A Note on Almost-Everywhere-Complex Sets
and Separating Deterministic-Time-Complexity
Classes

J.G. Geske, D.T. Huynh, and J.I. Seiferas

Technical Report 270
January 1989

UNIVERSITY OF

ROCHESTER

COMPUTER SCIENCE

A Note on Almost-Everywhere-Complex Sets
and Separating Deterministic-Time-Complexity Classes

John G. Geskef
Department of Computer Science
Michigan State University
East Lansing, Michigan 48825
geske@cpswh.cps.msu.edu

Dung T. Huynhi
Computer Science Department
University of Texas at Dallas
Richardson, Texas 75083-0688

huynh@utd.edu

Joel 1. Seiferas
Computer Science Department
University of Rochester
Rochester, New York 14627
joel@cs.rochester.edu

January 3, 1989

Abstract. For each time bound T {input strings} — {natural num-
bers} that is some machine’s exact running time, there is a {0, 1}-valued
function fr that can be computed within time proportional to 7', but
that cannot be computed within:any time bound 7" that is infinitely often
significantly smaller than T (T # 2(T), typically). Equivalently, every
algorithm to compute fr requires time 7" on almost every input if T" is
almost everywhere significantly smaller than T (7" = o(T"), typically).

1. Introduction

The construction by diagonalization of {0, 1}-valued functions (or, equivalently,
of the sets or “languages” they characterize) of accurately known complexity was an
early focus of complexity theory. Although the results are generally assumed to be
complete and well understood, some misunderstandings and confusion still endure,
especially in the case of time complexity. With this note, we aim to clear up the
misconceptions and to present a definitive proof of the tightest such construction.

Part of the confusion stems from the (obvious) fact that, for functions, simplic-
ity and complexity are not complementary notions. That a function cannot always

f This author was supported in part by the National Science Foundation under grant
DCR 88-11996.

i This author was supported in part by the National Science Foundation under grant
DCR 85-17277.

be computed in time n?, for example, does not imply that it always requires time n?,
but only that it sometimes does.

Since, in most natural models of computation, programs can be patched to run
fast on any finite number of inputs (for unnatural models, see [Smith, 1988]), the
appropriate notions above are not quite “always” and “sometimes”. Instead, they
are “always, except in some finite number of cases” and “in infinitely many cases”,
respectively. The respective adverbial phrases we use when discussing functions
and their complexities are almost everywhere and infinitely often. The “complexity
classes” we usually define are sets of functions (or of the sets characterized by them)
that are almost everywhere easy. (Stearns [1988] concedes that “simplicity classes”
might have been a less misleading choice for the terminology.) Nonmembership in
a complexity class implies only “infinitely-often complexity”, and not the stronger
“almost-everywhere complexity” [Gill and Blum, 1974].

An additional, more artificial impediment to clarity in the construction of
almost-everywhere-complex functions has been the widespread acceptance of the
convention to measure complexity in terms of input “length” (taking the worst
case), rather than in terms of the particular input. Since, in a typically robust
model, we expect to concede the possibility of constant-factor speedup, the tightest
separation results easily conceivable in these terms are of the form, “There is a
function computable within time T'(n), but not computable within time 7”(n) if
g(T"(n)) # £2(T(n)),” for some barely linear function g. Such results are reported
by Hartmanis and Stearns [1965] (where g(t) = ¢?), by Hennie and Stearns [1966]
(where g(t) = tlogt), and by Cook and Reckhow [1973] (where g(t) = t), where

!

the conditions on T" are stated in more classical terms: “linrgiolgf % =0.” Al-
though it follows from such a result that the witness function cannot be computed
quickly, in the worst-case sense, on any infinite set of lengths, it does not follow that
it cannot be computed quickly on any infinite set of particular inputs—unless the in-
put alphabet is a singleton, so that there is just one input of each length. It follows
that a key to the clean construction of almost-everywhere-complex {0, 1}-valued
functions is either to work with a single-letter input alphabet, or, equivalently, to
measure complexity in terms of particular inputs, the approach in fact used suc-
cessfully by Meyer and McCreight for space complexity [Meyer and McCreight,
1971], and by Rabin [1960] and Blum [1967] before them for coarser and more gen-
eral results. When this insight has been overlooked, the result has been awkward
constructions and unnecessarily weak results.

Even armed with the latter insight, one finds tight time diagonalization more
difficult than tight space diagonalization, partly because space can be used over and
over again, in a leisurely manner, whereas time apparently cannot. For the purposes
of diagonalization, however, there is a trick that has essentially the effect of making
time reusable (see the proof of Theorem 2’ in [Seiferas, Fischer, and Meyer, 1978]).
This leads to tight diagonalization results such as those mentioned in Appendix I
of [Seiferas, 1974] and those spelled out below.

2. The Generic Construction

The diagonalization strategy is the same “looking back” or “delayed diago-
nalization” strategy that is usually used (including in the works already cited) to
construct almost-everywhere-complex functions. To avoid obscuring the essential
simplicity and versatility of the construction, we will present it at a high level,
leaving the machine model unspecified for now. For a particular machine model, at

2

least some concrete implementation will usually be obvious. In Section 3, we will
point out some of the most efficient implementations.

Let T be the exact running time of any particular machine or algorithm that
always halts. (Such a time bound is often called “honest” or “constructible”.)
Within time O(T(z)) (shorthand for “at most some constant times” T'(z)), we
compute a {0, 1}-valued function of z by downward diagonalization, as follows:

1. Calculate T'(x).
2. Fori=1,2,3, ..., successively, do the following:

(a) Spend |T'(xz)/2| steps recursively reviewing computations by this program
on inputs preceding in lexicographical order.

(b) If ¢ was not discovered in step 2(a) to have been “cancelled” on any earlier
input, then “attack” i as follows: Spend |T'(z)/2'| steps efficiently simu-
lating the ¢-th program on input . If a halt is discovered, then differ from
the outcome, “cancel” 7, and halt.

3. If this step is reached, then (arbitrarily) output 0, and halt without cancelling
any integer.

Claim 1. Under the right assumptions, this program can be made to run within

time O(T'(z)).

Claim 2. Under the right assumptions, no program can compute the same function
within any time bound T"(z) that is infinitely often significantly smaller than T'(zx).

The proof of Claim 1 is straightforward for any reasonable programming lan-
guage or model of computation. Note that sum of the successively halved time
allocations does converge to only some constant times the first one.

The proof of Claim 2 is by contradiction. For the sake of argument, suppose
the k-th program does compute the same function within a time bound 7”(z) that
is infinitely often significantly smaller than T'(z). Then k must never get cancelled.
For each j < k that does get cancelled, let h(j) be the number of steps it takes the
recursive review to discover the “earliest” cancellation of j (i.e., the cancellation
on the lexicographically earliest input). Consider an input z so long that every
j < k that ever gets cancelled does so on some input shorter than z, such that
|T(z)/2%| > h(j) for each such j, and such that |T(z)/2*] is enough time for the
efficient simulation of the k-th program on input z. Consider the computation by
the program on this z. Note that the program does reach stage ¢ = k, and that it
does then successfully cancel k, a contradiction.

Note that, for reasonable models of computation, the main issue above is the
time required for the “clocked universal simulation” in step 2(b). The efficiency of
the recursive review does not matter.

3. Concrete Implementations

As a first application, consider the random-access machine of Cook and Reck-
how [1973]. Cook and Reckhow show that, except at exceptionally low complexity
levels,! clocked universal simulation requires only linear time, regardless of cost
criterion. Therefore, we get the tightest possible result:

Theorem 1. If T(z) is the exact running time of some random-access machine,*
then there s a {0, 1}-valued function computable by a random-access machine within

1 Under the unit- and logarithmic-cost criteria, respectively, we must have T'(|z]) =

2(]2]) and T(|z]) = 2(|=|log |=]).

time O(T'(z)), but not computable by any random-access machine within time T"'(x)
unless T'(z) = 2(T(x)).

This tightens the result of Cook and Reckhow, who measure complexity in terms
of length, and who work with a binary alphabet, thus not getting an almost-
everywhere-complex characteristic function. The following reformulation makes it
clear that we do get an almost-everywhere-complex function.

Corollary 1. If fr is the witness function in Theorem 1, and if T'(z) = o(T(x)),
then every random-access machine that computes fr uses time exceeding T'(z) al-
most everywhere.

(The little-o notation is shorthand for “almost everywhere less than any positive
fraction of”, so that the condition above is just “limjy|—.co T'(z)/T(z) = 0” in more
classical terms.) Each result below has an analogous reformulation.

For Turing machines, the most obvious way to perform clocked universal sim-
ulation is to endow the simulator with one more tape than any simulated machine.
This yields a mixed result:

Proposition 1. If T(z) is the ezact running time of some (k + 1)-tape Turing
machine, then there is a {0, 1}-valued function computable by a (k + 1)-tape Turing
machine within time O(T(z)), but not computable by any k-tape Turing machine
within time T'(z) unless T'(z) = 2(T'(z)).

There is an obvious patch for Turing machines all with one fixed number of tapes:
For a clocked universal simulation, maintain a counter in binary on one of the
tapes, and shift the whole counter whenever that tape’s head shifts. The extra time
is logarithmic in the counter’s contents, and hence certainly in T'(z), on each step.
We state the result only for single-tape machines:

Theorem 2. IfT(x) is the ezact running time of some single-tape Turing machine,
then there is a {0, 1}-valued function computable by a single-tape Turing machine
within time O(T(z)), but not computable by any single-tape Turing machine within
time T'(z) unless T'(z)logT'(z) = 2(T(z)).

Like Theorem 1, this tightens an early infinitely-often complexity result [Hartmanis,
1968]. It also properly subsumes an unpublished almost-everywhere complexity
result obtained by wpward diagonalization [Fich and Goldwasser, 1981].

For Turing machines with a larger fixed number of tapes, we can do even better,
thanks to a result of Fiirer [1984]. By this result, for each k£ > 2, k tapes suffice for a
linear-time simulation of k tapes and a counter, so that clocked universal simulation
of k-tape machines by k-tape machines requires only linear time. This yields the
best possible result again:

Theorem 3. For k > 2, if T(x) is the ezact running time of some k-tape Tur-
ing machine, then there is a {0, 1}-valued function computable by a k-tape Turing
machine within time O(T(z)), but not computable by any k-tape Turing machine
within time T'(x) unless T'(z) = 2(T(z)).

Combining this with the well known simulation of any multitape machine by a two-

tape machine [Hennie and Stearns, 1966; Hopcroft and Ullman, 1979 (Section 12.2)],
we get a good result for general multitape Turing machines:

Theorem 4. For k > 2, if T(z) is the ezact running time of some k-tape Turing
machine, then there is a {0,1}-valued function computable by a k-tape Turing ma-
chine within time O(T(2)), but not computable by any multitape Turing machine
within time T'(x) unless T'(z)logT"(2) = 2(T(z)).

This finally tightens the early infinitely-often complexity results of Hartmanis, Hen-
nie, and Stearns [Hartmanis and Stearns, 1965; Hennie and Stearns, 1966], and

4

its reformulation (analogous to Corollary 1 above) properly subsumes the almost-
everywhere versions reported in [Geske and Huynh, 1986] and [Geske, Huynh, and
Selman, 1987].

For Turing machines with multidimensional tapes, the results analogously ob-
tained are not as tight. The most efficient clock-maintenance technique that is
known to adapt is Paul’s [1979], and the most efficient simulations among the vari-
ants of the multidimensional Turing machine are Loui’s [1982, 1984].

4. Further Discussion

Balcazar and Schoning [1985] relate almost-everywhere complexity to a notion
of relative “bi-immunity”. An infinite language L is bi-immune for the language
class C if neither L nor its complement has an infinite subset that belongs to C. If C
is the complerxity class of languages characterizable within an appropriate running
time T'(z), then bi-immunity of L for C turns out to mean precisely that every
machine characterizing L uses time exceeding T'(z) almost everywhere. Therefore,
Corollary 1 and the corollaries of the other results in Section 3 yield a variety of
bi-immune languages. For further developments along this line, see [Geske, 1987].

Sometimes separation results obtained by diagonalization can be tightened by
“translational” methods [Ruby and Fischer, 1965; Hopcroft and Ullman, 1979 (Sec-
tion 12.5)]. It can be shown, for example, that some multitape Turing machine
can compute in time O(2"y/n) a {0, 1}-valued function that cannot be computed
in time O(2") by any such machine, even though this does not follow from our
Theorem 4 above. Unfortunately, however, the translational methods do not yield
functions that are complex almost everywhere, for the following reason: From a con-
trary supposition of nonseparation, the techniques derive and chain together enough
“translated” versions of the nonseparation supposition to contradict already known
separation results. The translated versions chain together successfully because they
are all of the form “almost-everywhere easy implies almost-everywhere a little eas-
ier”. In our setting, however, the contrary supposition and its translated versions
would be of the weaker form “almost-everywhere easy implies infinitely-often a little
easier”, so that they would not chain together.

Separating nondeterministic-time-complexity classes is more challenging. The
only respectably tight results [Cook, 1973; Seiferas, Fischer, and Meyer, 1978;
Zak, 1983] rely again on translational methods, and hence do not yield almost-
everywhere-complex witnesses. There is a need for some new way to produce
almost-everywhere-complex sets that bear witness to such tight separation results.

Acknowledgments. We thank Eric Allender, Jim Royer, John Case, Alan Selman, and
Peter van Emde Boas for their comments and suggestions.

References

J. L. Balcazar and U. Schoning, Bi-immune sets for complezity classes, Math-
ematical Systems Theory 18, 1 (June 1985), 1-10.

5

M. Blum, A machine-independent theory of the complexity of recursive func-
tions, Journal of the Association for Computing Machinery 14, 2 (April 1967),
322-336. :

S. A. Cook, A hierarchy for nondeterministic time complexity, Journal of
Computer and System Sciences 7, 4 (August 1973), 343-353.

S. A. Cook and R. A. Reckhow, Time bounded random access machines, Jour-
nal of Computer and System Sciences 7, 4 (August 1973), 354-375.

F. E. Fich and S. Goldwasser, Compression and the deterministic time hierar-
chy, unpublished manuscript, May 1981.

M. Fiirer, Data structures for distributed counting, Journal of Computer and
System Sciences 28, 2 (April 1984), 231-243.

J. G. Geske, On the structure of intractable sets, Ph. D. Thesis, lowa State
University, Ames, lowa, 1987.

J. G. Geske and D. T. Huynh, Hierarchies of almost everywhere complezr sets,
Technical Report 86-05, Department of Computer Science, lowa State University,
Ames, Towa, April 1986.

J. G. Geske, D. T. Huynh, and A. L. Selman, A hierarchy theorem for almost
everywhere complezr sets with application to polynomial complezity degrees, 4th An-
nual Symposium on Theoretical Aspects of Computer Science, Lecture Notes in
Computer Science 247, Springer-Verlag, Berlin, 1987, pp. 125-135.

J. Gill and M. Blum, On almost everywhere complex recursive functions, Jour-
nal of the Association for Computing Machinery 21, 3 (July 1974), 425-435.

J. Hartmanis, Computational complexity of one-tape Turing machine compu-
tations, Journal of the Association for Computing Machinery 15, 2 (April 1968),
325-339.

J. Hartmanis and R. E. Stearns, On the computational complezity of algorithms,
Transactions of the American Mathematical Society 117, 5 (May 1965), 285-306.

F. C. Hennie and R. E. Stearns, Two-tape simulation of multitape Turing ma-
chines, Journal of the Association for Computing Machinery 13, 4 (October 1966),
533-h46.

J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory, Languages,
and Computation, Addison-Wesley, Reading, Massachusetts, 1979.

M. C. Loui, Simulations among multidimensional Turing machines, Theoreti-

cal Computer Science 21, 2 (November 1982), 145-161.

M. C. Loui, Minimizing access pointers into trees and arrays, Journal of Com-
puter and System Sciences 28, 3 (June 1984), 359-378.

A. R. Meyer and E. M. McCreight, Computationally compler and pseudo-ran-
dom zero-one valued functions, in: Theory of Machines and Computations, Z. Ko-
havi and A. Paz, editors, Academic Press, New York, 1971, pp. 19-42.

W. J. Paul, On time hierarchies, Journal of Computer and System Sciences
19, 2 (October 1979), 197-202.

M. O. Rabin, Degree of difficulty of computing a function and a partial ordering
of recursive sets, Technical Report No. 2, Hebrew University, Jerusalem, Israel,
April 25, 1960.

S. Ruby and P. C. Fischer, Translational methods and computational complez-
ity, IEEE Conference Record on Switching Circuit Theory and Logical Design, 1965,
pp. 173-178.

J. 1. Seiferas, Nondeterministic tzme and space complexity classes, Ph. D. The-
sis, Massachusetts Institute of Technology, Cambridge, Massachusetts, September
1974.

J. 1. Seiferas, M. J. Fischer, and A. R. Meyer, Separaling nondeterministic
time complexity classes, Journal of the Association for Computing Machinery 25,
1 (January 1978), 146-167.

C. H. Smith, A note on arbitrarily complex recursive functions, Notre Dame

Journal of Formal Logic 29, 2 (Spring 1988), 198-207.

R. E. Stearns, Juris Hartmanis: The beginnings of computational complez-
ity, Proceedings Structure in Complexity Theory Third Annual Conference, IEEE
Computer Society Press, 1988, pp. 128-134.

S. Zak, A Turing machine time hierarchy, Theoretical Computer Science 26,
3 (October 1983), 327-333.

