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ABSTRACT: Consider a communication network G in which
a limited number of link and/or node faults F might occur.
A routing p for the network (a fixed path betwcen cach pair
of nodes) must be chosen without any knowledge of which
components might become faulty. Choosing a good routing
corresponds to bounding the diameter of the surviving route
graph R(G,p)/F, where two nonfaulty nodes are joined by an
edge if there are no faults on the route between them. We
prove a number of results concerning the diameter of surviv-
ing route graphs. We show that if p is a minimal length rout-
ing, then the diameter of R(G,p)/F can be on the order of the
number of nodes of G, even if F consists of only a single
node. However, if G is the n-dimensional cube, the diameter
of R(G,p)/F<3 for any minimal length routing p and any set
of faults F with |[Fl<n. We also show that if F consists only
of edges and does not disconnect G, then the diameter of
R(G,p)/F is < 3|F|+1, while if F consists only of nodes and
does not disconnect G, then the diameter of R(G,p)/F is <
the sum of the degrees of the nodes in F, where in both cases
p is an arbitrary minimal length routing. We conclude with
one of the most important contributions of this paper: a list
of interesting and apparently difficult open problems.

1. Introduction

We consider the problem of obtaining efficient, reliable,
fault tolerant routings in a network. As usual, a network is
modeled as a graph, with nodes representing processors and
edges representing communication links. A routing assigns to
any pair of nodes in the network a fixed path betwcen them.
We assume that the network communication protoco!l has no
information about the topology of the network, and thus all

communication between nodes must go on this fixed routing.
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‘minimal length path between them.

In local arca networks, the time required to send a mes-
sage along a route is often dominated by the message process-
ing time at cither end; intermediate nodes on a fixed route
relay messages without doing any extensive processing. Meta-
phorically speaking, the intermediate nodes pass on the mes-
sage without having to open its envelope. Thus, to a first

approximation, the time required to send a message along a

fixed route is independent of the length of the route.

Consider the nctwork shown in Figure 1.

G A
F
B
E
C
D
Figure 1.

Suppose we choose a minimal lengli; routing on this network;
i.e. one for which the route between any pair of nodes is a
Where they exist, we
break ties by always taking the route that goes through the
edge CD.

If in this example the edge CD becomes faulty, then
many routes become unavailable. Figure 2 is the surviving
route graph, where two nodes are joined by an edge exactly if
the route betwecn them is still up (i.e it did not go through

the edge CD).
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Figure 2.



Suppose processor C wants to broadcast a message to all
processors. Since C can only send messages along the fixed
routes, the message will not reach D, E, or F. If G rebroad-
casts the message, it will reach E and F, but not D, since the
route from G to D is also down. One more rebroadcast by E

or F is necessary to ensure that D gets the message.

Note that the worst case number of rebroadcasts needed
to ensure that all processors get a message will be the diame-

ter of the induced graph of Figure 2.

In general, given a graph G, a routing p, and a set of
faults F, we consider the surviving route graph R(G,p)/F with
the same nodes as G-F, and an edge joining two nodes when-
ever the route between them avoids F. As we noted above,
the diameter of R(G,p)/F measures the number of rebroad-
casts necessary to ensure that all processors get a message.
This number determines the number of phases for which it is
necessary to run certain distributed protocols (such as the
Byzantine agreement protocols of [DS1, DS2]). Given the
assumption that the time to send a message along a fixed
route is independent of its length, the diameter of the surviv-
ing route graph also gives a good estimate on the time re-
quired to complete a broadcast in the presence of faults.
Thus, our problem will be to choose a routing p on G that is
fault tolerant because the diameter of R(G,p)/F remains
small for any set of faults F of a given cardinality. This
problem has given rise to many interesting questions in graph

theory, some of them still open.

We first note that minimal length routings are not always

optimal. Consider the spoke graph shown in ligure 3.
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Figure 3.

In this case, for any points on the circumference that are
not joined by an edge, there exists a minimal length route
that goes through the center node. But now suppose the
center node becomes faulty. Then with this routing it is easy
to see that the diameter of the surviving route graph grows to
(n-1)/2 (where n is the total number of nodes). The problem
with a minimal length routing in this case is that the center
node is overworked. Consider instead the routing p on §;

(the spoke graph with n nodes) in which the route between
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two nodes on the circumference is a minimal length path
around the circumference (so that, for example, the route
from A to D in figure 3 would be ABCD, rather than AMD).
In this case, the diameter of R(S,,p)/F is easily seen to be <

2if [F| < 2.

This leads us to ask if we can always find good routings.
We show (Theorem 3) that for any (t+1)-connected graph G,
we can cfficiently find a routing p such that the diameter of

R(G,p)/F is no greater than max(2t,4) if |F| < t.

Although minimal length routings are not always opti-
mal, they are useful and easy to generate. A common routing
algorithm (used for example in the Highly Available Systems

project at IBM [{AAJ) produces random minimal length

routings. Thus, it becomes important to find networks for

which all minimal length routings are fault tolerant.

As an example, consider K, the completely connected
network on n nodes. If p is the unique minimal length rout-
ing on K, then it is easy to check that the diameter of
R(K,.p)/F is 2 if |F| € n-2. (Suppose F is fixed and that a
and b are any two nonfaulty nodes in K. Then either the
link between a and b is nonfaulty, or, since |F| < n-2, there
must exist a nonfaulty node ¢ such that both the link between

a and ¢ and the link between ¢ and b are nonfaulty.)

Unfortunately, because of high fan-in and fan-out, com-
pletely connected networks are often impractical. As in
several other contexts (eg. [Va]) networks laid out as an
n-dimensional cube (C,) achieve surprisingly good results. In
Theorem 1 we show that for any minimal length routing p on
C, and any set of faults F with |[F|] < n-1, the diameter of
R(C,.p)/F<3, independent of n. The proof of Theorem 1 is
short but nontrivial. The result generalizes to n-dimensional

rectangular grids and is easily seen to be optimal.

We also show (Theorem 2) that there exists a minimal
length routing A on C, such that R(C_,A,)/F < 2 if |F| < n.
This in fact is a corollary to a more general result of [BD]
(although the proof for this special case is much simpler than

that of [BD]).

The spoke example shows that if we use minimal length
routings, even a single node fault can force the diameter of
the surviving route graph to grow to O(n). A closer look at
this example suggests that the diameter can grow this way
only if there are nodes of high degree. Indeed, we show

(Theorem 4) that if F consists only of node faults, G/F (i.e.



G with all the elements of F removed) is connected, and p is
a minimal length routing on G, then the diameter of
R(G,p)/F is bounded above by IFl, the sum of the degrees of
the faulty nodes in F. The situation is quite different for
edge faults, If F consists only of edge faults, we can show
(Theorem 6) that f G/F is connected and p is any minimal
length routing on G, then the diameter of R(G,p)/F is <
3|F|+1. We conjecture that both of these results can be some-
what improved: to |F]-|F|+1 in thc case of node faults, and to
2|F|+1 in the case of edge faults. We show in Theorems 5
and 7 that there exist graphs in which these conjectured

bounds are attained.

Chung and Garey [CG] were ablc to obtain analogoﬁs
results to Theorems 4, 5, 6, and 7 for surviving graphs G/F
(as opposed to surviving route graphs). Again the spoke
example shows that one node fault can cause the diameter of
the surviving graph to be O(n). However, Chung and Garey
show that if F consists of only edge faults and G/F is con-
nected, then the diameter of G/F is € (1+[F)}(1 + the diame-
ter of G). In the case of node faults, they compute a bound
on the diamecter of G/F in terms of the degree of the faulty
nodes. They also give an examples in both cases where their

bounds are essentially achieved.

The rest of the paper is organized as follows. In section
2 the necessary definitions are given. Section 3 contains the
results on the n-dimensional cube. In section 4 good routings
for general graphs are discussed. Section S gives general
results for minimal length routings. There are still many
open questions in this area; we list a few of them in Section

6.

2. Surviving Route Graphs

Unless otherwise noted, we deal with an undirected
graph G = (V,E) that corresponds to a communication net-
work. A node routing p on V is a partial function p:VxV-+V*
such that p(x,y), if it is defined, is a sequence of nodes in V
starting with x and ending with y; i.e., a word of the form
xuy with ueV*. A node routing p on V is a routing on

G=:(V,E) if p(x.y) (when defined) corresponds to a simple

path (one with no loops) in G from x to y; i.e., every consec-.

utive pair of nodes in p(x,y) is an edge in E. A routing p on

V dctermines an edge-labelled, directed roure graph
R=(V.dom(p)), where two nodes x and y are joined by an
“edge exactly if p(x,y) is defined. In this case the edge is
labelled by p(x,y). If p is a routing on G, we usc the notation
R(G,p) for the route graph determined by p. (We occasional-

ly omit the G and p if they are clear from context.)
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A routing p is a partial routing if p(x,y) is undcfined for
some nodes x#y; otherwisc p is a roral routing. Note that if p
is a total routing then R(G,p) is a complete graph on the

nodes of V.

Let F be a set of nodes and edges called the set of fauls.
F can be partitioned into the set of nodec faults, Fy, and the
set of edge faults, Fg. We define V/F to be V- Fy, E/F to be
E-Fg-{(a,b)cElacFy or bcFyl, and G/F = (V/F, E/F).
G/F is called the surviving graph.

An object (path, subgraph, etc.) avoids F il no element of
F is contained in that object. Thus, a path avoids F if no
node or edge on the path is in F. A routing avoids F if each
of its routes does. An edge of a routed graph avoids F if the

sequence (path) which is its label does.

For a given set of faults F, let p/F be the subrouting of p
consisting of those routes that avoid F; i.e. (p/F)(x,y)=p(x,y)
if p(x,y) avoids F, otherwise (p/F)(x,y) is undefined. If
R=(V,dom(p)) is a route graph and F is a set of faults, the
surviving route graph is R/F = (V/F,dom(p/F)). Thus, two
nodes are joined by an edge in the surviving route graph

exactly if the route between them avoids F.

We now briefly review some standard definitions from
graph theory. We refer the reader to [Be] for more details.
A graph G is connecred if there exists a path in G between any
pair of nodes in G; a graph G is (7+1)-node connected if there
are t+1 node disjoint paths between any pair of nodes in G.
Given nodes u and v in G, the distance between u and v in G,
denoted dg(u,v), is the shortest path in G between u and v.
‘The diamerer of G, written DIAM(G), is the maximum of

dg(u,v) for every pair of nodes u, vin G.

3. The Diameter of the Surviving Route Cube

Let C,=(V,.E,) be the n-dimensional cube. We repre-
sent nodes of C_ as words of length n on the alphabet {0,1}.
If x is a node, its ith coordinatc is denoted x;. Edges exist
only between nodes that differ on exactly one coordinate.
Thus we represent edges as words of length'n on the alphabet

{0,1,*} with exactly one occurrence of *.

Networks in the form of n-dimensional cubes display
surprisingly good performance. Theorem 1 states that the
surviving route graph produced from any minimal length
routing on C, and fewer than n faults has diameter at most 3.

Theorem 2 defines a specific minimal length routing and



asserts that the diameter of the n-dimensional cube with this

routing is 2.

Theorem 1: Let p be a minimal length routing on C,. Then if

[Fl<n, DIAM(R(C,.p)/F)<3.

Theorem 2: Let A (x,y) be the (minimal length) routing on
the n-dimensional cube that proceceds from x to y by moving
along the coordinates on which they differ one at a time from

left to right. Then if [Fl<n, DIAM(R(C_,A,)/F)<2.

For A3(011,110)=(011,111,110) and

A;(110,011)=(110,010,011).

example,
Note that Ap(x,y)#A,(y,x) in

general.

We first develop some machinery to prove these theo-
rems. Define the weight of a node or an edge to be the sum of
its coordinates where * carries the value 1/2. Let Ix| denote
the weight of x. Thus |[11101|=4 and {1*101]|=3.5. By drop-
ping the i'" coordinate, any n-dimensional object can be
projected along the i'" coordinate onto an (n-1)-dimensional
object. Let P; be the operator for projecting along the ith
coordinate.. Note that an edge may project to a node. Thus
Pz(ll101)=1101_=P2(1‘101). We write x<y when < holds
on each coordinate. We write x<y when x<y and < holds on
some coordinate. We say x and y are maximally far .aparf
when # holds on each coordinate. If x and y are nodes, let
C(x,y) be the subgraph consisting of nodes and edges z satis-
fying the condition, if x;=y; then z;=y;. We call C(x,y) the
subcube generated by x and y. Informally it consists of the

graph induced by all nodes between x and y.

We deline a pair of nodes x and y to be safe with respect
to a set of faults F iff every minimal length path from x to y
avoids F. A sequence of nodes x,,...,X; is safe with respect to
F il each consecutive pair of nodes in the sequence is safe

with respect to F,
Lemma 1: C(x,y) avoids F iff X,y is safe with respect to F.

Proof: A minimal length path from x to y must stay in

C(x,y). O

By Lemma 1, if a sequence is safe with respect to F, then
it will be a path in R(C,.p)/F for every minimal length rout-
ing p. Thus, Theorem 1 follows immediately from Lemma 2

below.
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Lemma 2: If |[Fl<n, then for any pair of nodes x and y in
C,/F there are nodes u and v such that x,u,v,y is safe with

respect to F,

Proof: We proceed by induction on n, carrying along the
extra induction hypothesis that if n>1 and nodes x and y are
maximally far apart, then nodes u and v, with x#u and ugv,
can be choscn such that x,u,v,y is safc with respect to F, u is
in C(x,v) and v is in C(u,y). Note that if x=0" and y=1"7,

then the last condition is equivalent to x<u<vgy.

The arguments for n=1 and n=2 are straightforward and
left to the reader. Assume the induction hypothesis for di-
mension n-1 with n>2. Let x and y be nodes in C,/F.

‘There are two cases.

Case (a). The nodes x and y have thc same value on
some coordinate. Without loss of generality x;=y;=1. If
every clement of F has a 1 in its first coordinate, then the
sequence x, OP(x), OP;(y), y is safe. Otherwise, the safe
sequence can be constructed entirely in C(107-1,1M) (the
subgraph consisting of the nodes and edges with 2 1 in the
first coordinate) by the induction hypothesis, since at least

one element of F is avoided by this subgraph.

Case (b). The nodes x and y are maximally far apart.
Without loss of generality x=0" and y=1". Case (b) has two

subcases.

Case (b1). There is an i and an clement  of F such that
Pi(f) is in {O™!,17-1}. Without loss of generality i=1. Let F'
= P{(F)—-{0"-117-1} Then |F'}<n-1. Thus, by the induction
hypothesis there is a sequence 0" !<u<v<12-! that is safe
with respect to F'. If v<1™!, then it is easy to check that
0°<0u<iv<1™® is safe with respect to F. And if v=1"1, then
it is again easy to see that 0"<Qu<1lu<1? is safe with respect

to F.

Case (b2). For each i, P;(F) does not include either on-1
or 171, Let f be a minimal weight element of F. Without
loss of ge.nerality assume f;=1 so that P,(f) has minimal
weight in P{(F). Let F' = P,(F-{f}). If F' is empty, then
(since the projection of a nencmpty set is aonempty) F = {f}.
Consequently, since f;=1, 0°<017-1<1? is safe with respect
to F. Supposc that F' is not empty. Then [F'l<n-1, so by the
induction hypothesis there cxists at least one sequence safe
with respect 1o F' of the form 0™!<a<b<1™!, Among all
such sequences there must be one 0°-l<u<vg 1! with |u]
maximal. We claim that 0°<Ou<Ov<1® is safe for F. It is

clearly safe for F - {f}, so we must show only that it is safe



for f. Since f; = 1, it suffices to show that f¢ C(Ov,1"). But
if { € C(Ov,1m), we must have [P, ()| > [vl. Since f was chosen
with minimal weight and f; = 1, it follows that [P ()] 2>
IPy(D] 2 M for all f' € F'. But then 0™lcvg1nt (g 17-) s
safe for F’, contradicting the choice of u. (Recall we chose u

with maximal weight.) O

Proof of Theorem 2: We proceed by induction on n. The

case n=1 is trivial. For n>1 there are two cases.

Case (a). The nodes x and y agree on coordinate i. With-
out loss of generality x;=y;=1. If every element of F has 1 in
the ith coordinate, then x, x,..x;.{0y;,{..¥,, ¥ is 2 path i_n
R(C,.AL)/F. Otherwise, let F' = P;({feFif;=1}). Since
[F'l<n-1, we can apply our induction hypothesis to P,(C,).
Thus, there is a path of lengl'h one or two from P;(x) to Pi(y)
in R(Pi(Cn).)\n_l)/F'. If the path is of length one, then (x,y)
is an edge in R(C,,A,)/F, since all faults not in F' have either
0 or * in the ih coordinate. And if P;(x), u, Pi(y) is a path
of length two in R(P;(C,),A, ;)/F’, then it is easy to see that

X, uy...u;q 1y q...u,, yis a path in R(C,,A,)/F.

Case (b). The nodes x and y are maximally far apart.
Without loss of generality, x=0" and y=1". The paths in C
formed by concatenating )\n(O",OiI"'i) and }\n(Oiln'i,ln) for
1<i<n are node disjoint so one of them must avoid F because

[Fl<n. O

Remarks:

1. We have shown that when |Fl<n and p is a minimal length
routing on C,, the diameter of R(C,.p)/F is no greater than
3. However it does not require {F{=n-1 to force the diameter
to be 3. If we choose p so that p(0",1x) always goes through
10"-1 and p(0y, 17) always goes through 011 and cheoose
F={10"1! 01n-1}, it is easy to check that the diameter of
R(C,.p)/F is 3. A similar example can be obtained by plac-

ing * in the first coordinates of either or both elements of F.

2. We call a routing bidirectional if the route from x to y is
the same as the route from y to x (i.e. p(x,y)=p(y.x)) for all
x and y; otherwise, it is called wunidirectional. We have al-
lowed routings that are not bidirectional. Theorem 1 clearly
still holds if we restrict to bidirectional routings, but there is
no bidirectional analogue of Theorem 2. To sec this, consider
any minimal length bidirectional routing p on the square C,.
(There are not very many). Note that p(00,11) and p(01,10),

the routes to opposite corners of the square, must have an

edge in common. If F consists of this single faulty edge, then
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the distance between its endpoints in R(C,,p}/F must be 3.
For n>3, it is still an open question if there exists a bidirec-
tional analogue of Theorem 2. It would also be interesting to
know whether there is a bidirectional analogue to Theorem 2
if F consists only of node fauits. (Note that the counterex-
ample given above for C, does not hold for node faults.)

Again this remains an open question,

3. For any pair of nodes x,y in C_, we can find n midpoints
Zy....,Z, With z;=y such that the n routes from x to y formed
by concatenating A, (x,z;) and An(z;y). i=1,...,n, are node
disjoint. A proof of the existence of these midpoints may be
obtained by carrying it along as an induction hypothesis in
the proof of Theorem 2. These node disjoint routes can be
useful in certain applications. For example, if processor x
wants to guarantec that a message gets through to y quickly,
with

it computes z;,...,z; and sends the message to Z44-erZp

instructions to forward it to y. Onc message must get

through so long as |Fl<n.

4. The techniques of proof of Theorems | and 2 easily gener-

alize to any n-dimensional rectangular grid (product of n

intervals).

4. Routings in a General Network

As we showed in the introduction, if S, is a spoke graph
with n nodes and p is a minimal length routing on S,, then
the diameter of R(S,,p)/F can be O(n), even if F consists of a
single node. However, there does exist a non-minimal length
routing on the spoke for which the diameter of the surviving
route graph is 2 as long as [F|<2. In this section we show

that this result generalizes.

Theorem 3: If G is t+1-node connected, then there is a bidi-
rectional routing p such that if |F] < t, then DIAM(R(G,p)/F)
< max(2t,4).

Proof: In order to prove the theorem, we will first need the

following lemma.

Lemma 3: Let G=(V,E) be t+1-node connected. Then there
cxists a set of nodes McV with M| = t+1 such that the re-
moval of the nodes in M and all of their adjacent edges parti-
tions G into non-empty subgraphs, G,, G, ..., Gy, with k>2.
Moreover, if xeG;, i=1,2,... k, then there exists t+1 node
disjoint paths in G; from x to the nodes in M. If (x,m)¢€E for

some meM, we can take xm to be the path from x to m.



Proof of Lemma 3: The fact that we can find M follows im-
mediately from the fact that G is t+1-node connected. With-
out loss of generality, let xeG, and choose some yeG,. Then
by the definition of connectivity, there exist t+1 node dis-
joint paths from x to y in G. Since M is a separating set of
G, each of these paths must include exactly one node of M,
with the path from x to each such node staying completely in
G,. If (x,m) ¢ E for some meM and if the path from x to m
in G; which is obtained by the above construction is not xm,
then replacing that path with xm docs not contradict the node

disjoint requirement for the paths from x to M. [

Returning now to the proof of Theorem 3, given G,
choose M .and node disjoint paths from each node x¢M to
each node meM as in Lemma 3. We now define a partial

routing p on G by the following two rules.

1. If (u,v) € E, then p(u,v)=uv, i.c. the route from u to v is
the edge between them.
2. If x ¢ M and m e M, then p(x,m) is just the path chosen

above.

We note that standard techniques from network flow
([LEv]) can be used to obtain the routes in p in time

O(VI'2E).

Rule 1 guarantees that if |F| < t, then R(G,p)/F is con-
nected and DIAM(R(G,p)/F) < DIAM(G/F). Note that
although DIAM(G/F) could be O{(n), Theorem 3 gives a
bound on DIAM(R(G,p)/F) which is independent of n.

If feF is either a faulty node in G; (resp. M) or a faulty
edge with both endpoints in G; (resp. M), then f is said to be
in G; (resp. M). If feF is a faulty edge which has one end
point in M and the other in G;, then f is said to be in G;. Let
F; be the set of faults in Gy, i=1,...,k, and Fy, be the set of
faults in M. Note |[Fy| + ... + |[F,] + [Fpl = t.

We now complete the proof that DIAM(R(G,p)/F) <

max(2t,4) by a case analysis.

Case 1. For some ie{1,2,...k}, [Fj] = 0.

Without loss of generality, assume that [F;| = 0. Since G, is
not empty, there exists a node ze G, such that z has a path in
R/F to every node in M. Therefore, there exists a route of
length 2 between any two non-faulty nodes of M via z. Any
x ¢ M must be adjacent in R/F to some non-faulty m ¢ M
since |[F] < M. This immediately gives a bound of 4 between

any two nodes which are neither in M nor in G;.

Case 2. No F; is empty.

Let P = xq...x; be some minimum length path in R/F be-
tween x = xg and y = x,. We bound the length of P by
counting nodes in M which either appear on P or are adjacent
to those internal nodes of P which are themselves not in M.
Thus, for x; € P, let (x;) = {nonfaulty nodes in M to which X;

has an edge in R/F} u (ix;] n M).

Let x; be a node of P which is not in M, and assume that
x;¢Gj. There is a path in R/F from x; to at least !+1-|Fj}
non-faulty nodes of M. Since |F|, [Fol 2 1 and |F)] + ... + |Fy|

+ [Fil = t, we must have IFjl < t-1, and so [(x)] 2 2.

Let P; ; be the partial path x;x;,...xj. Let S(P; ) = (x)
U ... U (xj). We prove the 2t bound by showing that [S(Pj ;)|
2 /2741 by induction on i.

Since |(xg)] 2 2, the claim holds for i = 0,1,2. Assume
the claim holds up to i—1 for i>2. The bound is obtained by
the following counting argument. There are two cases, X;eM
and x; /M. If x; € M, then X; ¢ (xj) for j € i-2, for otherwise

Py j%iP(i+1).x is a shorter path from x to y than is P. Thus,
S(Py Dl 2 IS(Pg ;. 0)l+1 > F(i-2)/2142 = [i/21+1.

If x; ¢ M, then (x;) n (xj) = ¢ for j<i-3. Otherwise, the
existence of some m with m e (xi)n(xj) implies that
Pg_jmP;,y i is shorter than P. Since for x; ¢ M we have
(x| = 2, then

IS(Pg. I 2 IS(Pg_; )|+2 > T(i-3)/21+3 2 Ti/21+1.

Since P = xpx,..xy, it follows that S(P) > [k/21+1.
Since M| < t+1, we must have [k/21 < t. Consequently, k
<2tand [P] < 2t. O

5. Missing Nodes and Missing Links

In this section we return to minimal length routings and
obtain bounds for the diameter of a surviving route graph in
terms of the number of faulty edges and the degrees of the

faulty nodes.

Definition: For a node a, define §af to be the degree of a; i.e.,
the number of edges with endpoint a. For an edge e, define

lef=2. Finally, define [Fj==; glfl.

We first consider the case where F consists only of

nodes.
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Theorem 4: If F consists only of nodes, G/F is connected,

and p is any minimal length routing of G, then

DIAM(R(G,p)/F) < [F].

Proof: First note that if the result holds for [F|=1, then it can
be extended to all sets of node faults by the following argu-
ment. Given a graph G=(V,E), a set of node faults F such
that G/F is connected, and a minimal length routing p, con-
struct a graph G’ in which all the faulty nodes are combined
into one node. More precisely, let G'=(V’,E’), where
V’'=(V-F)uix}, where x is a distinguished node, and
E'=E/Fuj(a,x)laeV/F and for some féF. (a,f)eE}. Note
that since the neighbors of x in G’ are exactly the non-faulty
neighbors in G of the nodes in F, we have [x] < =, £f]. Let
¢’ be any minimal length routing on G’ such that if there is a
minimal length path from v ta w which goes through x, then
p'(v,w) goes through x. It is now easy to check that if p(v,w)

goes through a node in F, then p'(v,w) goes through x. Let

F'={x}. By the observation above, it follows that
R(G',p')/F is a subgraph of R(G,p)/F: it has the same
nodes, but possibly fewer edges. Thus

DIAM(R(G,p)/F) <DIAM(R(G',p')/F’). But by hypothesis,
DIAM(R(G',p")/F') s]lx], giving the desired result.

We now prove the result for [F|=1. So supposc that F
consists of only one faulty node f. Let N(f)={w | there exists
an edge from f to w in G} (these are the neighbors of f in G).
Note that by definition [N(f)l=[{]=]F]. Fix a minimal length
route p, and let H=R(G,p)/F.
DIAM(H)<fif].

We want to show

Since p is a minimal length routing, if two nodes u and v
are neighbors in G, then p(u,v) is just the edge between them.
It follows that G/F is a subgraph of H, and so H is connect-
ed. Choose any two nodes a and b in G/F such that
dy(a,b)=DIAM(H). Let L;, i=0,...,.DIAM(H), consist of
fcldy(a,e)=il. For any node <c¢eG/F, let
Near(c)={weN(f) [for all w'eN(f), dg(c.w)<dglc,w)}.
Thus Near(c) consists of the nodes in N(f) that are closest (in
G) to c. Finally, let Near(L;)=u,, Near(c). Note that
since L;#¢ for i=0,1,..,DIAM(H), it follows that
Near(L;)#¢. We will show;

Claim 1: Ju;Near(L)Izk.

From the claim it follows that
|fl=|N(f)|2]Ui<D|AM(H)Near(Li)lzDIAM(H),

which establishes the result for [Fl=1. To prove the claim, we

proceed by induction. The claim is trivial if k=0 or k=1.

Suppose we have proved the claim for k'<k. We now prove it

for k>2. We first need to show:
Claim 2: If [i-j|> 2, then Near(L;) and Near(Lj) are disjoint.

To prove Claim 2, suppose otherwise. Then there
exists beN(f) such that beNear(u) and beNear(v) for some
ueLl; and some veLl; We will now show that no minimal
length path in G from u to v can contain the node f. This
then shows that u and v must have an edge between them in
H. Consequently [i-jl<1, which contradicts the assumption

that }i-jl2 2.

So suppose by way of contradiction that some minimal
length path in G from u to v comtains {. Thus the path is of
the form w=u...wiw’..v, where w,w’ e N(f). Since beNear(u),
we must have dg(u,b)<dg(u,w). Similarly, since beNcnr(v),
we must have dc(b,v)sdc(b,w'). One way of getting from u
to v in G is to go from u to b and then from b to w. By the
observations above, this gives a shorter path than &, contra-

dicting the minimality of = and proving Claim 2.

Rcturning to the proof of Claim 1, suppose by way of
contradiction that Claim 1 does not hold and consider the
minimum k22 for which it does not hold. Note that
Near(Ly_)l=1, for if |Near(L,_;)|22, Claim 2 and the fact
that the result holds for k-2 implies that Claim 1 also holds
for k. Moreover, Near(L;_ ;) cannot be disjoint from
Near(L,_,), for then from the fact that Claim 1 holds for k-1
we could again immediately prove it for k. So assume with-
out loss of generality that Near(L;_ ;)={c}, and that
ceNear(L, _,). ’

- Choose ueLy ; and veLy such that u and v are neighbors
in G. (.There must be such u and v. Choose any path in G/F
from a to b. Let v be the first node in L on that path, and u
be the node just before v. We leave it to the reader to check
that there exist such u and v and that they have the desired
property.} Let deNear(v). We must have c#d, otherwise we
would have ceNear(Ly ,)nNear(Ly), contradicting Claim 2.
We now show that de¢Near(u), contradicting the hypothesis
that Near(Ly_;)={c}. Choose telLy , such that ceNear(t).
(Such a t exists since ceNear(Ly_,) by hypothesis.) There
must be some minimal length path in G from t to v that goes
through f (otherwise v would be in L; for some jsk-1). Sup-
pose this path is of the form t..wiw’...v, where w,w'eN(f).
Another way of getting from t to v is to take a minimal
length path from t to c, foliowed by a minimal length path
from c to u, followed by the edge from u to v. Thus we must

have dg(t,w)+2+dg{w’,v) < dg(t,c)+dglc,u)+1. Since



ceNear(t) and deNear(v), we must have dg(t,c) < dg(t,w)
and dg(d,v) < dG(w',\'). Hence dg(t.c)+2+dg(d,v) <
dg(t.e)+dglc,u)+1, which implies dg(d,v)+1 < dg(c,u).
Onec way to get from d to u is to go from d to v and then to
take the edge from v to u. Hence dg(d.u) < dg(d,v)+1.
Combining these inequalities, we get dg(d,u)<dg(c,u). But
since ccNear(u), it follows that we must also have
deNear(u), and thus deNear(L,_,), contradicting the as-

sumption that Near(Ly_;)={c}. O

The previous theorem is close to optimal, as we now

show.

Theorem 5: For all d,....dy, there exists a graph G, a mini-
mal length routing p on G, and a set of node faults
F={f,,...f} which does not disconncct G such that the degree

of f;is d;, i=1,....k, and DIAM(R(G,p)/F)=[F|-[F|+1.

Proof: The graph G is a simple generalization of the spoke
example of the introduction. We give G below in Figure 4 in
the case that k=3 and d;=d,=3 and d3=4. We choosec the
minimal length routing that takes a path through {,, f,, or f3

whenever possible:

f f2 3

L

Figure 4.

We believe that the upper bound of Theorem 4 can be
improved to the lower bound shown in Theorem 5. We for-

malize this as:

Conjecture 1: For any graph G, any minimal length routing

p, and any set of node faults F which does not disconnect G,

DIAM(R(G,p)/F) <[F{-[F|+ 1.

The situation for edge faults is somewhat different.

Theorem 6: If F consists only of edges, G/F is connected, and
p is any minimal length routing of G, then DIAM(R(G,p)/F)
< 3|F|+1.

We use the following lemmas to prove Theorcm 6. Re-
call that the pair of nodes u, v is safe with respect to F if all

the minimum length paths from u to v avoid F.
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Lemma 4: Assume F has only edges. If the pair of nodes x,y
is not safe with respect to F, then there is an edge (u,v) in F
and a minimal length path from x to y containing (u,v) such

that v,y is safe with respect to F.

The proof.of Lemma 4 is a straightforward induction on

the distance between x and y in G.

Proof of Theorem 6: Let x and y be a pair of nodes of G and
let xgx;..x; be a minimal length path from x=xg to y=x, in
H=R(G,p)/F (such a path must exist by the same arguments
as in Theorem 4 above: since p is a minimal length routing, it
follows that G/F is a subgraph of H so H is connected).
Note that by construction dy(x;,x;) = fi-jl

For each x; with i>2, we select an endpoint v of an edge
in F such that v,x; is safe with respect to F and v lies on a
minimal length path in G from x to x; (Lemma 4). We say
that v is associated with x;. Intuitively, v is the endpoint of a
faulty edge closest to x; on a path from x. Note that if
(u,v)eF and v is associated with some x;, then dg(x,u) <
dg(x,v), and so u cannot be associated with any x;. Thus, at
most one node of each faulty edge can be associated with
some x;. Moreover, a particular node v can be associated
with at most three x;’s. For if v were associated with x; and
xj, and li-ji>2, then since dy(x;,v) = dy(x;,v) = 1, we have
dH(xi,xj) < 2, a contradiction. Now, by a simple counting

argument, we get that k < 3|F|+1. O

Again we have a lower bound that almost matches the

upper bound of Theorem 6.

Theorem 7: For each t there is a graph G,, a minimal length
routing p, of G, and a set F, of t edges that does not discon-

nect G such that DIAM(R(G,.p,)/F)) = [Fl+1 (= 2t+1).

Proof: The required graph G, is obtained by the obvious
generalization from the graph G, shown in figure 5, where
the edges marked with an x through them are in F, and p
goes through a faulty edge whenever possible (for example,

p(A,G)=ABG).

A B C D E

F G H | J
Figure 5.
Conjecture 2: For any graph G, any minimal length routing

e on G, and any set of edge faults F which does not discon-

nect G, DIAM(R(G,p)/F) <[F[+ 1(=2[F|+ 1).



Combining the graphs of Theorems 5 and 7 leads us to
the following:
Corollary: For all k, m, d, ..., dj;, we can find a graph G, a
minimal length routing p on G and set of k edge faults and m
node faults F with degrees d;,...,d,, such that G/F is connect-
ed and DIAM(R(G,p)/F)=[F[-[Fy|+ 1.

Of course, we also have:

Conjecture 3: For any graph G, minimal length routing p,
F which does G,
DIAM(R(G,p)/F)=[F]-IFy|+ 1.

and set of faults not disconnect

Conjectures 1, 2, and 3 seem to be quite difficult to

prove. L. Stockmeyer has recently shown that Conjecture 1

implies Conjecture 2. We (and independently F. Chung) have
also shown that the bound of Theorem 6 can be improved to
2.5|F|+1. We can show that the bound of 2[F|+1 of Conjec-
ture 2 holds for |Fj=1,2,3. The proof for |Fl=1 is of independ-
ent interest, and we present it below. Our proofs for |[Fl=2
and |[F{=3 grow exponentially more difficult, and do not seem

to lead to any generally applicable technique.

Theorem 8: If p is a minimal length routing on G, and F
consists of one edge which does not disconnect G, then

DIAM(R(G,p)/F)<3.

Proof: Let H=R(G,p)/F. Choose a,be G/F such that
dy(a,b)# 1. Since G/F is connected, there must be some path
aj..ay from a=a, to b=a; in G/F. Let a; be the last point on
this path such that dH(a,aj)=1. Note j>2, since the edge
between a=a; and a, in G is nonfaulty by hypothesis. Since
the edge in G between a; and ajuq is also nonfaulty by hy-
pothesis, dy(a;,a;,()=1. We now show dy(aj,;,b)=1, which
dyla,b) <
dy(aay)+dylajaj ) +dy(aj,.b) = 3). Let the faulty edge
in F be (x,y).

will complete our argument (since
Since dy(a,b)#1, p(a,b) must be of the form
a...xy..b. Because p is a minimal length routing, we must
have dg(a,x)<dg(a.y), and dg(b,x)2dg(b,y}). By choice of
a;, dH(a,aj“);él, so the edge (x,y) must also be on p(a,aj+1).
But since dg(a,x)<dg(a,y), p(a,aj+1) must be of the form
a..Xxy..aj4y.  Thus dg(aj, ,y)<dy(aj,1.x). The above ine-
qualities tell us that y is closer to both a;, and b than x is,
so no minimal length path from a;,; to b could have the edge
{x,y) on it. Thus p(ajH,b) is fault-free, and dH(aj_,,l.b):l as

desired. [J
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The last issue we consider in this section is connectivity.
The examples of Theorems 5 and 7 of graphs with a given
diameter were graphs of low connectivity. However, as the
following theorem shows, once we have an example of a

graph where a certain number of edge faults and vertex faults
cause the resulting surviving route graph to have a given

diameter, we can construct a graph with arbitrarily high

connectivity with the same property.

Theorem 9: Given a minimal length routing p on a graph G, a
set F of faults that does not discénnect G, and any desired
node connectivity k, there is a graph G*=(V* E*) containing
G as a subgraph and a minimal length routing p* on G* con-
taining p as a subrouting such that G* is at least k connected
and DIAM(R(G*,p*)/F) is at
DIAM(R(G.p)/F).

least as large as

Proof: Left to full paper. [J

6. Open Problems

Although we have obtained a number of results, many
open problems remain in this area. We list a few of them

here.

1. We have obtained much better bounds than the general
bounds for completely connected graphs and for the n-
dimensional cube. Are there other classes of nctworks with

equally good bounds?
2. Prove Conjectures 1, 2, and 3.

3. Can the upper bound of Theorem 3 be improved? In case
t<2 we can show that any graph G has a routing p with
DIAM(R(G,p)/F)<3. For case t=1, the square shows that
this result is best possible for bidirectional routing. We con-
jecture that the results for the n-dimensional cube gencralizé:
that is, for any graph G there is a bidirectional routing p with
DIAM(R(G,p)/F)<3 and a unidirectional routing p’ such that
DIAM(R(G,p')/F)<2.

4. The proofs of Theorems 4 and 6 do not use the connectivi-
ty of G but only the fact that G/F is connected. However,
the connectivity of G is heavily used in Theorem 3. What

happens when this assumption is relaxed?



5. A rouling p is consistent (prefix consistent, suffix consistent)
if every subpath (respectively, prefix, suffix) of a route is
also a route. The routings A, of Thecorem 2 are consistent,
but the routing constructed in the proof of Theorem 3 is not
necessarily even suffix consistent. What are the corresponding
bounds for consistent, prefix consistent, and suffix consistent

routings?

6. What happens to the diameter of the surviving route graph

if the routing is a random routing?

7. What, if anything, can one say about routings that are

almost minimal length?

8. We have assumed that the graphs representing communi-
cation networks have undirected edges. We can also consider
what happens if we have directed communication networks.
This corresponds to having one-way communication links.
What are the analogues of our results for directed graphs?
We remark that we can construct an example of a directed
graph G and a minimal length routing p on G such that the
diameter of R(G,p)/F is O(n) even il F consists of only one
faulty edge, so that Theorem 6 does nor hold if G is a directed
graph. (The examplie has much the same flavor of the spoke

example given in the introduction.)

Define e} for a directed edge ¢ with source node a to be
faf and define fef=2 for an undirected edge e. As before,
IFi== glfl. We conjecture that if p is a minimal length rout-

ing and G/F is connected, then
DIAM(R(G,p)/F) < [FHHFyl+1.

Note that this is a generalization of Conjecture 3.

In practice graphs where every node has degree < 3
frequently arise. If these conjecturcs arc true, then if G is
such a graph and p is a minimal length routing, then
DIAM(R(G,p)/F) < 2|F|+1 for any collection F of node and

edge faults that do not disconnect G.
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