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ABSTRACT:  Consider  a communica t ion  ne twork  G in which 
a l imited number  of l ink a n d / o r  node faults  F might  occur. 
A rout ing p for the ne twork  (a fixed path between each pair  
of nodes) must  be chosen wi thout  any knowledge  of which 
components  might  become faulty.  Choosing a good rout ing 
c o r r e s p o n d s  to  b o u n d i n g  the d i a m e t e r  of the surviving route 
graph R ( G , p ) / F ,  where  two nonfaul ty  nodes are joined by an 
edge if there are no faults on the route  between them. We 
prove a number  of resul ts  concerning the d iamete r  of surviv-  
ing route  graphs.  We show that  if p is a minimal  length rout-  
ing, then the d iamete r  of R ( G , p ) / F  can be on the order of the 
n u m b e r  of nodes  of G, even if F c o n s i s t s  of only  a s ing le  
node. However ,  if G is the n-dimensional  cube, the d iamete r  
of R ( G , p ) / F < 3  for any min imal  length rout ing p and any set 
of faul ts  F wi th  IFl<n. We also show tha t  if F consists  only 
of edges  and does not d i s c o n n e c t  G, then  the d i a m e t e r  of 
R ( G , p ) / F  is < 31FI+I, whi le  if F consists  only of nodes and 
does not d isconnect  G, then the d iamete r  of R ( G , p ) / F  is <_ 
the sum of the degrees of the nodes in F, where  in both cases 
p is an a rb i t r a ry  minimal  length routing.  We conclude with 
one of the most  impor tan t  con t r ibu t ions  of this paper: a l ist  
of in te res t ing  and apparen t ly  diff icul t  open problems.  

• 1. In t roduc t ion  

We consider  the problem of obta ining efficient,  rel iable,  

fault  to lerant  rout ings  in a network.  As usual,  a ne twork  is 

modeled as a graph, with nodes represent ing processors and 

edges represent ing communica t ion  links. A routing assigns to 

any pair of nodes in the ne twork  a f ixed path be tween them. 

We assume that  the ne twork  communica t ion  protocol has no 

informat ion  about  the topology of the ne twork,  and thus all 

communica t ion  between nodes must  go on this  f ixed routing.  
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In local area ne tworks ,  the t ime required to send a mes- 

sage along a route is often domina ted  by the message process- 

ing t ime at ei ther  end; in te rmedia te  nodes on a fixed route 

re lay messages wi thout  doing any ex tens ive  processing.  Meta-  

phorical ly  speaking,  the in te rmedia te  nodes pass on the mes- 

sage wi thout  having to open its envelope. Thus, to a first  

approximat ion ,  the t ime required to send a message along a 

f ixed route is independent  of the length of the route. 

Consider  the ne twork  shown in Figure 1. 

D 

Figure 1. 

Suppose we choose a minimal length routing on this ne twork;  

i.e. one for which the route be tween any pair  of nodes is a 

• minimal  length path between them. Where they exist ,  we 

break ties by a lways  taking the route tha t  goes through the 

edge CD. 

If in th i s  e x a m p l e  the edge  CD becomes  f au l ty ,  t hen  

many  routes become unavai lable .  Figure  2 is the surviving 

route graph, where  two nodes are  joined by an edge exac t ly  if 

the route  be tween  them is still  up (i.e it did not go through 

the edge CD). 

G 

D 

Figure 2. 
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Suppose processor C wants  to broadcast  a message to all 

processors.  Since C can only send messages along the f ixed 

routes,  the message will not reach D, E, or F. If G rebroad-  

casts  the message,  it will reach E and F, but not D, since the 

route  from G to D is also down. One more rebroadcas t  by E 

or F is necessary to ensure that  D gets the message. 

Note that  the worst  case number of rebroadcasts  needed 

to ensure that  all processors get a message will  be the diame- 

ter of the induced graph of Figure 2. 

In general,  given a graph G, a rout ing p, and a set of 

faults F, we consider  the surviving route graph R ( G , p ) / F  with 

the same nodes as G-F, and an edge joining two nodes when- 

ever the route between them avoids F. As we noted above, 

the d iameter  of R ( G , p ) / F  measures the number  of rebroad-  

casts necessary to ensure that  all processors get a message. 

This number  determines  the number of phases for which it is 

n e c e s s a r y  to  run  ce r t a in  d i s t r i b u t e d  p ro toco ls  (such as the 

Byzant ine  agreement  protocols of [DS1. DS2] ) .  Given the 

a s s u m p t i o n  t h a t  the t i m e  to send a message  a long  a f ixed  

route is independent  of its length, the d iameter  of the surviv- 

ing route  graph also gives a good es t imate  on the t ime re- 

qu i red  to c o m p l e t e  a b roadcas t  in the p resence  of fau l t s .  

Thus, our problem will be to choose a rout ing p on G that  is 

faul t  t o l e r a n t  because  the  d i a m e t e r  of R ( G , p ) / F  r ema i ns  

small  for any set of faul ts  F of a given cardinal i ty .  This 

problem has given rise to many in tcres t ing  questions in graph 

theory,  some of them sti l l  open. 

We first note that minimal  length rout ings are not a lways  

optimal.  Consider  the spoke graph shown in figure 3. 

H A 

E D 

Figure 3. 

In this case, for any points on the c i rcumference that  are 

not joined by an edge, there exis ts  a minimal  length route 

tha t  goes t h rough  the cen te r  node. But now suppose  the 

center  node becomes faulty.  Then with this routing it is easy 

to see that  the diameter  of the surviving route graph grows to 

( n -1 ) / 2  (where  n is the total number  of nodes). The problem 

with a minimal  length rout ing in this case is that  the center  

node is overworked.  Consider  instead the rout ing p on S n 

( the spoke graph with n nodes) in which the route between 

t wo  nodes on the c i r c u m f e r e n c e  is a m i n i m a l  length  pa th  

a round  the c i r c u m f e r e n c e  (so tha t ,  for example ,  the rou te  

from A to D in figure 3 would be ABCD, ra ther  than AMD). 

In this case, the d iameter  of R(Sn,P) /F is easi ly seen to be _< 

2 if IFI _< 2. 

This leads us to ask if we can a lways  find good routings. 

We show (Theorem 3) that  for any ( t + l ) - c o n n e c t e d  graph G, 

we can eff icient ly find a routing p such that  the diameter  of 

R ( G , p ) / F  is no greater  than max(2t ,4)  if IFI _< t. 

A l t h o u g h  mi n i ma l  length  rou t ings  are  not  a lways  opti-  

mal,  they are  useful and easy to generate.  A common routing 

a lgor i thm (used for example  in the Highly Avai lable  Systems 

pro jec t  at  IBM [ A A ] )  p roduces  r andom m i n i m a l  l eng th  

routings.  Thus, it becomes important  to find networks  for 

which all minimal  length routings are fault tolerant .  

As an e x a m p l e ,  cons ide r  Kn, the comple t e ly  connec ted  

ne twork  on n nodes. If p is the unique minimal length rout- 

ing on Kn, then  it is easy  to check tha t  the d i a m e t e r  of 

R(Kn,p) /F  is 2 if IFI _< n-2. (Suppose F is fixed and that  a 

and b are any  two nonfaul ty  nodes in K n. Then ei ther  the 

link between a and b is nonfaul ty,  or, since IFI _< n-2, there 

must  exist  a nonfaul ty  node c such that  both the link between 

a and c and the link between c and b are nonfaulty.)  

Unfortunately,  because of high fan-in and fan-out,  com- 

p le te ly  connec ted  n e t w o r k s  are  of ten imprac t i ca l .  As in 

severa l  o ther  c o n t e x t s  (eg. [Va])  n e t w o r k s  la id  out as an 

n-dimensional  cube (Cn) achieve surpr is ingly good results.  In 

Theorem I we show that  for any minimal length routing p on 

C n and any set of faults F with [F[ < n - l ,  the d iameter  of 

R(Cn,P)/F_<3, independent  of n. The proof of Theorem 1 is 

short but nontr ivial .  The result  generalizes to n-dimensional  

rectangular  grids and is easi ly seen to be optimal.  

We also show (Theorem 2) that there exis ts  a minimal  

length routing hn on C n such that  R(Cn,hn) /F  < 2 if IFI < n. 

This in fact is a corol lary  to a more general result  of [BD] 

(al though the proof for this special case is much simpler than 

that  of [BD]). 

The spoke example  shows that  if we use minimal  length 

rout ings,  even a single node fault  can force the diameter  of 

the surviving route graph to grow to O(n). A closer look at 

this example  suggests that  the diameter  can grow this way 

only  if there  are  nodes of high degree .  Indeed,  we show 

(Theorem 4.) that  if F consists  only of node faults,  G / F  (i.e. 
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O wi th  all the e lements  of F removed)  is connected,  and p is 

a m i n i m a l  l eng th  r o u t i n g  on G, then  the  d i a m e t e r  of 

R ( G , p ) / F  is bounded above by I]FB, the sum of the degrees of 

the faul ty  nodes in F. The s i tua t ion  is qui te  different  for 

edge faults.  If F consis ts  only of edge faults ,  we can show 

(Theorem 6) tha t  if G / F  is connected and p is any min imal  

l eng th  r o u t i n g  on G, then  the  d i a m e t e r  of R ( G , p ) / F  is _< 

31FI+ 1. We conjec ture  that  both of these resul ts  can be some- 

wha t  improved:  to BF~-IFi+ I in the case of node faults,  and to 

2[Fl+l in the case of edge faults.  We show in Theorems 5 

and 7 tha t  t he re  e x i s t  g raphs  in wh ich  these  c o n j e c t u r e d  

bounds are a t ta ined .  

C h u n g  and  Garey  [CG] were  ab le  to ob t a in  a n a l o g o u s  

resul ts  to Theorems 4, 5, 6, and 7 for surv iv ing  graphs G / F  

(as opposed  to  s u r v i v i n g  rou te  g raphs ) .  A g a i n  the spoke  

example  shows that  one node fault  can cause the d iamete r  of 

the surv iv ing  graph to be O(n).  However ,  Chung and Garey 

show tha t  if F consis ts  of only edge faults  and G / F  is con- 

nected,  then the d iamete r  of G / F  is < (I  +IFI)(1 + the diame-  

ter  of G). In the case of node faults,  they compute  a bound 

on the d iamete r  of G / F  in terms of the degree of the faul ty  

nodes. They also give an examples  in both cases where  the i r  

bounds are essen t ia l ly  achieved.  

The rest of the paper is organized as follows. In sect ion 

2 the necessary  def ini t ions  are given. Section 3 conta ins  the 

resul ts  on the n-d imens ional  cube. In section 4 good rout ings  

for genera l  g raphs  are  d i scussed .  Sec t ion  5 g ives  genera l  

r e su l t s  for m i n i m a l  l eng th  rou t ings .  The re  are  s t i l l  m a n y  

open quest ions  in this  area;  we list  a few of them in Section 

6. 

2. Surviving Route  Graphs 

A routing p is a partial routing if p(x,y)  is undefined for 

some nodes xi~y; o therwise  V is a total routing. Note that  if p 

is a total  r ou t i ng  then  R(G,p)  is a c o m p l e t e  graph  on the  

nodes of V. 

Let F be a set of nodes and edges cal led the set of faults. 

F can be par t i t ioned into the set of node faults,  FV, and the 

set of edge faults,  F E. We define V / F  to be V- FV, E / F  to be 

E-FE-{(a ,b )  e E l a e F  v or b c F v } ,  and G / F  = ( V / F ,  E / F ) .  

G / F  is ca l led  the surviving graph. 

An object (path, subgraph,  etc.) avoids F if no e lement  of 

F is contained in that  object. Thus, a path avoids F if no 

node or edge on the path is in F. A rout ing avoids  F if each 

of its routes does. An edge of a routed graph avoids  F if the 

sequence (path)  which is its label does. 

For a given set of faults F, let p / F  be the subrout ing  of p 

consis t ing of those routes that  avoid F; i.e. ( # / F ) ( x , y ) = p ( x , y )  

if p (x ,y )  avo ids  F, o t h e r w i s e  ( p / F ) ( x , y )  is undef ined .  If 

R = ( V , d o m ( p ) )  is a route graph and F is a set of faults,  the 

surviving route graph is R / F  = ( V / F , d o m ( p / F ) ) .  Thus, two 

nodes  are jo ined  by an edge in the s u r v i v i n g  rou t e  graph  

exac t ly  if the route between them avoids F. 

We now brief ly  review some s tandard  def ini t ions from 

graph theory.  We refer the reader  to [Be] for more detai ls .  

A graph G is connected if there  ex i s t s  a path in G between any 

pair  of nodes in G; a graph G is (t÷i)-node connected if there  

are  t + l  node disjoint  paths  between any pair of nodes in G. 

Given nodes u and v in G, the distance between u and v in G, 

denoted dG(U,V), is the shor tes t  path in G between u and v. 

The diameter of G, w r i t t e n  D I A M ( G ) ,  is the m a x i m u m  of 

do(u ,v)  for every  pair  of nodes u, v in G. 

Unless  o t h e r w i s e  noted ,  we deal  w i t h  an u n d i r e c t e d  

graph G = (V,E) tha t  corresponds to a communica t ion  net- 

work.  A node routing p on V is a par t ia l  funct ion p : V x V - V *  

such that  p(x ,y) ,  if it is defined, is a sequence of nodes in V 

s ta r t ing  wi th  x and ending with y; i.e., a word  of the form 

xuy  wi th  u e V * .  A node r o u t i n g  p on V is a routing on 

G = ( V , E )  if p ( x , y )  (when  de f ined )  c o r r e s p o n d s  to a s imple  

path (one wi th  no loops) in G from x to y: i.e., every  c o n s e c -  

u t ive  pair of nodes in p(x ,y)  is an edge in E. A rout ing p on 

V d e t e r m i n e s  an e d g e - l a b e l l e d ,  d i r e c t e d  route graph 

R = ( V , d o m ( p ) ) ,  where  two nodes x and y are  joined by an 

"edge exac t ly  if p(x,y)  is defined. In this  case the edge is 

label led  by p(x,y) .  If p is a rout ing on (3, we use the notat ion 

R(G,p)  for the route  graph de te rmined  by p. (We occasional-  

ly omit  the G and p if they are c lear  from context . )  

3. The Diamete r  of the Surviving Route Cube 

Let Cnm(Vn,En) be the n-dimensional  cube. We repre- 

sent nodes of C n as words of length n on the a lphabet  {0, I}. 

If x is a node, its i th coordinate  is denoted x i. Edges exis t  

only  be t ween  nodes  tha t  d i f fe r  on e x a c t l y  one c o o r d i n a t e .  

Thus we represent  edges as words of l eng th 'n  on the a lphabet  

10,1,*} with exac t ly  one occurrence of * 

N e t w o r k s  in the form of n - d i m e n s i o n a l  cubes  d i s p l a y  

s u r p r i s i n g l y  good p e r f o r m a n c e .  T h e o r e m  1 s ta tes  tha t  the  

s u r v i v i n g  rou t e  g raph  p roduced  f rom any m i n i m a l  l eng th  

rout ing on C n and fewer than  n faults has d iameter  at most 3. 

Theo rem 2 de f ines  a spec i f ic  m i n i m a l  l eng th  r o u t i n g  and  
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asser ts  that the d iameter  of the n-dimensional  cube with this 

rout ing is 2. 

Theorem 1: Let p be a minimal  length routing on C n. Then if 

IFl<n, DIAM(R(Cn,P)/F)_< 3. 

Theorem 2: Let Xn(X,y) be the (minimal  length) rout ing on 

the n-dimensional  cube that  proceeds from x to y by moving 

along the coordinates  on which they differ one at a t ime from 

left to right. Then if IFl<n, DIAM(R(Cn,Xn)/F)_<2. 

Lemma 2: If IFl<n, then for any pair of nodes x and y in 

C e / F  t h e r e  are nodes u and v such that  x,u,v,y is safe with 

respect  to F. 

Proof :  We proceed by i nduc t i on  on n, c a r r y i n g  a long  the 

ex t ra  induct ion hypothesis  that  if n >  1 and nodes x and y are 

max ima l ly  far apart ,  then nodes u and v, with x # u  and u # v ,  

can be chosen such that  x,u,v,y is safe with respect to F, u is 

in C(x,v)  and v is in C(u,y).  Note that  if x = 0  n and y = l  n, 

then the last condi t ion is equivalent  to x < u < v < y .  

For  e x a m p l e ,  h 3 ( 0 1 1 , 1 1 0 ) = ( 0 1 1 , 1 1 1 , 1 1 0 )  and  

h 3 ( l l 0 , 0 1 1 ) = ( l l 0 , 0 1 0 , 0 1 1 ) .  Note that  hn(X,y)#hn(Y,X) in 

general.  

Wc f i rs t  deve lop  some m a c h i n e r y  to prove  these  theo-  

rems. Define the weight of a node or an edge to be the sum of 

its coordinates  where * carr ies  the value 1/2. Let Ix ldenote  

the weight of x. Thus 1111011=4 and ]1"1011=3.5. By drop- 

ping the i TM coord ina t e ,  any n - d i m e n s i o n a l  object  can be 

projected along the i TM coordinate  onto an (n - l ) -d imens iona l  

object .  Let Pi be the ope ra to r  for p ro j ec t ing  a long  the i th 

coordinate. .  Note that  an edge may project to a node, Thus 

P 2 ( l l l 0 1 ) = l l 0 1 = P 2 ( l * 1 0 1 ) .  We wri te  x < y  when .< holds 

on each coordinate.  We wri te  x < y  when x < y  and < holds on 

some coordinate.  We say x and y are maximally far apart 

when ~ holds on each coordinate.  If x and y are nodes, let 

C(x,y)  be the subgraph consist ing of nodes and edges z satis-  

fying the condit ion,  if XimY i then z i=y  i. We call C(x,y)  the 

subcube generated by x and y. Informafly it consists  of the 

graph induced by all nodes between x and y. 

We define a pair  of nodes x and y to be safe with respect 

to a set of  faults F iff every minimal  length path from x to y 

avoids F. A sequence of nodes x I ..... x k is safe wi th  respect to 

F if each consecut ive  pair of nodes in the sequence is safe 

with respect to F. 

Lemma 1: C(x,y)  avoids F iff x,y is safe with respect  to F. 

Proof :  A m i n i m a l  length  pa th  f rom x to y mus t  s t ay  in 

C(x,y) .  [] 

By Lemma 1, if a sequence is safe with respect  to F, then 

it will  be a path in R(Cn ,p ) /F  for every minimal  length rout- 

ing p. Thus, Theorem 1 follows immedia te ly  from Lemma 2 

below. 

The arguments  for n = l  and n = 2  are s t ra ight forward  and 

left to the reader.  Assume the induct ion hypothesis  for di- 

mens ion  n - I  w i th  n > 2 .  Let x and y be nodes in C n / F .  

• There are two cases. 

Case  (a) .  The nodes  x and y have  the same va lue  on 

some coordinate.  Without  loss of general i ty  x l = Y l = l .  If 

every element  of F has a 1 in its first coordinate,  then the 

sequence x, 0P i (x ) ,  0P l (y ) ,  y is safe. Otherwise,  the safe 

sequence  can  be c o n s t r u c t e d  e n t i r e l y  in C ( 1 0 n ' l , l  n) ( the 

subgraph consis t ing of the nodes and edges with a l in the 

first coordinate)  by the induct ion hypothesis,  since at least 

one element of F is avoided by this subgraph. 

Case (b). The nodes x and y are max ima l ly  far apart .  

Without  loss of general i ty  x = 0  n and y- - I  n. Case (b) has two 

subcases. 

Case ( b l ) .  There is an i and an element f of F such that  

Pi(f) is in { 0 n ' l , l n ' l ] .  Without  loss of g e n e r a l i t y i = l .  Let F '  

= P i ( F ) - - | 0 n ' I , I n ' I ] .  Then l F ' k n - l .  Thus, by the induct ion 

hypo thes i s  t he re  is a sequence  0 n ' l ( u ( v _ < l  n ' t  tha t  is safe 

wi th  respect to F'. If v < l  n ' t ,  then it is easy to check that  

0 n < 0 u < l v < l  n is safe wi th  respect to F. And if v = l  n ' l ,  then 

it is again easy to see tha t  0 n < 0 u < l u < l  n is safe with respect 

to F. 

Case (b2). For each i, Pi(F) does not include ei ther  0 n-t 

or 1 n ' t .  Let  f be a minimal  weight  e lement  of F. Without  

loss of g e n e r a l i t y  a s sume  f l = l  so tha t  P l ( f )  has  m i n i m a l  

weight  in P t (F ) .  Let F'  = P l (F - | f } ) .  If F'  is empty,  then 

(since the pro~'ct ion of a nonempty set is  nonempty)  F = {f]. 

Consequent ly ,  since f l = l ,  On<01n '1< l  n is safe with: ~ s p e c t  

to F. Suppose that  F '  is not empty. Then IF'~<n-l, so by the 

induct ion hypothesis  there exis ts  at least  one sequence safe 

wi th  respect to F' of the form o n ' l < a < b _ < t n ' t .  Among all 

such sequences  the re  mus t  be one 0 n-I < u < v <  I n-I wi th  lul 

maximal .  We claim that 0 n < 0 u < O v < t  n is safe for F. It is 

c lear ly  safe for F - |f}, so we must show only that  it is safe 

529 



for f. S ince  f l  = I ,  i t  su f f i ces  to  s h o w  tha t  f#  C(0v ,  ln) .  But  

if f ¢ C(0v ,  l n ) , w e m u s t  h a v e l P l ( f ) [  >_ Iv I. S ince  f w a s  chosen  

w i t h  m i n i m a l  w e i g h t  and  fl  = 1, it f o l lows  t h a t  ]Pl(f ' ) [  >_ 

IPl(f)]  _> Iv I for al l  f '  e F ' .  But  t h e n  0 n ' l < v < l  n ' l  (<  I n ' l )  is 

safe  for  F ' ,  c o n t r a d i c t i n g  the  c h o i c e  of u. ( R e c a l l  we  chose  u 

w i t h  m a x i m a l  w e i g h t . )  [ ]  

P r o o f  of  T h e o r e m  2: We  p roceed  by  i n d u c t i o n  on n. The  

case  n - - I  is t r i v i a l .  For  n > l  t he re  a re  t w o  cases .  

C a s e  (a) .  The  nodes  x and  y a g r e e  on c o o r d i n a t e  i. W i t h -  

ou t  loss  of g e n e r a l i t y  x i=Yi  = 1. If e v e r y  e l e m e n t  of F has  1 in 

the  i th  c o o r d i n a t e ,  t h e n  x,  Xl . . .x i .10Yi+l . . .yn ,  y is a p a t h  in 

R ( C n , J ~ n ) / F .  O t h e r w i s e ,  l e t  F '  = P i ( { f e F l f i = l ] ) .  S i n c e  

[ F ' ] < n - l ,  w e  c a n  a p p l y  o u r  i n d u c t i o n  h y p o t h e s i s  to  P i ( C n ) .  

Thus ,  t h e r e  is a p a t h  of l eng(h  one  or t w o  f rom P i (x )  to  Pi(Y) 

in  R ( P i ( C n ) , X n . i ) / F ' .  If the  pa th  is of l eng th  one ,  t h e n  (x ,y )  

is  an  edge  in R ( C n , A n ) / F ,  s ince  al l  f au l t s  not  in F '  h a v e  e i t h e r  

0 or  * in the  i th c o o r d i n a t e .  A n d  if P i (x ) ,  u, Pi(Y) is a p a t h  

of l e n g t h  t w o  in R ( P i ( C n ) , J ~ n . i ) / F ' ,  t h e n  it  is  e a s y  to  see t h a t  

x,  u t . . .u i ,  l lU i+ l . . . u  n, y is a pa th  in R ( C n , X n ) / F .  

C a s e  (b) .  The  nodes  x and  y a re  m a x i m a l l y  fa r  apa r t .  

W i t h o u t  loss  of g e n e r a l i t y ,  x = 0  n and  y = l  n. The  pa ths  in C n 

f o r m e d  by  c o n c a t e n a t i n g  h n ( 0 n , 0 i l  n ' i )  a n d  h n ( 0 i l n ' i , 1  n) fo r  

l < i < n  a re  node  d i s jo in t  so one of t h e m  m u s t  a v o i d  F b e c a u s e  

[Fl<n. [ ]  

Remarks:  

I .  We  have  s h o w n  t h a t  w h e n  IFl<n and  p is a m i n i m a l  l eng th  

rout ing  on  C n, the d i a m e t e r  of R(Cn,p~/F is n o  g r ea t e r  t h a n  

3. H o w e v e r  i t  does  not  r equ i r e  IFi=n-1 to  force  the  d i a m e t e r  

to  be  3. If w e  choose  p so t h a t  p ( 0 n , f x )  a l w a y s  goes t h r o u g h  

10 n ' t  a n d  p ( 0 y , !  n) a l w a y s  goes  t h r o u g h  01 n ' l ,  a n d  c h o o s e  

F = { 1 0 n ' t , 0 f n ' l ] ,  i t  i s  e a s y  to  c h e c k  t h a t  t h e  d i a m e t e r  of 

R ( C n , P ) / F  is 3. A s i m i l a r  e x a m p l e  can  be  o b t a i n e d  by  p lac-  

ing  * in the  f i r s t  c o o r d i n a t e s  of e i t h c r  or bo th  e l e m e n t s  of F. 

2. We  ca l l  a r o u t i n g  bidirectional if the  rou te  f rom x to  y is 

t he  s a m e  as t he  rou te  f r o m  y to  x (i.e. p ( x , y ) = p ( y , x ) )  for a l l  

x and  y; o t h e r w i s e ,  it is c a l l e d  unidirectional. We have  a l -  

l o w e d  r o u t i n g s  t h a t  a re  not  b i d i r e c t i o n a l .  T h e o r e m  1 c l e a r l y  

s t i l l  h o l d s  if w e  r e s t r i c t  to  b i d i r e c t i o n a l  r o u t i n g s ,  but  t h e r e  is 

no  b i d i r e c t i o n a l  a n a l o g u e  of T h e o r e m  2. To see this ,  c o n s i d e r  

a n y  m i n i m a l  l eng th  b i d i r e c t i o n a l  r o u t i n g  p on the  s q u a r e  C 2. 

( T h e r e  a re  no t  v e r y  m a n y ) .  N o t e  t h a t  p ( 0 0 , 1 1 )  and  p (01 ,10 ) ,  

t he  rou.tes to  oppos i t e  c o r n e r s  of the  square ,  m u s t  h a v e  an  

e d g e  in c o m m o n .  If F c o n s i s t s  of th i s  s ing le  f a u l t y  edge,  t h e n  

the  d i s t a n c e  b e t w e e n  i t s  e n d p o i n t s  in R ( C 2 , p ) / F  m u s t  be 3. 

Fo r  n > 3 ,  it is  s t i l l  an open q u e s t i o n  if t h e r e  e x i s t s  a b i d i r e c -  

t i ona l  a n a l o g u e  of T h e o r e m  2. It w o u l d  a l so  be  i n t e r e s t i n g  to  

k n o w  w h e t h e r  the re  is a b i d i r e c t i o n a l  a n a l o g u e  to T h e o r e m  2 

if  F cons i s t s  o n l y  of node  faul t s .  ( N o t e  tha t  the  c o u n t e r e x -  

a m p l e  g iven a b o v e  for C 2 does  not  ho ld  for node  fau l t s . )  

A g a i n  th i s  r e m a i n s  an open ques t i on .  

3. For  any  pa i r  of nodes  x ,y  in  C n, we  can  f ind  n m i d p o i n t s  

z l ..... z n wi th  z t = y  such  tha t  the  n rou t e s  f rom x to y f o r m e d  

b y  c o n c a t e n a t i n g  Xn(X,Zi) a n d  hn(Z i ,y ) ,  i = l  ..... n, a r e  n o d e  

d i s jo in t .  A p roo f  of the  e x i s t e n c e  of t he se  m i d p o i n t s  m a y  be 

o b t a i n e d  by c a r r y i n g  it  a l o n g  as  an i n d u c t i o n  h y p o t h e s i s  in 

the  proof  of T h e o r e m  2. These  node  d i s jo in t  r ou t e s  c an  be 

use fu l  in c e r t a i n  a p p l i c a t i o n s .  For  e x a m p l e ,  if p r o c e s s o r  x 

w a n t s  to  g u a r a n t e e  t h a t  a m e s s a g e  gets  t h r o u g h  to  y q u i c k l y ,  

i t  c o m p u t e s  z I ..... z n a n d  sends  the  m e s s a g e  to  z I ..... z n w i t h  

i n s t r u c t i o n s  to  f o r w a r d  i t  to  y.  One  m e s s a g e  m u s t  ge t  

t h r o u g h  so l o n g  as  [F[<n. 

4. The  t e c h n i q u e s  of p roof  of T h e o r e m s  1 and  2 e a s i l y  gcncr -  

a l i z e  to  a n y  n - d i m e n s i o n a l  r e c t a n g u l a r  g r i d  ( p r o d u c t  of n 

i n t e r v a l s ) .  

4. R o u t i n g s  in a G e n e r a l  N e t w o r k  

As  we s h o w e d  in the  i n t r o d u c t i o n ,  if S n is a spoke  g raph  

w i t h  n nodes  and  p is a m i n i m a l  l eng th  r o u t i n g  on S n, t h e n  

the  d i a m e t e r  of R ( S n , p ) / F  can  be  O(n ) ,  e v e n  if F c o n s i s t s  of a 

s ing le  node.  H o w e v e r ,  t he re  does  e x i s t  a n o n - m i n i m a l  l eng th  

r o u t i n g  on the  s p o k e  for w h i c h  the  d i a m e t e r  of the  s u r v i v i n g  

rou t e  g raph  is 2 as long  as IF]<2. In th i s  sec t ion  we  s h o w  

tha t  t h i s  resu l t  gene ra l i z e s .  

T h e o r e m  3: If G is t + l - n o d e  c o n n e c t e d ,  t hen  the re  is a b id i -  

r e c t i o n a l  r o u t i n g  p such  t h a t  if [F] < t, t h e n  D I A M ( R ( G , p ) / F )  

_< m a x ( 2 t , 4 ) .  

Proof :  In o r d e r  to p rove  the  t h e o r e m ,  we  wi l l  f i r s t  need  the  

f o l l o w i n g  l e m m a .  

[ , emma 3: Le t  G = ( V , E )  be t + l - n o d e  c o n n e c t e d .  Then  t h e r e  

e x i s t s  a set  of nodes  M c V  w i t h  [M[ = t + l  such  t h a t  the  re-  

m o v a l  of the  nodes  in M and  al l  of t h e i r  a d j a c e n t  edges  p a r t i -  

t i ons  G in to  n o n - e m p t y  s u b g r a p h s ,  G i ,  G 2 . . . . .  G k, w i t h  k>_2. 

M o r e o v e r ,  if x c G  i, i = l , 2  ..... k, t h e n  t h e r e  e x i s t s  t + l  node  

d i s jo in t  pa ths  in G i f rom x to  the  nodes  in M. If ( x , m ) ¢ E  for  

s o m e  m e M ,  we  can  t a k e  x m  to be the  p a t h  f r o m  x to  m. 
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P r o o f  of  L e m m a  3: The  fac t  t h a t  we  can  f ind  M fo l lows  im-  

m e d i a t e l y  f r o m  the  fact  t h a t  G is t +  1-node c o n n e c t e d .  W i t h -  

out  loss  of g e n e r a l i t y ,  le t  x c G  1 and  choose  some  y c O  2. Then  

by  the  d e f i n i t i o n  of c o n n e c t i v i t y ,  t h e r e  e x i s t  t + l  node  d i s -  

jo in t  pa ths  f rom x to  y in  G. Since  M is a s e p a r a t i n g  set  of 

G, e a c h  of t he se  pa ths  m u s t  i nc lude  e x a c t l y  one node  of M, 

w i t h  the  p a t h  f rom x to  each  such  node  s t a y i n g  c o m p l e t e l y  in 

G I. If ( x , m )  c E for  some  m c M  and if the  p a t h  f rom x t o m  

in G 1 w h i c h  is o b t a i n e d  by the  above  c o n s t r u c t i o n  is not  xm,  

t h e n  r e p l a c i n g  tha t  pa th  w i t h  x m  does  not  c o n t r a d i c t  the  node  

d i s jo in t  r e q u i r e m e n t  for  the pa ths  f rom x to  M. [ ]  

R e t u r n i n g  n o w  to  t he  p r o o f  of T h e o r e m  3, g i v e n  G, 

choose  M . a n d  node  d i s jo in t  pa ths  f rom each  node  x ~ M  to 

each  node  m c M  as in L e m m a  3. We now de f ine  a pa r t i a l  

r o u t i n g  p on G by the  f o l l o w i n g  t w o  rules .  

I .  If (u ,v)  c E, then  p ( u , v ) = u v ,  i.e. the  rou te  f rom u to  v is 

the  edgc  b e t w e e n  them.  

2. If x f~ M and  m ¢ M, then  p ( x , m )  is just  the  pa th  chosen  

above .  

We  n o t e  t h a t  s t a n d a r d  t e c h n i q u e s  f r o m  n e t w o r k  f l o w  

( [ E v ] )  c an  be u s e d  to  o b t a i n  the  r o u t e s  in p in  t i m e  

o(Iwl 1/21El2). 

R u l e  1 g u a r a n t e e s  tha t  if IFI _< t, t hen  R ( G , p ) / F  is con-  

n e c t e d  a n d  D I A M ( R ( G , p ) / F )  < D l A M ( G / F ) .  N o t e  t h a t  

a l t h o u g h  D I A M ( G / F )  c o u l d  be  O ( n ) ,  T h e o r e m  3 g i v e s  a 

bound  on D I A M ( R ( G , p ) / F )  w h i c h  is i n d e p e n d e n t  of n. 

If f c F  is e i t he r  a f au l t y  node  in G i ( resp.  M) or a f a u l t y  

edge  w i t h  bo th  e n d p o i n t s  in G i ( resp.  M),  t hen  f is sa id  to  be 

in G i (resp.  M).  If f c F  is a f a u l t y  edge  w h i c h  has  one end  

poin t  in M and  the  o the r  in G i, t h e n  f is  sa id  to  be in G i. Le t  

F i be the  set  of f au l t s  in G i, i = l  ..... k, and  F M be the  set  of 

f au l t s  in M. No te  IFtl + ... + IFkl + IFMI = t. 

We  n o w  c o m p l e t e  the  p r o o f  t h a t  D I A M ( R ( G , p ) / F )  < 

m a x ( 2 t , 4 )  by  a case  ana ly s i s .  

C a s e  1. For  some  i¢ { 1,2,.. . ,k], [Fi[ = 0. 

W i t h o u t  loss of gene ra l i t y ,  a s s u m e  tha t  IFtl = 0. Since G 1 is 

no t  e m p t y ,  t h e r e  e x i s t s  a node  z e G  t such  t h a t  z has  a p a t h  in 

R / F  to  e v e r y  node  in M. There fo re ,  t he re  e x i s t s  a rou t e  of 

l e n g t h  2 b e t w e e n  a n y  t w o  n o n - f a u l t y  nodes  of M via  z. A n y  

x g M m u s t  be a d j a c e n t  in  R / F  to s o m e  n o n - f a u l t y  m ¢ M 

s ince  IFI < M. This  i m m e d i a t e l y  g ives  a bound  of 4 b e t w e e n  

a n y  t w o  nodes  w h i c h  a r e  ne i t he r  in M nor  in G I. 

C a s e  2. No F i is e m p t y .  

Le t  P = x0. . .x  k be some  m i n i m u m  l eng th  pa th  in  R / F  be-  

t w e e n  x = x 0 and  y = x k. We  b o u n d  the  l eng th  of P by  

c o u n t i n g  nodes  in M w h i c h  e i t he r  a p p e a r  on P or a re  a d j a c e n t  

to  t hose  i n t e r n a l  nodes  of P wh ich  a re  t h e m s e l v e s  not  in M. 

Thus ,  for x i c -P ,  let  (xi)  = | n o n f a u l t y  nodes  in M to w h i c h  x i 

has  a n e d g e i n  R / F }  u ({xi} n M). 

Let  x i be  a node  of P w h i c h  is not  in M, and  a s s u m e  tha t  

x i c G  j. The re  is a pa th  in R / F  f rom x i to a t  l eas t  t+ l - ]F f l  

n o n - f a u l t y  nodes  of M. Since  IFi[, IF2] > I and  ]FI] + ... + ]Fk[ 

+ IFml = t, w e  m u s t  have  IFfl _< t - l ,  and  so ](xi) I _> 2. 

Le t  Pi..j be  the  pa r t i a l  pa th  x i x i + l . . . x  j. Le t  S(Pi..j ) = (x i )  

u ... u (xj) .  We p rove  the  2t bound by  s h o w i n g  t h a t  [S(P0..i)I 

> I ' i / 2 " l + l  by  i n d u c t i o n  on i. 

Since  ](x0) ] _> 2, the  c l a im  holds  for i = 0,1,2.  A s s u m e  

the  c l a i m  ho lds  up to  i - I  for i > 2 .  The  bound  is o b t a i n e d  by 

the  f o l l o w i n g  c o u n t i n g  a r g u m e n t .  There  a re  t w o  cases ,  x i ~ M  

and  x i g M .  If x i ¢ M, then  x i ~t (xj)  for j _< i -2 ,  for o t h e r w i s e  

P 0 . . j x i P ( i + l ) . . k i s a  s h o r t e r  pa th  f rom x t o y  t h a n  is P. Thus ,  

lS(Po..i)l Z IS(Po..i_2)l+l Z r ( i - 2 ) / 21+2  = r i / 2 l + l .  

If x i ~ M, t h e n  (x i )  n (x j )  : ~ for j < i - 3 .  O t h e r w i s e ,  the  

e x i s t e n c e  of s o m e  m w i t h  m c ( x i ) n ( x j )  i m p l i e s  t h a t  

P0. . jmPi+l . .k  is sho r t e r  t h a n  P. Since for  x i g M we have  

[(xl) ] > 2, t h e n  

IS(Po..i)l _> Is(P0.. i .3)[+2 _> r ( i - 3 ) / 2 ] + 3  > r i / 2 1 + l .  

S ince  P = xoxl . . .Xk,  i t  fo l lows  t h a t  S(P)  > [ ' k / 2 ] + l .  

S ince  IMI _< t + l ,  we  m u s t  have  r k / 2 1  _< t. C o n s e q u e n t l y ,  k 

_< 2t and  IP[ _< 2t .  [ ]  

5.  Miss ing  N o d e s  and Mis s ing  Links  

in  th i s  sec t ion  we  r e t u r n  to  m i n i m a l  l eng th  rou t ings  and  

ob t a in  bounds  for the  d i a m e t e r  of a s u r v i v i n g  rou te  g raph  in 

t e r m s  of the  n u m b e r  of f a u l t y  edges  and  the  deg rees  of the  

f au l t y  nodes .  

D e f i n i t i o n :  Fo r  a node  a, de f ine  fat to  be the  deg ree  of a;  i.e., 

t he  n u m b e r  of edges  w i t h  e n d p o i n t  a. For  an  edge  e, de f ine  

~e |=2.  F i n a l l y ,  de f ine  | F | : X f ~ F l f [ .  

We  f i r s t  c o n s i d e r  t he  c a s e  w h e r e  F c o n s i s t s  o n l y  of 

nodes .  
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Theorem 4: If F consists only of nodes, G / F  is connected, 

and p is any minimal  length rout ing  of G, then 

D I A M ( R ( G , p ) / F )  < IFU. 

Proof:  First note that if the result holds for IFI= l, then it can 

be extended to all sets of node faults by the following argu- 

ment. Given a graph G=(V,E) ,  a set of node faults F such 

that G / F  is connected, and a minimal length routing p, con- 

struct a graph G' in which all the faulty nodes are combined 

into one node. More precisely,  let G ' = ( V ' , I ~ ' ) ,  where  

V ' = ( V - F ) u I x l ,  where  x is a d is t inguished  node, and 

E ' = E / F u [ ( a , x )  I a c V / F  and for some fcF ,  (a,f)~E}. Note 

that since the neighbors of x in G' are exactly the non-faulty 

neighbors in G of the nodes in F, we have Ux H < ~t(FUf~. Let 

p' be any minimal length routing on G' such that if there is a 

minimal length path from v to w which goes through x, then 

p ' (v ,w) goes through x. It is now easy to check that if p(v,w) 

goes through a node in F, then p ' (v,w) goes through x. Let 

F ' = { x ] .  By the observa t ion  above,  it fol lows that  

R ( G ' , p ' ) / F '  is a subgraph  of R ( G , p ) / F :  it has t h e  same 

nodes ,  bu t  pos s ib ly  f ewer  edges.  Thus  

D I A M ( R ( G , p ) / F ) < D 1 A M ( R ( G ' , p ' ) / F ' ) .  But by hypothesis, 

DIAM(R(G',p ') /F ')_<~x],  giving the desired result. 

We now prove the result for IFl=l. So suppose that F 

consists of only one faulty node f. Let N ( f ) = l w l t h e r e  exists 

an edge from f to w in G |  (these are the neighbors of f in G). 

Note that by definition IN(f)I=0f0=HF~. Fix a minimal length 

rou te  p, and let H = R ( G , p ) / F .  We want  to show 

DIAM(H)_<lf]. 

Since p is a minimal length routing, if two nodes u and v 

are neighbors in G, then p(u,v) is just the edge between them. 

It follows that G / F  is a subgraph of H, and so H is connect- 

ed. Choose any two nodes a and b in G / F  such that 

d H ( a , b ) = D I A M ( H ) .  Let Li, i=0  ..... DIAM(H) ,  consis t  of 

Ic I d H ( a , c ) = i ] .  Fo r  any node c e G / F ,  let 

N e a r ( c ) = { w e N ( f ) l f o r  all w ' e N ( f ) ,  dG(c ,w)<dG(C,W')] .  

Thus Near(c) consists of the nodes in N(f) that are closest (in 

G) to c. Final ly,  let N e a r ( L i ) = U c ( L , N e a r ( c  ). Note that  

since Li# @ for i=0,1  ..... DIAM(H) ,  it fol lows that  

Near(Li)#,¢,. We will show." 

Claim I: lUi<kNear(Li)l>k. 

From the claim it follows that 

Irl=lN(f)l>_lUi<DiAM(H)Near(Li)l_> DIAM(H),  

which establishes the result for IFI= t. To prove the claim, we 

proceed by induction. The claim is trivial if k = 0  or k = l .  

Suppose we have proved the claim for k '<k .  We now prove it 

for k>2.  We first need to show: 

Claim 2: If li-jl>2, then Near(Li) and Near(Lj) are disjoint. 

To prove Claim 2, suppose o therwise .  Then there 

exists beN( f )  such that beNea r (u )  and bcNea r (v )  for some 

u c L  i and some v e L j .  We will now show that no minimal 

length path in G from u to v can contain the node f. This 

then shows that u and v must have an edge between them in 

H. Consequently li-jl<l, which contradicts the assumption 

that li-jl> 2. 

So suppose by way of contradiction that some minimal 

length path in G from u to v contains I. Thus the path is of 

the form ~r=u...wfw'...v, where w , w ' c N ( f ) .  Since beNear (u ) ,  

we must  have dG(u,b)<dG(U,W ). Similarly, since bcNear (v) ,  

we must have dG(b,v)<dG(b,w'  ). One way of getting from u 

to v in G is to go from u to b and then from b to w. By the 

observations above, this gives a shorter  path than ~r, contra- 

dicting the minimality of ~r and proving Claim 2. 

Returning to the proof of Claim I, suppose by way of 

cont radic t ion  that  Claim 1 does not hold and consider  the 

min imum k > 2  for which  it does not hold. Note that  

INear(Lk. | ) l= l ,  for it iNear(Lk.l)l>2 , Claim 2 and the fact 

that the result holds for k-2 implies that Claim I also holds 

for k. Moreover,  Near(Lk_l)  cannot  be disjoint  from 

Near(Lk.2), for then from the fact that Claim I holds for k-1 

we could again immediately prove it for k. So assume with- 

out loss of general i ty  that  Near (Lk .1)={c} ,  and that 

c c Near (Lk.2). 

Choose ueLk.  1 and v c L  k such that u and v are neighbors 

in G.. (There must  be such u and v. Choose any path in G / F  

f r o m a t o b .  Let v b e  the first node in L k on that path, and u 

be the node just before v. We leave it to the reader to check 

that there exist such u and v and that they have the desired 

property.)  Let dcNear (v ) .  We must  have e#d ,  otherwise we 

would have ceNear (Lk.2)nNear (Lk)  , contradicting Claim 2. 

We now show that deNea r (u ) ,  contradicting the hypothesis 

that Near(Lk.1)={c}. Choose tCLk. 2 such that ccNear ( t ) .  

(Such a t exists since ccNear(Lk.2)  by hypothesis.) There 

must  be some minimal length path in G from t to v that goes 

through f (otherwise v would be in Lj for some j<k-1) .  Sup- 

pose this path is of the form t...wfw'...v, where w , w ' c N ( f ) .  

Ano the r  way of getting f rom t to v is to take a minimal  

length path from t to e, followed by a minimal length path 

from e to u, followed by the edge from u to v. Thus we must  

have d o ( t , w ) + 2 + d o ( w ' , v  ) < d o ( t , c ) + d o ( c , u ) + l .  Since 
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c c N e a r ( t )  and  d c N e a r ( v ) ,  we  m u s t  h a v e  dG(t ,c )  _< d o ( t , w  ) 

a n d  d G ( d , v )  _< dG(W' ,V) .  H e n c e  d G ( t . c ) + 2 + d G ( d , v )  < 

d G ( t , c ) + d G ( c , u ) + l ,  w h i c h  i m p l i e s  d G ( d , v ) + l  < d G ( c , u ) .  

One  way  to get  f rom d to  u is to  go f rom d to  v and  then  to 

t a k e  the  e d g e  f r o m  v to  u. H e n c e  d G ( d , u )  < d G ( d , v ) + l .  

C o m b i n i n g  these  inequa l i t i e s ,  we  get  d G ( d , u ) < d G ( e , u ) .  But  

s i n c e  e c N e a r ( u ) ,  i t  f o l l o w s  t h a t  w e  m u s t  a l s o  h a v e  

d e N e a r ( u ) ,  a n d  t h u s  d e N e a r ( L k . l ) ,  c o n t r a d i c t i n g  the  a s -  

s u m p t i o n  t h a t  N e a r ( L k . l ) = { c ] .  O 

The  p r e v i o u s  t h e o r e m  is c l o s e  to  o p t i m a l ,  as w e  n o w  

show.  

T h e o r e m  5.: For  al l  d l ..... d k, t he re  e x i s t s  a g raph  G, a min i -  

m a l  l e n g t h  r o u t i n g  p on G, and  a se t  of n o d e  f a u l t s  

F = { I i  ..... fk] w h i c h  does  not  d i s connec t  G such  t h a t  the  deg ree  

of fi is d i, i =  1 ..... k, and  D I A M ( R ( G , o ) / F ) = ~ F ~ - [ F [ +  1. 

P roo f :  The  g raph  G is a s imple  g e n e r a l i z a t i o n  of the  spoke  

e x a m p l e  of the  i n t r o d u c t i o n .  We give  G be low in F igu re  4 in 

the  case  t h a t  k = 3  and  d l = d 2 = 3  and  d 3 = 4 .  We choose  the  

m i n i m a l  l eng th  rou t i ng  tha t  t akes  a pa th  t h r o u g h  f l ,  f2, o r  f3 

w h e n e v e r  poss ib le :  

f l  

F igu re  4. 

We be l i eve  tha t  the  upper  bound  of T h e o r e m  4 can  be 

i m p r o v e d  to  the  l o w e r  bound  s h o w n  in T h e o r e m  5. We for-  

m a l i z e  th i s  as :  

C o n j e c t u r e  1: For  a n y  g raph  G, a n y  m i n i m a l  l eng th  r o u t i n g  

p, and  any  set  of node  fau l t s  F w h i c h  d o e s  not  d i s c o n n e c t  G, 

DIAM(R(G,p)/F)_<~FII-IFI+ 1. 

The s i t u a t i o n  for  edge  f au l t s  is s o m e w h a t  d i f f e ren t .  

T h e o r e m  6: If F cons i s t s  on ly  of edges ,  G / F  is connec t ed ,  and  

p is any  m i n i m a l  l eng th  r o u t i n g  of G. then  D I A M ( R ( G , p ) / F )  

_< 3[Fl+ 1. 

We  use  the  f o l l o w i n g  l e m m a s  to  p rove  T h e o r e m  6. Re-  

ca l l  t h a t  the  pa i r  of nodes  u, v is safe w i t h  respec t  to  F if a l l  

the  m i n i m u m  leng th  pa ths  f rom u to v a v o i d  F. 

L e m m a  4: A s s u m e  F has  on ly  edges .  If the  pa i r  of nodes  x ,y  

is not  safe w i t h  respec t  to  F, t hen  the re  is an  edge  (u,v)  in F 

and  a m i n i m a l  l eng th  pa th  f rom x to y c o n t a i n i n g  (u,v)  such 

tha t  v,y is safe  w i t h  respec t  to F. 

The  p r o o f  of L e m m a  4 is a s t r a i g h t f o r w a r d  i nduc t i on  on 

the  d i s t a n c e  b e t w e e n  x and  y in G. 

Proof  of  T h e o r e m  6: Le t  x and  y be a pa i r  of nodes  of G and  

l e t  X 0 X l . . . x  k b c a  m i n i m a l  l eng th  pa th  f rom x = x  0 to  y = x  k in 

H = R ( G , p ) / F  ( such  a pa th  mus t  e x i s t  by the  s a m e  a r g u m e n t s  

as  in T h e o r e m  4 a b o v e :  s ince  p is a m i n i m a l  l eng th  rou t ing ,  i t  

f o l l o w s  t h a t  G / F  is a s u b g r a p h  of H so H is c o n n e c t e d ) .  

N o t e  tha t  by  c o n s t r u c t i o n  dH(Xi,Xj) = [i-j]. 

For  each  x i w i t h  i>_2, we  se lec t  an  e n d p o i n t  v of an edge  

in F such tha t  v ,x  i is safe  w i t h  respec t  to F and  v l ies  on a 

m i n i m a l  l eng th  pa th  in G f rom x to x i ( L e m m a  4). We say  

tha t  v is associated with x i. I n tu i t i ve ly ,  v is the  e n d p o i n t  of a 

f a u l t y  e d g e  c l o s e s t  to  x i on a p a t h  f r o m  x. N o t e  t h a t  if  

( u , v ) ¢ F  a n d  v is a s s o c i a t e d  w i t h  s o m e  x i. t h e n  dG(X,U) < 

dG(X,V), and  so u canno t  be a s soc i a t ed  w i t h  any  x i. Thus ,  a t  

m o s t  one  n o d e  of e a c h  f a u l t y  e d g e  c a n  be  a s s o c i a t e d  w i t h  

some  x i. Moreove r ,  a p a r t i c u l a r  node  v can  be a s soc i a t ed  

w i t h  a t  mos t  t h r ee  xi ' s .  For  if v w e r e  a s s o c i a t e d  w i t h  x i and  

xj,  and  li-j]>2, t hen  s ince  dH(Xi,V ) = dH(Xj,V ) = 1, we  have  

dH(Xi,Xj) < 2, a c o n t r a d i c t i o n .  Now,  by  a s imp le  c o u n t i n g  

a r g u m e n t ,  we  get  t h a t  k _< 3[F]+ 1. [ ]  

A g a i n  we  h a v e  a l o w e r  bound  tha t  a l m o s t  m a t c h e s  the  

u p p e r  bound  of T h e o r e m  6. 

T h e o r e m  7: For  each  t t he re  is a g raph  Gt, a m i n i m a l  l eng th  

r o u t i n g  Pt of G t, and  a set  F t of t edges  tha t  does  not  d i scon-  

nect  G t such tha t  D I A M ( R ( G t , P t ) / F t )  = nFtD+l ( =  2 t + l ) .  

P r o o f :  The  r equ i r ed  g raph  G t is o b t a i n e d  by the  obv ious  

g e n e r a l i z a t i o n  f rom the g raph  G 4 s h o w n  in f igure  5, w h e r e  

the  edges  m a r k e d  w i t h  an  x t h r o u g h  t h e m  are  in F, and  p 

goes  t h r o u g h  a f au l t y  edge  w h e n e v e r  poss ib le  ( for  e x a m p l e ,  

p ( A , G ) = A B G ) .  

A B C D E i"i !'i ,! 
F G H I J 

Figure 5. 

C o n j e c t u r e  2: For  any  g raph  G, any  m i n i m a l  l eng th  rou t i ng  

p on G, and  any  set  of edge  fau l t s  F w h i c h  does  not  d i scon-  

nec t  G, D 1 A M ( R ( G , p ) / F ) < n F D +  I(=21F[+ 1). 
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Combining the graphs of Theorems 5 and 7 leads us to 

the following: 

Corollary: For all k, m, dl ,  ..., dm, we can find a graph G, a 

minimal length routing p on G and set of k edge faults and m 

node faults F with degrees d l ..... d m such that G / F  is connect- 

ed and DIAM(R(G,p)/F)=aFfl-[Fv]+ 1. 

Of course, we also have: 

Conjecture  3: For any graph G, minimal length routing p, 

and set of faul ts  F which  does not disconnect  G, 

D I A M ( R ( G , p ) / F )  =~Fa-lFvl+ I. 

Conjec tures  1, 2, and 3 seem to be quite  difficult  to 

prove. L. Stockmeyer has recently shown that Conjecture 1 

implies Conjecture 2. We (and independently F. Chung) have 

also shown that  the bound of Theorem 6 can be improved to 

2.5[F[+ 1. We can show that Ihe bound of 2[F[+ 1 of Conjec- 

ture 2 holds for IFI= 1,2,3. The proof for IFI= I is of independ- 

ent interest, and we present it below. Our proofs for Iv[=2 

and 11::1=3 grow exponentially more difficult, and do not seem 

to lead to any generally applicable technique. 

Theorem 8: If p is a minimal length routing on G, and F 

consis ts  of one edge which does not disconnect  G, then 

D1AM(R(G,p)/F)_< 3. 

Proof:  Let H : R ( G , p ) / F .  Choose  a , b e G / F  such that  

dl t (a ,b)# 1. Since G/F is connected, there must be some path 

al...a k f r o m a = a  I t o b = a  k i n G / F .  Let a j b e  the last point on 

this path such that d n ( a , a j ) = l .  Note j>2 ,  since the edge 

between a=a  1 and a 2 in G is nonfaulty by hypothesis. Since 

the edge in G between a i and aj+ l is also nonfaulty by hy- 

pothesis, dH(a j , a j+ t )= l .  We now show d l l ( a j + l , b )= l ,  which 

will  c o m p l e t e  our  a r g u m e n t  ( s ince  dH(a ,b )  < 

dl t (a ,a j )+dH(aj ,a j+l)+dH(ai+l ,b)  = 3). Let the faulty edge 

in F be (x,y). Since d l l ( a , b )# l ,  p(a,b) must be of the form 

a...xy...b. Because p is a minimal length routing, we must  

have dG(a,x)<dG(a,y) ,  and dG(b,x)>dG(b,y) .  By choice of 

aj, d n ( a , a i + l ) #  1, so the edge (x,y) must also be on p(a,aj+l) .  

But since dG(a,x)_<dG(a,y ), p(a,aj+ t) mus t  be of the form 

a...xy...aj+ I. Thus dG(aj+l,y)_<dH(aj+l,x). The above ine- 

qualit!es tell us that y is closer to both aj+ l and b than x is, 

so no minimal length path from aj+ l to b could have the edge 

(x,y) on it. Thus p(aj+l,b) is fault-free, and dH(a j+ l ,b )= l  as 

desired. I:] 

The last issue we consider in this section is connectivity. 

The examples of Theorems 5 and 7 of graphs with a given 

diameter were graphs of low connectivity. However, as the 

fol lowing theorem shows,  once we have an example  of a 

graph where a certain number  of edge faults and vertex faults 

cause the resul t ing surviving route graph to have a given 

diameter ,  we can cons t ruc t  a graph wi th  a rb i t r a r i ly  high 

connectivity with the same property. 

Theorem 9: Given a minimal length routing # on a graph G, a 

set F of faults that does not disconnect G, and any desired 

node connectivity k, there is a graph G*=(V*,E*)  containing 

G as a suhgraph and a minimal length routing p* on G* con- 

taining p as a subrouting such that G* is at least k connected 

and D I A M ( R ( G * , p * ) / F )  is at least as large as 

DIAM(R(G,p ) /F ) .  

Proof:  Left to full paper. [] 

6. Open Problems 

Although we have obtained a number of results, many 

open problems remain in this area. We list a few of them 

here. 

1. We have obtained much bet ter  bounds  than the general 

bounds  for complete ly  connected graphs and for the n- 

dimensional cube. Are there other classes of networks with 

equally good bounds7 

2. Prove Conjectures 1, 2, and 3. 

3. Can the upper bound of Theorcm 3 be improved? In case 

t<2  we can show that  any graph G has a rout ing  # with 

D I A M ( R ( G , p ) / F ) < 3 .  For case t = l ,  the square  shows  that 

this result is best possible for bidirectional routing. We con- 

jecture that the results for the n-dimensional cube generalize: 

that is, for any graph G there is a bidirectional routing p with 

DIAM(R(G,p)/F)_<3 and a unidirectional routing p' such that 

DIAM(R(G,p ') /F)_< 2. 

4. The proofs of Theorems 4 and 6 do not use the connectivi- 

ty of G but only the fact that G / F  is connected. However, 

the connectivity of G is heavily used in Theorem 3. What 

happens when this assumption is relaxed? 
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5. A routing p is consistent (prefix consistent, suf f ix  consistent) 

if every subpa th  (respect ively,  prefix,  suff ix)  of a route is 

also a route. The routings h n of Theorem 2 are consistent, 

but the routing constructed in the proof of Theorem 3 is not 

necessarily even suffix consistent. What are the corresponding 

bounds for consistent, prefix consistent, and suffix consistent 

routings? 

6. What happens to the diameter of the surviving route graph 

if the routing is a random routing? 

7. What, if anything, can one say about routings that are 

almost minimal length? 

8. We have assumed that the graphs representing communi- 

cation networks have undirected edges. We can also consider 

what happens if we have directed communication networks. 

This cor responds  to having one-way communica t ion  links. 

What are the analogues of our results for directed graphs? 

We remark that we can construct an example of a directed 

graph G and a minimal length routing p on G such that the 

diameter of R (G ,0 ) / F  is O(n) even if F consists of only one 

faulty edge, so that Theorem 6 does not hold if G is a directed 

graph. (Tile example has much the same flavor of the spoke 

example given in the introduction.) 

Define ae| for a directed edge e with source node a to be 

~a| and define ac[=2 for an undirected edge e. As before, 

~F~=~fcF]f]. We conjecture that if p is a minimal length rout- 

ing and G / F  is connected, then 

DIAM(R(G,p ) /F )  < IFblFvl+ 1. 

Note that this is a generalization of Conjecture 3. 

In pract ice graphs where every node has degree < 3 

frequently arise. If these conjectures are true, then if G is 

such a g r a p h  and p is a minimal  length routing,  then 

DIAM(R(G,p) /F )  < 21FI+I for any collection F of node and 

edge faults that do not disconnect G. 
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