
INFORMATION AND COMPUTATION 12, 4665 (1987)

A Refinement of Strong Sequentiality for
Term Rewriting with Constructors*

SATKH THATTE

Department of Elecwical Engineering and Computer Science,
The University of Michigan, Ann Arbor, h4ichigan 48109

The notion of call-by-need evaluation has turned out to be very fruitful when
applied to dialects of the i-calculus (Henderson and Morris, 1976, in “Proc. 3rd
ACM Symp. on the Principles of Programming Languages, Atlanta; Kahn and
Mac Queen, 1977, in “IFIP 77,” North-Holland, Amsterdam; Turner, 1979,
Software Practice and Experience, Vol. 9; Vuillemin, 1974, J. Cornput. System3 .Sci.
9, 332-354; Wadsworth, 1971, Ph.D. dissertation, Oxford University% England).
The analogous idea of sequenlialify for term rewriting systems described by lirst-
order equations has been considered by Hoffman-O’Donnell (1979, in “Proc. 5th
ACM Symp. on the Principles of Programming Languages, San Antonio.” 1984. in
“Proc. 11th ACM Symp. on the Principles of Programming Languages, Salt Lake
City) and Huet-Levy (1979, Technical Report No. 359, INRIA, Le Chesney,
France), of which the latter is generally considered to be the most complete
theoretical treatment of the subject to date, Huet-Levy (1979) detined the notion of
strong sequentiahty to describe the class of linear term rewriting systems for which
call-by-need computation is practical. This paper introduces an improved version of
strong sequentiality called ieff sequentiality. Unlike strong .sequentiality, left
sequentiality is based on possible rather than arbitrary (and often impossible)
sequences of reductions. We show that left sequentiality is more general than strong
sequentiality when applied to individual terms, but is equivalent to the latter when
cosidered as a property of admissible sets of left-hand sides for systems of equations.
Huet-Levy (1979) showed that there are safe redex selection algorithms, i.e.,
algorithms deriving normal forms whenever possible, for systems based on strongly
sequential sets of left-hand sides. We show that there is no algorithm which is safe
for all systems based on a set of left-hand sides if that set is not left sequential. In
other words, left sequentiality is not only sufficient, it is also necessar~~ for safe com-
putation based on the analysis of left-hand sides alone. 1 I987 Academic Press, Inc.

1. INTRODUCTION

call-by-need evaluation amounts to leftmost-outermost-next evaluation
for ordinary recursive equations and A-expressions. The formal property
one is looking for is “safety,” i.e., the guarantee that the evaluation of an

* This work was supported in part by a Faculty Fellowship and Grant from the Rackham
School of the University of Michigan.

46
0890-5401/87 g3Bo
Copyright 0 1987 by Academic Press, Inc.
All rights of reproduction in any form reserved.

MAILING INFORMATION 47

expression will reduce it to its (normal form) value whenever possible. The
critical problem in safe evaluation is to Iind a “needed” redex, which is any
redex that m~sf be reduced somewhere along the way to the normal form.
The simplicity of the usual call-by-need evaluation comes from the fact that
the leftmost-outermost redex is always needed, and any needed redex even-
tually becomes leftmost-outermost. None of these nice properties holds for
term rewriting systems defined by equations, not even when they belong to
a nice class like reguiur systems (Hoffmann-O’Donnell, 1984) which always
satisfy the Church-Rosser property. Not only is there no standard safe
evaluation rule, but it is in general not possible to find a needed redex
without looking ahead to check its future behavior. A (regular) system is
sequentid when it allows a needed redex to be found without lookahead in
any term not in normal form. But there is one further complication. There
is no algorithm for Iinding needed redices which works for all sequential
regular systems. There is also no algorithm to decide if a given regular
system is sequential.

Sequentiality is therefore too general a property for the practical
application of call-by-need evaluation to regular systems. Huet-Levy
(1979) showed that a restricted notion of sequentiality, the so-called strong
sequentiality was more tractable. The technical formulation of strong
sequentiality pays attention only to the left-hand sides of equations by
using the idea of arbitrary reduction sequences, i.e., sequences in which a
redex is replaced at each step by an arbitrary ground term. This is not an
entirely satisfactory notion since such sequences often cannot be produced
by any rewriting system based on the given left-hand sides.

In this paper, we define a more refined version of strong sequentiality
called left sequentiality, which is based on possibZe rather than arbitrary
sequences. We show that left sequentiality is more general than strong
sequentiality when applied to individual terms. For the theoretically restric-
ted but important case of regular systems based on constructors, we prove
two results of practical importance. First, left sequentiality is equivalent to
strong sequentiality when considered as a property of whole sets of left-
hand sides for systems of equations. Second, there is no algorithm which is
safe for aZ1 systems based on a set of left-hand sides if that set is not left
sequential, or, equivalently, not strongly sequential. In other words, left
sequentiality is necemuy for safe computation based on the analysis of left-
hand sides alone. These results nicely complement the result of Huet-Levy
(1979) that one can always construct a safe redex selection algorithm for
any regular system based on a strongly sequential set of left-hand sides.

It is instructive to compare sequentiality with strictness analysis
(Mycroft, 1980). Despite the differences in motivation and methods, the
two are quite similar in meaning. Strictness analysis is applied to recursive
equations and A-expressions in order to detect whether a function is strict

48 SATISH THATTE

in some arguments, so that those arguments can be safely evaluated in call-
by-value mode. The motivation is to save execution time, not to ensure
safety: the usual call-by-need method is known to be safe. The analysis
relies exclusively on the rig/+hand sides, since left-hand-side patterns are
trivial. Strictness is usually applied when arguments belong to flat domains.
Its meaning it not obvious when an argument belongs to a non-flat domain
such as a function-space.

Sequentially can also be thought of as a kind of strictness in the sense
that one is trying to identify for each function those of its arguments and
parts of arguments that must be reducible to “head-normal form” for com-
putation of the function to proceed. Strictness in this sense means that an
application of a function is unsolvable if supplied with an unsolvable
argument in a position for which the function is strict. This kind of
strictness can be applied to non-flat domains, especially those for infinite
data-structures such as steams. It is not of much use for call-by-value
evaluation, since one is only looking for a head-normal form for the
arguments, but it may be useful for exploiting parallelism in reduction
machines such as the “four stroke reduction engine” (Clack and Peyton-
Jones, 1986) which insist on ensuring that each parallel process is actually
needed.

In reading the rest of this paper, familiarity with the work of HuettLevy
(1979) would be helpful, but the treatment is self-contained enough to be
meaningful on its own.

2. TERM REWRITING

The material in the initial part of this section is a review of the ter-
minology and constructions commonly used in the literature on term
rewriting systems. The latter part introduces some notation and ter-
minology for the convenience of later sections.

A reduction system operates in a non-empty ranked alphabet .Z which
contains all symbols in the system. T denotes the set of all grozmd Z-terms
for the alphabet. E-terms, in general, may contain uariables drawn from a
countable set X. A Z-term is said to be linear iff no variable occurs more
than once in it. We drop the prelix signifying the alphabet and, without
confusion, speak of terms whenever possible.

A path p is a possibly empty string of integers. We say that p reaches
subterm t/p in term t. The empty string A reaches the term itself, the string
k reaches the kth argument, km reaches the mth argument of the kth
argument, etc. Given paths p and q, p. q denotes their concatenation. The
symbols < and < denote the prefix and proper prefix relations on paths
respectively. Paths(t) denotes the set of all paths that reach some subterm

MAILING INFORMATION 49

in t. Paths(l) is partitioned into XPaths(t) and ZPaths(t), where XPaths(t)
is the subset that reaches variables in t, We often refer to a path
pi Paths(t) as an occurrence of the subterm t/p in t. The expression
t[p + we] denotes the term obtained by replacing t/p at p by ~1.

A substitution is a map from variables to terms. The meaning of a sub-
stitution can be extended naturally to a map from terms to terms. The
application of a substitution fl to a term l is conventionally denoted by t/?,
where t/3 is the instunce of t produced by simultaneously substituting fi(.~)
for every variable Vx in t. We use the notation t < u to denote that u is an
instance of t; t < a means t < u and t# a. If neither t< ~4 nor u< t then t
and u are said to be independent. The relation < is clearly a partial order.

The usual lirst-order unification algorithm of Robinson (1965) is denoted
by Unify. If two terms t and u have no common instance, then Unify(t, u)
fails, otherwise it succeeds and returns a substitution fl such that t/3 = z@ is
the least common instance of t and u.

DEFINITION 2.1. A buse 2 for a reduction system in the alphabet Z is a
linite set [1;, 1 < i < m} of linear Z-terms such that:

(1) !ltET such that 1; 4 t, 1 <i<m.
(2) If l,,l?~Y and p~ZPaths(/,), then Unify(f,/~,f~) fails unless

p=A and l,=12.

Condition (1) states that there are normal forms, and (2) states that
there are no “critical pairs” (Knuth and Bendix, 1970) which is used to
ensure that any reduction system based on Y will be confluent (Huet,
1977).

DEFINITION 2.2. A reduction system 9 in alphabet Z is a linite set
{ (I,, r;), 1 < i < m} of pairs of Z-terms such that:

(1) Y= {li, 1 <i<m] is a base.
(2) Each variable in ri also appears in li, 1 < i < m

The delmition just given delmes the so-called regular systems used in
(HoffmannO’Donnell, 1984) and (HuettLevy, 1979). For the purposes of
this paper we restrict ourselves to constructor systems, as dehned in

DEFINITION 2.3. Suppose Y={/z,l<i<m} in a base. Let
Ii =fi(ui, ,..., ui,,,), 1 <i<m, AY= {fi, 1 <i<m}, and QY=Z-AP. BY is
called the set of constructors of Z’. A term f (u, ,..., u,,,) is said to be a
eY-pattern iff f e A9 and each ui is a eY-term, 1 < i < m. 2 is said to be a
constructor base iff all lie 2 are QY-patterns. A system based on such an
9 is called a constructor system,

50 SATISH THATTE

Throughout the following, we shall deal with a fixed set Z of function
symbols, a lixed constructor base 9, a lixed partition of .Z into A and 0,
and a lixed constructor system 9 based on 9, unless mentioned otherwise.
In many definitions, the entities being delined are qualified with the sub-
script 9 or 9 signifying the context. These subscripts are dropped
whenever the base or system concerned is the lixed one.

Any u ET such that u > 1, for some 1 E 9, is called a redex. If t/p is a
redex for some p E ,?Y Paths(l), then p is called a redex occurrence in t. The
set of all redex occurrences in t is denoted by R09(l). The set NFY L T is
the set of nurmaf forms, and t E NFY iff ROY(t) = @.

A simple reduction t -+S u occurs in 9’ iff t/s = lfl for some I E 9,
(l,r)~~,and~=t[~tr~].Wewritet~~ifftj~~forsome~~RO(~).
We shall also need the rather unusual notion of an arbitrary reducGon,
denoted by -+. We shall write t -+’ u iff 3 E RO(l) and u = $s + U] where ~1
is an arbitrary ground term. Clearly, arbitrary reductions depend only on
the base, not on the whole system. Finally, t -+*u and t a-+* u are the
reflexive transitive closures of -+ and --+, respectively. We use the notation
A: t + u in order to attach a name (in this case A) to a simple reduction,
and similarly also A: t -+ U, B: 2 -+ * U, and B: 1 -+* U. The symbol E
ambiguously denotes all empty reduction sequences. As with paths, we use
the notation A . B to denote the concatenation of reduction sequences ,4
and B. Such concatenation is meaningul only if the last term in L! is iden-
tical to the first term in B.

A redex selection algorithm d is a function of a base 9 and a ground
term t such that, &(L?‘, t) either fails or returns some q E ROY(t). If 9 is
lixed then the specialized or “curried” version of & is denoted by dY.
Given a selection algorithm L&, and t E T, the eualuation sequence for t
produced by & is the reduction sequence l0 + ... -+ t,, -+ . .. such that:

(1) to=6
(2) if dY(tn) fails the sequence terminales in t,,, else dY(f,,) returns r

and t,, -+r t,Z+,.

The sequence is denoted by o,&.~ (f). If the sequence terminates in Z~ for
some n, then we write o,~,~~(~)J = t,,, else we write ~,~,~(f)l. If t +* u in 9
and UENF~, then t is said to normalize to u in 9. A selection algorithm
& is said to be safe for a system 9 based on 9 iff given any u E NFY and
any 2 such that t normalize to u in Y, ad,:/(t)J = U.

The usual notion of residuals is meaningless in the context of arbitrary
reductions, which is the only context in which we shall have occasion to
use them. We therefore use the following simpler notion: suppose A: t -+’ u
and q E Paths(t). The set q\A, called the preresiduals of q after A, is defined
as follows:

MAILING INFORMATION 51

(1) if r 4 q then q\,4 = {q},

(2) otherwise q\A = a.

Suppose A:~-+u and Q~Paths(l). Then Q\,4 is uqEQq\A. This can
be extended to sequences of reductions by composition, i.e., Q\s = Q, and
Q\B. C= (Q\B)\C. If qe Paths(f), we use the notation q\B instead of
kdW

The following Proposition is a succinct statement of the reason for
excluding critical pairs in Delinition 2.1.

PROPOSITION 2.4. qe RO(r), ,4: t -* u, implies thut q\A G RO(U).

Prooj Straightforward by condition (2) in Definition 2.1. 1

3. VARIETIES OF SEQUENTIALITY

The fundamental concept of sequentiality is not very easy to deline. The
key idea is to exclude the possibility of using lookahead in choosing
redices. Following Huet-Levy (1979) we introduce some purely technical
auxiliary notions for this purpose.

A new constant symbol Q will be added to the set ,Z, and the augmented
set of terms will be denoted by To. Members of TQ will be called Q-terms,
an irreducible G-term will be called an Q-normal form. Note that only
irreducible terms in T are normal forms, thus reduction to normal form in
subsequent delinitions implies elimination of any Q’s that may be present
in the original term. Intuitively, ZJ corresponds to a part of an actual term
about which one “knows” nothing; it is rather like the “least informative
element” of Scott (1982). An information ordering on Q-terms is
delined by:

(1) fi E l for each FETE.
(2) f(f ,,..., f,,) ~f(u~ ,..., un) iff each li E u;.

The following delinition of sequential predicate is due to Kahn and
Plotkin (1978).

DEFINITION 3.1. Let the truth values be ordered by false L true. Let P
be a monotonic predicate on TD. A path q in t is said to be an index of P
in f iff

(1) t/q=Q,
(II) u 3 t and P(u) = true implies that u/q # Q.

52 SATISH THATTE

P is said to be sequential at t iff one of the following holds:
(1) there is an index of P in t,

(2) there is no u z t such that P(u) = true,
(3) P(t) = true.

P is sequential iff it is sequential at every Q-term t.

The ordering on truth values and the insistence on monotonic predicates
will not have much significance for us. Their appearance in the original
definition is motivated by a desire to characterize the class of predicates
one is interested in. Typical examples are predicates that answer positive
questions such as “does this term have a normal form?” or “is this term a
redex?” Increasing information about the given term (in the sense of the
ordering G) can only change the answer to such questions from false to
true, never the other way; hence monotonicity and false L true. An index
is precisely an occurrence of Q that needs to be expanded in order to
change the answer to a favorable one if at all possible. For example, sup-
pose isredexY(t) = true iff t is a redex with respect to 2, and
.Y = {f(a, .Y)), *Y E X. The path 1 is an index of jsrede,xY in t =f(Q, Q)
because the occurrence of Q at 1 must expand to a for t to become a redex.
On the other hand, 2 is not an index because f(a, Q) 2 t is a redex.

Sequentially of a predicate is the possibility of systematically expanding
any term step by step until either the predicate returns true or it is clear
that a positive answer is impossible. In call-by-need evaluation, we really
want the answer to the question “what is the normal form for this term?’
This question does not have a true/false answer, but the question “does this
term have a normal form?” is just as good for generating a redex selection
algorithm. If one replaces all redices by Q’s, the resulting term does not
have a normal form, and if one of the Q’s must be expanded in order to
change the answer, then the corresponding redex is clearly “needed.” For-
mally, suppose for any t E TQ, nf,,/(t) = true iff t -+ * u in 9 and u is in nor-
mal form. The system ,Y is said to be sequential iff nf,,,, is a sequential
predicate. It is not hard to see that this kind of sequentiality is undecidable.
Moreover, the corresponding indices cannot in general be found effectively
even if a given system is known to be sequential. The more restrictive
notion of strong sequentiality ignores the right-hand sides of equations, so
it will be convenient to make it a property of a base. For any Q-term t, let
snfP(t) = true iff t %,+ * u and u is in normal form. The base 2 is said to be
strongly sequential iff snfY is sequential at every Q-normal form. This
restriction to Q-normal forms is due to the fact that the following property
of nf does not apply to snf (see Huet-Levy, 1979, pp. 26-27):

PROPOSITION 3.2. The predicate nf.Y is sequential $f it is sequentiaI at
every Q-normal form.

MAILING INFORMATION 53

The refinement of strong sequentiality we propose is embodied in the
new predicate lnf, such that 1nfJ f) = true iff f + * u in some system based
on 9, and u is in normal form. A path is an index of lnfY in t iff it is an
index of nf,V in ? for euery 9 based on 9. Such a path sometimes fails to
qualify as an index of snfY, as in the counterexample in Proposition 3.4.
The new predicate shares the technical shortcoming of snf with respect to
the property expressed in Proposition 3.2. For example, consider
cc? = {fb, h x, Y)}, .T .v E JL ancl t =ftf(u, h 0, Qh f(a, b, Q, Ql, Q, Q 1.
Although lnf9 is sequential at every Q-normal form corresponding to 9, it
is not sequential at f. We therefore say that a base 9 is left sequential iff
lnfY is sequential at every Q-normal form. Despite this similarity, snf is a
strictly weaker predicate than lnf, as the following propositions show.

PROPOSITION 3.3. ‘dl E TQ, lnfY(t) - snfJ t); bur the converse is @se.

Proox The implication is obvious from the respective definitions
of the predicates. That the converse does not hold is shown by the
following counterexample: suppose 9 = { f(u, b, .Y) }, where .K E X, and
t =~(Y(o, b, Q), ,f(a, b, Q), Q), then snfJ t) = true, but 1nfJt) = false. 1

PROPOSITION 3.4. For all Q-normalforms t, lnfY is sequential at t lysnfYJ
is sequential at t; but the converse is fake.

Proof Note that for every Q-term t, 3u> t such that lnfY(u)= true,
and the sequentiality of lnfY and snfY at t reduces to the presence of the
respective indices in t. However, it follows directly from Proposition 3.3
that whenever snfY has an index in t so does lnfY. That the converse does
not hold is again shown by a counterexample: Let 9 = {f(u, b, x),
fb, 0, bh f(h -x, ~1, g(u);, x E JL and t =,f(g(Q), g(Q), Q); then 3 is an
index of lnfY in t, but snfY does not have an index in t. Note that this
counterexample owes nothing to the fact that we restrict ourselves to
constructor systems. i

COROLLARY 3.5. Every strong1.v sequential base is also kft sequential.

The converse of Corollary 3.5 is far from obvious given the propositions
preceding it. It turns out to be true because anomalies like the coun-
terexample in Proposition 3.4 can only arise in the context of a base 9
which in fact is not left sequential. To show the equivalence of strong and
left sequentiality, we will use yet another kind of sequentiality which we
call strict sequentiality. Strict sequentiality is defined in terms of the
existence of necessary redex occurrences rather than indices. Intuitively, a
redex occurrence is necessary when it must be reduced in order to reach
normal form. The following detinition of necessity relies on an analysis of

54 SATISH THATTE

the syntactic structure of terms in 2’ rather than on this intuitive property,
for technical reasons. It is therefore more restrictive than the idea of a
strongly needed redex in Huet-Levy (1979) which captures the intuitive
property exactly. The difference is subtle and is similar to the distinction
made by Huet-Levy (1979) between ordinary and increasing indices.
Intuitively, the former may sometimes qualify on the basis of technical
hair-splitting, while the latter are more “real” in the sense that they are the
ones likely to be found and used by actual redex selection algorithms.

Given a ground term t, u = Known(t) is the largest linear @-term or
@-pattern such that a < t. Note that the set of all linear @-terms or patterns
w such that w < z is nonempty and linite, and hence contains a largest
member by the properties of Unify. The variables in Known(t) are assumed
to be new. For a ground term t, define the set 9, of equations compatible
with t as 2, = {lo 2 1 Unify(l, Known(l)) succeeds}. The significance of
Known(f) is that it extracts the “known” information about the possibility
that t is a redex. Safety requires that the normal form for a term be built
from the outside inwards, lest a potentially unnecessary inner computation
cause divergence. If it is clear that t can never become a redex then the out-
ermost symbol(s) of t are already arranged as they would be in any even-
tual normal form and attention turns to the largest subterms that need to
be reduced to normal form-the situation dealt with in case (3) of
Definition 3.6. Otherwise a needed redex is one that will help settle the
question whether t can become a redex. These considerations lead to the
delmition of a necessary redex occurrence given below.

Let PDNO(t) = XPaths(Known(t)). Each p c PDNO(t) is said to be
potentially directly necessary for t. If, in addition, p E Z Paths(l) for each
1 E Y,, then p is said to be directly necesary for t, denoted by p E DNO(t).
The notion of necessary redex occurrences essentially iterates diectly
necessary occurrences until a redex is reached.

DEFINITION 3.6. pi RO(t) is said to be necessary for t, written as
peNRO(t), iff one of the following holds:

(1) p=A or peDNO(t),

(2) qEDNO(t), p=q.r, and reNRO(t/q),

(3) 3q e DNO(t) such that RO(t/q) = a, r E PDNO(t), p = r. S, and
s E NRO(t/r).

2 is said to be strictly sequential iff whenever RO(t) is nonempty, NRO(t)
is also nonempty,

Example 1 illustrates these delinitions. The set NRO(t) is quite similar to
the set 2(w’(t)) of “increasing indices” detined by Huet-Levy (1979),
where co’(t) is obtained from t by replacing all redices with Q’s.

MAILING INFORMATION

EXAMPLE 1.

55

NRO(u

4. MAIN RESULTS

There are two main results. First, in spite of the differences noted above,
strong and left sequentiality coincide when considered as properties of
bases. Second, the left sequentiality of a base 9 is both necessary and suf-
ficient for the existence of a redex selection algorithm that is safe for all
systems based on 9’.

Strong sequentiality has already been shown to imply left sequentiality
(Corollary 3.5). Strict sequentiality turns out to be the glue that holds the
rest of the argument together, which is not surprising, since this variety was
formulated to capture the intuitive operutionul requrements for call-by-need
computation. First, we exhibit and verify a decision procedure Check for
strict sequentiality. It is then shown that a base rejected by Check cannot
be left sequential, i.e., left sequentiality implies strict sequentiality. We shall
also show that in most cases, there is no safe redex selection algorithm for
a base rejected by Check, thus strict sequentiahty is necessary for safe
sequential computation. Finally, we show that whenever the redices in a
reducible term are replaced by Q’s, a necessary redex occurrence always
becomes an index of snf in the resulting Q-normal form, and therefore strict
sequentiality implies strong sequentiality. This completes the circle of
implications proving the three varieties of sequentiality equivalent.

4,l. A Decision Procedure for Strict Sequentiality

As the structure of Check below indicates, strict sequentiality is a
property of the group of equations detining each individual function. In
fact, fcheck is simply an abstract version of a translator that transforms
each such group into a single equation involving nested conditionals, selec-

56 SATISH THATTE

tars, and discriminators. The path p chosen in each call of fcheck
corresponds to the argument or part of argument whose structure needs to
be queried next, given that the structure of the application of J discovered
so far corresponds to z. The argument z plays no part in the decision
procedure. Its presence is solely a device to facilitate statements and proofs
of the properties of Check. An example of a base rejected by Check is
found in Example 2 later in this section.

Check is actually a decision procedure for the (match) .wquenria/ity of 2
in the sense of Huet-Levy (1979). Intuitively, a base Y is match sequential
iff the process of determining whether a given term is a redex with respect
to 9 can be carried out in a sequential manner. Match sequentiality is a
stronger (more restrictive) notion than strong sequentiality in the general
case of regular systems, although it coincides with the latter in the case of
constructor systems as we shall show. Check can also be thought of as a
procedure for building a “matching dag” for the given base, again in the
sense of Huet-Levy (1979).

Decision Procedure Check. The following algorithm uses the notation
that for each,fEZ, with arity Ii,

z’ =f(x, ,..., q)

Y’= {/EL? 1 Al)

Function Check(Y’)
Let s, = fcheck(Y’, P’, z’)

all .Y, E X are new,

and P’ = { l,..., k 1.

Return the conjunction of s,, j’e oY,
Function fcheck(L, P, 2)

If IL1 < 1 Then Return True Else Let Q= {qE P 1 q$XPaths(/), /EL}
If Q = @ Then Return False Else choose any p E Q
partition L into L(., c G 0, where 1~ L(. iff l/p > c(.x, ,..., .Y~), k > 0, and
each -K; is a new variable. Correspondingly, for each c, PC = P - {p j u
{p.j, I <j<k}, ~~=z[p+c(y ,,..., Ye)] where each .v, is a new variable
Return the conjunction of fcheck(Lc, PC, z<.), c E @

First we prove a few simple technical facts about Check. A call
fcheck(L, P, z) is said to be legitimate iff it results from the call Check(Y).

PROPOSITION 4.1.1. In any legitimate call fcheck(L, P, 2) the following
statements hold:

(1) P G Paths(l) for each I E L,
(2) z<j for every fEL,

(3) for each 1 G 55’ - L, Unify(l, z) fails,

(4) P = XPaths(z),

MAILING INFORMATION 57

(5) IL1 > 1 implies P#@,

(6) if fcheck(L’, P’, z’) is also a legitimate call, then either
Unify(z, z’) fails, or z and z’ are not independent.

ProojI Assertion (5) follow from (2) and (4). The proofs of the rest
proceed by induction on the length of the calling chain resulting in the call
fcheck(L, P, z).

Basis. The length is 1, and the call is fcheck(9 /i P’, 2 ’) for some J All
assertions except (6) are obviously true. For (6), it is sufficient to note that
if a call fcheck(L,, P,, z,) results eventually from a call fcheck(&, PJ, zz),
then zI > zz, and also that Unify(zf, 9) fails whenever f #g.

Z&&on. The inductive assumption is that the assertions hold for all
calls with calling chains of length n 2 1. Suppose the call fcheck(L, P, z) has
a chain of length n + 1. Clearly, the call results immediately from another
call with chain length n, and all assertions hold for the latter by the induc-
tive assumption. The inductive step is now straightforward for all assertions
except (6). For (6), the same observations suffice as with those in the basis
case. a

THEOREM 4.1.2. Check(9’) terminates.

ProoJ Let zlengh(z) = xpEI pa,hsczj lenglh(p). By (2) in Proposi-
tion 4.1.1, z/engrh(z) has a finite upper bound in any legitimate call
fcheck(L, P, z) unless L = 0. Moreover, zlengdz(z<) > Axgt/z(z) by (4) in
Proposition 4.1.1. Hence, each legitimate call fcheck(L, P, z) terminates,
either because L = 0 or because each chain of recursive calls issuing from
it is bounded by the limit on the monotonic increasing quantity
zlengdz(z). i

The reason Check guarantees strict sequentiality is that, whenever we
have a term f that is neither irreducible nor a redex, the path p chosen in
the call fcheck(L, P, z) with the largest z compatible with r reaches a
directly necessary subterm of t. This is the intuitive idea in

PROPOSI-ITON 4.1.3. Check(z), r $ NFy, and A C$ RO(z) implies
DNO(t) # 0.

ProoJ Suppose the antecedents hold. If 9, = $3, then PDNO(t) =
DNO(t), and it is easy to see that in that case, the antecedents imply
DNO(t) # 0. Suppose 9, # 0. Let Z be the set of @-patterns u such that
u < r and fcheck(M, R, ~4) is a legitimate call for some M and R. Since
Y! # 0, Z is clearly nonempty, and also finite. By (6) in Proposition 4.1.1,
Z is linearly ordered, and hence contains a maximal element z, which
occurs in some call fcheck(L, P, z). Let Q = {q E P 1 q $ XPaths(f) for any

58 SATISH THATTE

MEL}. By (3) in Proposition4.1.1, L?Y,. By the maximality of z,
Q G XPaths(Known(t)) = PDNO(l). By (1) in Proposition 4.1.1, and the
above considerations, we have Q G DNO(l). It remains to show that
Q # 0. If IL1 > 1 then since Check(p) we have Q # 0. Since Yt # 0, the
only other possibility is that L = {/}. Since A # RO(t), 1 $ Known(l). Since
P&Paths(/) and P=XPaths(z) by Proposition4.1.1, if Q= 0 then the
only way z < 1 is if z = 1. However, by (2) in Proposition 4.1.1, z < 1, hence
Q = 0 implies z = 1 and 1~ r, contradicting the assumption that
/i $ RCVtJ. 1

It only remains to iterate this fact by structural induction.

THEOREM 4.1.4. Cheek(9) implies 9 is strictly sequential.

ProoJ We must show that whenever RO(t) is nonempty, NRO(t) is
also nonempty. The proof proceeds by induction on the structure oft.

Basis. t E A, where RO(t) = NRO(t) = {A 1.

Induction. The inductive assumption is that the required property holds
for all proper subterms of t. If t is a redex then ,4 E NRO(t). Suppose it is
not, and r E RO(t). By Proposition 4.1.3 above we have DNO(t) # 0. Sup-
pose p E DNO(t). If RO(t/p) # 0 then by the inductive assumption
Iq E NRO(t/p), and p. q E NRO(t). If RO(t/p) = 0 then let s E Paths(t) be
the nonempty path such that r = s. w and s E PDNO(t). By the inductive
assumption NRO(t/s) # 0, and therefore by (3) in Definition 3.6,
NWtl# 0. 1

We show that Check is a complete decision procedure by defining a
function “Strange” which constructs a counterexample to prove that 9 is
not strictly sequential whenever Check(Y) fails. Delinition 4.1.5 may seem
rather too complex for the present purpose, but it turns out to be essential
in the construction of the main counterexamples in the next section.

DEFINITION 4.15 If a legitimate call fcheck(L, P, z) directly returns
false, being unable to find a suitable p E P, then, given a function M as an
extra parameter, Strange(L, P, z, a) is a term defined as follows. Let
9 = {Lh..., L}, m 2 1. Partition P into PO,..., Pm, such that Pi G XPaths(Lj).
This is possible by the failure condition in fcheck. Let Vi = {z/p 1 p E Pi}.
By (4) in Proposition 4.1.1, each Vi G X. Define

Strange(L, P, z, a) E z/I, where b(x) =If xe Vi Then cz(x, i) Else x.

Note that fi is well defined since V, are disjoint by the construction of z.

MAILING INFORMATION 59

PROPOSITION 4.1.6. Whenever a returns u redex for ull urguments, us in
Exumple 2, und w = Strange(L, P, 2, a) is well defined,

(11 w is u ground term.

(2) P= RO(w) = a.
(3) DNO(w) = a.
(4) NRO(w) = @.
(5) At leust two of the purtitions (P;) of P are nonempty, independent

ofa.

Proof (1) is a consequence of (4) in Proposition 4.1.1. The P = RO(w)
part of (2) merely asserts that A $ RO(w). To see this, note that since w is
well defined 1 Lj > 1. Moreover, A E RO(w) would mean 31~ L such that
I < z, and by (2) in Proposition 4.1.1, I = z. This would imply, again by (2)
in Proposition 4.1.1, that L is not an independent set, contradicting (2) in
Detinition 2.1. Assertion (5) also follows similarly since PG XPaths(lj)
would imply z = 1;. P # 0 follows from (5) in Proposition 4.1.1 since
1 L\ > 1. By the construction of w, Known(NJ) = z, hence by (2) and (3) in
Proposition 4.1.1, L = $&. We know that each qE PDNO(w) = XPaths(z)
reaches a variable in some 1 e L = 9, by the construction of w, hence
DNO(w) = 0. Since PDNO(w) = XPaths(z) = P = RO(w) by (4) in
Proposition 4.1.1 and (2) above, NRO(wz) = 0 is obvious. 1

THEOREM 4.1.7. Check(Y) = false implies thut 56’ is not strictly sequen-
tiul.

ProojI Check(9’) = false implies that some legitimate call
fcheck(L, P, z) fails directly, and therefore w = Strange(L, P, z, a) is well
defined. Assertions (2) and (4) in Proposition 4.1.6 then imply that 9 is
not strictly sequential. 1

4.2, The Necessity of Strict Sequentiulity

We now show that if the decision procedure for strict sequentiality
rejects a base, that base cannot be left sequential. This effectively means

60 SATISH THATTE

that strict sequentiality is necessary for call-by-need computation without
look-ahead. Another way to state the same idea would be to say that if a
base 3 is not strictly sequential, then no algorithm that selects a redex
based only on its context is safe for all systems based on 9. The function
Strange is again used in constructing the necessary counter example.

THEOREM 4.2.1. If 9 is not strictly sequential then it is not left sequen-
tial.

ProoJ We exhibit an Q-normal form t such that t # T and lnfY has no
index in t. Since Check(p) = false, t = Strange(L, P, z, tx) is well defined for
some9={10,...,Lm}, P=POu ... uPm,andz, wheremal,andmreturns
Q for all arguments. Any potential index of lnfY in t must be in P. Suppose
for the sake of contradiction that q is an index. By the construction of
Strange, q E Pj G XPaths(Zi). Clearly, given (5) in Proposition 4.1.6, there is
a u 2 t in which all occurrences of Q except q are replaced by suitable
redices, and the right-hand sides of the equations (which are completely
unconstrained) are arranged in such a way that u becomes an instance of 1;
after some reductions, and is normalized thereafter. The occurrence q is
therefore not an index contrary to the assumption. 1

This result can be stated more strongly for sufliciently large bases, for
which the (perhaps unrealistic) requirement that the redex selection
algorithm be unaware of the “appearance” of the redices is unnecessary.

THEOREM 4.2.2. If .Y is not strictly sequential then there is no redex
selection algorithm that is safe for all systems based on 9 if 9 is sufficient1.v
large as a set.

Prooj Suppose & is safe for all Y based on 3’ but 9 is not strictly
sequential, therefore fcheck(L, P, z) fails directly for some L, P, Z. Suppose
a(x, j) returns an instance of a distinct 1 E .=.fZ (not necessariy in L) for each
variable x that occurs in z, ensuring only that I # l,. This is always possible
for a sufficiently large 9. Clearly, w = Srange(L, P, 2, M) can be normalized
in some system based on 9, hence &‘(Z, w) must succeed and return some
path q E P. Suppose q E P,. We can construct a system 9 based on 9 for
which ZI is not safe. Suppose a(z/q, i) is an instance of some 1 E 9. Let
(1, I) E 9. Since t/q is an instance of 1, ~.~,,~(w) T. By the construction of
w, q E XPaths(ZJ. Clealry, w can be made an instance of /i after some reduc-
tions by suitably “filling in” Y, as in Theorem 4.2.1, since all the redexes
that matter are instances of a left-hand side other than 1, and their right-
hand sides are therefore unconstrained. Thus, w normalizes to some normal
form r in 9, and for & to be safe for 9, we must have o~.%~(w)~ =r,
which is false. m

MAILING INFORMATION 61

Example 3 below illustrates the construction of the counterexample in
the proof of Theorem 4.2.1. The same example can be used to illustrate
Theorem 4.2.2 with w =f(f(& a, ~1, ftc h a), ftc a, b)). Examples 4
illustrates the kind of pathological situation which makes it necessary to
restrict Theorem 4.2.2 to sufficiently large bases. Note that the construction
of w in Example 4 is the same as in the proof of Theorem 4.2.2, except that
rZ and C~ are instances of the same left-hand side since there are not enough
left-hand sides to go around. Now suppose &(P, w) returns 1. We must
turn w into an instance of /I in order to defeat J$. We therefore need to
reduce rZ and lX to u and b, respectively. But they are both instances of 1,
which cannot be given the right-hand side x, since this would cause w to be
reduced to an unsolvable term. In the absence of this choice, we cannot
reduce t2 and f3 to distinct normal forms. It is not clear how to get around
such cases so as to eliminate the practically inconsequential but
theoretically annoying caveat in the statement of Theorem 4.2.2.

EXAMPLE 3. Let L, P, z be as in Example 2. Let r =f(fi, Q, Q). Sup-
pose 1 is an index of lnfF in j. Consider u =f(Q,f(a, b, u), f(u, u, b)) 2 t.
One counterexample 9 is

fb, a, bl= hftb, x, ~1 =fth x, uJ,fCa, 6 -xl = a

The other candidate indices can similarly be shown to fail.

EXAMPLE 4. Let 1, =f(x, u, b), 4 =f(4 4 yl, and Y= {/,, l*}.
fcheck(Y, { 1, 2, 3}, z) fails for z =f(x,,, x,, x2). Suppose l, > l*, and
t2, t3 >/r, for some redices r,, t2, fj. Consider w = Strange(Y, { 1, 2, 3},
z3 NJ =f(f,, f2, h).

4.3. The Sufficiency of Strict Sequentiulity

This section shows that strict sequentiality is suflicient to ensure strong
sequentiality, which in turn is known to be sufficient to ensure the existence
of safe evaluation algorithms (Huet-Levy, 1979). As we mentioned in Sub-
section 4.1, this really amounts to proving that, in the case of constructor
systems, match sequentiality implies strong sequentiality. This result could
be indirectly inferred from the relationship between Check and the
algorithm for constructing matching dags, together with the decidability
theorem for strong sequentiality (Huet-Levy, 1979). But the details are suf-
ficiently involved and inaccessible in the original, and of suhicient interest,
to justify inclusion of the following simple and direct treatment of the sim-
pler case of constructor systems for completeness. The proof hinges on two
properties of necessary redex occurrences, viz., a necessary redex is always
an outermost redex, and necessary redex occurrences persist as such until
they are reduced.

643 12 I-S

62 SATISHTHATTE

~O~~SITION 4.3.1. A E RO(t) implies DNO(t) = a.

Prooj ,4 E RO(r) implies Known(r) > 1 for some 1~ Y!, therefore
PDNO(l) n ,Z Paths(/) is clearly empty. 1

COROLLARY 4.3.2. A E RO(t) implies NRO(z) = {A }.

PROPOSITION 4.3.3. Zf p E NRO(r) and s E RO(t) then s 4 p.

ProoJ By induction on the structure of r. The basis case is that t EZ,
which is trivial. For the inductive step, assume that the proposition holds
for all proper subterms of t. There are three cases, according to
Definition 3.6.

Case 1. p = A or p E DNO(t). Recall that if p E DNO(t) then by
Proposition 4.3.1, ,4 $ RO(t), hence .Y # A. The rest follows from the fact
that p E PDNO(t).

Case 2. q E DNO(t), p = q. r, and r E NRO(t/q). We have A $ RO(t) as
before. By Corollary 4.3.2, if q E RO(t) then p = q. Therefore, s # A and
s # q. The rest follows by the inductive assumption.

Case 3. Similar to Case 2. 1

PROPOSITION 4.3.4. Suppose pi DNO(t), A: t -.+’ u, and p # r, then
p\A = {p}, andpEDNO(u).

Prooj Since DNO(t) # 0, r # A by Proposition 4.3.1. By the
antecedents and the definition of DNO, r 4 p, hence p\A = {p}.
Moreover, since r # A, 9, G Yr, and p E DNO(U). 1

PROPOSITION 4.3.5. p E NRO(t), A: t -+’ u, and p #s implies that
p\A= {p} andpeNRO(u).

ProojI By Proposition 4.3.3, s 4 p; therefore p\ A{p 1, and moreover,
s # A. p E RO(U) by Proposition 2.4. p E NRO(U) is then straightforward by
analysing the cases of Definition 3.6, using Proposition 4.3.4. 1

A sequence B: t --+* u is said to preserve p iff p\ B = {p}.

LEMMA 4.3.6. Suppose A: t -+* u and r E NRO(t). Then either A preser-
ves r and rENRO(u), or A=AI.Az.A3, where A,:t-+*v preserves r,
A*:v--+~w, andA3:w**u.

Prooj By induction on IA]. The basis IAl = 0 is trivial. Suppose
iAi=n+l. Let A=AI.Az, where A,:t -+’ t, is the lirst reduction in the
sequence. By Proposition 4.3.5, either r = s, or r\ A r = {r } and r E NRO(t,).
The rest follows by the inductive assumption. 1

MAILING INFORMATION 63

COROLLARY 4.3.7. gp E NRO(l), u = f[p +- Q], u& A: u -.+* w, then A
preserves p.

Following Huet-Levy (1979) we use the expression cY(r) to denote the
Q-normal form obtained by replacing each redex in r by Q.

LEMMA 4.3.8. Vt E T, every necessary redex occurrence in t is an index of
snf in co’(t).

ProoJ Suppose for the sake of contradiction that p E NRO(f), but p is
not an index of snf in u’(t). Then there is ti’> t such that w/p = Q and
B:w-+* r, where r is in normal form. Consider u = w[p .+ f/p]. We can
assume without loss of generality that UE T. Clearly, there is a sequence
A:t-+* u such that A preserves p, and therefore, by Lemma 4.3.6,
p E NRO(z.4). Therefore, by Corollary 4.3.7, B: IV -+* r preserves p, contrary
to the assumption that r is in normal form. fl

THEOREM 4.3.9. A base 2 is strongly sequential f if is strictly sequential.

ProoJ Corresponding to every Q-normal form z there is a ?E T such
that 2 = w’(t). We are only concerned with the case where z $ NFY, hence
RO(z) # 0. Therefore, given that 9 is strictly sequential, jp E NRO(f), and
p is an index of snf in z = w’(r) by Lemma 4.3.8. 1

5. CONCLUSIONS

Theorems 4.2.1 and 4.3.9, and Corollary 3.5 together show the
equivalence of strict, strong, and left sequentiality as properties of bases.
The necessity of left sequentiality in order to guarantee the existence of safe
redex selection algorithms then follows Theorem 4.2.2. The sufftciency of
left sequentiality can be inferred from the results of Huet-Levy (1979)
regarding strong sequentiality. A much simpler and more direct proof of
the sufliciency of strict sequentiality for the existence of such an algorithm
in the case of constructor systems can be found in (Thatte, 1984).

The results indicate that left sequentiality is an exucf characterization of
the property of “admissibility for call-by-need computation” when applied
to linear unambiguous bases. It is more refined and intuitively more
satisfactory than strong sequentiality for theoretical purposes, but is
equivalent when used in the analysis of actual programs. Using the
simulation technique of Thatte (1985), it is easy to show that these
statements apply not only to constructor bases but to the larger subclass of

64 SATISH THATTE

regular bases corresponding to what Huet-Levy (1979) call simple systems.
It is less obvious that our results apply to the full class of regular systems.
However, the crucial construction of the Strange function could perhaps be
extended to all regular systems using a fully constructive account,
analogous to Check, of Huet-Levy’s algorithm for constructing matching
dags. The outline of such an account is given in Section 4.8 of Huet-Levy
(1979).

ACKNOWLEDGMENTS

I would like to thank the referees of this and a previous version of the paper for comments
that led to great improvement in the presentation and content.

RFKEIVED July 24, 1985, ACCEPTED July 9, 1986

REFERENCES

CLACK, C., AND PEYTON-JON@ S. L, (1986), The four stroke reduction engine, in “Proc. 1986
ACM Conf. on LISP and Functional Programming,” Cambridge, Mass.

HENDERSON, P., AND MORRIS, J. M. (1976), A lazy evaluator, in “Proc. 3rd ACM Symp. on
the Principles of Programming Laguages,” Atlanta.

HOFFMANN, C, M,, AND O’DONNELL, M. J. (1979). An interpreter generator using tree pattern
matching, in “Proc. 5th ACM Symp. on the Principles of Programming Languages,” San
Antonio.

HOFFMANN, C. M., AND O’DONNELL, M. J. (1984). Implementation of an interpreter for
abstract equations, in “Proc. 1 lth ACM Symp. on the Principles of Programming
Languages,” Salt Lake City.

HUET, G. (1977), Confluent reductions: Abstract properties and applications to term
Rewriting systems, in “Proc. 18th IEEE Conf. on Foundations of Computer Science,”
Providence, R.1.

HUET, G., AND LEVY, J.-J. (1979), “Computations in Nonambiguous Linear Term Rewriting
Systems,” Tech. Rep. No. 359, INRIA, Le Chesney, France.

KAHN, G., AND MACQUEEN, D. B. (1977), Coroutines and networks of parallel processes, in
“IFIP 7T (B. Gilchrist, Ed.), North-Holland. Amsterdam.

KAHN, G. AND PLOTKIN, G. (1978), “Domaines Concretes,” Rapport IRIA-LABORIA,
No. 336.

KNUTH, D. E., AND BENDIX, P, B, (1970), Simple word problems in universal algebras, in
“Computational Problems in Abstract Algebra” (J. Leech, Ed.), Pergammon, Elmsford,
N.Y.

MYCROFT, A. (1980), “The Theory and Practice of Transforming Call-by-need into Call-by-
value,” Proc. of Int. Symp, on Programming, Lecture Notes in Computer Science, No. 83,
pp. 269-281, Springer-Verlag, Berlin.

ROBINSON, J. A. (1965), A machine-oriented logic based on the resolution principle, J. A.ssoc.
Cornput. Mach. 12, 2341.

SCOTT, D. (1982), “Domains for Denotational Semantics,” Lecture Notes in Computer
Science, No. 140, Springer-Verlag, Berlin.

MAILING INFORMATION 65

THATTE, S. R. (1984), “Demand Driven Evaluation with Equations,” Tech. Rep. CRL-TR-34-
84, EECS Department, University of Michigan, Ann Arbor.

THATTE, S. R. (1985) On the correspondence between two classes of reduction systems,
Inform. Process. Letf. 20 (2), 83-85.

TURNER, D. A. (1979) “A New Implementation Technique for Applicative Languages,”
Software Practice and Experience, No. 9,

VUILLEMIN, J. (1974), Correct and optimal implementations of recursion in a simple program-
ming language, .I. Comput. Sysfems Sci. 9, 332-354.

Wadsworth, C. (1971), “The Semantics and Pragmatics of the Lambda Calculus,” Ph.D. dis-
sertation, Oxford University, England.

