by standard
samples and better estimates are obtained for a given sample size or a smaller sample
size is required for a given predefined error.

3.1 Stratification in Bayesian networks

To understand the basic idea of the method, assume that we have an ordered set V of
discrete variables x1, x2, . . . , xn. Assume also that variable xi has arity ri and takes
values (0, 1, . . . , ri − 1) and that we know the conditional forward sampling distribu-
tions of each of the nodes given their parents PS(xi|πi) for i = 1, 2, . . . , n. Then, we
can generate all instantiations and calculate their probabilities of occurrence. We can
also order the set of instantiations of V in the following way. Let I1 = (x1, x2, . . . , xn)
and I2 = (y1, y2, . . . , yn), then

I1 < I2 ⇔ ∃k, ∀j < k xj = yj and xk < yk. (5)

We say that (x1, x2, . . . , xn) precedes (y1, y2, . . . , yn).
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X1

X3

X2 PS (x2 | x1):

P(x2=1 | x1=0) = 0.4
P(x2=1 | x1=1) = 0.6

P(x1=1) = 0.6

PS (x1):

PS (x3 | x2, x1):

P(x3=2 | x2=0, x1=0) = 0.4
P(x3=2 | x2=0, x1=1) = 0.3
P(x3=2 | x2=1, x1=0) = 0.4
P(x3=2 | x2=1, x1=1) = 0.3

P(x3=1 | x2=0, x1=0) = 0.3
P(x3=1 | x2=0, x1=1) = 0.4
P(x3=1 | x2=1, x1=0) = 0.3
P(x3=1 | x2=1, x1=1) = 0.4

Figure 2: Bayesian network used in the stratified simulation example.

For example, let V = {x1, x2, x3} with arities r1 = r2 = 2, and r3 = 3 and
consider the Bayesian network in Figure 2. The set of ordered instantiations and their
associated probabilities of occurrence are given in Table 1, where the accumulated
probabilities are also shown. Then, we associate each instantiation with a subinterval
of [0, 1], Ii = [l(i), h(i)), corresponding to the cumulative probabilities, that is,

l(i) =
∑
j<i

PS(Ij) and h(i) = l(i) + PS(Ii). (6)

where Ij is the j-th instantiation. Figure 3 shows the instantiations, the accumulated
probabilities and their associated intervals, which are also shown in Table 1.

The method consists in dividing the [0, 1] interval in equally spaced values, that
is , if we desire m steps, we generate the {fi = (i− 0.5)/m; i = 1, 2, . . . , m} sequence
of values and select the associated instantiations. Thus, we start by the first value in
the sequence 0.5/m and we determine the associated instantiation; then we increase
this value by 1/m and determine the new instantiation, and we repeat the process
until we reach the last value (m− 0.5)/m.

For example, assume m = 4, then the sequence fi = (i− 0.5)/4 of numbers is

(0.125, 0.375, 0.625, 0.875)

and the generated sample of instantiations becomes (see Figure 3):

(001), (012), (102), (111).

It is clear that when m increases the frequency of a given instantiation tends to the
exact frequency. Due to the deterministic character of the procedure, no generation
of random numbers is required.
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Instantiation Probability Accumulated probability Associated interval

(0,0,0) 0.072 0.072 (0.000,0.072)
(0,0,1) 0.072 0.144 (0.072,0.144)
(0,0,2) 0.096 0.240 (0.144,0.240)
(0,1,0) 0.048 0.288 (0.240,0.288)
(0,1,1) 0.048 0.336 (0.288,0.336)
(0,1,2) 0.064 0.400 (0.336,0.400)
(1,0,0) 0.072 0.472 (0.400,0.472)
(1,0,1) 0.096 0.568 (0.472,0.568)
(1,0,2) 0.072 0.640 (0.568,0.640)
(1,1,0) 0.108 0.748 (0.640,0.748)
(1,1,1) 0.144 0.892 (0.748,0.892)
(1,1,2) 0.108 1.000 (0.892,1.000)

Table 1: Ordered instantiations and associated absolute and accumulated probabilities and intervals.

Figure 3: Instantiations and accumulated probabilities.
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Note that the resulting sample in this method can be considered as a perfect
sample because its empirical distribution function is a perfect straight line as it corre-
sponds to the uniform distribution over the unit interval. In this way, we can consider
this method as a numerical procedure more than a true simulation method.

The stratified and modified stratified scheme contribute to the efficient generation
of instantiations and can be applied with any sampling distribution except for the
Markov blanket sampling distribution. The ordering of the variables may be chosen
in such a way that the stratification scheme performs efficiently. Sorting the variables
according to their assessment functions as extra criterion for ordering the variables is
an option. This prevents backward simulated nodes, which account for a relatively
small strata due to their high cardinality of values that are assigned, to be low in the
ordering.

3.2 Implementation of the Stratified Simulation Scheme

The method is conceptually very simple but its implementation is complicated. In
fact, in general, we cannot generate nor calculate the probabilities of all instantiations
because of the associated computational effort (for n binary variables already 2n

instantiations need to be generated). Due to the fact that the method is supposed
to be utilized when exact methods cannot be used, we assume that the number of
instantiations is much larger than the number of steps m. This implies that many
of the instantiations (most of those with lower probabilities) will not appear in the
simulated sample. The method must be able to skip these instantiations avoiding
unnecessary calculations in an effective way. We can proceed in an ordered way
and, using an algorithm to monotonically evolve from the instantiation (0, 0, . . . , 0)
to the instantiation (r1 − 1, r2 − 1, . . . , rn − 1), take advantage of the order and
the deterministic character of the selected sequence to determine the instantiations
corresponding to the sequence of values f. The main advantage of this procedure is
that for obtaining the new instantiation we only need to update the last k variable
values and that we only determine this k value once for each simulated instantiation.
This allows a rapid procedure which skip many instantiations at a time. However, we
pay the price of determining which variables need to be updated.

The key problem of this procedure is the determination of the instantiation as-
sociated with a given value fi of the sequence f, which is in the interval [0, 1], and
the determination of the variable number k above which need to be updated. To
this aim, we define an upper h(i) and a lower l(i) ≤ h(i) bound for each variable,
which indicate the probability values where each variable experiments the next two
value changes. For example, in step 4, which corresponds to a value in the interval
(0.240, 0.288) (see Figures 3 and 4), the associated instantiation is (010). The next
change in the variable X3 occurs in 0.288 (instantiation (011)) and the following in
0.336 (instantiation (012)). Thus, we change l(3) from 0.240 to 0.288 and h(3) from
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0.288 to 0.336. Figure 4 shows how the h(i) and l(i) functions are modified when the
actual value in the equally spaced sequence f is in each of the shadowed intervals.

Because we work with a deterministic sequence, once we generate one instantiation
associated with a given value of fi, we can determine how many of the values in the
sequence will lead to the same instantiation using the formula (see Figure 5)

δ =

⌊
h(n)− f

m

⌋
+ 1, (7)

where �.� is the integer part and n is the number of variables. Then we increment
the i counter of the fi sequence in δ units instead of one unit. In this way, we save
the work of searching for the same instantiation again and again when the fi values
correspond to the same instantiation. With this technique the simulation time is
greatly reduced.

To determine the instantiation associated with the new fi-value we use a binary
searching method, which allows to locate this instantiation in ln2 n operations. Given
a sequence value fi, we look for the j index such that l(j) ≤ f ≤ h(j), which, due to
the above definition of the l(.) and h(.) functions is the number of the variable from
which we need to update. Once this is done, we can proceed to the updating of the
instantiation and the l(.) and h(.) functions, which is not trivial. Figures 6 and 7 give
the initialization and the simulation steps of the Stratified simulation algorithm which
generates the simulated sample and performs the updatings. Figure 8 shows how the
modified stratification scheme, that is, the skipping, affects the general sampling
framework. P̃ (i, k) is the probability of node i taking value k given its parents as
instantiated in the val array and Ej is the random evidence for the node xj. Note
that for deterministic type of evidence this function takes value 1 for one value of k
and zero for the rest.

This algorithm has been optimized to reduce the number of multiplications, which
is the most costly operation. This is specially useful for variables with high arities.

4 Evaluating Savings

In this section we evaluate the savings obtained by using the stratified simulation
methods. We start by a simple case in the following subsection and deal with the
general case in the subsequent subsections.

4.1 A Simple Case

Assume a set (x1, x2, . . . , xn) of n binary identically and independent random vari-
ables, where p < 0.5 is the probability P (xi = 1). From a total of 2n possible in-

stantiations there are
(

n
k

)
such that k of the variables take on the value one and the
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STEP 1 STEP 2 STEP 3
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Figure 4: Illustration of the l() and h() limits.
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1/N

1/N
1/N

1/N

l(n)

h(n)
fi+7

fi

Figure 5: Illustration of how the same values of the f sequence are skipped when they correspond
to the same instantiation.

l(0)← 0; h(0)← 1
for i← 1 to n do

l(i)← 0
if xi ∈ E then

val(i)← ei

h(i)← h(i− 1)
else

val(i)← 0

h(i)← h(i− 1) ∗ P̃ (i, 0)

Figure 6: Initialization step of the stratified simulation algorithm.
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f ← (random[0 : 1) + i− 1)/m
j ← Binsearch (f, h)
while j <= n do

if xj ∈ E then
l(j)← l(j − 1)
h(j)← h(j − 1)

else
k ← 0
l(j)← l(j − 1)

h(j)← l(j) + (h(j − 1)− l(j − 1)) ∗ P̃ (j, k)
while f > h(j) do

k ← k + 1
l(j)← h(j)

h(j)← l(j) + (h(j − 1)− l(j − 1)) ∗ P̃ (j, k)
val(j)← k

j ← j + 1
return(val)

Figure 7: Simulation step of the stratified simulation algorithm.

Initialize
for i← 1 to m do

S ← generate instantiation i

δ = �h(n)−f
m
�

p = δ ∗ PB(S)/PS(S)
update scores p
i = i + δ

Normalize scores

Figure 8: Modified stratified simulation scheme modification of general sampling framework.
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remaining n−k variables the value zero. The probability of one such an instantiation
is given by

pk(1− p)n−k. (8)

Thus, they can be grouped in n + 1 different groups, where each group includes
those instantiations with the same probability and is referred to by number k. We
can also order the groups and the instances with respect to their corresponding prob-
abilities of occurrence. We say that instantiation I1 goes before instantiation I2 if
P (I1) > P (I2), which is equivalent to saying that k1 < k2, that is, the group number
of I1 is smaller that the group number of I2.

The total probability associated with group k is

(
n
k

)
pk(1− p)n−k. (9)

Now we evaluate the performance of the stratified simulation methods by com-
paring the required sample size s for the standard stratified simulation scheme, and
the required sample size r for the modified scheme.

Assume that we use the standard stratified scheme and that we perform s runs.
Then, the jump occurs in intervals of probability 1/s. This means that a total of
spk(1 − p)n−k runs fall inside each instantiation of group k. Then, in the modified
scheme, we save �spk(1− p)n−k − 1� runs for each of those instantiations. Note that
we get a saving only in those groups such that

spk(1− p)n−k ≥ 2, (10)

which is equivalent to

s ≥ 2

pk(1− p)n−k
(11)

Thus, for values of k below the threshold

klimit =
− ln 2 + ln s + n ln(1− p)

ln(1− p)− ln(p)
(12)

there is no saving. So, the total saving, in terms of runs (required sample size), is

s− r =
∑

k≤klimit

(
n
k

)
�spk(1− p)n−k − 1� (13)

Figure 9 shows Log�r/s� as a function of s for n = 30 and different values of p.
Two interesting irregularities can be observed in this figure. The sudden jumps are
due to the integer part function �.� and the increasing segments are due to the fact
that for very small decrements of the step no extra saving occurs because no new
instantiations are attained. As we can see, the saving percentages are important.
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Figure 9: Log�r/s� as a function of s for n = 30 and p = 0.2 (upper curve), 0.1 (intermediate) and
0.01 (lower curve).

When the probability jump is less or equal than the minimum of the probabilities
of all instantiations, that is, when all instantiations are attained, we have:

1

s
≤ pn ⇔ s ≥ 1

pn
> 2n,

and the total saving is

n∑
k=0

(
n
k

) (
spk(1− p)n−k − 1

)
= s− 2n, (14)

where we have taken into account that

n∑
k=0

(
n

k

)
= 2n. (15)

So, after all the 2n instantiations have been generated there is no increment in the
simulation time. Note that when s > 2n there is no reason for simulating because
the exact evaluation of the probabilities of all instantiations can be done in the same
computation time.

We can also compute the savings in terms of computer operations. For each
binary search we need ln2 n comparisons and for each jump we need a multiplication.
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Then, the cost difference between r trials with their corresponding jumps and their
associated standard stratified simulation method is

C(r, s) = s ln2 n− r(α + ln2 n) = (s− r) ln2 n + rα (16)

where α is the relative cost of a multiplication with respect to a comparison and
asymptotically, the influence of its second term vanishes.

Expression (16), taking into account (13) and Figure 9, shows that the saving
dramatically increases with ln2 n and 1−p. This suggests that the modified stratified
simulation scheme is an important improvement compared to the standard stratifica-
tion scheme.

4.2 General case

In the general case, the variables are neither binary nor equally distributed nor in-
dependent random variables. In that case we can apply the theory developed by
Druzdzel [7]. The basic idea of this methodology is as follows. Let P (X) be the
joint probability distribution defined either by a Bayesian network as in (2) or as the
sampling distribution of a Bayesian network as in (4). In P (X), X is an equiprobable
distributed variables. Now consider p = P (X) as a random variable and let fp(p) be
the density of the random variable p. Thus, if fp(p) were known, we could determine
a threshold value p0 such that all instantiations with an associated probability lower
than p0 contribute a given probability to the total probability mass.

Fortunately, the joint probability distribution of the random variables can be
written as

P (x1, x2, . . . , xn) =
n∏

i=1

P (xi|πi) (17)

and taking logarithms we get

ln P (x1, x2, . . . , xn) =
n∑

i=1

ln P (xi|πi), (18)

then, because of the central limit theorem, assuming a random selection of the vari-
ables and a sufficiently regular joint probability for (x1, x2, . . . , xn), when n is large
enough, the above sum can be approximated by a normal random variable. This is
equivalent to assuming that

fln p(ln p) =
1

σ
√

2π
exp

{
−(ln p− µ)2

2σ2

}
, (19)

where fln p(ln p) is the pdf of ln p, or, equivalently, p is approximately distributed as
a log-normal random variable.
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Assume we have simulated k instantiations. The elemental contribution of all
instantiations with probability p to the total probability mass is kpfln p(ln p)d ln p (in
logarithmic scale) and then, the contribution of all instantiations with probability
smaller than p0 to the total probability mass becomes

k

ln p0∫
−∞

pfln p(ln p)d ln p (20)

and, taking into account that all instantiations contribute a probability mass of one,
we can calculate the value of k by

k =
1

∞∫
−∞

pfln p(ln p)d ln p
= exp

{
−µ− σ2/2

}
, (21)

since the integral over the lognormal is exp(µ + σ2/2) [12]. Substitution of this value
into (20) leads to

k

ln p0∫
−∞

pfln p(ln p)d ln p =

ln p0∫
−∞

1

σ
√

2π
exp

{
(− ln p− (µ + σ2))

2

2σ2

}
d ln p, (22)

which shows that kpfln p(ln p) is normal N(µ + σ2, σ2).
It is important to mention here that, when we have µ >> −σ2−2σ, an important

part of the probability mass of this distribution can be above 0, a limit value above
which no ln p can be. However, if this is the case the normal approximation is not
valid and we need to use the extreme value theory to approximate the tails near zero.
In addition, if the normal distribution only approximates the empirical data in the
central part, the approximation if good when µ + σ2 − βσ < µ + βσ, that is, when
σ < 2β, where β is the number of standard deviations apart we move from the mean
(standard values of β are 1.5 or 2).

Following Druzdzel ideas, from the set of all instantiations, we can choose a sample
of size m. Then we calculate their associated probabilities and take logarithms. In this
way we obtain an approximate normal sample and we can estimate the corresponding
mean µ and standard deviation σ by their corresponding sampling values. Then we
can determine the probability threshold value p0 for which all instantiations less likely
than p0 contribute totally less than f to the total probability by solving the following
equation

ln p0∫
−∞

1

σ
√

2π
exp

{
(− ln p− (µ + σ2))

2

2σ2

}
d ln p = f ⇔ ln p0 = µ + σ2 + σΦ−1(f) (23)

where Φ(.) is the cdf of the standard normal N(0, 1). In the next subsection, we will
give a formula for the exact calculation of µ and σ.
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Note that p0 can be used to calculate the step value s to be used in the stratified
simulation scheme. In fact if we choose s = 1/p0 we can guarantee an error less than
f .

We can calculate the fraction of instantiations - that are less likely than p0 as

- =

ln p0∫
−∞

fln p(ln p)d ln p =

ln p0∫
−∞

1

σ
√

2π
exp

{
−(ln p− µ)2

2σ2

}
d ln p⇔ ln p0 = µ + σΦ−1(-).

(24)

4.3 Calculation of Mean and Variance

It is useful to know on forehand what the parameters of the lognormal distribution
are so that the stepsize for the stratified simulation scheme can be determined. The
following theorem tells how to calculate them.

Theorem 1 Let P be a joint probability distribution that can be written as
∏n

i=1 P (xi|πi).
Let X be a random variable which is uniformly drawn from the instantiations of V .
Let Y = ln P (X) Then, the average µ and variance σ2 of Y are

µ =
n∑

i=1

µi,

and

σ2 =
n∑

i=1

n∑
j=1

ηij − µ2,

where µi =
∑

xiπi
ln P (xi|πi)/|xiπi|, ηij =

∑
xiπixjπj

ln P (xi|πi) · ln P (xj|πj)/|xiπixjπj|
and |X| denotes the number of instantiations of X.

Proof: First, we derive the average of Y and then the variance. The average of
Y is by definition

µ = E{Y } =
1

|V |
∑
V

log P (V ),

And by definition of P (V ), we have

µ =
1

|V |
∑
V

n∑
i=1

ln P (xi|πi).

By changing order of summation, this is

µ =
1

|V |
n∑

i=1

∑
V

ln P (xi|πi).
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Now we can split the last summation in summation over the instantiations of the
variables xiπi and those not in xiπi and obtain

µ =
1

|V |
n∑

i=1

∑
V \xiπi

∑
xiπi

ln P (xi|πi).

Because the summed term remains the same for the second summation, we can write
this as

µ =
1

|V |
n∑

i=1

|V \xiπi|
∑
xiπi

ln P (xi|πi).

Bringing the constant |V | whitin the outer summation gives

µ =
n∑

i=1

|V \xiπi|
|V |

∑
xiπi

ln P (xi|πi). (25)

Now realizing that |V \xiπi| =
∏

xj∈V \xiπi
rj (where rj is the cardinality of variable xj)

and |V | = ∏
xk∈V rk, we can write |V \xiπi|

|V | as 1/
∏

xk∈xiπi
rk. This is exactly the same

as 1
|xiπi| . So, we can write (25) as,

µ =
n∑

i=1

1

|xiπi|
∑
xiπi

ln P (xi|πi).

By definition of µi in the theorem, we get the stated result

µ =
n∑

i=1

µi.

The variance of Y is by definition

σ2 = E{(Y − µ)2} = E{Y 2} − µ2. (26)

Since the last term in the theorem have been already obtained, we concentrate on the
first. By definition, we have

E{Y 2} =
1

|V |
∑
V

(ln P (V ))2 ,

and by definition of P (V ) this is

E{Y 2} =
1

|V |
∑
V

(
n∑

i=1

ln P (xi|πi)

)2

.

Splitting the quadratic gives

E{Y 2} =
1

|V |
∑
V

(
n∑

i=1

ln P (xi|πi)

)
·

 n∑

j=1

ln P (xj|πj)


 .
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By reordering terms, we get

E{Y 2} =
1

|V |
∑
V

n∑
i=1

n∑
j=1

ln P (xi|πi) · ln P (xj|πj).

By changing sums and bringing the constant 1
|V | within the sum just as we did for

the calculation of µ, we get

E{Y 2} =
n∑

i=1

n∑
j=1

∑
V

1

|V | ln P (xi|πi) · ln P (xj|πj).

Now by the same observation as above, we have that
∑

V
1
|V | ln P (xi|πi) · ln P (xj|πj)

equals
∑

xiπixjπj

1
|xiπixjπj | ln P (xi|πi) · ln P (xj|πj). Substitution gives

E{Y 2} =
n∑

i=1

n∑
j=1

∑
xiπixjπj

1

|xiπixjπj|
ln P (xi|πi) · ln P (xj|πj).

By definition of ηij in the theorem, this can be written as

E{Y 2} =
n∑

i=1

n∑
j=1

ηij.

Finally, substitution into Formula (26) gives the stated result,

σ2 =
n∑

i=1

n∑
j=1

ηij − µ2.

Theorem 1 gives the formulas that makes that calculation of the parameters of the
lognormal distribution possible on forehand. Note that P in the theorem may be
either a distribution defined by a Bayesian network or be a sampling distribution.
This gives useful insight in the behavior of the stratified algorithm. The complexity
of calculating the mean µ is O(n ·k) where n is the number of nodes and k the largest
probability table. The complexity of calculating the variance σ2 is O(n2 · k2). Note
that since ηij = ηji, a lot of terms are the same, and we can write the variance as

σ2 =
n∑

i=1

ηii + 2
n−1∑
i=1

n∑
j=i+1

ηij − µ2,

saving half of the computational effort. Furthermore, when xiπi ∩ xjπj = ∅ then we
have

ηij =
∑

xiπixjπj
ln P (xi|πi) · ln P (xj|πj)/|xiπixjπj|

=
∑

xiπi
ln P (xi|πi)/|xiπi| ·

∑
xjπj

ln P (xj|πj)/|xjπj| = µi · µj.
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So most of the time, ηij can be calculated simply as the product of the means µi

and µj. The calculation of µ and σ need only be performed once. When evidence is
entered and the distribution that we are interested in changes, the new means and
variances can be incrementally calculated.

Let V be a set of variables, P be a distribution over V and µ and σ as in Theorem
1. Let P ′ be equal to P (V |xk = e), where xk is some variable in V . Let µ′ and σ′2

be the mean and variance for P ′ as defined in Theorem 1. Then µ′ can be calculated
using µ with the following formula,

µ′ = µ− µk +
∑

xi∈Ke

(µi + µ′
i) . (27)

where Ke are the children in e that are not evidence nodes. And, σ′2 can be calculated
using σ2 by

σ′2 = σ2 −
n∑

i=1,xi �∈E

ηik +
n∑

i=1,xi∈Kk

(−ηik + ηik) + µ2 − µ′2. (28)

By storing µi and σij in memory, Formula (27) and (28) may be calculated efficiently.

5 Experimental Results

We have performed some experiments to compare the stratified simulation and the
modified simulation scheme with the likelihood weighing and Markov boundary scheme.
Ten Bayesian networks over twenty binary variables were used. First ten network
structures were generated. Initially an ordering on the variables is made, two nodes
xi and xj are randomly selected, and an arc xj → xi is added if i > j and xi → xj

otherwise. Then, randomly one of the variables is selected that is connected to at
least one arc and one of the variables that is not connected to any arc. An arc is
placed between these nodes in the direction that satisfies the ordering. The process
is repeated until all nodes are connected. This method generates networks with a
bias towards networks with some nodes having a high number of arcs connected as
opposed to networks with long strings of nodes. Realistic networks seem to have the
same kind of bias.

For these ten networks structures, assessment functions were generated for bi-
nary variables by selecting a random number. In the first experiment, the ran-
dom number was selected from the unit interval and in the second experiment the
number was uniformly selected from [0, 0.1] ∪ [0.9, 1]. The experiments were per-
formed by generating 100 up to 1000 instantiations, increasing by 100 in each test
and 1000 up to 10000 increasing by 1000 in each test. The performance was mea-
sured in time to execute an algorithm and the error in the approximation according
to 1

n

∑n
i=1

∑1
k=0 P (xi = k) ln

[
P (xi = k)/P̂ (xi = k)

]
where P (xi = k) is the exact

probability that xi takes value k and P̂ (xi = k) its approximated probability.

21



- 5

- 4

- 3

- 2

- 1

0

2.3 3.15 4 4.85 5.7

Log(T)

Likelihood

Gibbs

Stratified

Modified

Log(E)

Figure 10 shows the ln(T ) versus ln(E) plot of the networks described above
for likelihood weighing, Markov sampling, the stratified scheme, and the modified
stratified scheme. As reported in other papers [5, 16], likelihood weighing is more
efficient than Markov sampling. Also, the outperformance of likelihood weighing by
the stratified scheme was reported before [1].

The experiments show that, for a reduced number of simulations, the modified
stratified scheme performs equal to the stratified scheme, when the probabilities in
the Bayesian network are chosen from the unit interval. This behavior does not
appear when the probabilities are extreme, that is, chosen from [0, 0.1]∪ [0.9, 1]. The
error is exactly the same for both methods. This is because the calculated score is for
both algorithms the same. Therefore, the error is also the same for both algorithms.
However, the modified stratified scheme performs better than the stratified scheme
regarding computation time. The reason for this behavior is that networks with
extreme probabilities result in large strata where skipping saves a lot of calculations.
These large strata are less frequent in networks with non-extreme probabilities, so
that skipping does not really help there. So, the modified stratified scheme performs
better when large strata can be expected.

Figure 10: Logarithm of error vs. logarithm of computation time for different algorithms.

Example 1 For two of the generated Bayesian networks, the set of ln p values as-
sociated with all instantiations have been generated. They are shown in a normal
probability paper (a graph which has been scaled such that normal samples appear as
straight lines). Figure 11 shows the result for a network with assessment functions
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chosen from [0, 1] and Figure 12 for assessment functions taken from [0, 0.1] or [0.9, 1].
As we can see the normal approximation is very good in the central part but not in
the tails.

Figure 11: Set of log values for an example of a 10 nodes network with assessment functions chosen
from [0, 1] in probability paper.

Figures 13 and 14 show the densities of the logarithm of the instantiation prob-
abilities and the contributions to the total probability mass as derived from the pre-
viously described method. For the example in Figure 11 we get µ = −9.18329 and
σ = 2.2629 (note that σ < 2β for β = 2 or 3) and for the example in Figure 12 we
get µ = −15.8833 and σ = 5.24777 (note that σ > 2β for β = 2 or 3). Evaluation of
the savings is correct for the case of Figure 13 because we are using the central part of
the normal distribution. Thus, we can say that 50% of the instantiations contribute
98.8% of the total probability mass. On the contrary, evaluation of savings is com-
pletely wrong for the case of Figure 14 where we need to approximate the right tail.
Thus, extreme value theory should be applied here, instead.

6 Conclusions and Recommendations

A modified version of the stratified simulation scheme for inference in Bayesian net-
works has been presented and analysed theoretically and experimentally. The per-
formance is better than previous simulation methods, not only in simulation time
but also in approximation errors. In addition, theoretical results allow obtaining
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Figure 12: Set of log values for an example of a 10 nodes network with assessment functions chosen
from [0, 0.1] in probability paper.

Figure 13: Pdf of the logarithms of the instantiations probabilities and density of the contributions
to the total probability mass for an example of a 10 nodes network with assessment functions chosen
from [0, 1].

24



-30 -20 -10 10 20 30

log(p)

0

Figure 14: Pdf of the logarithms of the instantiations probabilities and density of the contributions
to the total probability mass for an example of a 10 nodes network with assessment functions chosen
from [0, 0.1].

probability bounds for the instantiations such that neglecting all instantiations with
probability less than a given threshold value leads to controlled errors in marginal
probabilities. Calculation of these bounds is based on the use of the central limit the-
orem to approximate the logarithm of the probability of the different instantiations
(Druzdzel [7]). It is shown that the parameters µ and σ of this normal distribution can
be efficiently calculated from the assessment functions associated with the Bayesian.
In cases where σ < 2β, the normal approximation seems to give good results; other-
wise, the tail must be approximated using extreme value theory. A detailed analysis
of this case is out of the scope of this paper and will be analysed in a future work.

The stratified simulation scheme is inherently based on discrete variables. For the
stratified scheme some adoptions have to be made to be applicable. By choosing an
appropriate sampling distribution, the stratified simulation scheme can be applied
to the discrete variables in the distribution and the forward sampling scheme to the
continuous variables. The discrete variables get assigned a value first with sampling
distribution P (xi|πi) if they have no continuous variable in their parent-sets and
P (xi|πi, µi) where µi is some average derived from the distributions of the continuous
variables in the parent-set of xi. Of course the score has to be adapted appropriately.

When there are too many continuous variables, this scheme will not be more effi-
cient than forward sampling since more samples are necessary to give a representative
sample. Experimental results will have to give insight in how many continuous vari-
ables may appear in the network such that the stratified scheme is more appropriate
than forward simulation.
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