
1:-;FORMATION AND C'OMPVTATION 83, 206-233 (1989)

Maintaining Multiple Representations of
Dynamic Data Structures

MrcHIEL H. M. SMID*

Bureau S!ON, Centre for Marhematics and Computer Science,
Kruislaan 413, J0.98 SJ Amsterdam, The Netherlands

MARK H. OVERMARS

Department o(Computer Science, Unh•ersity o(Utrecht,
P.O. Box 80.089, 3508 TB Utrecht, The Netherlands

LEEN ToRENVLIET AND PETER VAN EMDE BoAs

Deparlmems ol Mathematics and Computer Science,
Logic and Computation Theory Group, University o(Amsterdam,
Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherland1·

The problem of maintaining multiple representations of dynamic data structures
is investigated: Suppose tbere are a number of processors, each having the same
data structure (the so-called client structure). Then the problem arises of how to
maintain these structures efficiently under insertions and deletions. We propose a
strategy in which we store a central data structure in one processor, to which all
other processors are connected. Updates are first "preprocessed" in the central
structure. Then information obtained in this central update is sent to the client
structures. where it is used to update these structures. By sending appropriate infor
mation, each client structure can be updated more efficiently than by just directly
performing the update. We present several solutions to this multiple representation
problem. For example, we show that a client structure can be updated in time
proportional to the size of the changes in this structure. (-, 1989 Academic Press, Inc.

I. INTRODUCTION

The design of efficient data structures for solving different types of
searching problems is an important part of algorithm design. Many types
of data structures exist, storing different types of objects and allowing for
different types of queries. Data structures and searching problems have
been studied in great detail and many properties and general techniques
have been found. For example, general techniques exist for converting

*Supported by the Netherlands Organization for Scientific Research (NWO }.

206
0890-540L89 HOO
Copyright ·C 1989 by Academic Press, Inc.
All rights of reproduction in any Form reserved.

MAINTAINING MULTIPLE REPRESENTATIONS 207

static data structures that do not allow insertions and deletions of objects
into dynamic structures that allow such operations (see, e.g., Overmars,
1983).

In most studies it is assumed that the data structure is stored only once
in the main memory of a computer and that all operations are performed
on this one structure. In many situations, however, we need to store the
structure more than once and have a multiple representation of the data
structure. For example, normally a data structure that is stored in main
memory will be stored in secondary memory as well, because system errors
or program errors might otherwise destroy the information. Such a shadow
administration does not have to support the same operations as the main
structure. Only insertions and deletions have to be performed. Hence, it
might be advantageous to structure it in a different way. (See Smid et al.,
1989, for examples of such shadow administrations.)

When we have a network of processors, each having its own memory,
there are situations in which each processor holds its own copy of a par
ticular data structure. Changes to the data structure have to be made in all
copies. When the update time is high this is an unfavorable situation. In
such situations, we are better off dedicating one processor to the task of
maintaining the data structure and broadcasting the actual changes to the
other processors. Again we have a situation in which there is a multiple
representation of the data structure. One data structure that should allow
for updates, and a set of other structures that answer queries. Of course,
the query data structures must be structured in such a way that they can
perform updates, but they get the update in a kind of "preprocessed" form
that might be easier to handle.

In this paper we study such multiple representations of data structures.
The one structure that performs the updates will be called the central struc
ture. The other structures that allow for queries are the client structures. We
study how to organize the central structure for different types of query
problems, how to structure the client structures that can sometimes store
less information, and what type of information has to be sent from the
central structure to the clients. It will be shown that, after "preprocessing"
an update by the central structure, the clients can often perform the update
more efficiently. Also, in some situations the client structures can be smaller
than the central structure.

An example of a practical instance in which this framework can be
applied is a "Star Network." Here the central processor is the main
computer; it holds the central data structure, and is connected to all other
processors. Often, these other processors, that contain the client structures,
are somewhat limited in capacity. Clearly, it is desirable in such situations
to utilize the power of the central processor as much as possible.

Besides possible practical applications, the results of this paper give the

208 SMID ET AL.

insight that sometimes parts of data structures are only necessary for
performing updates and can, hence, be removed in the client structures.
The results also show what portions of data structures are actually changed
when performing updates. This might have applications in storing dynamic
data structures in write-once memories, such as optical disks.

The paper is organized as follows. In Section 2 we describe the general
framework we use to describe solutions for the multiple representation
problem, and we introduce complexity measures to express the efficiency of
solutions. In Section 3, we study binary trees as our first example where the
client structures store less information than the central structure. It is also
shown that we can gain a constant factor in the update time of the client
structures. In Section 4, we consider "order decomposable set" problems.
(See Section 4 for the definition of such problems.) We show that in several
cases the client structures can be of size asymptotically less than the central
structure. In Section 5 we present some simple techniques for decom
posable searching problems. These techniques lead to solutions in which
the client structures can be updated very fast.

In general, since an update will change only a small part of a data struc
ture, it might be possible to send only those parts of the structure that have
been changed. In Overmars and Smid (1988), and Overmars et al. (1987),
the problem of how to partition a range tree into parts of small size, such
that an update changes only a few parts, is studied. The techniques
developed there can of course be applied here. In those papers, however, it
is assumed that the partition is stored in secondary memory, which is
supposed to be divided into blocks of some predetermined size. Further
more, the only allowed operation in secondary memory is to replace a
block by another one. So in secondary memory no computing is possible.
Since in our case the client structures are stored in an environment where
computing is possible, we can replace much smaller pieces than just parts
of some predetermined size. Hence we can send only those pieces that
actually have changed. We investigate this idea in Section 6, where we
show that this is indeed possible. (Here the main problem is that we want
to avoid searching in the client structures-which might take a lot of
time-in order to determine the positions where the data structure has to
be changed.) The results of Section 6 are illustrated in Section 7 with some
examples. We show for example, that we can maintain a class of range
trees, such that the central structure needs O((log n)d) time for an update,
whereas each client structure can be updated in O((log n)d 1) time. We
finish the paper in Section 8 with some concluding remarks.

MAINTAINING MULTIPLE REPRESENT A TJONS 209

2. THE GENERAL APPROACH

In this section we give a precise statement of our problem and introduce

the model. We also give complexity measures to express the efficiency of
the solutions. ·

There is a network of processors, the clients, each having its own

memory. Each of these clients contains the same data structure DS· the

so-called client structure-solving some searching problem. Each client uses

its structure DS to solve queries. Updates have to be performed in all the

client structures. In order to be able to perform these updates fast, we store

in one of the processors a data structure DS', the central structure. Now an

update is performed as follows. We first perform the update in the central

structure DS'. During this update we (hopefully) obtain information that

makes it possible to update the client structures more effciently than by just

directly updating them. Then we send information about the update

through the network to the clients, and using this information each client

updates its structure DS. We express the complexity of an update of the

client structures by the number of words transported to each client, and by

the amount of computing time that the client structure needs to perform

the update.
Note that we have introduced multiple representation of the data. We

have a number of copies of the same data structure DS. Furthermore, there

is a data structure DS', that is used to "preprocess" updates, so that the

client structures DS can be updated efficiently. On the client structures,

queries and preprocessed updates are performed. whereas on the central

structure only updates are carried out. In the later sections, we will see that

the client structure and the central structure need not be identical. There

fore we use different notations for these structures.
The complexity of the client structure DS is expressed by the following

functions (n is the number of objects represented by the structure):

S(n): the amount of space needed to store the structure DS.

Q(n): the time required to answer a query using DS.

F(n): the amount of data (which we consider in terms of words)

transported to DS in an update.

G(n): the amount of computing time needed to update DS, using

the information received from the central structure.

We assume that G(n) = Q(F(n)), which is reasonable, since a client receives

an amount of F(n) data, and it has to store it somewhere. Remark that we

express F(n) in terms of words, which is customary in the theory of algo

rithms and data structures. In Section 3, however, we express F(n) in terms

of bits.

210 SMID ET AL.

The complexity of the central structure DS' 1s given by the usual
measures, and they are denoted by:

S'(n): the amount of space used by DS'.
P'(n): the time needed to build DS' from scratch.
I'(n): the time needed to insert an object into DS'.
D'(n): the time needed to delete an object from DS'.
if the insertion and deletion are equal, we denote this common

update time by U'(n).

(There is no query time here, because queries are not performed on the
central structure.)

The problem investigated in this paper is the following. We are given a
searching problem. The main goal is to design a client structure DS for this
searching problem, such that when an update is given in some preprocessed
form, this update can be performed efficiently. Ideally, the size of this
preprocessed form and the time to perform the update using this informa
tion (i.e., the values of F(n) and G(n)) should be much smaller than the
time needed to perform the update directly in the structure. A second goal
is to design a central structure DS' in which the updates can be prepro
cessed efficiently. In this paper, however, we shall emphasize the design of
the client structure DS.

3. BINARY TREES

Suppose that the client structures have to solve the member searching
problem. A well-known dynamic data structure for this problem is a
balanced binary search tree, e.g., an AVL-tree, or a BB[cc]-tree. Such a tree
allows member queries and insertions/deletions to be performed in O(log n)
time, if n is the number of objects stored in the tree. Internal nodes of these
trees contain balance information. For example, in an A VL-trec each inter
nal node contains the difference of the longest path in its left subtree and
the longest path in its right subtrcc (which is - 1, 0, or 1). If an object is
inserted in or deleted from the tree, all nodes that do not satisfy the
balance property anymore are computed, and then by a local restructuring
technique (mostly single and double rotations), balance is restored for
these nodes. Clearly, this balance information is only used to update the
tree; in case member queries arc performed, this information is superfluous.

So take a class of balanced binary search trees, that can be maintained
by means of single and double rotations. We consider these trees as leaf
search trees, i.e., the objects are stored in the leaves. Let T' be a tree in this
class, and let T be a copy of T' without the balance information in its

MAINTAINING MULTIPLE REPRESENTATIONS 211

nodes. The tree T' will be the central structure, and the tree Twill be the
client structure. Clearly, the tree T contains enough information to allow
member queries to be carried out in logarithmic time.

Suppose an object p is to be inserted or deleted in the client structures.
Then we first insert or delete p in the central structure T'. This gives us a
path in T', from the root to an appropriate leaf, along which rotations
have been (possibly) carried out. We encode this path by a string
s = (r 1 , b 1 , r2 , b2 , ••• , r b bd, where k is the length of the path. Starting at
the root of the tree, r 1 contains information whether a left single rotation,
a right single rotation, etc. has to be carried out, or that no restructuring
operation is necessary; h 1 tells whether the next node on the path lies to the
left or to the right of the root; r2 tells what kind of rotation has to be
carried out for the second node of the path, and b2 says in which direction
the path proceeds, and so on. Note that O(k) = O(log n) bits are sufficient
to represent the string s. Now we send to each client structure the object
p together with information whether it has to be inserted or deleted, and
the string s. Using p and s, the client structures Tare updated. Note that
we know exactly which path in T we have to walk down, and where on this
path restructuring operations have to be carried out. So we do not have to
decide in each node-by means of a comparison of p with the value stored
in this node---in which direction to proceed. Hence this will save for each
client structure O(log n) comparisons in the update procedure.

The complexity of this solution is as follows. The central structure has
size O(n), and an update takes O(log n) time. Each client structure has also
size O(n). In this last bound, however, the constant factor will be smaller.
Member queries can be solved in the client structures in O(log n) time. To
perform an update, an object panda bitstring s of length O(log n) are sent
to the client structures, and for each of these structures O(log n) computing
time is needed to update it. Again the constant factor is smaller than in the
update time of the central structure. So at the cost of a slight increase in
the amount of data that is transported to the client structures~by sending
an additional string of O(log n) bits-we have decreased the constant
factors in the complexity bounds for the client structures, compared to the
constants in the bounds of the central structure.

The client structures can be used for solving other searching problems.
Examples are the one-dimensional range searching problem, where we are
given a range [a: h], and we have to report all object lying in this range.
Such a range query can be answered, without needing balance information
at the nodes, in O(log n + t) time, where t is the number of points in the
range. Another example is the one-dimensional nearest neighhor searching

problem. Here we are given an object p, and we have to report the object
in the tree that is closest top. Clearly, such a query can be answered, again
without using balance information at the client structures, in O(log n) time.

212 SMID ET AL.

4. ORDER DECOMPOSABLE SET PROBLEMS

In Overmars (1983) a class of so-called order decomposable set problems
has been defined. In a set problem we are given a set of objects, and we are
asked some question about this set. To be more precise, if T 1 and T2 are
sets of objects, then a set problem is a mapping PR: P(Ti)_,. T2 • Here
P(Ti) denotes the power set of T 1• For example, in the convex hull
problem, we are given a set S of points in the d-dimensional euclidean
space, and we are asked to compute the convex hull of S. Here T 1 is the
set of all points in d-dimensional space, and T2 is the set of all convex
polytopes.

In this section we want to solve the problem of maintaining the answer
to a set problem under insertions and deletions of objects. We restrict our
selves to set problems, the answers of which can be merged efficiently. That
is, once the answers for the two "halves" of a set are known, the answer for
the entire set can be obtained fast. For such a class of set problems, we can
maintain the answer for the entire set, by decomposing the set into subsets,
and by maintaining the answers for these subsets.

DEFINITION l. A set problem PR: P(Ti)-t T2 is called M(n)-order
decomposable, if there is an order ORD on T 1 , and a function
D: T2 x T2 -t T2 , such that for any set S = { p 1 ~ p 2 ~ • • • ~ p 11 }, ordered
according to ORD, and for any i, I ~ i < n, we have

PR({ P1 • ... , Pn}) = D (PR({PI• ... , P;}), PR({ P; +I' ... , Pn})),

where the function D takes M(n) time to compute.

For example, Preparata and Hong (1977) showed that the three-dimen
sional convex hull problem is O(n)-order decomposable, where ORD is the
order according to x-coordinate.

Let PR be an M(n)-order decomposable set problem. We briefly recall a
dynamic data structure solving PR, the details of which are given in Over
mars (1983). Let S be a set of cardinality n, for which we want to maintain
the answer to PR. We store the objects of S, ordered according to ORD,
in the leaves of a BB[a]-tree. Internal nodes of this tree contain informa
tion to guide the searches. Also, each internal node v of this binary tree
contains a representation of the answer PR(S,,), where S,, is the set of
objects that are in the subtree of v. Hence, the root of the tree contains the
answer to PR of the entire set S. The following theorem gives the com
plexity of this dynamic data structure. For a proof, see (Overmars, 1983),
where it is also shown how the amount of space can be reduced without
affecting the update complexity for certain values of M(n), if the sizes of the
answers PR(S,,) are large.

MAINTAINING MULTIPLE REPRESENTATIONS 213

THEOREM 1. For an M(n)-order decomposahfe set problem, there exists 11

dynamic data structure of' size S'(n) and update time U'(n), giren hy

!.. S'(n)= O(M(n)) if M(n)~Q(n 1 + 1)jiJrsomn>O, {

O(n) if M(n) = O(n") for some 0 < c: < l,

O(M(n) log log n) if M(n) is at least linear,

O(n + M(n) log n) otherwise.

2. U'(n)={O(M(n)) if M(n)=Q(n')forsomec>O,

O(M(n) log n) otherwise.

Note that the data structures presented here have the property that just
a small part of the structure is used for answering a query~-the answer to
the problem is stored in. the root of the tree-whereas the rest of the
structure is only used to update this answer efficiently.

Therefore, we take for the client structures, the answer PR(S) to the set
problem for the entire set S, and we take for the central structure, the full
dynamic data structure. Updates are first performed on the central struc
ture. Then we replace each old client structure by the new answer to the
set problem. The result is given in the following theorem and the notations
used are the same as in Section 2.

THEOREM 2. For an M(n)-order decomposahle set prohlem, there exists

a client structure, that maintains the answer to the set problem. with

complexity

l. S(n)=O(PR(n)),

2. F(n) = O(PR(n}),

3. G(n) = O(PR(n)),

where P R(n) is the size of the answer to the set problem jiJr a set of 11 objeets.

Proof The proof follows from the above discussion. I

It follows from these two theorems, that for many values of 1"vf(n), the
client structures have asymptotically lower complexity than the central
structure. As an example, in the three-dimensional convex hull
problem-which is 6l(n)-order decomposable--the central structure has
size O(n log log n), whereas the client structures have size only O(n).

5. DECOMPOSABLE SEARCHING PROBLEMS

A searching prohlem can be seen as a mapping PR: T1 x P(T~)-> T3.
where T T and T, are sets of obiects. For example, in the member

I' 2' _l J

searching problem, T 1 = T 2 , T 3 ={true, false}, and PR(x, S) = (xE S).

214 SMID ET AL.

In this section we consider decomposable searching problems that were
introduced by Bentley (1979). For this class· of searching problems a query
for a set can be answered efficiently by merging the answers for a partition
of the set.

DEFINITION 2. A searching problem PR: Tix P(T2)-+ T3 is called
decomposable, if there is a function D: T3 x T 3 ~ T3 , such that for any
partition S =A u B of any subset S of T2 , and for any query oject x in T 1 ,

we have

PR(x, S)= D(PR(x, A), PR(x, B)),

where the function D can be computed in constant time.

For example, the member searching problem is decomposable with
D = V. Another example is the orthogonal range searching problem. Here
we are given a set S of points in d-dimensional space, and an axis-parallel
hyperrectangle ([a1: b1], [a2 : b2], ••• ,[ad: bd]), and we have to report all
points p=(p 1 , ••• ,pd) in S, such that a 1 ~p 1 ~b 1 , ••• ,ad~Pd~bd. This
problem is decomposable with D = LJ. Note that since we require the sets
A and B to be disjoint, we can take the union of PR(x, A) and PR(x, B)
in constant time.

A number of techniques have been developed to design dynamic data
structures for decomposable searching problems. It turns out that espe
cially in the case where only insertions are performed, efficient structures
can be designed. See Bentley (1979), Bentley and Saxe (1980), and
Overmars (1983).

Let PR be a decomposable searching problem, and let DS be a dynamic
data structure solving PR. We consider the case in which only insertions
are performed. Let S(n) be the size of the structure DS, and let Q(n) be the
query time of DS. We assume that S(n)/n and Q(n) are non-decreasing,
and that S(n) and Q(n) are smooth functions. (A function f(n) is called
smooth if f(O(n)) = O(f(n)).)

To maintain a multiple representation for PR we proceed in the follow
ing way: Let the client structure consist of a copy of the structure DS,
together with a list of objects. The central structure consists of the structure
DS. Initially, the list of objects in the client structure is empty, and all
structures DS are up-to-date. Let n be the initial number of objects. Con
sider an insertion of an object p. First we insert p in the central structure.
If p is already present, then nothing has to be done. (Note that in this case
the client structures do not have to know that anything happened.) If p is
a new object, we add it to the list of each client structure. After Q(n)
objects are inserted in this way-hence each client structure contains a list
of Q(n) objects-a copy of the central structure-which is up-to-date-is

MAINTAINING MULTIPLE REPRESENTATIONS 215

sent to the clients. Each old client structure is then replaced by this new
structure, and the list of objects is initialized again as an empty list. If m
is the number of objects that are present after these Q(n) insertions, we
repeat this procedure, now with a sequence of Q(m) insertions.

Queries are solved in a client structure as follows. First we query the
data structure DS. Next we query the at most Q(n) objects in the list of
most recently inserted objects, by considering each of them separately.
Then all answers obtained are merged using the function D. (Note that all
objects in the list are different, and are not present in the client data
structure DS.)

THEOREM 3. Let DS be a data structure for a decomposable searching
problem PR, of size S(n) and query time Q(n). There exists a client structure
solving PR, with performances:

1. The size of the client structure is bounded by O(S(n)).

2. F(n) = O(S(n)/Q(n)) on the average, for an insertion.

3. G(n) = O(S(n)/Q(n)) on the average, for an insertion.

4. The query time of the client structure is bounded by O(Q(n)).

Proof The client structure consists of a copy of the data structure DS
as it is at the beginning of a sequence of insertions, together with a list con
taining the insertions performed (i.e., Q(n)) so far. Insertions and queries
are carried out as described above. The size of the client structure is boun
ded by the size of DS and by the number of objects in the list. Let N be
the number of objects that are currently present, and let n be the number
of objects that were present at the beginning of the sequence of insertions.
Then the size of the client structure is bounded by O(S(n) + Q(n)) =
O(S(N)). Because for a decomposable searching problem obviously
Q(n) = O(n), and since S(n)/n is non-decreasing, we have Q(n) = O(S(n)).
Finally, since n::::; N::::; n + Q(n) = O(n), and since S(n) is smooth, the bound
on the space complexity follows. In a sequence of Q(n) insertions, the total
number of words that are transported to a client structure, is bounded by
O(Q(n) + S(n)) = O(S(n)). Hence the average amount of data that is trans
ported for an insertion is O(S(n)/Q(n)). The total computing time for Q(n)
insertions into a client structure, is also bounded by O(Q(n)+S(n)), since
a new object can be inserted to the list in constant time, and since it takes
O(S(n)) time to receive and write a data structure of size S(n). Hence
G(n) = O(S(n)/Q(n)) on the average for an insertion. Finally, the query
time of the client structure is bounded by 0(Q(n)), because the structure
DS can be queried in Q(n) time, and using the definition of a decom
posable searching problem, the objects in the list can be queried in 0(Q(n))
time. I

216 SMID ET AL.

In the above theorem, the complexity for insertion for the client struc
tures is an average case complexity. We show now how these bounds can
be turned into worst case bounds. The idea is to spread out the transporta
tion of the large data structure over a number of insertions. In the sequel
we assume that if object p is to be inserted, it is not present yet. (As we saw
already, if the object is present, the client structures do not have to know
that anything happened.) We denote by DS11 , the data structure DS
representing a set of n objects.

The client structure consists of a data structure DS, and two lists of
objects. The central structure consists of a structure DS and one list of
objects. Let k be the initial number of objects. Then both the client struc
ture and the central structure contain an up-to-date data structure DSk and
all lists are empty. During Q(k) insertions, we add the new objects to one
of the lists of the client structures (each time we add it to the same list).
Furthermore, all these insertions are performed in the central structure DS.

Hence after these Q(k) insertions, the client structures consist of a data
structure DSk> representing the objects that were initially present, a list of
the Q(k) most recently inserted objects, and an empty list. The central
structure consists of an up-to-date structure DSk + Q<k» and an empty list.

Let n = k + Q(k), i.e., n is the number of objects that are currently
present. Consider a sequence of Q(n) insertions.

During the first Q(n)/2 insertions, we add the new objects to the initially
empty lists of the client structures, and we send the central structure
DSk + Qtkl = DS11 to the clients: Each update we send a part of DS11 of size
O(S(n)/Q(n)). Then, after these Q(n)/2 insertions, each client structure con
tains a data structure DS11 , and a list of the Q(n)/2 most recently inserted
objects. Now we discard the old client structure DSk and we set the old list
of Q(k) inserted objects to the empty list. In the central structure we add
the Q(n)/2 new objects to the list. Note that the central structure DS11

cannot be affected during these insertions.
The final Q(n)/2 insertions are performed as follows. The new objects are

added to the non-empty list of the client structure. In the central structure,
we perform in each update the current one, and one update from the list
of updates. (Note that the order in which we perform the updates in the
central structure does not matter, since all updates are insertions. If,
however, deletions were also possible, the updates had to be carried out in
chronological order. See Subsection 6.4.) Afterwards the list of the central
structure is set to the empty list.

So after the entire sequence of Q(n) updates, the client structure contains
a data structure DS,,, a list of the Q(n) most recently inserted objects, and
an empty list. The central structure consists of an up-to-date structure
DSn+Qtnl and an empty list. Hence we are in the same situation as Q(n)
updates ago, and we can continue in a similar manner.

MAINTAINING MULTIPLE REPRESENTATIONS 217

Queries in a client structure are solved, by querying the data structure

DS, and by walking along the two lists of objects. Then using the function

D, the answers are merged to get the final answer to the query.
The result is given in the following theorem.

THEOREM 4. Let DS be a data structure for a decomposable searching

problem PR with worst case complexity S(n), J(n), and Q(11). There exists a
client structure solving PR, with pe~formances:

1. The size of the client structure is bounded by O(S(n)).

2. F(n) = O(S(n)/Q(n)) in the worst case, for an insertion.

3. G(n) = 0(S(n)/Q(n)) in the worst case, for an insertion.

4. The query time of the client structure is hounded by 0(Q(n)).

Furthermore, the size and the insertion time of the central structure are

hounded by O(S(n)) and O(J(n)).

Proof It follows from the above discussion that in each insertion we

send an amount of 0(S(n)/ Q(n)) + 0(I) = 0(S(n)/ Q(n)) data, and for each

client structure we have to spend O(S(n)/Q(n)) + 0(l) = O(S(n)iQ(n)) time

to receive and write this data. Hence both F(n) and G(n) are bounded by
O(S(n)/Q(n)) in the worst case. Also, the size and the query time of the

client structure are bounded by 0(S(n)) and 0(Q(n)). Clearly, the perfor
mances for the central structure are increased by at most a constant

factor. I
There are other techniques to obtain efficient solutions to the multiple

representation problem. We can for example consider sequences of more

than Q(n) insertions. Then the most recently inserted objects are stored in

a small data structure, to ensure that the query time remains 0(Q(n)). In

this way the values of F(n) and G(n) can be decreased. This idea is worked

out below.
Let PR be a decomposable searching problem, and let DS be a dynamic

data structure solving PR. The size and the query time of DS are denoted

by S(n) and Q(n). As before, we assume that S(n)/12 and Q(n) are non

decreasing, and that S(n) and Q(n) are smooth.
Let f(n) be an integer function, such that Q(n) < /(11) < 11. The client

structure consists of two data structures DS, and DS2 , and a list of objects.

The central structure contains the structures DS 1 and DS 2.

Initially, all structures DS 1 and the lists in the client structures, are

empty. Each structure DS2 stores the n objects that are present at this

moment.
Consider a sequence off(n)-1 insertions. We insert the new objects in

the central data structure DS 1 • In the client structure we add the new

objects to the list. Every Q(n)-th insertion, the central structure DS 1 as it

218 SMID ET AL.

is that moment is sent to the client structure (where it replaces the old
DS 1), and the list of objects is set to the empty list. Hence during these
f(n)- I insertions, the client structure consists of a list of at most Q(n)
objects, and of two data structures DS 1 and DS2 • The structure DS 1

represents at most f(n) objects. At each moment, the objects represented by
these three structures form a partition of all the objects that are present at

that moment.
In the f(n)th insertion, we build a new structure DS 2 storing all objects

that are present at this moment, and send it to the clients. Also, all struc
tures DS 1 and all lists are made empty. If m is the number of present
objects at this moment we repeat this procedure, now with a sequence of

f(m) insertions.
Clearly, the size and the query time of the client structure remain

0(S(n)) and 0(Q(n)). Furthermore, the average values of F(n) and G(n)

are both bounded by O(S(f(n))/Q(n)+S(n)/l(n)).
We generalize this solution as follows. Let k be a positive integer, and let

f(n) be integer functions, i=O, 1, ... ,k, such that Q(n)=f~(n)<f1 (n)<

j~(n) < · · · < .f~ _ 1 (n) < j~(n) = n. Then the client structure contains a
collection of data structures DS;, i = 1, 2, ... , k, and a list of at most Q(n)
objects. The central structure contains the structures DS,, i = 1, 2, ... , k.
Each DS, will represent at most f;(n) objects. Initially, all structures
DS 1, ••• , DSk 1 , and all lists, are empty. Each structure DSk stores the n
objects that are present at this moment.

Consider a sequence of j~ 1 (n) insertions. In the jth insertion, we do the
following. If there is an i, 0 ~ i ~ k - 1, such that j = 0 mod f~ (n), determine
the maximal such i. Then build a new structure DS1 t 1 , storing all objects
that were present in the old central structures DS 1 , .•• , DS 1 + 1 , and add it
to the central structure. Also, the old central structures DS 1 , ••• , DS1 are

made empty. Next, send this new structure DS; + 1 to the clients, where it
replaces the old DS1+ 1 • Finally, all client structures DS 1 , .•• , DS1 and the
lists are made empty. If there is no i such that j = 0 mod J;(n), add the new
object to the list of the client structures, and insert the new object in the
central structure DS1 •

It is not difficult to see, that indeed each DS1 represents at most J;(n)
objects, and that the list in the client structure contains at most Q(n)

objects. Also, each DS1 is sent to the clients at most once every /; 1 (n)
insertions.

After these f~ 1 (n) insertions, all structures DS 1 , ••• , DS k 1 , and all lists,
are empty again, and each structure DSk stores the objects that are present
at this moment. (Note that in the./~ 1 (n)th insertion, the maximal value
of i in the above update procedure is k - 1.) So we can proceed in the same
way, now with a sequence of./~ i(m) insertions, where m is the current
number of objects.

MAINTAINING MULTIPLE REPRESENTATIONS 219

In this way the average values of F(n) and G(n) are bounded above by

S(f1(n)) S(f2(n)) S(fk __ 1(n)) S(n) ---'--+ + ... + + .
Q(n) f1(n) fk-2(n) fk-1(n)

Since we assumed that S(n)/n is non-decreasing, it follows that this sum is
bounded above by

S(n) (!1(n) f1(n) fk_ 1(n) n)
--;;-- Q(n) + f1(n) + ... + fk-2(n) + fk-1(n) ·

Now take f;(n) = rnilk(Q(n)) 1 -i/kl. Then the average values of F(n) and
G(n) are bounded above by

k S(n) (-n-) 1/k
n Q(n)

In a similar way as before these average case bounds can be turned into
worst case bounds. The result is expressed in the following theorem, the
proof of which is left to the reader.

THEOREM 5. Let DS be a data structure for a decomposable searching
problem PR with complexity S(n) and Q(n). Then for each positive integer
k there exists a client structure solving PR, with performances:

I. The size of the client structure is bounded by O(S(n)).

2. F(n) = O(k(S(n)/n)(n/Q(n)) 11k) in the worst case, for an insertion.

3. G(n) = O(k(S(n)/n)(n/Q(n)) 11k) in the worst case, for an insertion.

4. The query time of the client structure is bounded by O(k x Q(n)).

We illustrate this result with an example. In the nearest neighbor search
ing problem, we are given a set S of n points in the plane, and a query point
p, and we are asked to find the point in S that is closest to p with respect
to the euclidean distance. Clearly, this problem is decomposable. There
exists a data structure for this problem of size O(n) such that queries
can be solved in O(logn) time, see, e.g., Kirkpatrick (1983). Applying
Theorem 5, we obtain

THEOREM 6. Let k be a positive integer. For the nearest neighbor search-
ing problem in the plane, there exists a client structure, with performances:

1. The size of the client structure is bounded by O(n).

2. F(n) = O(k(n/log n)11k) in the worst case, for an insertion.

3. G(n) = O(k(n/log n) i;k) in the worst case, for an insertion.

4. The query time of the client structure is bounded by O(k x Jog n).

643/8312· 7

220 SMID ET AL.

It is clear that the technique presented in this section only allows inser
tions to be carried out. In some cases, however, deletions can also be per
formed. For example, deletions can be handled if we restrict ourselves to a
subclass of the decomposable searching problems, the decomposable count
ing problems. Roughly speaking, a decomposable counting problem is a
decomposable searching problem where the function D has an inverse, that
can also be computed in constant time (see Bentley and Saxe, 1980; Over
mars, 1983). An example is the orthogonal range counting problem. Here we
are give a set S of points in the plane, and an axis-parallel query rectangle,
and we are asked how many points of S are in the rectangle.

For decomposable counting problems we can design a full dynamic data
structure by maintaining two structures. In one structure new objects are
inserted, whereas a deletion is performed by inserting the object that is to
be deleted into the other structure. A query is solved by querying the two
structures, and by "subtracting" the two obtained answers from each other,
using the inverse of the function D.

For decomposable counting problems, the following analogue of
Theorem 5 can be proved.

THEOREM 7. Let DS be a data structure for a decomposable counting
problem PR with complexity S(n) and Q(n). Then for each positive integer
k there exists a full dynamic client structure solving PR, with performances:

1. The size of the client structure is hounded by O(S(n)).

2. F(n) = O(k(S(n)/n)(n/Q(n)) 1ik) in the worst case.

3. G(n) = O(k(S(n)/n)(n/Q(n)) 11k) in the v.·orst case.

4. The query time of the client structure is bounded by O(k x Q(n)).

6. A GENERAL TECHNIQUE

6.1. Introduction

Consider again our strategy with respect to the member searching
problem of Section 3. In this solution, in each update we send a string of
O(log n) bits to the client structures, where the string contains an encoding
of the path to the node where the update is carried out, together with infor
mation about what kind of rotations have to be performed. In order to
update the client structure, we follow the path, insert or delete the object,
and perform ·the rotations. Clearly, this procedure takes O(log n) time. If
we consider, however, how many nodes in the tree are changed in this
update, we see that 0(I) of them are changed due to the insertion or dele
tion, and the rest of them are changed due to rotations. Therefore, if 0(I)

MAINTAINING MULTIPLE REPRESENTATIONS 221

rotations are carried out, only 0(I) nodes of the tree are changed. (Note
that a client structure does not contain balance information.) So if we
could avoid to walk down the path, it could be possible to update the
client structure in only 0(I) time.

The solution is to send to the client structures the inserted or deleted
object, together with the positions in the tree where changes-and what
kind of changes-have to be carried out. Since there are binary trees that
cap. be maintained in logarithmic time with only 0(I) rotations in the
worst case (see Guibas and Sedgewick, 1978; Olivie, 1980, 1981, 1982;
Tarjan, 1983), this will give us a solution where the client structures can be
maintained in constant time.

This is the main idea of the general technique that will be worked out
in this section. We will achieve our result in a number of steps. First we
give a solution in case the data structures do not exceed some given size.
Next we extend this solution to a general one having a low average case
complexity. Then we turn these average case bounds into worst case
bounds.

Let PR be a searching problem, and let DS (resp. DS') be the corre
sponding client structure (resp. central structure). The performances of DS
are denoted by S(n) and Q(n), and those of DS' by S'(n), P'(n) and U'(n)
(see Section 2 for these notations). We assume that DS is a substructure of
DS'. That is, DS is a part of DS', containing enough information such that
queries can be solved fast. For example, if DS' is a balanced binary tree,
then we can take DS, the tree without the balance information at the
nodes. Updates are performed as before. That is, first the central structure
DS' is updated, then information is sent to the client structures, and finally
the client structures DS are updated. Let C(n) denote the amount of data
that is changed in the client structure DS in an update. We assume that all
these complexity measures and S(n)/n are non-decreasing and smooth.

We transform this multiple representation into another one, such that
each transformed client structure has size O(S(n)), update complexity
F(n) = 0(C(n)) and G(n) = 0(C(n)), and in which queries can be solved in
0(Q(n)) time. In each update, we only send the changes of the client struc
ture DS. In order to avoid searching for the positions in the client structure
where the changes have to be carried out, we also send these positions.
Therefore, we implement the data structures as arrays. (We assume that
our processors are random access machines, the memories of which are
modeled as arrays. Hence we can indeed implement the data structues as
arrays.) We take care that each part of DS is stored in the same position
in all processors. If such a part has to be changed, we send the index in the
array where this part is stored, together with the updated part. Then, in
each client structure, we can find in constant time the position where the
change has to be carried out. Remark that data structures contain pointers,

222 SMID ET AL.

which we consider to be indices of array entries. By storing parts of DS in
each processor in the same positions, these pointers indeed "point" to the
correct objects.

The implementation will be described more precisely in the next sub
section. We finish this subsection with the following lemma.

LEMMA 1. The complexity measures introduced above satisfy

1. S(n):::; S'(n),

2. S'(n)/n = 0(U'(n)),

3. P'(n)/n = 0(U'(n)),

4. S(n)/n=O(C(n)).

Proo(Since DS is a substructure of DS', we have S(n)::::; S'(n). We can
build the structure DS' by performing n insertions into an initially empty
structure, which takes at most U'(1) + U'(2) + · · · + U'(n) ~ n x U'(n) time.
During these n insertions we have built a structure of size S'(n), and hence
we have spent at least S'(n) time. This proves that S'(n) = O(n x U'(n)).
The proof of P'(n) = O(n x U'(n)) is similar. In the same way we can build
the structure DS. The total amount of data that has changed during n
insertions, is at most C(1) + C(2) + · · · + C(n):::; n x C(n). Since at the end
there is a structure of size S(n), it follows that S(n) = O(n x C(n)). I
6.2. A Fixed Si::e Solution

Let N be an integer that denotes the maximal number of objets that can
be represented by our data structures. We use in this subsection--and in
the following ones--the notations introduced in Subsection 6.1.

We have a client structure DS and a central structure DS', and we want
to implement these structures as arrays. These data structures are com
posed of "indivisible pieces of information" of constant size, such as poin
ters, integers, etc. (Here we assume that pointers, integers, etc. have size
one, which is customary in the theory of algorithms and data structures.)
Each such indivisible piece will be stored in one array location. Since the
data structures represent at most N objects, we take a client array of S(N)
entries, containing DS, and a central array A' of S'(N) entries, containing
DS'. If n is the current number of objects, S(n) entries of the client array
and S' (n) entries of the central array are occupied. We assume that the first
S(N) entries of the central array are identical to those of the client array.
Clearly, this can always be achieved. Finally, we introduce two stacks FE
and FE' of free entries. In FE we store those indices of the first S(N) entries
of the client array A, that are unoccupied. Similarly, the stack FE' contains
those indices of the last S'(N)- S(N) entries of the central array A' that
are unoccupied. The purpose of these stacks is to perform our own memory
management.

MAINTAINING MULTIPLE REPRESENTATIONS 223

The transformed client structure consists of the array A. The transformed

central structure consists of the array A' and the stacks FE and FE'.

Suppose we want to insert or delete object p. We assume that there is

space in the arrays for a new object. Then we first perform this update in

the central structure. If we need new entries, we take them from the

appropriate stack FE or FE', and if entries become unoccupied, we put

them on the stack where they belong. Clearly, this update procedure takes
0(U' (n)) time. Next we send to the clients, the indices of the entries in the

array A that are changed together with the new contents of these entries.
Using this information, each client structure is updated. Clearly, the client

array can be updated in time proportional to the number of changed

entries. So in our notation we have F(n)=O(C(n)) and G(n)=O(C(n)).

Note that the client structures do not need to contain the stack FE of free

array indices: the entire memory management is arranged by the central
structure. Clearly, at each moment the client structure is up-to-date and,

hence, it can be used to answer queries.

THEOREM 8. Let DS be a client structure solving some searching

problem, with complexity S(n), Q(n) and C(n). Let DS' be the corresponding

central structure, with complexity S'(n) and U'(n). We can transform these

structures into a multiple representation, such that each client structure

1. has size O(S(N)),

2. has a query time bounded by O(Q(n)),

3. has F(n)=O(C(n)),

4. hasG(n)=O(C(n)),

\\'here N is the maximal number of objects that can be represented by the

structures, and n is the current number of objects. Furthermore, the central

structure has si::e O(S' (N)), and its update time is bounded by 0(U'(n)).

Proof The size of the central structure is bounded by O(S'(N)) for the

array A', and by 0(IFEI +I FE'I) = O(S'(N)) for the stacks. Hence the total
size of the central structure is bounded by O(S'(N)). The other bounds

follow from the above discussion. I
If we know in advance that the number of objects does not vary too

much, this will be an efficient solution. If, however, the number of objects

becomes too large, after a number of insertions, our arrays will become too
small. Similarly, after a number of deletions, a large part of the arrays will

become empty, and so the amount of space will become too large. In these
cases the solutions, of course, is to rebuild the structures.

6.3. An Efflc·ient Average Case Solution

Suppose that the data structures initially represent n objects. We store

224 SMID ET AL.

each structure in an array that can store a data structure of ~n objects. In
this way there is space in the structures for n/2 insertions. So in the nota
tion of the preceding subsection, we take N = ~n. The client structure con
sists of the array A of length S(N). The central structure contains the array
A' of length S'(N), and the stacks FE and FE'. The information is stored
in these data structures as in the previous subsection, and updates are per
formed in exactly the same way. As soon as the number of objects becomes
either ~n or ~n, we rebuild our data structures. That is, if m is the number
of objects at that moment, we build a new array A' and new stacks FE and
FE', that are large enough to contain a data structure for ~m objects, and
we send the subarray containing the first S(~m) entries of A '-this subarray
will be the new client structure A--to the clients, where this new array
replaces the old one. Then we proceed in the same way.

THEOREM 9. Let DS he a client structure solving some searching
problem, ll'ith complexity S(n), Q(n), and C(n). Let DS' he the correspond
ing central structure, with complexity S'(n) and U'(n). We can transform
these structures into a multiple representation, such that each client structure

I. has size O(S(n)),

2. has a query time hounded hy O(Q(n)),

3. has F(n) = 0(C(n)), on the average,

4. has G(n) = 0(C(n)), on the average.

The central structure has size O(S'(n)), and its average update time is
hounded hy 0(U' (n)).

Proof: The bounds on the amount of space used by the structures
follow from Theorem 8, and from the fact that N--the maximal number
of objects that can be represented-and n-the current number of
objects-satisfy n = 8(N). Clearly, the query time for a client structure
remains 0(Q(n)). Since the structures are rebuilt at most once every n/2
updates, the average values of both F(n) and G(n) are bounded by
O(C(n)+S(n)/n), which is O(C(n)) by Lemma 1. Rebuilding of the new
central structure takes O(P'(n)) time for A' and O(S'(n)) time for the two
stacks. So the average update time of the central structure is bounded by
O(U'(n)+P'(n)/n+S'(n)/n), which is O(U'(n)) by Lemma l. I

Remark. The rebuilding of the new central array A' cannot be per
formed by just walking along the old array and putting the entries into a
new one of size S' (~m): we have to take care that the pointers keep their
correct meaning. Therefore we charged in the above proof O(P'(n)) time
for this rebuilding, which is clearly an upper bound.

MAINTAINING MULTIPLE REPRESENT A TI ONS 225

6.4. An Efj'icient Worst Case Solution

In this subsection we assume that the update time U'(n) of the central
structure and the amount of data C(n) that an update changes in the client
structure are worst case bounds. We show how the average case bounds of
the preceding section can be made into worst case bounds. The idea is to
spread out the construction of the new structures over a number of
updates. The technique is related to the global rebuilding technique given
in (Overmars, 1983).

Let m be the number of objects initially represented by the data
structures. Let I be an integer, such that ~m:::; l:::; 3m. We first describe the
update algorithm for the client structure; later we consider the central
structure. The client structure consists of the array A of length S(l), as
before.

Consider a sequence of m/2 updates. (Note that the array A has space
for at least m/2 new objects.) We split this sequence into three phases.

First phase. The first phase consists of the first m/4 updates. These are
performed as before. That is, the changes of the client structures, together
with the positions in the array A, where the changes have to be carried out,
are sent to them, and using the received information, each client structure
is updated. So after the first phase, the client structures are up-to-date.

Let m0 be the number of objects that are present after the first phase,
and let 10 = 2m 0 . (We use 10 to estimate the number of objects that are
present after the third phase.)

Second phase. The second phase consists of the next m/8 updates. These
updates are performed as in the first phase. Also, a new client array A0 is
built in the central computer during the first m/ 16 updates of this second
phase. This array has length S(/0), and it stores the client data structure as
it was after the first phase. (Later we shall describe how the central pro
cessor builds this new array; we now just assume that it is there.) This new
array is sent to the clients during the last m/16 updates of the second phase.
In each update we send an amount of O(S(/0)/m) = O(S(m)/m), which is
bounded by O(C(m)) by Lemma 1.

After the second phase, the client structure consists of an up-to-date
array A and an array A0 , containing the client structure as it was after the
first phase. We also assume that the central structure contains a list of the
updates in the second phase, i.e., a list containing the m/8 objects, and for
each object information whether it has to be inserted or deleted.

Third phase. This phase consists of the final m/8 updates. These updates
are carried out for the up-to-date client array A, as before. In order to
make the new array A. 0 up-to-date, we perform on this array with each
update, two updates from the list of updates from the second phase. (Note

226 SMID ET AL.

that these updates have to be performed in chronological order, since the
same object can be inserted and deleted several times!) Then we remove the
two updates we just carried out from the (front of the) list, and the actual
update is added at the end of the list.

After this final phase, the client array A 0 is up-to-date, and the old array
A is discarded.

So we end with a client structure consisting of an array A 0 of length
S(/0). Let n be the number of objects that are represented by the structures
at this moment. If we can show that ~n :%; 10 :%; 3n, then we are in the same
situation as the one we started with, and hence we can proceed in the same
way.

At the beginning the data structures represented m objects, and after the
first m/4 updates there were m0 objects. It follows that

After the third phase, i.e., after another m/4 updates, there are n objects.
Hence

Clearly, m and n are related by

It follows that

and

10 = 2m 0 ~ 2(n + ~m) :%; 2n + n = 3n,

which shows that we are indeed in the same situation as at our starting
point.

The central structure consists of two copies of each of the structures A',
FE, and FE', and one copy of a list l (we use the notations of the preced
ing subsection). All m/2 updates are carried out on one of A', FE, and FE'.
Hence at each moment the central structure contains an up-to-date data
structure. In the second phase, in each update we add the object together
with information whether it has to be inserted or deleted, to the list l.

It remains to describe what happens to the other structures A', FE, and
FE'. In the first phase, the updates are performed on these structures as
usual. During the first m/16 updates of the second phase we convert them
into new structures A~, FE0 , and FE;). Here A~ is an array of length S'(/0)

that will contain the data structure as it is at the beginning of the second

MAINTAINING MULTIPLE REPRESENTATIONS 227

phase, and FE0 and FE;i are the corresponding stacks of free entries in this
new array. This converting can be performed in O(P'(/0) + S'(i0)) =
O(P'(m) + S'(m)) = O(P'(m)) time. In each of the m/16 updates we do an

amount of 0 (P' (m)/ m) of this converting. It follows from Lemma I that the

update time for the central structure remains O(U'(n)+P'(m)ml=

0(U'(n)), where n is the current number of present objects.

During the next m/16 updates of the second phase, the first 5(/0) entries

of the array A~----which contain the new client array A 11~are sent to the

clients, as described above. Also, the structures A~, FE0 , and FE~ are

copied; each update we do an amount of O(S'(m)/m)=O(U'(m))=

O(U'(n)) work. During the third phase, we perform with each update. two

updates from the list L, on both copies of each of the structures A;1• FE0 ,

and FE;), and we add the actual update at the end of L (Again we remark

that the updates have to be carried out in chronological order.) After this

third phase, the structures A', FE, and FE' are discarded. We end with two

copies of each of the structures A~, FE0 , and FE;1. Hence we are in the

same situation as before the first phase.
Before we summarize the result, we remark that a client structure

contains at any moment an up-to-date data structure, that can be used to

answer queries.

THEOREM 10. Let DS he a client structure solving some searching

problem, with worst case complexity S(n), Q(n), and C(n). frt DS" he the

corresponding central structure, with worst case complexity S'(n) and l/(n l.

We can transform these structures into a multiple represen1a1ion, sud1 tha1

each client structure

I. has size O(S(n)),

2. has a query time bounded hy O(Q(n)),

3. has F(n) = 0(C(n)), in the worst case,

4. has G(n) = O(C(n)), in the worst case.

The central structure has size O(S'(n)), and its worst case update timl! is

hounded by 0(U' (n)).

Proof The size of the central structure is bounded by O(S'(n) + nl =

O(S'(n)), where the O(n) term is due to the list of updates. The rest of the

proof follows from the above discussion. I

7. EXAMPLES

As we have seen in Section 6, we can bound the update time for the

client structures by O(C(n)), which is the size of the changes in the struc-

228 SMID ET AL.

ture. Hence our goal is to design structures for searching problems for
which C(n) is small. It is not important whether the changes can be found
efficiently (although this would make the amount of work on the central
structure small).

7.1. Binary Search Trees

Most classes of balanced binary search trees, such as AVL-trees, BB[a]
trees, etc., have the property that in an update O(log n) rotations are
necessary to rebalance them. Hence for such trees, an update changes
O(log n) nodes. Binary trees from the class of aBB-trees, as introduced by
Olivie (1980, 1981, 1982), however, have the interesting property that they
can be maintained in logarithmic time, by at most a constant number of
rotations (if a E { 1. t}). (See also Guibas and Sedgewick, 1978 and Tarjan,
1983.)

So let T be an aBB-tree, where a E O. t}, without the balance informa
tion at the nodes. Suppose T contains a set of n objects in its nodes. In this
tree, member queries can be solved in O(log n) time. By the above men
tioned result of Olivie, we can maintain T by means of 0(I) rotations.
Hence an update changes only 0(I) nodes in T. (Note that if the tree
would contain balance information, an update would change O(log n)
nodes, since then the balance information would have to be updated.)
Applying Theorem 10, we get

THEOREM 11. For sohiing the member searching problem, there exists a
client structure with complexity

I. S(n) = O(n),

2. Q(n) = O(log n),

3. F(n) = 0(1),

4. G(n) = 0(1).

The central structure has size O(n), and can be maintained in O(log n) time.

In the solution given above, we stored the objects in the nodes of the
tree. There are applications, however, in which we want to store the objects
in sorted order in the leaves of the tree. Then, in order to be able to search
in the tree, we have to store information in the internal nodes to guide
these searches (in each node we must decide in some way whether we
proceed to the left or to the right son). Suppose we store in each node the
maximal element in its subtree. Clearly, we can use this information to
solve member queries in time proportional to the longest path in the tree.
If we now delete the maximal element in the tree, then in each node on the
rightmost path the search information has to be changed. Therefore, if the

MAINTAINING MULTIPLE REPRESENTATIONS 229

tree is balanced, an update changes O(log n) nodes. So we have to be care
ful regarding the '"search information" that is stored in the internal nodes.

Suppose now that we store in each internal node i:, the maximal element
in the left subtree of v. Note that this maximal element is stored in the
unique leaf that is reached by making one step to the left in node t',

followed by a maximal number (possibly none) of steps to the right. It is
not difficult to prove that in this case an update changes 0(I) nodes, if we
do not rebalance the tree. (The search information in a node is changed iff
the maximal element in its left su btree is changed.)

So let T be an o:BB-tree, containing a set of n elements in sorted order
in its leaves, without balance information. Each internal node contains the
maximal element in its left subtree. Then, in T member queries can be
solved using the search information of the internal nodes in O(log n) time.
Now let o: E { L ~}. Then it follows from the above that an update changes
only 0(1) nodes in T. Applying Theorem l 0, we get

THEOREM 12. For soh:ing the member searching problem, we can rake j(1r

the client structures a lea(search tree, having complexity

1. S(n)=O(n),

2. Q(n) = O(log n),

3. F(n) = 0(1),

4. G(n) = 0(1).

The central structure has si:::e O(n), and can be maintained in O(log n) time.

In the next subsection we shall use o:BB-trees to design an efficiently
maintainable class of data structures solving the orthogonal range search
ing problem.

7.2. Range Trees

The orthogonal range searching problem, was mentioned in Section 5.
Bentley (1979), Lueker (1978), and Willard and Lueker (1985) designed an
efficient data structure for this problem, the so-called range tree. In the
following definition we modify the balance conditions of these range trees
somewhat. (For the definition of BB[:x]-trees, we refer the reader to
Nievergelt and Reingold, 1973 and Blum and Mehlhorn, 1980.)

DEFINITION 3. Let S be a set of points in the d-dimensional euclidean
space. A d-dimensional range tree T, representing the set S, is defined as
follows:

1. If d= 1, then T is an o:BB-tree, containing the points of Sin sorted
order in its leaves.

230 SMID ET AL.

2. If d > 1, then T consists of a BB [a']-tree, called the main tree, con
taining in its leaves the points of S, ordered according to their first coor
dinate. Each node v of this main tree contains an associated structure,
which is a (d- 1)-dimensional range tree for those points of S that are in
the subtree rooted at v, taking only the second to dth coordinate into
account.

So in our notion of range trees there are two kind of binary trees. The
trees representing points in multi-dimensional space belong to the class of
BB[a']-trees, and the trees representing one-dimensional points belong to
the class of cxBB-trees. All trees are used as leaf search trees.

Let T be a d-dimensional range tree, and suppose we want to insert or
delete a point p. Then we search with p in the main tree to locate its posi
tion among the leaves, and we insert or delete pin all the associated struc
tures we encounter on our search path (if these associated structures are
one-dimensional range trees, we apply the update algorithm for cxBB-trees
using rotations; otherwise we use the same procedure recursively). Next we
insert or delete p among the leaves in the main tree, and we walk back to
the root. During this walk, we rebalance the main tree: each node that is
out of balance is rebalanced by means of rotations. Note that we have to
rebuild the associated structures of the nodes that are involved in these
rotations, and this will take a lot of time when these structures are large.
It turns out, however, that the average update time is low.

The following theorem gives the complexity of range trees. For a proof,
we refer the reader to (Bentley, 1979; Lueker, 1978; Overmars, 1983;
Willard and Lueker, 1985).

THEOREM 13. Let S be a set of n points in d-dimensional space. Then a
d-dimensional range tree, representing the set S, has size O(n(log n)J 1), and
can be built in O(n(log n)J 1) time. In this tree, updates can be performed
in time O((log n)d) on the average, and orthogonal range queries can be
solved in time O((log n)J + t), where t is the number of reported answers,
without using the balance information stored at the nodes.

Let T be a d-dimensional range tree for a set of n points, without the
balance information. We store in internal nodes of the trees search informa
tion as in Subsection 7.1. We take for the one-dimensional structures
:xBB-trees with ex E { !, ~ }. Let C(n, d) denote the average number of nodes
that are changed in Tin an update.

LEMMA 2. C(n, d) = O((log n)d - 1).

Proof We have seen in Subsection 7.1 already that C(n, 1) = 0(1). Let
d> I. To perform an update we start in the root of the main tree, and we

MAINTAINING MULTIPLE REPRESENTATIONS 231

update its associated structure. This changes on the average at most
C(n, d - I) nodes. Then we repeat the same procedure for the appropriate
son of the root, which is the root of a range tree for at most (1 - a')n
points. Hence this changes on the average at most C((1 - a')n, d) nodes. If
the root of the main tree gets out of balance, we perform a rotation and,
hence, we have to rebuild the associated structures of the sons of the root.
Since these associated structures are (d- 1)-dimensional range trees, this
changes O(n(logn)"- 2) nodes. It was shown by Blum and Mehlhorn
(1980) that for a proper choice of a' the root of the main tree gets out of
balance at most once every Q(n) updates. Hence the average number of
nodes that are changed due to our visit to the root of the main tree is
bounded by 0((log n)" - 2). It follows that C(n, d) satisfies the following
recurrence:

C(n, d) ~ C(n, d- 1) + C((I - a') n, d) + O((log n)"- 2).

This proves the lemma. I

So we have a class of range trees that can be maintained in time
O((log n)") on the average, whereas in the structures without balance infor
mation an update changes only 0((log n)"- 1) nodes, also on the average.
Hence, by Theorem 9, we have

THEOREM 14. For solving the orthogonal range searching problem, there
exists a client structure with complexity

1. S(n) = O(n(log n)"- 1),

2. Q(n) = 0((log n)" + t), where t is the number of reported answers,

3. F(n) = O((log n)"- 1) on the average,

4. G(n) = O((log n)" - 1) on the average.

8. CONCLUSIONS

We have studied the problem of maintaining multiple representations of
dynamic data structures: Suppose there are a number of processors, each
containing the same data structure. Then updates have to be performed in
all these structures. In order to save time, we first "preprocess" the update
in a central structure. Then we broadcast information about the update to
the processors, and using this information, each of these processors updates
its structure.

In this way there are two different types of structures. First there are the
client structures, that are stored in the processors. These client structures

232 SMID ET AL.

contain information such that queries can be answered efficiently. Also,
preprocessed updates can be carried out fast on these client structures. The
other structure is the central structure, in which the updates are prepro
cessed. We have shown that it is not necessary that the client structures are
exact copies of the central structure. For example, often a dynamic data
structure contains information that is only used for efficiently updating it.
Since the client structures can use the information gathered during the
update of the central structure, they do not need to have this information
in their structure. A typical example is a dynamic data structure that main
tains the answer of an order decomposable set problem. The main part of
this structure is used to perform updates, whereas only a relatively small
part of it contains the answer to the set problem.

We have given a powerful general technique that solves the multiple
representation problem, such that a client structure can be updated in time
proportional to the size of the changes in this structure. As an example, we
have shown that there is a class of range trees that can be maintained in
0((log n)d) time, whereas in the version of this tree containing no balance
information, only 0((log n)d ·· 1) nodes are changed in an update. Hence by
applying this general technique, we can maintain the client version of the
range tree in O((log n)d - 1) time.

There remain several problems and directions for further research:
In order to apply our general technique, data structures are needed for

which C(n)-the amount of data that is changed in an update-is small. It
would be interesting to have more examples of such data structures.

In the present paper, we performed single updates in the data structures.
Is it possible to carry out sets of updates more efficiently, than by just
performing them one after another?

We have seen some technioues to solve the multiple representation
problem for decomposable searching problems. It might be possible to
design other schemes for these problems.

Finally, one could investigate other multiple representation problems.
For example, what should be done if the client structures do not necessarily
have to represent the same set of objects?

ACKNOWLEDGMENTS

We thank the referees for useful comments which helped to improve the presentation of this
paper.

RECEIVED July 13, 1988; AC'C'EPTED January 12, 1989

MAINTAINING MULTIPLE REPRESENT A T!ONS 233

REFERENCES

BENTLEY J. L., (l 979), Decomposable searching problems, ft1fi>rm. Process. Lell. 8, 244-25 l.

BENTLEY, J. L., AND SAXE, J. B. (1980), Decomposable searching problems. I. Static to
dynamic transformations, J. Algorithms 1, 301· 358.

BLUM, N., AND MEHLHORN, K. (1980), On the average number of rebalancing operations in
weight-balanced trees, Theore/. Comput. Sci. 11, 303--320.

GUIBAS, L. J, AND SEDGEWICK, R. (1978), A dichromatic framework for balanced trees, in
"Proceedings, 19th Annual IEEE Symposium on Foundations of Computer Science,"
pp. 8-21.

KIRKPATRICK, D. G. (1983), Optimal search in planar subdivisions, SIAM J. Comput. 12,
28-35.

LUEKER, G. S. (1978), A data structure for orthogonal range queries, in "Proceedings, 19th

Annual IEEE Symposium on Foundations of Computer Science," pp. 28-34.
NIEVERGELT, J., AND RE1Nc;ow, E. M. (1973), Binary search trees of bounded balance, SIAM

J. Compul. 2, 33-43.

Ouvrt, H. J. (1980), "A Study of Balanced Binary Trees and Balanced One-Two Trees,"

Ph.D. thesis, Department of Mathematics, University of Antwerp, Belgium.
OuvrE. H.J. (1981), On a-balanced binary search trees, in "'Proceedings, 5th GI-Conference,"

Lecture Notes in Comput. Sci., Vol. 104, pp. 98--108, Springer-Verlag, New York/Berlin.

OuvrE, H. J. (1982), A new class of balanced trees: Half balanced binary search trees, RA I RO
lnfimn. Theor. Appl. 16, 51 71.

OVERMANS, M. H. (1983), '"The Design of Dynamic Data Structures," Lecture Note in

Comput. Sci., Vol. 156, Springer-Verlag, New York/Berlin.
OvERMARS, M. H., AND SMID, M. H. M. (1988), Maintaining range trees in secondary

memory, in '"Proceedings, 5th Annual STACS," Lecture Notes in Comput. Sci., Vol. 294,
pp. 38- 51, Springer-Verlag, New York/Berlin.

OVERMARS, M. H., SMID, M. H. M., DE BERG, M. T., AND VAN KREVELD, M. J. (1987),

"Maintaining Range Trees in Secondary Memory, Part I: Partitions," Report FVl-87-14,
Department of Computer Science, University of Amsterdam.

PREPARATA, F. P., ANO HONG, S. J. (1977), Convex hulls of finite sets of points in two and
three dimensions, Comm. ACM 20, 87-93.

SMID, M. H. M., TuRENVLIET, L., VAN EMDE BoAs, P., AND OVERMARS, M. H. (1989), Two
models for the reconstruction problem for dynamic data structures, f. 111/i1rm. Process.
Cyhernet. EIK 25, 131-·155.

TARJAN, R. E. (1983), Updating a balanced search tree in 0(1) r ,tations, lnjimn. Process.
Lm. 16, 253--257.

WILLARD, D. E .. AND LUEKER, G. S. (1985), Adding range restriction capability to dynamic
data structures, J. Assoc. Comput . .l>fach. 32, 597-·617.

