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The notion of call-by-need evaluation has turned out to be very fruitful when 
applied to dialects of the i-calculus (Henderson and Morris, 1976, in “Proc. 3rd 
ACM Symp. on the Principles of Programming Languages, Atlanta; Kahn and 
Mac Queen, 1977, in “IFIP 77,” North-Holland, Amsterdam; Turner, 1979, 
Software Practice and Experience, Vol. 9; Vuillemin, 1974, J. Cornput. System3 .Sci. 
9, 332-354; Wadsworth, 1971, Ph.D. dissertation, Oxford University% England). 
The analogous idea of sequenlialify for term rewriting systems described by lirst- 
order equations has been considered by Hoffman-O’Donnell (1979, in “Proc. 5th 
ACM Symp. on the Principles of Programming Languages, San Antonio.” 1984. in 
“Proc. 11th ACM Symp. on the Principles of Programming Languages, Salt Lake 
City) and Huet-Levy (1979, Technical Report No. 359, INRIA, Le Chesney, 
France), of which the latter is generally considered to be the most complete 
theoretical treatment of the subject to date, Huet-Levy (1979) detined the notion of 
strong sequentiahty to describe the class of linear term rewriting systems for which 
call-by-need computation is practical. This paper introduces an improved version of 
strong sequentiality called ieff sequentiality. Unlike strong .sequentiality, left 
sequentiality is based on possible rather than arbitrary (and often impossible) 
sequences of reductions. We show that left sequentiality is more general than strong 
sequentiality when applied to individual terms, but is equivalent to the latter when 
cosidered as a property of admissible sets of left-hand sides for systems of equations. 
Huet-Levy (1979) showed that there are safe redex selection algorithms, i.e., 
algorithms deriving normal forms whenever possible, for systems based on strongly 
sequential sets of left-hand sides. We show that there is no algorithm which is safe 
for all systems based on a set of left-hand sides if that set is not left sequential. In 
other words, left sequentiality is not only sufficient, it is also necessar~~ for safe com- 
putation based on the analysis of left-hand sides alone. 1 I987 Academic Press, Inc. 

1. INTRODUCTION 

call-by-need evaluation amounts to leftmost-outermost-next evaluation 
for ordinary recursive equations and A-expressions. The formal property 
one is looking for is “safety,” i.e., the guarantee that the evaluation of an 
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expression will reduce it to its (normal form) value whenever possible. The 
critical problem in safe evaluation is to Iind a “needed” redex, which is any 
redex that m~sf be reduced somewhere along the way to the normal form. 
The simplicity of the usual call-by-need evaluation comes from the fact that 
the leftmost-outermost redex is always needed, and any needed redex even- 
tually becomes leftmost-outermost. None of these nice properties holds for 
term rewriting systems defined by equations, not even when they belong to 
a nice class like reguiur systems (Hoffmann-O’Donnell, 1984) which always 
satisfy the Church-Rosser property. Not only is there no standard safe 
evaluation rule, but it is in general not possible to find a needed redex 
without looking ahead to check its future behavior. A (regular) system is 
sequentid when it allows a needed redex to be found without lookahead in 
any term not in normal form. But there is one further complication. There 
is no algorithm for Iinding needed redices which works for all sequential 
regular systems. There is also no algorithm to decide if a given regular 
system is sequential. 

Sequentiality is therefore too general a property for the practical 
application of call-by-need evaluation to regular systems. Huet-Levy 
(1979) showed that a restricted notion of sequentiality, the so-called strong 
sequentiality was more tractable. The technical formulation of strong 
sequentiality pays attention only to the left-hand sides of equations by 
using the idea of arbitrary reduction sequences, i.e., sequences in which a 
redex is replaced at each step by an arbitrary ground term. This is not an 
entirely satisfactory notion since such sequences often cannot be produced 
by any rewriting system based on the given left-hand sides. 

In this paper, we define a more refined version of strong sequentiality 
called left sequentiality, which is based on possibZe rather than arbitrary 
sequences. We show that left sequentiality is more general than strong 
sequentiality when applied to individual terms. For the theoretically restric- 
ted but important case of regular systems based on constructors, we prove 
two results of practical importance. First, left sequentiality is equivalent to 
strong sequentiality when considered as a property of whole sets of left- 
hand sides for systems of equations. Second, there is no algorithm which is 
safe for aZ1 systems based on a set of left-hand sides if that set is not left 
sequential, or, equivalently, not strongly sequential. In other words, left 
sequentiality is necemuy for safe computation based on the analysis of left- 
hand sides alone. These results nicely complement the result of Huet-Levy 
(1979) that one can always construct a safe redex selection algorithm for 
any regular system based on a strongly sequential set of left-hand sides. 

It is instructive to compare sequentiality with strictness analysis 
(Mycroft, 1980). Despite the differences in motivation and methods, the 
two are quite similar in meaning. Strictness analysis is applied to recursive 
equations and A-expressions in order to detect whether a function is strict 
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in some arguments, so that those arguments can be safely evaluated in call- 
by-value mode. The motivation is to save execution time, not to ensure 
safety: the usual call-by-need method is known to be safe. The analysis 
relies exclusively on the rig/+hand sides, since left-hand-side patterns are 
trivial. Strictness is usually applied when arguments belong to flat domains. 
Its meaning it not obvious when an argument belongs to a non-flat domain 
such as a function-space. 

Sequentially can also be thought of as a kind of strictness in the sense 
that one is trying to identify for each function those of its arguments and 
parts of arguments that must be reducible to “head-normal form” for com- 
putation of the function to proceed. Strictness in this sense means that an 
application of a function is unsolvable if supplied with an unsolvable 
argument in a position for which the function is strict. This kind of 
strictness can be applied to non-flat domains, especially those for infinite 
data-structures such as steams. It is not of much use for call-by-value 
evaluation, since one is only looking for a head-normal form for the 
arguments, but it may be useful for exploiting parallelism in reduction 
machines such as the “four stroke reduction engine” (Clack and Peyton- 
Jones, 1986) which insist on ensuring that each parallel process is actually 
needed. 

In reading the rest of this paper, familiarity with the work of HuettLevy 
(1979) would be helpful, but the treatment is self-contained enough to be 
meaningful on its own. 

2. TERM REWRITING 

The material in the initial part of this section is a review of the ter- 
minology and constructions commonly used in the literature on term 
rewriting systems. The latter part introduces some notation and ter- 
minology for the convenience of later sections. 

A reduction system operates in a non-empty ranked alphabet .Z which 
contains all symbols in the system. T denotes the set of all grozmd Z-terms 
for the alphabet. E-terms, in general, may contain uariables drawn from a 
countable set X. A Z-term is said to be linear iff no variable occurs more 
than once in it. We drop the prelix signifying the alphabet and, without 
confusion, speak of terms whenever possible. 

A path p is a possibly empty string of integers. We say that p reaches 
subterm t/p in term t. The empty string A reaches the term itself, the string 
k reaches the kth argument, km reaches the mth argument of the kth 
argument, etc. Given paths p and q, p. q denotes their concatenation. The 
symbols < and < denote the prefix and proper prefix relations on paths 
respectively. Paths(t) denotes the set of all paths that reach some subterm 
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in t. Paths(l) is partitioned into XPaths(t) and ZPaths(t), where XPaths(t) 
is the subset that reaches variables in t, We often refer to a path 
pi Paths(t) as an occurrence of the subterm t/p in t. The expression 
t[p + we] denotes the term obtained by replacing t/p at p by ~1. 

A substitution is a map from variables to terms. The meaning of a sub- 
stitution can be extended naturally to a map from terms to terms. The 
application of a substitution fl to a term l is conventionally denoted by t/?, 
where t/3 is the instunce of t produced by simultaneously substituting fi(.~) 
for every variable Vx in t. We use the notation t < u to denote that u is an 
instance of t; t < a means t < u and t# a. If neither t< ~4 nor u< t then t 
and u are said to be independent. The relation < is clearly a partial order. 

The usual lirst-order unification algorithm of Robinson (1965) is denoted 
by Unify. If two terms t and u have no common instance, then Unify(t, u) 
fails, otherwise it succeeds and returns a substitution fl such that t/3 = z@ is 
the least common instance of t and u. 

DEFINITION 2.1. A buse 2 for a reduction system in the alphabet Z is a 
linite set [1;, 1 < i < m} of linear Z-terms such that: 

(1) !ltET such that 1; 4 t, 1 <i<m. 
(2) If l,,l?~Y and p~ZPaths(/,), then Unify(f,/~,f~) fails unless 

p=A and l,=12. 

Condition (1) states that there are normal forms, and (2) states that 
there are no “critical pairs” (Knuth and Bendix, 1970) which is used to 
ensure that any reduction system based on Y will be confluent (Huet, 
1977). 

DEFINITION 2.2. A reduction system 9 in alphabet Z is a linite set 
{ (I,, r;), 1 < i < m} of pairs of Z-terms such that: 

(1) Y= {li, 1 <i<m] is a base. 
(2) Each variable in ri also appears in li, 1 < i < m 

The delmition just given delmes the so-called regular systems used in 
(HoffmannO’Donnell, 1984) and (HuettLevy, 1979). For the purposes of 
this paper we restrict ourselves to constructor systems, as dehned in 

DEFINITION 2.3. Suppose Y={/z,l<i<m} in a base. Let 
Ii =fi(ui, ,..., ui,,,), 1 <i<m, AY= {fi, 1 <i<m}, and QY=Z-AP. BY is 
called the set of constructors of Z’. A term f (u, ,..., u,,,) is said to be a 
eY-pattern iff f e A9 and each ui is a eY-term, 1 < i < m. 2 is said to be a 
constructor base iff all lie 2 are QY-patterns. A system based on such an 
9 is called a constructor system, 
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Throughout the following, we shall deal with a fixed set Z of function 
symbols, a lixed constructor base 9, a lixed partition of .Z into A and 0, 
and a lixed constructor system 9 based on 9, unless mentioned otherwise. 
In many definitions, the entities being delined are qualified with the sub- 
script 9 or 9 signifying the context. These subscripts are dropped 
whenever the base or system concerned is the lixed one. 

Any u ET such that u > 1, for some 1 E 9, is called a redex. If t/p is a 
redex for some p E ,?Y Paths(l), then p is called a redex occurrence in t. The 
set of all redex occurrences in t is denoted by R09(l). The set NFY L T is 
the set of nurmaf forms, and t E NFY iff ROY(t) = @. 

A simple reduction t -+S u occurs in 9’ iff t/s = lfl for some I E 9, 
(l,r)~~,and~=t[~tr~].Wewritet~~ifftj~~forsome~~RO(~). 
We shall also need the rather unusual notion of an arbitrary reducGon, 
denoted by -+. We shall write t -+’ u iff 3 E RO( l) and u = $s + U] where ~1 
is an arbitrary ground term. Clearly, arbitrary reductions depend only on 
the base, not on the whole system. Finally, t -+*u and t a-+* u are the 
reflexive transitive closures of -+ and --+, respectively. We use the notation 
A: t + u in order to attach a name (in this case A) to a simple reduction, 
and similarly also A: t -+ U, B: 2 -+ * U, and B: 1 -+* U. The symbol E 
ambiguously denotes all empty reduction sequences. As with paths, we use 
the notation A . B to denote the concatenation of reduction sequences ,4 
and B. Such concatenation is meaningul only if the last term in L! is iden- 
tical to the first term in B. 

A redex selection algorithm d is a function of a base 9 and a ground 
term t such that, &(L?‘, t) either fails or returns some q E ROY(t). If 9 is 
lixed then the specialized or “curried” version of & is denoted by dY. 
Given a selection algorithm L&, and t E T, the eualuation sequence for t 
produced by & is the reduction sequence l0 + ... -+ t,, -+ . .. such that: 

(1) to=6 
(2) if dY( tn) fails the sequence terminales in t,,, else dY(f,,) returns r 

and t,, -+r t,Z+,. 

The sequence is denoted by o,&.~ (f). If the sequence terminates in Z~ for 
some n, then we write o,~,~~(~)J = t,,, else we write ~,~,~(f)l. If t +* u in 9 
and UENF~, then t is said to normalize to u in 9. A selection algorithm 
& is said to be safe for a system 9 based on 9 iff given any u E NFY and 
any 2 such that t normalize to u in Y, ad,:/(t)J = U. 

The usual notion of residuals is meaningless in the context of arbitrary 
reductions, which is the only context in which we shall have occasion to 
use them. We therefore use the following simpler notion: suppose A: t -+’ u 
and q E Paths(t). The set q\A, called the preresiduals of q after A, is defined 
as follows: 
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(1) if r 4 q then q\,4 = {q}, 

(2) otherwise q\A = a. 

Suppose A:~-+u and Q~Paths(l). Then Q\,4 is uqEQq\A. This can 
be extended to sequences of reductions by composition, i.e., Q\s = Q, and 
Q\B. C= (Q\B)\C. If qe Paths(f), we use the notation q\B instead of 
kdW 

The following Proposition is a succinct statement of the reason for 
excluding critical pairs in Delinition 2.1. 

PROPOSITION 2.4. qe RO(r), ,4: t -* u, implies thut q\A G RO(U). 

Prooj Straightforward by condition (2) in Definition 2.1. 1 

3. VARIETIES OF SEQUENTIALITY 

The fundamental concept of sequentiality is not very easy to deline. The 
key idea is to exclude the possibility of using lookahead in choosing 
redices. Following Huet-Levy (1979) we introduce some purely technical 
auxiliary notions for this purpose. 

A new constant symbol Q will be added to the set ,Z, and the augmented 
set of terms will be denoted by To. Members of TQ will be called Q-terms, 
an irreducible G-term will be called an Q-normal form. Note that only 
irreducible terms in T are normal forms, thus reduction to normal form in 
subsequent delinitions implies elimination of any Q’s that may be present 
in the original term. Intuitively, ZJ corresponds to a part of an actual term 
about which one “knows” nothing; it is rather like the “least informative 
element” of Scott (1982). An information ordering on Q-terms is 
delined by: 

(1) fi E l for each FETE. 
(2) f(f ,,..., f,,) ~f(u~ ,..., un) iff each li E u;. 

The following delinition of sequential predicate is due to Kahn and 
Plotkin (1978). 

DEFINITION 3.1. Let the truth values be ordered by false L true. Let P 
be a monotonic predicate on TD. A path q in t is said to be an index of P 
in f iff 

(1) t/q=Q, 
(II) u 3 t and P(u) = true implies that u/q # Q. 



52 SATISH THATTE 

P is said to be sequential at t iff one of the following holds: 
(1) there is an index of P in t, 

(2) there is no u z t such that P(u) = true, 
(3) P(t) = true. 

P is sequential iff it is sequential at every Q-term t. 

The ordering on truth values and the insistence on monotonic predicates 
will not have much significance for us. Their appearance in the original 
definition is motivated by a desire to characterize the class of predicates 
one is interested in. Typical examples are predicates that answer positive 
questions such as “does this term have a normal form?” or “is this term a 
redex?” Increasing information about the given term (in the sense of the 
ordering G) can only change the answer to such questions from false to 
true, never the other way; hence monotonicity and false L true. An index 
is precisely an occurrence of Q that needs to be expanded in order to 
change the answer to a favorable one if at all possible. For example, sup- 
pose isredexY(t) = true iff t is a redex with respect to 2, and 
.Y = {f(a, .Y)), *Y E X. The path 1 is an index of jsrede,xY in t =f(Q, Q) 
because the occurrence of Q at 1 must expand to a for t to become a redex. 
On the other hand, 2 is not an index because f(a, Q) 2 t is a redex. 

Sequentially of a predicate is the possibility of systematically expanding 
any term step by step until either the predicate returns true or it is clear 
that a positive answer is impossible. In call-by-need evaluation, we really 
want the answer to the question “what is the normal form for this term?’ 
This question does not have a true/false answer, but the question “does this 
term have a normal form?” is just as good for generating a redex selection 
algorithm. If one replaces all redices by Q’s, the resulting term does not 
have a normal form, and if one of the Q’s must be expanded in order to 
change the answer, then the corresponding redex is clearly “needed.” For- 
mally, suppose for any t E TQ, nf,,/( t) = true iff t -+ * u in 9 and u is in nor- 
mal form. The system ,Y is said to be sequential iff nf,,,, is a sequential 
predicate. It is not hard to see that this kind of sequentiality is undecidable. 
Moreover, the corresponding indices cannot in general be found effectively 
even if a given system is known to be sequential. The more restrictive 
notion of strong sequentiality ignores the right-hand sides of equations, so 
it will be convenient to make it a property of a base. For any Q-term t, let 
snfP(t) = true iff t %,+ * u and u is in normal form. The base 2 is said to be 
strongly sequential iff snfY is sequential at every Q-normal form. This 
restriction to Q-normal forms is due to the fact that the following property 
of nf does not apply to snf (see Huet-Levy, 1979, pp. 26-27): 

PROPOSITION 3.2. The predicate nf.Y is sequential $f it is sequentiaI at 
every Q-normal form. 
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The refinement of strong sequentiality we propose is embodied in the 
new predicate lnf, such that 1nfJ f) = true iff f + * u in some system based 
on 9, and u is in normal form. A path is an index of lnfY in t iff it is an 
index of nf,V in ? for euery 9 based on 9. Such a path sometimes fails to 
qualify as an index of snfY, as in the counterexample in Proposition 3.4. 
The new predicate shares the technical shortcoming of snf with respect to 
the property expressed in Proposition 3.2. For example, consider 
cc? = {fb, h x, Y)}, .T .v E JL ancl t =ftf(u, h 0, Qh f(a, b, Q, Ql, Q, Q 1. 
Although lnf9 is sequential at every Q-normal form corresponding to 9, it 
is not sequential at f. We therefore say that a base 9 is left sequential iff 
lnfY is sequential at every Q-normal form. Despite this similarity, snf is a 
strictly weaker predicate than lnf, as the following propositions show. 

PROPOSITION 3.3. ‘dl E TQ, lnfY( t ) - snfJ t); bur the converse is @se. 

Proox The implication is obvious from the respective definitions 
of the predicates. That the converse does not hold is shown by the 
following counterexample: suppose 9 = { f(u, b, .Y) }, where .K E X, and 
t =~(Y(o, b, Q), ,f(a, b, Q), Q), then snfJ t) = true, but 1nfJt) = false. 1 

PROPOSITION 3.4. For all Q-normalforms t, lnfY is sequential at t lysnfYJ 
is sequential at t; but the converse is fake. 

Proof Note that for every Q-term t, 3u> t such that lnfY(u)= true, 
and the sequentiality of lnfY and snfY at t reduces to the presence of the 
respective indices in t. However, it follows directly from Proposition 3.3 
that whenever snfY has an index in t so does lnfY. That the converse does 
not hold is again shown by a counterexample: Let 9 = {f(u, b, x), 
fb, 0, bh f(h -x, ~1, g(u);, x E JL and t =,f(g(Q), g(Q), Q); then 3 is an 
index of lnfY in t, but snfY does not have an index in t. Note that this 
counterexample owes nothing to the fact that we restrict ourselves to 
constructor systems. i 

COROLLARY 3.5. Every strong1.v sequential base is also kft sequential. 

The converse of Corollary 3.5 is far from obvious given the propositions 
preceding it. It turns out to be true because anomalies like the coun- 
terexample in Proposition 3.4 can only arise in the context of a base 9 
which in fact is not left sequential. To show the equivalence of strong and 
left sequentiality, we will use yet another kind of sequentiality which we 
call strict sequentiality. Strict sequentiality is defined in terms of the 
existence of necessary redex occurrences rather than indices. Intuitively, a 
redex occurrence is necessary when it must be reduced in order to reach 
normal form. The following detinition of necessity relies on an analysis of 
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the syntactic structure of terms in 2’ rather than on this intuitive property, 
for technical reasons. It is therefore more restrictive than the idea of a 
strongly needed redex in Huet-Levy (1979) which captures the intuitive 
property exactly. The difference is subtle and is similar to the distinction 
made by Huet-Levy (1979) between ordinary and increasing indices. 
Intuitively, the former may sometimes qualify on the basis of technical 
hair-splitting, while the latter are more “real” in the sense that they are the 
ones likely to be found and used by actual redex selection algorithms. 

Given a ground term t, u = Known(t) is the largest linear @-term or 
@-pattern such that a < t. Note that the set of all linear @-terms or patterns 
w such that w < z is nonempty and linite, and hence contains a largest 
member by the properties of Unify. The variables in Known(t) are assumed 
to be new. For a ground term t, define the set 9, of equations compatible 
with t as 2, = {lo 2 1 Unify(l, Known(l)) succeeds}. The significance of 
Known(f) is that it extracts the “known” information about the possibility 
that t is a redex. Safety requires that the normal form for a term be built 
from the outside inwards, lest a potentially unnecessary inner computation 
cause divergence. If it is clear that t can never become a redex then the out- 
ermost symbol(s) of t are already arranged as they would be in any even- 
tual normal form and attention turns to the largest subterms that need to 
be reduced to normal form-the situation dealt with in case (3) of 
Definition 3.6. Otherwise a needed redex is one that will help settle the 
question whether t can become a redex. These considerations lead to the 
delmition of a necessary redex occurrence given below. 

Let PDNO(t) = XPaths(Known(t)). Each p c PDNO(t) is said to be 
potentially directly necessary for t. If, in addition, p E Z Paths(l) for each 
1 E Y,, then p is said to be directly necesary for t, denoted by p E DNO( t). 
The notion of necessary redex occurrences essentially iterates diectly 
necessary occurrences until a redex is reached. 

DEFINITION 3.6. pi RO( t) is said to be necessary for t, written as 
peNRO(t), iff one of the following holds: 

(1) p=A or peDNO(t), 

(2) qEDNO(t), p=q.r, and reNRO(t/q), 

(3) 3q e DNO(t) such that RO(t/q) = a, r E PDNO(t), p = r. S, and 
s E NRO( t/r). 

2 is said to be strictly sequential iff whenever RO(t) is nonempty, NRO(t) 
is also nonempty, 

Example 1 illustrates these delinitions. The set NRO(t) is quite similar to 
the set 2(w’(t)) of “increasing indices” detined by Huet-Levy (1979), 
where co’(t) is obtained from t by replacing all redices with Q’s. 
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4. MAIN RESULTS 

There are two main results. First, in spite of the differences noted above, 
strong and left sequentiality coincide when considered as properties of 
bases. Second, the left sequentiality of a base 9 is both necessary and suf- 
ficient for the existence of a redex selection algorithm that is safe for all 
systems based on 9’. 

Strong sequentiality has already been shown to imply left sequentiality 
(Corollary 3.5). Strict sequentiality turns out to be the glue that holds the 
rest of the argument together, which is not surprising, since this variety was 
formulated to capture the intuitive operutionul requrements for call-by-need 
computation. First, we exhibit and verify a decision procedure Check for 
strict sequentiality. It is then shown that a base rejected by Check cannot 
be left sequential, i.e., left sequentiality implies strict sequentiality. We shall 
also show that in most cases, there is no safe redex selection algorithm for 
a base rejected by Check, thus strict sequentiahty is necessary for safe 
sequential computation. Finally, we show that whenever the redices in a 
reducible term are replaced by Q’s, a necessary redex occurrence always 
becomes an index of snf in the resulting Q-normal form, and therefore strict 
sequentiality implies strong sequentiality. This completes the circle of 
implications proving the three varieties of sequentiality equivalent. 

4,l. A Decision Procedure for Strict Sequentiality 

As the structure of Check below indicates, strict sequentiality is a 
property of the group of equations detining each individual function. In 
fact, fcheck is simply an abstract version of a translator that transforms 
each such group into a single equation involving nested conditionals, selec- 
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tars, and discriminators. The path p chosen in each call of fcheck 
corresponds to the argument or part of argument whose structure needs to 
be queried next, given that the structure of the application of J discovered 
so far corresponds to z. The argument z plays no part in the decision 
procedure. Its presence is solely a device to facilitate statements and proofs 
of the properties of Check. An example of a base rejected by Check is 
found in Example 2 later in this section. 

Check is actually a decision procedure for the (match) .wquenria/ity of 2 
in the sense of Huet-Levy (1979). Intuitively, a base Y is match sequential 
iff the process of determining whether a given term is a redex with respect 
to 9 can be carried out in a sequential manner. Match sequentiality is a 
stronger (more restrictive) notion than strong sequentiality in the general 
case of regular systems, although it coincides with the latter in the case of 
constructor systems as we shall show. Check can also be thought of as a 
procedure for building a “matching dag” for the given base, again in the 
sense of Huet-Levy (1979). 

Decision Procedure Check. The following algorithm uses the notation 
that for each,fEZ, with arity Ii, 

z’ =f(x, ,..., q) 

Y’= {/EL? 1 Al) 

Function Check( Y’) 
Let s, = fcheck(Y’, P’, z’) 

all .Y, E X are new, 

and P’ = { l,..., k 1. 

Return the conjunction of s,, j’e oY, 
Function fcheck(L, P, 2) 

If IL1 < 1 Then Return True Else Let Q= {qE P 1 q$XPaths(/), /EL} 
If Q = @ Then Return False Else choose any p E Q 
partition L into L(., c G 0, where 1~ L(. iff l/p > c(.x, ,..., .Y~), k > 0, and 
each -K; is a new variable. Correspondingly, for each c, PC = P - {p j u 
{p.j, I <j<k}, ~~=z[p+c(y ,,..., Ye)] where each .v, is a new variable 
Return the conjunction of fcheck(Lc, PC, z<.), c E @ 

First we prove a few simple technical facts about Check. A call 
fcheck(L, P, z) is said to be legitimate iff it results from the call Check(Y). 

PROPOSITION 4.1.1. In any legitimate call fcheck(L, P, 2) the following 
statements hold: 

( 1) P G Paths(l) for each I E L, 
(2) z<j for every fEL, 

(3) for each 1 G 55’ - L, Unify(l, z) fails, 

(4) P = XPaths(z), 
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(5) IL1 > 1 implies P#@, 

(6) if fcheck(L’, P’, z’) is also a legitimate call, then either 
Unify(z, z’) fails, or z and z’ are not independent. 

ProojI Assertion (5) follow from (2) and (4). The proofs of the rest 
proceed by induction on the length of the calling chain resulting in the call 
fcheck(L, P, z). 

Basis. The length is 1, and the call is fcheck( 9 /i P’, 2 ’ ) for some J All 
assertions except (6) are obviously true. For (6), it is sufficient to note that 
if a call fcheck(L,, P,, z,) results eventually from a call fcheck(&, PJ, zz), 
then zI > zz, and also that Unify(zf, 9) fails whenever f #g. 

Z&&on. The inductive assumption is that the assertions hold for all 
calls with calling chains of length n 2 1. Suppose the call fcheck(L, P, z) has 
a chain of length n + 1. Clearly, the call results immediately from another 
call with chain length n, and all assertions hold for the latter by the induc- 
tive assumption. The inductive step is now straightforward for all assertions 
except (6). For (6), the same observations suffice as with those in the basis 
case. a 

THEOREM 4.1.2. Check( 9’) terminates. 

ProoJ Let zlengh(z) = xpEI pa,hsczj lenglh(p). By (2) in Proposi- 
tion 4.1.1, z/engrh(z) has a finite upper bound in any legitimate call 
fcheck(L, P, z) unless L = 0. Moreover, zlengdz(z<) > Axgt/z(z) by (4) in 
Proposition 4.1.1. Hence, each legitimate call fcheck( L, P, z) terminates, 
either because L = 0 or because each chain of recursive calls issuing from 
it is bounded by the limit on the monotonic increasing quantity 
zlengdz(z). i 

The reason Check guarantees strict sequentiality is that, whenever we 
have a term f that is neither irreducible nor a redex, the path p chosen in 
the call fcheck(L, P, z) with the largest z compatible with r reaches a 
directly necessary subterm of t. This is the intuitive idea in 

PROPOSI-ITON 4.1.3. Check(z), r $ NFy, and A C$ RO(z) implies 
DNO(t) # 0. 

ProoJ Suppose the antecedents hold. If 9, = $3, then PDNO(t) = 
DNO(t), and it is easy to see that in that case, the antecedents imply 
DNO(t) # 0. Suppose 9, # 0. Let Z be the set of @-patterns u such that 
u < r and fcheck(M, R, ~4) is a legitimate call for some M and R. Since 
Y! # 0, Z is clearly nonempty, and also finite. By (6) in Proposition 4.1.1, 
Z is linearly ordered, and hence contains a maximal element z, which 
occurs in some call fcheck( L, P, z). Let Q = {q E P 1 q $ XPaths(f) for any 
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MEL}. By (3) in Proposition4.1.1, L?Y,. By the maximality of z, 
Q G XPaths(Known(t)) = PDNO(l). By (1) in Proposition 4.1.1, and the 
above considerations, we have Q G DNO(l). It remains to show that 
Q # 0. If IL1 > 1 then since Check(p) we have Q # 0. Since Yt # 0, the 
only other possibility is that L = {/}. Since A # RO(t), 1 $ Known(l). Since 
P&Paths(/) and P=XPaths(z) by Proposition4.1.1, if Q= 0 then the 
only way z < 1 is if z = 1. However, by (2) in Proposition 4.1.1, z < 1, hence 
Q = 0 implies z = 1 and 1~ r, contradicting the assumption that 
/i $ RCVtJ. 1 

It only remains to iterate this fact by structural induction. 

THEOREM 4.1.4. Cheek(9) implies 9 is strictly sequential. 

ProoJ We must show that whenever RO(t) is nonempty, NRO(t) is 
also nonempty. The proof proceeds by induction on the structure oft. 

Basis. t E A, where RO( t) = NRO( t) = {A 1. 

Induction. The inductive assumption is that the required property holds 
for all proper subterms of t. If t is a redex then ,4 E NRO( t). Suppose it is 
not, and r E RO(t). By Proposition 4.1.3 above we have DNO( t) # 0. Sup- 
pose p E DNO(t). If RO(t/p) # 0 then by the inductive assumption 
Iq E NRO(t/p), and p. q E NRO(t). If RO( t/p) = 0 then let s E Paths(t) be 
the nonempty path such that r = s. w and s E PDNO(t). By the inductive 
assumption NRO(t/s) # 0, and therefore by (3) in Definition 3.6, 
NWtl# 0. 1 

We show that Check is a complete decision procedure by defining a 
function “Strange” which constructs a counterexample to prove that 9 is 
not strictly sequential whenever Check(Y) fails. Delinition 4.1.5 may seem 
rather too complex for the present purpose, but it turns out to be essential 
in the construction of the main counterexamples in the next section. 

DEFINITION 4.15 If a legitimate call fcheck(L, P, z) directly returns 
false, being unable to find a suitable p E P, then, given a function M as an 
extra parameter, Strange(L, P, z, a) is a term defined as follows. Let 
9 = {Lh..., L}, m 2 1. Partition P into PO,..., Pm, such that Pi G XPaths(Lj). 
This is possible by the failure condition in fcheck. Let Vi = {z/p 1 p E Pi}. 
By (4) in Proposition 4.1.1, each Vi G X. Define 

Strange(L, P, z, a) E z/I, where b(x) =If xe Vi Then cz(x, i) Else x. 

Note that fi is well defined since V, are disjoint by the construction of z. 
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PROPOSITION 4.1.6. Whenever a returns u redex for ull urguments, us in 
Exumple 2, und w = Strange(L, P, 2, a) is well defined, 

(11 w is u ground term. 

(2) P= RO(w) = a. 
(3) DNO(w) = a. 
(4) NRO(w) = @. 
(5) At leust two of the purtitions (P;) of P are nonempty, independent 

ofa. 

Proof ( 1) is a consequence of (4) in Proposition 4.1.1. The P = RO(w) 
part of (2) merely asserts that A $ RO(w). To see this, note that since w is 
well defined 1 Lj > 1. Moreover, A E RO(w) would mean 31~ L such that 
I < z, and by (2) in Proposition 4.1.1, I = z. This would imply, again by (2) 
in Proposition 4.1.1, that L is not an independent set, contradicting (2) in 
Detinition 2.1. Assertion (5) also follows similarly since PG XPaths(lj) 
would imply z = 1;. P # 0 follows from (5) in Proposition 4.1.1 since 
1 L\ > 1. By the construction of w, Known(NJ) = z, hence by (2) and (3) in 
Proposition 4.1.1, L = $&. We know that each qE PDNO(w) = XPaths(z) 
reaches a variable in some 1 e L = 9, by the construction of w, hence 
DNO(w) = 0. Since PDNO(w) = XPaths(z) = P = RO(w) by (4) in 
Proposition 4.1.1 and (2) above, NRO(wz) = 0 is obvious. 1 

THEOREM 4.1.7. Check(Y) = false implies thut 56’ is not strictly sequen- 
tiul. 

ProojI Check( 9’) = false implies that some legitimate call 
fcheck(L, P, z) fails directly, and therefore w = Strange(L, P, z, a) is well 
defined. Assertions (2) and (4) in Proposition 4.1.6 then imply that 9 is 
not strictly sequential. 1 

4.2, The Necessity of Strict Sequentiulity 

We now show that if the decision procedure for strict sequentiality 
rejects a base, that base cannot be left sequential. This effectively means 
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that strict sequentiality is necessary for call-by-need computation without 
look-ahead. Another way to state the same idea would be to say that if a 
base 3 is not strictly sequential, then no algorithm that selects a redex 
based only on its context is safe for all systems based on 9. The function 
Strange is again used in constructing the necessary counter example. 

THEOREM 4.2.1. If 9 is not strictly sequential then it is not left sequen- 
tial. 

ProoJ We exhibit an Q-normal form t such that t # T and lnfY has no 
index in t. Since Check(p) = false, t = Strange(L, P, z, tx) is well defined for 
some9={10,...,Lm}, P=POu ... uPm,andz, wheremal,andmreturns 
Q for all arguments. Any potential index of lnfY in t must be in P. Suppose 
for the sake of contradiction that q is an index. By the construction of 
Strange, q E Pj G XPaths(Zi). Clearly, given (5) in Proposition 4.1.6, there is 
a u 2 t in which all occurrences of Q except q are replaced by suitable 
redices, and the right-hand sides of the equations (which are completely 
unconstrained) are arranged in such a way that u becomes an instance of 1; 
after some reductions, and is normalized thereafter. The occurrence q is 
therefore not an index contrary to the assumption. 1 

This result can be stated more strongly for sufliciently large bases, for 
which the (perhaps unrealistic) requirement that the redex selection 
algorithm be unaware of the “appearance” of the redices is unnecessary. 

THEOREM 4.2.2. If .Y is not strictly sequential then there is no redex 
selection algorithm that is safe for all systems based on 9 if 9 is sufficient1.v 
large as a set. 

Prooj Suppose & is safe for all Y based on 3’ but 9 is not strictly 
sequential, therefore fcheck(L, P, z) fails directly for some L, P, Z. Suppose 
a(x, j) returns an instance of a distinct 1 E .=.fZ (not necessariy in L) for each 
variable x that occurs in z, ensuring only that I # l,. This is always possible 
for a sufficiently large 9. Clearly, w = Srange(L, P, 2, M) can be normalized 
in some system based on 9, hence &‘(Z, w) must succeed and return some 
path q E P. Suppose q E P,. We can construct a system 9 based on 9 for 
which ZI is not safe. Suppose a(z/q, i) is an instance of some 1 E 9. Let 
(1, I) E 9. Since t/q is an instance of 1, ~.~,,~(w) T. By the construction of 
w, q E XPaths(ZJ. Clealry, w can be made an instance of /i after some reduc- 
tions by suitably “filling in” Y, as in Theorem 4.2.1, since all the redexes 
that matter are instances of a left-hand side other than 1, and their right- 
hand sides are therefore unconstrained. Thus, w normalizes to some normal 
form r in 9, and for & to be safe for 9, we must have o~.%~(w)~ =r, 
which is false. m 
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Example 3 below illustrates the construction of the counterexample in 
the proof of Theorem 4.2.1. The same example can be used to illustrate 
Theorem 4.2.2 with w =f(f(& a, ~1, ftc h a), ftc a, b)). Examples 4 
illustrates the kind of pathological situation which makes it necessary to 
restrict Theorem 4.2.2 to sufficiently large bases. Note that the construction 
of w in Example 4 is the same as in the proof of Theorem 4.2.2, except that 
rZ and C~ are instances of the same left-hand side since there are not enough 
left-hand sides to go around. Now suppose &(P, w) returns 1. We must 
turn w into an instance of /I in order to defeat J$. We therefore need to 
reduce rZ and lX to u and b, respectively. But they are both instances of 1, 
which cannot be given the right-hand side x, since this would cause w to be 
reduced to an unsolvable term. In the absence of this choice, we cannot 
reduce t2 and f3 to distinct normal forms. It is not clear how to get around 
such cases so as to eliminate the practically inconsequential but 
theoretically annoying caveat in the statement of Theorem 4.2.2. 

EXAMPLE 3. Let L, P, z be as in Example 2. Let r =f(fi, Q, Q). Sup- 
pose 1 is an index of lnfF in j. Consider u =f(Q,f(a, b, u), f(u, u, b)) 2 t. 
One counterexample 9 is 

fb, a, bl= hftb, x, ~1 =fth x, uJ,fCa, 6 -xl = a 

The other candidate indices can similarly be shown to fail. 

EXAMPLE 4. Let 1, =f(x, u, b), 4 =f(4 4 yl, and Y= {/,, l*}. 
fcheck(Y, { 1, 2, 3}, z) fails for z =f(x,,, x,, x2). Suppose l, > l*, and 
t2, t3 >/r, for some redices r,, t2, fj. Consider w = Strange(Y, { 1, 2, 3}, 
z3 NJ =f(f,, f2, h). 

4.3. The Sufficiency of Strict Sequentiulity 

This section shows that strict sequentiality is suflicient to ensure strong 
sequentiality, which in turn is known to be sufficient to ensure the existence 
of safe evaluation algorithms (Huet-Levy, 1979). As we mentioned in Sub- 
section 4.1, this really amounts to proving that, in the case of constructor 
systems, match sequentiality implies strong sequentiality. This result could 
be indirectly inferred from the relationship between Check and the 
algorithm for constructing matching dags, together with the decidability 
theorem for strong sequentiality (Huet-Levy, 1979). But the details are suf- 
ficiently involved and inaccessible in the original, and of suhicient interest, 
to justify inclusion of the following simple and direct treatment of the sim- 
pler case of constructor systems for completeness. The proof hinges on two 
properties of necessary redex occurrences, viz., a necessary redex is always 
an outermost redex, and necessary redex occurrences persist as such until 
they are reduced. 

643 12 I-S 
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~O~~SITION 4.3.1. A E RO(t) implies DNO(t) = a. 

Prooj ,4 E RO(r) implies Known(r) > 1 for some 1~ Y!, therefore 
PDNO(l) n ,Z Paths(/) is clearly empty. 1 

COROLLARY 4.3.2. A E RO(t) implies NRO(z) = {A }. 

PROPOSITION 4.3.3. Zf p E NRO(r) and s E RO( t) then s 4 p. 

ProoJ By induction on the structure of r. The basis case is that t EZ, 
which is trivial. For the inductive step, assume that the proposition holds 
for all proper subterms of t. There are three cases, according to 
Definition 3.6. 

Case 1. p = A or p E DNO(t). Recall that if p E DNO(t) then by 
Proposition 4.3.1, ,4 $ RO(t), hence .Y # A. The rest follows from the fact 
that p E PDNO( t). 

Case 2. q E DNO(t), p = q. r, and r E NRO( t/q). We have A $ RO(t) as 
before. By Corollary 4.3.2, if q E RO(t) then p = q. Therefore, s # A and 
s # q. The rest follows by the inductive assumption. 

Case 3. Similar to Case 2. 1 

PROPOSITION 4.3.4. Suppose pi DNO(t), A: t -.+’ u, and p # r, then 
p\A = {p}, andpEDNO(u). 

Prooj Since DNO(t) # 0, r # A by Proposition 4.3.1. By the 
antecedents and the definition of DNO, r 4 p, hence p\A = {p}. 
Moreover, since r # A, 9, G Yr, and p E DNO(U). 1 

PROPOSITION 4.3.5. p E NRO(t), A: t -+’ u, and p #s implies that 
p\A= {p} andpeNRO(u). 

ProojI By Proposition 4.3.3, s 4 p; therefore p\ A{p 1, and moreover, 
s # A. p E RO(U) by Proposition 2.4. p E NRO(U) is then straightforward by 
analysing the cases of Definition 3.6, using Proposition 4.3.4. 1 

A sequence B: t --+* u is said to preserve p iff p\ B = {p}. 

LEMMA 4.3.6. Suppose A: t -+* u and r E NRO( t). Then either A preser- 
ves r and rENRO(u), or A=AI.Az.A3, where A,:t-+*v preserves r, 
A*:v--+~w, andA3:w**u. 

Prooj By induction on IA]. The basis IAl = 0 is trivial. Suppose 
iAi=n+l. Let A=AI.Az, where A,:t -+’ t, is the lirst reduction in the 
sequence. By Proposition 4.3.5, either r = s, or r\ A r = {r } and r E NRO( t, ). 
The rest follows by the inductive assumption. 1 
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COROLLARY 4.3.7. gp E NRO(l), u = f[p +- Q], u& A: u -.+* w, then A 
preserves p. 

Following Huet-Levy (1979) we use the expression cY( r) to denote the 
Q-normal form obtained by replacing each redex in r by Q. 

LEMMA 4.3.8. Vt E T, every necessary redex occurrence in t is an index of 
snf in co’(t). 

ProoJ Suppose for the sake of contradiction that p E NRO(f), but p is 
not an index of snf in u’(t). Then there is ti’> t such that w/p = Q and 
B:w-+* r, where r is in normal form. Consider u = w[p .+ f/p]. We can 
assume without loss of generality that UE T. Clearly, there is a sequence 
A:t-+* u such that A preserves p, and therefore, by Lemma 4.3.6, 
p E NRO(z.4). Therefore, by Corollary 4.3.7, B: IV -+* r preserves p, contrary 
to the assumption that r is in normal form. fl 

THEOREM 4.3.9. A base 2 is strongly sequential f if is strictly sequential. 

ProoJ Corresponding to every Q-normal form z there is a ?E T such 
that 2 = w’(t). We are only concerned with the case where z $ NFY, hence 
RO(z) # 0. Therefore, given that 9 is strictly sequential, jp E NRO( f), and 
p is an index of snf in z = w’(r) by Lemma 4.3.8. 1 

5. CONCLUSIONS 

Theorems 4.2.1 and 4.3.9, and Corollary 3.5 together show the 
equivalence of strict, strong, and left sequentiality as properties of bases. 
The necessity of left sequentiality in order to guarantee the existence of safe 
redex selection algorithms then follows Theorem 4.2.2. The sufftciency of 
left sequentiality can be inferred from the results of Huet-Levy (1979) 
regarding strong sequentiality. A much simpler and more direct proof of 
the sufliciency of strict sequentiality for the existence of such an algorithm 
in the case of constructor systems can be found in (Thatte, 1984). 

The results indicate that left sequentiality is an exucf characterization of 
the property of “admissibility for call-by-need computation” when applied 
to linear unambiguous bases. It is more refined and intuitively more 
satisfactory than strong sequentiality for theoretical purposes, but is 
equivalent when used in the analysis of actual programs. Using the 
simulation technique of Thatte (1985), it is easy to show that these 
statements apply not only to constructor bases but to the larger subclass of 
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regular bases corresponding to what Huet-Levy (1979) call simple systems. 
It is less obvious that our results apply to the full class of regular systems. 
However, the crucial construction of the Strange function could perhaps be 
extended to all regular systems using a fully constructive account, 
analogous to Check, of Huet-Levy’s algorithm for constructing matching 
dags. The outline of such an account is given in Section 4.8 of Huet-Levy 
(1979). 
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