
INFORMATION AND COMPUTATION 91, 1-14 (1991)

Lower Bounds for Depth-Restricted Branching Programs

MATTHIAS KRAUSE

Sektion Mathematik, Bereich Berechnungstheorie.
Humboldt-Universitiit zu Berlin, 1086 Berlin, Germany

We present a new method for proving lower bounds on the complexity of
branching programs and consider k-times-only branching programs. While
exponential and nearly exponential lower bounds on the complexity of one-time-
only branching programs were proved for many problems, there are still missing
methods of proving lower bounds for k-times-only programs (k > 1). We prove
exponential lower bounds for k-times-only branching programs which have the
additional restriction that the input bits are read k times, yet blockwise and in each
block in the same order. This is done both for the algebraic decision problem
POLYzd (n E N prime, d<n) whether a given mapping g: IF, + F, is a polynomial
over F, of degree at most d, and for the corresponding monotone problem over
quadratic Boolean matrices. As a consequence we obtain a sharp bound of order
@(n ‘log(n)) on the communication complexity of POLY:,, (SE (0, i)). Q 1991

Academic Press, Inc.

1. INTRODUCTION

One of the major goals of theoretical computer science is to investigate
the computation of Boolean functions by circuitry-based models such as
Boolean circuits, formulae, contact schemes, and branching programs. It
seems that combinatorial and counting techniques can be applied more
directly to these models than to the very complex types of Turing
machines. Therefore, circuitry-based characterizations of central complexity
classes such as NC’, L, NL, P, and NP, and techniques for proving lower
bounds on the complexity of circuitry-based models have become
increasingly important.

It is well known that nearly all sequences of Boolean functions are com-
putable only be exponential size circuits. However, the best known lower
bounds on the complexity of unrestricted circuits are linear ones for
Boolean networks [P; Bl], nearly quadratic lower bounds for contact
schemes, formulae, and branching programs [NJ and superquadratic
lower bounds for formulae over the basis (v , A , 1) [A2].

In order to gain more insight into the problem of proving lower bounds,
more restricted models have been considered such as width- or depth-
restricted formulae and branching programs, or circuits and formulae over
incomplete bases.

1
0890-5401/91 $3.00

Copyright Q 1991 by Academic Press, Inc
All rights of reproduction m any form reserved.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82597103?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 MATTHIAS KRAUSE

Today we have techniques for proving exponential lower bounds for
some models of circuits in which null-chains are forbidden. These models
are monotone circuits [R; Al; AB], circuits over the basis { A , v , -I >
without null-chains [Ku], contact schemes without null-chains [J], and
one-time-only branching programs [W; PZ; KW; Kl; A&].

But in all these cases, exponential lower bounds can be proved for those
sequences of Boolean functions which have only polynomial complexity in
the corresponding general models. Especially in the case of branching
programs, languages can be found which have exponential complexity in
the model of one-time-only branching programs but quadratic or linear
complexity even in the model of two-times-only branching programs [W;
K23. However, what is still missing are methods for proving lower bounds
on the complexity of k-times-only programs which are better than those for
the general model. We present a new method of proving lower bounds on
the complexity of branching programs (Section 3) and apply this technique
to some natural problems (Section 4). We consider, e.g., the algebraic deci-
sion problem POLYzd (n E N prime, d< n) whether a given mapping g:
IF, + 5, is a polynomial of degree at most d, and the corresponding
monotone decision problem POLY,d whether a given subset Y of [F,, x F,,
contains the graph of such a polynomial. Our technique yields exponential
lower bounds for the model of (k, *)-programs containing those programs
which read the input bits k times, yet blockwise and in each block in the
same order.

Properties of this restricted model of k-times-only programs will be dis-
cussed in Section 5. As in the general case, languages can be found which
have exponential complexity in the model of one-time-only programs and
polynomial complexity in the model of (2, *)-programs (cf. Remark 5.1).
On the other hand, among the languages with exponential complexity in
the model of (k, *)-programs for all k E N, there are examples which can
be computed by linear size oblivious 2-times-only programs, as well as
languages with quadratic complexity in the model of one-time-only
programs (cf. Remarks 5.2 and 5.3).

For all kE N, (k, *)-programs of bounded width are not more powerful
than (1, *)-programs (cf. Remark 5.4). This fact is not true for general
k-times-only programs (cf. Remark 5.5).

Nondeterministic branching programs of bounded width and polynomial
size which are one-time-only programs with regard to the nondeterministic
variables compute exactly those languages of NC1 [B; M J. However, all
languages in NP can be computed by polynomial size nondeterministic
branching programs of bounded width which are one-time-only programs
with regard to the deterministic and (2, *)-programs with regard to the
nondeterministic variables [M].

Using a theorem of MEHLHORN-SCHMIDT our technique leads

DEPTH-RESTRICTED BRANCHING PROGRAMS 3

immediately to lower bounds on the communication complexity
COMM(f) of Boolean functions 5 This complexity measure was firstly
discussed by Yao [Y] and corresponds to the amount of information
transfer necessary to compute the function.

Lower bounds on communication complexity provide lower bounds
on VLSI-complexity. In particular, if A is the area and T the time of a
where-oblivious VLSI-circuit computing the function f then AT2 >,
Q((COMM(f))‘) (see, e.g., [Y]). The best lower bound on communica-
tion complexity is an Q(n2) bound for the decision whether two graphs
over n nodes are isomorphic [Y]. In Section 6 we prove a sharp bound of
order O(n -log(n)) on COMM(POLY&,).

In Section 2 basic definitions and denotations will be given.

2. BASIC DEFINITIONS AND REMARKS

For any given positive n E f+J, let X, denote a collection of n Boolean
variables {xi, x,}. B, stands for the set of Boolean functions over X,,,
i.e., B, := {f: (0, l}” --f (0, I}}.

A branching program P over X, is an acyclic, directed, and labelled
graph with a single root (a node of indegree 0) and two sinks (nodes of
outdegree 0). Each non-sink of P has outdegree 2 and is labelled by a
variable from X,,. Edges and sinks are labelled by constants from (0, 1 },
where edges leaving the same non-sink have distinct labels.

Let P be a branching program over X,. Each input vector w E (0, 1 }”
corresponds to exactly one directed path p, in P leading from the root to
one of the sinks. The path p, starts in the root. If it reaches a non-sink with
label xi E X,,, 1 6 i< n, then pw follows the edge with label wi E (0, l}.

In this way each branching program over X,, computes exactly one
Boolean function f E B,. The value f(w) is given by the label of the sink
reached by p,,,. For any branching program P we denote the number of
non-sinks in P by size(P) and the length of a longest directed path in P by
depth(P).

The set of languages that can be computed by sequences of polyno-
mial size branching programs is equal to the complexity class
LOGSPACE(nonuniform) (9) [PZ]. Thus, lower bound techniques for
branching programs can be used for the separation of L from NL, P,
or NP.

For given inputs w, w’ E (0, 1 }” we write w < w’ 8 for all i, 1 <i < n,
wi < wi. For a given subset Y of X, we denote the set of assignments of Y
by 2 ‘, i.e., 2 ’ = (c: Y -+ { 0, 1 } }. Each pair (c, c’), c E 2 ‘, c’ E 2Xn,y, of “dis-
joint” assignments defines exactly one input word w = c u c’ E { 0, 1)“. Con-
versely, for any w E { 0, 1 }“, we denote the assignment of Y which coincides

4 MATTHIAS KRAUSE

with w on Y by WI ,,, i.e., w = WI ,, u wl x,,r. Let f be a Boolean function
over X,, Y a subset of X,,, and c an assignment of Y. The subfunction f
off over the set X,\ Y of Boolean variables is defined as follows:

Letf’(c’) = f (c u c’) for all assignments c’ of X,\ Y. Let P be a branching
program over X,,. Let p= ((ul, b,), (uq, 6,)), qE N, be a path in P con-
taining the non-sinks u, , v, and leading from u, to the node o, + r, where
for all i, 1 d i < q, bi E (0, 1 } denotes the label of the edge (vi, ui+ r). We
call p consistent with the assignment c of Y if for all i, 1 < i < q, the label
x of ui is in Y and c(x) = 6,.

3. THE LOWER BOUND TECHNIQUE

Let us first formulate what we understand by the “alternation depth” of
a given branching program P over X, with regard to a fixed subset Y of
XII.

Let p = ((u,, b,), (a,, b,)), q E N, be a path in P leading from the
non-sink uI to the node vy + , of P. We write p = p, opz if there is an
index r, lbrdq, so that pl = ((q, h), (u,, b,)) and p2=

((0 r+,, b,+l), (uy, b,)). Let YS X,, and p’ be a path in P. We define p’
to be Y-polarized if there is a decomposition p’ = pi “pi of p’, so that pi
contains only non-sinks with labels from Y and pi does not contain non-
sinks with labels from Y, or vice versa. We call p’ strongly Y-polarized if
pi # 0. If a path p’ in P is Y-polarized with the corresponding decomposi-
tion p’ = pi 0 pi then we denote the first node of pi by beg(p’). If p’ is
strongly Y-polarized mid(p’) denotes the first node of pi.

For a path p in P we denote by altdepth(p, Y) the length of a shortest
decomposition of p into Y-polarized subpaths. Let altdepth(P, Y)=
max(altdepth(p, Y); p is path in P}. Let f be a Boolean function over X,r
and Y a subset of X,. We call a set Cc (0, 1)” of inputs a (A Y)-bundle
if for all distinct w, w’ E C,

(1) ~‘1 y # w’l y and ~11 x,\y # w’I~,,~~ and

(2) f(w)=f(w’)=L butf(~l~uw’l,,,)=f(~‘l.u~~I,\~)=~.
Let fl(f, Y)=max(IC(; Cc (0, l}” is (f, Y)-bundle}.
Our results are based on the following

THEOREM 1. Let P be a branching program over X,, computing f E B,.
Further let YE X,,, li =altdepth(P, Y) and C be a (f, Y)-bundle. Then
size(P)> ICI”‘2k-1).

Proof: For all MI E (0, 1 }” let 1,. = altdepth(p,,, Y), and pw =
p ,(0 ... opw., be the decomposition of p,,, into Y-polarized subpaths.
Owbierve that !,, < k, and that p ,,.,,, p,,,,,, ~, are strongly Y-polarized.

DEPTH-RESTRICTEDBRANCHING PROGRAMS 3

For any w E (0, 11” the vector V, = (uW, i, u,,i, u,,~, u,,,,~), consisting
of nodes from P, is defined as follows.

For all j, l<j<lW-l, let ~,,,~=beg(p~,,) and ~,.~=rnid(p~,,). Let
w, = beg(p,,,J If IL,~, is strongly Y-polarized let u,, /, = mid(P,+.,,), else
let u,.~, be the sink which pW is leading to.

For all j, I,,, < j < k, let u,,.~ and u,, j be the sink which p, is leading to.
Observe that u,,i is always the root of P. Clearly, for all W, w’ E (0, I>”
from V, = V,. it follows that V,, = I’,,,, = I/, = I/,,, where u’~ =
4ruw’lxn,r and w2=w’IyuwIxn,y. By the definition of a (f, Y)-bundle
we obtain that for all w # w’ E C it holds that I’%, # V,,. . Hence,) C) <) { I/,, ;
wE (0, l}“}\ <size(P)2k-1. 1

Let us define the following measures for branching programs P over X,
and Boolean functions f E B,. For all m, 1 < m < n, let altdepth(P, m) =
min{altdepth(P, Y); YE X, and) YI = m} and fi(f, m) = min{b(S, Y);
YGX, and (YI =m}.

From Theorem 1 we obtain directly the following

COROLLARY 3.1. Let P be a branching program over X,, computing
f E B,. Then for all m, 1< m < n, and k = altdepth(P, m) we have size(P) >
p(f, m)1’(2k-‘).

4. APPLICATIONS

In this section for three explicitly defined sequences (fn)ncN of Boolean
fucntions we prove lower bounds on B(f,, m) which are exponential in n
if m = Q(n). But first let us give some technical definitions about Boolean
matrices.

For positive natural numbers t, n let X,, denote a collection X,, =
($1, .--, Xl,*, ..., XI.1, .*., x,,,) of Boolean variables. Let M,, denote the set
of assignments of X,,, i.e., the set of Boolean matrices with t rows and n
columns.

For a given matrix A E M,,., a subset Y c X,,, and a number j, 1 < j < n,
let (Alj denote the number of l’s in thejth column of A, and let) YJi denote
the number of indices i, 1 6 i < n, with xi. j E Y.

By w(A)E (0, t}” we denote the string of column sums of A, i.e.,
w(A)=(lAI,, *..> IAl,).

In general for a word w E (0, t } ‘, t 2 1, let Z(w) denote the number of
components of w belonging to (0, 1 }, and let w* E (0, 1 }“H.) be the word
obtained from w by deleting all components of w which are not in (0, 1).
For example, for w = (2013202130)~ (0, 1,2,3}” we get I(w)= 5 and
w* = (01010).

6 MATTHIAS KRAUSE

We define the language SET = (SET,),. N. For all n E N and all A,
A/EM*,, let SETJA, A’) = 1 e w(A)* = w(A’)*. Obviously, SET, can be
thought to be a Boolean function over Xz,Zn.

LEMMA 4.1. For all natural n, k E N, 0 -C k < 4n, it holds that
/?(SET,, k) > 2k”4, where k’=min{k,4n-k].

Proof: As for all Boolean functions f over X, and all Y c X,,
~~~\ Y) = au Y) we can w.1.o.g. suppose that k <2n= IX,,,,J2, i.e., 

Let Y be a subset of Xz,zn. We have to construct a (SET,, Y)-bundle of 
cardinality 2k’4. Let X2,*,, be partitioned into X’ and X”, where X’= 
h1~x2,1~ . . . . ~~~~~~~~~~ and A”‘= {x~,~+~~ x~,+, . . . . qZnr x~,~,J. 

We suppose that 1 Yn X’I 2 (Yn X”J. Obviously, not less than k/4 
columns of X’ contain elements of Y, and, as k < 2n, not less than k/4 
columns of X” contain elements of X2,2n\Y. For p = k/4 we fix indices 
i,< ..’ < ip and j, < . . . < jp from { 1, . . . . n} and vectors (a,, . . . . a,,) and 
(b,, . . . . bp) over { 1,2} so that for all numbers q, 1 <q < p, xaq,iq E Y and 
Xb,+n+jqEX2,2nlY. 

Let K= {(a,, i,), . . . . (a,, i,), (b,, n + jl), . . . . (b,, n +jp)}. To each 
w  E (0, 1)” we assign a 2 x 2n matrix A”. If for natural i, j, 1 < i sZ 2, 
1 < j< 2n, (i, j) is not in K, let ATj = 0. If there is a number q, 1 < q < p, 
so that (i, j) = (a,, i4) or (i, j) = (b,, n + j4), let Ayj = wq. 

Itiseasytocheckthatforallw,w’~(0,1}PandA=A”~,uA”‘~,,,~= 
AWlxCu A”‘IXss it holds that w(A)* = ww’. Hence, C= {A”. WE (0, l}p}‘is a 
(SET,,, Y)-bundle. 1 

Let n E N be a prime number. We denote by 5, the corresponding field 
{ 0, . . . . n - 1> and suppose that rows and columns of matrices from Mn,n are 
numbered with elements from IF,,. For each mapping g: [F, -t IF,, we denote 
by Ag~M,,. the following matrix. For all i, Jo { 1, . . . . n} let A$” = 
1 o j= g(i). For all numbers d < n we define the decision problem 
POLYzd as follows. 

For all matrices A E M,, let POLY$(A) = 1 0 there is a polynomial p: 
F,, + F, of degree not greater than d so that AP = A. Obviously, POLY:d 
is a Boolean function over the set X,,, = {Xi,j; i, jE IF,} of Boolean 
variables. We prove the following lower bound on 8. 

LEMMA 4.2. Let d and k be natural numbers fixed in such a way that d 
is odd, d+ 1 <n/2 and k<n2/2. Then /?(POLY$, k)> (min{nLklnJ, n(d+1)‘2, 
Lkin-l Cd+ lW))/y-d- 1. 

Proof We denote by 9LoSY(n, d) the set of polynomials over [F,, 
of degree not greater than d. We make use of the following property of 
polynomials over a field. 



DEPTH-RESTRICTED BRANCHING PROGRAMS 7 

(I) Let (a,, . . . . ad+ ,), (b,, . . . . bd+ ,)E Ef” be arbitrarily fixed. Then 
there is exactly one polynomial p E 889%(n, d) so that ~(a,) = bi for all i, 
l<i<d+1. 

For subsets Z of IF, and Y and X,,, we denote by MAP( Y, I) the set of all 
mappings m: I-, [F, with the property that for all i E Z, x~,,,,~) E Y if ( YI i > 0 
and m(i) =0 if 1 YJi =O. Obviously, IMAP( Y, Z)l = niei (max(( YJi, 1)). 

Let Y be a subset of X,,, with k elements and Z= X,,.\Y. We fix an 
numbering { il, . . . . i,} of iF,, so that for all q, 1 <q<n-1, )YJ,z(Y~~,+,. 

Let e=(d+ 1)/2, Z= {il, . . . . i,}, .Z= {in--e+l ,..., i,}, and K= 
{ 1, ‘.., n}\(ZuJ). As e<n/2 we get ZnJ=O and (ZuJI =d+ 1. 

Let a = a(Y) = min{ JMAP( Y, I)(, (MAP(Z, .Z)I}, and let us fix pairwise 
distinct mappings r,, . . . . I, in MAP( Y, I) and .s,, . . . . S, in MAP(Z, J). 

Due to (I) for all i, 1 d i < a, there is exactly one polynomial p = pi in 
909V(n, d) with the property that pJ1 = ri and pIJ = si. Let us denote by 
Z7 the set ZZ= {p,, . . . . pa>. For all p E 17 we denote by Kp the set Kp = 
PEK; x,c,p(,c) E Y}. According to the pigeon hole principle there is a subset 
Z7* of Z7 of cardinality at least a( Y)/2’“’ with the property that for all p, 
p’ E n* it holds that K, = Kp.. 

We claim that C= {AP; PDF ZZ*} is a (POLYZ,,, Y)-bundle. Indeed, by 
the definition of r;l for all p # p’ E 17* we have AP( y # AP’I y and 
API, #A%. 

Let p#p’~n* be arbitrarily fixed, A = API y u AP’( z and B = 
AP’j y u API,. It is to show that POLYz,(A)= POLY&,(B)=O. 

As d+ 1 G n/2 it holds that I KI 3 d+ 1. Let us suppose that ( Kpl 3 
IK\K,l. (Otherwise take Z instead of Y.) If there exists a polynomial 
P”E P”OLZW(n, d) with AP’ = A or A p” = B then p” coincides with p on 
Kpu Z or with p’ on K, u Z, respectively. As [Kp u I( >, e + (d+ 1)/2 = 
2e = d+ 1, we obtain p” = p or p” = p’, respectively. But this contradicts 
the definition of 17. 

It remains to estimate a(Y). It is easy to verify that a(Y) has a “local 
minimum” if 

(1) Y contains the set (x~,~; O<i<Lk/nJ- 1, O< j$n- l} or 

(2) Y contains the set {x,,~; O<i<n-1, 06 j<Lk/nJ-1). 

Because of k < n2/2 we obtain from case ( 1) that a( Y) = Lk/n J’ and from 
case (2) that a(Y) = min{nLk’“-l, ne}. 1 

The proof of Lemma 4.2 is also valid for the corresponding monotone 
problem POLY,,, over X,,, which is defined as follows: For all n E N and 
A E Mn,, let POLY,,,(A) = 1 tj 3p E BQLPS(n, d) with AP < A. For all 
6 E (0, 1) the problem POLY, = (POLY,,,,) is NP-complete (see, e.g., 
[All). 



MATTHIAS KRAUSE 

5. SOME REMARKS ABOUT ~-TIMES-ONLY BRANCHING PROGRAMS 

For all k E N we call a branching program P a k-times-only program if 
each path in P contains not more than k non-sinks with the same label. 

One-time-only programs are just those branching programs without null 
chains. They were investigated by many authors. The first exponential 
lower bounds on the complexity of one-time-only branching programs were 
proved in [PZ; W] for clique functions over undirected graphs. Further 
exponential lower bounds for a big number of algebraic and graph- 
theoretic problems can be found in [J; A&; D; KW; Kl]. 

There are languages computable only by exponential size one-time-only 
programs which can be computed by polynomial size 2-times-only 
programs. The very first example of a language of this kind was given in 
[W]. But today we have no method of proving lower bounds for k-times- 
only programs (k > 2) which is better than that for the general model. This 
is the motivation for the consideration of the following restricted model. 

A program P is called levelled if its nodes are organized in disjoint levels, 
where for each edge (u, U) from P u is in level i and v is in level i + 1 for 
some i, i< depth(P). For any levelled branching program P let width(P) 
denote the maximum taken over the cardinalities of all levels of P. 

We call P an oblivious branching program if P is levelled and all non- 
sinks on the same level have the same label. Let P be an oblivious one- 
time-only branching program over the set X, = (x1, . . . . x,} of Boolean 
variables. We suppose, w.l.o.g., that P is of depth n. Obviously, P is charac- 
terized by a permutation cr E s, in the sense that for all m, 16 m <n, non- 
sinks at level m have label x,(,). 

We investigate the following restricted model. For all cr E s,, and k E N, 
an oblivious k-times-only program P shall be called (k, a)-program if 
depth(P) = kn, and if for all m, j, 1 Q m < n, 0 6 j < k - 1, non-sinks at level 
jn + m have label x0(,). 

We call an oblivious k-times-only branching program P over X,, (k, *)- 
program if 3~ E sjn so that P is (k, a)-program. Thus, the model of (k, *)- 
programs is a natural generalization of oblivious one-time-only branching 
programs and consists of such oblivious programs which are allowed to 
read the input word k times in succession, but each time in the same order. 
From our considerations in Section 3 we obtain a method for proving 
exponential lower bounds on the complexity of (k, *)-programs for all 
kEtN(. 

LEMMA 5.1. Let k, n E N and P be a (k, *)-program over X,,. Then for ail 
m, 1 Gmdn- 1, we have altdepth(P,m),<k. 

Proof. We fix CE S, so that P is a (k, a)-program. For all m, 



DEPTH-RESTRICTED BRANCHING PROGRAMS 9 

1 G m G n - 4 let L = (~,~1),...,,~m) }. By definition we obtain that 
altdepth(P, Y,) = k for all m, 1 d m -C n. 1 

For each Boolean function f over X,, we define b(f) as to be b(S) = 
max(/?(f, m); 1 <m < n}. From Theorem 1 we obtain 

COROLLARY 5.2. Let f be a Boolean function over X,,, k E N, and let P 
be a (k, *)-program over X, computing f: Then size(P) 3 /?(f)“‘*“-I’. 1 

Thus, Lemmas 4.1 and 4.2 provide lower bounds on the complexity of 
(k, *)-programs of order exp(G(n)) for the problem SET, and of order 
exp(f2(n’/2 log(n))) for the problems POLYd and POLY,, 6 E (0, 4). 

In the following remarks we relate the computational power of (k, *)- 
programs to that of unrestricted oblivious k-times-only programs and 
unrestricted one-time-only programs (k E tV). Therefore let us denote by 
9 BPk, %b-BPk, qk,.) the classes of languages computable by polynomial size 
k-times-only-, oblivious k-times-only-, (k, *)-programs, respectively. 

Remark 5.3. For all k > 2, q(k. l , is not contained in pBpl. 

Sketch of the Proof. We define the language POSITION = (POS,),, N, 
where POS, is a Boolean function over X,,,. 

For each matrix A E M3,n let 2(A), 3(A) denote the number of letters 2, 
3, resp. in w(A), i.e., the number of columns in A with column sum 2, 3, 
respectively. Observe 2(A) + 3(A) + /(w(A)) = n. Let PO&(A) = 1 iff 
1<2(A) <I(w(A)) and the 2(A)th component of w(A)* is one or 16 
3(A)<l(w(A)) and the (I(w(A))- 3(A)+ 1)th component of w(A)* is one 
(see Section 4). 

In [Kl] it is shown that all sequences of one-time-only programs com- 
puting the language POSITION have size exp(Q(n)). We show that for all 
n E l’V the function POS, can be computed by (2, *)-programs of size O(n3). 
POS, can be written as Pm= ORlG,,n9n (hTO A H;,) (I), where for 
all AEM~,~, h:,(A)= loZ(w(A))=l and 2(A)=a, and H;,(A)= 
lol<a<land w(A),*=1 or l<n-(l+a)<land w(A)fC,.+,=l. 

It is not difficult to prove that both hFu and H;” can be computed 
by (1, o,)-programs of quadratic size in n, where cr,: { 1, . . . . 3n) --f 
{1,2,3jx{l,..., n > is defined as (r,Jq + 3p) = (q, p + 1) for all integer p, q, 
O<p<n-l,ldq<3. 

Thus, according to (I) we can construct a (2, o,)-program of size O(n3) 
which computes POS,. b 

Hence, as in the general case, ?I. .) is a proper subset of q4k, .) for all 
k> 2. The following two remarks show that neither polynomial size 
unrestricted one-time-only programs nor polynomial size oblivious k-times- 



10 MATTHIAS KRAUSE 

only programs can be simulated by polynomial size (K, *)-programs for 
some KE N. 

Remark 5.4. For all k E N the class pBpl is not contained in qk,*,. 

Proof. In Lemma 4.1 we have shown that the language SET is not in 
9&, *) for all k E N. But SET can be computed by one-time-only programs 
of quadratic size [K2]. 1 

Remark 5.5. For all k E N the class 90.Bp is not contained in 9$*,. 

Sketch of the Proof: Let us consider the permutation matrix problem 
PMP = PMP,),,,, where PMP, is the following Boolean function over 
x . For all A E M, n 
20”‘; sn so that A = A”. 

let PMP,(A) = 1 o A is a permutation matrix, i.e., 

By similar arguments as in the proof of Lemma 4.2 it is possible to show 
that fi(PMP,) = exp(Q(n)) [K2], i.e., for all k E N the permutation matrix 
problem PMP is not in .9jk, *). On the other hand, a matrix A EM,,, is a 
permutation matrix if and only if each row and each column of A contains 
exactly one “1.” The test E,!, whether a given vector u E (0, 1)” contains 
exactly one “1” can be performed by oblivious one-time-only programs of 
width 3. 

Thus, we can construct an oblivious 2-times-only program of width 3 
over X,,, which computes PMP, by verifying Ef, for each row and each 
column. 1 

Let us make some remarks about oblivious k-times-only programs of 
bounded width. We denote by 9jbw.0-Bpk, .6$,,,+*, the set of languages 
computable by sequences of oblivious k-times-only-, (k, *)-programs, 
respectively, of bounded width. 

In [J] it is proved that the permutation matrix problem does not belong 
to -TBPl. By Remark 5.5 we obtain that 9$b,+0.Bp, is a proper subset of 
~bwo-BP2~ This does not hold for (k, *)-programs. We prove the following 

Remark 5.6. For all k E N it holds that 9&- Ck, *) = 9&,,-Cl,rj. 

Sketch of the ProoJ Let k, n E N and c E S, be arbitrarily fixed, and let 
P be a (k, a)-program over X, of width d computing the Boolean function 
fi We prove our claim by showing that there is a (1, a)-program Q of 
width (d+ l)dk which computes f: For each m, 1 dm < n, let Y, = 
ix O(l)? ...) x,,,,} and yrn= l{fc; c assignment of Y,}I. 

It is not difficult to prove that there is a (1, o)-program Q which com- 
putes f and in which each level m, 1 <m < n - 1, contains exactly y, nodes 
WI- 

We have to estimate max (ym ; 1 <m dn- 1). Suppose that for each j, 
1 <j< kn, level j of P contains d(j) nodes numbered by (1, j), . . . . (d(j), j). 



DEPTH-RESTRICTED BRANCHING PROGRAMS 11 

Let m, 16 m 6 n - 1, and c E 2*m be arbitrarily fixed. Remember that 
for all r, 0 <r < k - 1, the nodes at levels rn + 1, . . . . m + m are labelled 
with variables from Y,. Thus, for all natural r, 0 6 r < k - 1, and q, 
16 q< d(rn + l), there is exactly one path pc,r,y in P which is consistent 
with c and which starts at the qth node of level rn + 1, i.e., the node 
numbered by (q, m + 1). 

Clearly, P~,,,~ leads to some node u on level rn + m + 1. Let &c, r, q) 
denote the number of u, i.e., u has the number (#(c, I, q), rn + m + 1). Thus, 
each assignment c of Y, corresponds to exactly one vector V(C)E 
(0, . . . . d}kd which is defined as follows. 

Let s, 1 d s < kd, be arbitrarily fixed, s = rn + q, 1 6 r < k, 1 d q <d. Let 
V(c), = qS(c, r, q) if q < d(rn + 1 ), and V(c), = 0 if not. It is not hard to show 
that for all assignments c, c’ of Y, with V(c) = V(c’) it holds f’ = f”. 1 

Let us conclude this section with some remarks about nondeterministic 
branching programs. For n, m E N let A’, = {x,, . . . . x,} and Y, = 

{Y 1, a.*> ym} be two disjoint subsets of Boolean variables and P a branching 
program over A’, u Y,. By modifying the definition of acceptance, P can be 
considered to be a nondeterministic branching program over X,. We say 
that P accepts an assignment c of A’, if there is an assignment c’ of Y, so 
that P computes 1 on c u c’. 

Using Barrington’s result [B] that PbaweBP = Jf%“, in [M] it is shown 
that the set of languages computable by polynomial size nondeterministic 
branching programs of bounded width which are one-time-only programs 
with regard to the nondeterministic variables equals JV%?“, too. 

But all languages in N9 can be computed by sequences of polynomial 
size oblivious nondeterministic branching programs of width 3 which are 
(1, *)-programs with regard to the deterministic and (2, *)-programs with 
regard to the nondeterministic variables [M]. 

6. BOUNDS ON COMMUNICATION COMPLEXITY 

Following [Y; MS] the communication complexity of a Boolean 
function f over X,, is defined as follows. 

Let ( Y, Z) be a balanced partition of X,, i.e., Y n Z = 0, Y u Z = X,, 
and 11 Y/ - IZI J < 1. Let t and R be two processors which know only the 
input variables of Y and Z, respectively. In order to compute f( u) for given 
u E (0, 1 }” they send information to each other alternately, one bit at a 
time, according to some algorithm d. The amount of information transfer 
necessary to compute f(u) is determined by the number of bits which have 
to be exchanged. More exactly, a communication algorithm d with respect 



12 MATTHIASKRAUSE 

to (Y, Z) is given by two response functions h, : 2 ’ x (0, 1 } * -+ {O, 1) and 
h,: 2=x (0, l}* + (0, 1) and a partial output function a: (0, I> + {O, l}. 

Processor L starts the computation and sends w, = hL(u’) to processor R 
(let u’ = VI y and 0” = u/ =). Processor R returns w2 = hR(u”, MI,), L returns 
wg = h,(u’, w1 w,), . . . until w1 w2 ... wk belongs to dam(a). At this point the 
computation stops with the result f(u) = a( w, , .., w,), where k = k,,(u) 
denotes the amount of information transfer required by JJ on input u. 

By k& we denote the value k, = max{k,(u), DE (0, 1)“) and by 
COMM(f, Y, Z), the minimum over all k,, where d is a communication 
algorithm computing f with respect to (Y, Z). The communication com- 
plexity COMM(f) off is defined as COMM(f) = min{COMM(f, Y, Z); 
(Y, Z) is a balanced partition of Xn}. 

We prove the following 

THEOREM 6.1. COMM(J) 2 log, p(J !-n/2 J) for all f E B,. 

ProoJ Let d be the communication algorithm which provides k& = 
COMM(f), where d is defined with respect to some balanced partition 
( Y, Z) of X,,. The proof is an immediate consequence of a theorem of 
Mehlhorn and Schmidt [MS] stating COMM(f) 2 log,(rank(M{y,z,), 
where MT,,, = (f(u’u u”)),,.~Y,~,,~~z denotes the communication matrix of 
f with respect to (Y, Z). 

It is easy to see that for each (f, Y)-bundle C, CL (0, 1 >“, the 1 Cl x JCI 
submatrix of M{y,z), induced by all inputs from C, has rank IC(. 1 

Obviously, for each f E B, we have Comm(f) = O(n). Hence, Lemma 4.1 
yields 

THEOREM 6.2. COMM( SET,,) = 8(n). 

Moreover, it is easy to see that for each balanced partition (Y, Z) of X,,, 
(n E N prime), and any d, d,<n, the function POLYzd can be calculated 
by a communication algorithm d with respect to (Y, Z) with k, = 
O(n . log(n)). (On each matrix A e M,, the processors L and R 
simultaniously produce the word bin(O) #bin(g(O)) #(bin(l) 
# bin( g( 1)) # . . . # bin(n - 1) # bin( g(n - 1)) if A equals the graph A g for 
some mapping g: IF, -+ F, and some “bad” word if not. The partial output 
function rejects all “bad” words or decides whether g is a polynomial of 
degree not greater than d.) According to Lemma 4.2 we obtain 

THEOREM 6.3. COMM(POLY&,) = @(n .log(n)) for all 6 E (0, 4). 



DEPTH-RESTRICTED BRANCHING PROGRAMS 13 

ACKNOWLEDGMENTS 

I thank Oleg B. Lupanov from Moscow, Stasys Jukna from Vilnius, and Christoph Meinel 
and Stefan Waack from Berlin for many helpful discussions. 

RECEIVED January 4, 1988; FINAL MANUSCRIPT RECEIVED August 17, 1989 

REFERENCES 

[Al] ANDREEV, A. E. (1985), On a method of obtaining lower bounds to the complexity 
of individual monotone functions, Dokl. Akad. Nuuk SSSR 282, No. 5, 1033-1037. 

[A21 ANDREEV, A. E. (1986), A method of obtaining superquadratic lower bounds on the 
complexity of IT-schemes. Vestnik. Moscow Unci. Ser. I Mat. Mech. 6, 13-75. 

[AB J ALON, N., AND BOPPANA, R. B. (1987), The monotone circuit complexity of Boolean 
functions, J. Combinatorika 7, No. 1, l-22. 

[A&] AJTAI, M., BABAJ, L., HAJNAL, P., KOMLOS, J., PUDLAK, P., R~DEL, V., SZEMEREDI, 
E., AND TURAN, G. (1986), Two lower bounds for branching programs, in 
“Proceedings ACM STOC”, pp. 30-39. 

[B] BARRINGTON, D. A. (1986), Bounded width-polynomial size branching programs 
recognize exactly those languages in NC’, in “Proceedings 18th ACM STOC,” 
pp. l-5. 

[Bl] BLUM, N. (1984), A Boolean function requiring 3n network size, J. Theoret. Compur. 

Sci. 28, 337-345. 
[D] DUNNE, P. E. (1985), Lower bounds on the complexity of one-time-only branching 

programs, in “Proceedings of FCT ,” Lect. Notes in Comput. Sci., Vol. 199, pp. 9(r99, 
Springer-Verlag, New York/Berlin. 

CJI JUKNA, S. (1986), Lower bounds on the complexity of local circuits, in “Proceedings, 
MFCS’86,” Lect. Notes in Comput. Sci.. Vol. 233, pp. 44@448, Springer-Verlag, 
New York/Berlin. 

[Kl] KRAUSE, M. (to appear), Exponential lower bounds on the complexity of real-time 
and local branching programs, J. Inform. Process. Cybern. (EIK). 

[K2] KRAUSE, M. (in preparation), “Lower Bounds on the Complexity of Branching 
Programs,” thesis. 

[Ku] KLJZNET~OV, S. E. (1981), Combinational circuits without null chains, fzu. Vyssh. 

Vchebn. Zaved. Mat. 5, 56-63. 

[KW] KRIEGEL, K., AND WAACK, S. (1987), Lower bounds on the complexity of real-time 
branching programs, in “Proceedings, FCT’87,” Lect. Notes in Comput. Sci., Vol. 278, 
Springer-Verlag, New York/Berlin. 

[MS] MEHLHORN, K., AND SCHMIDT, E. M. (1982), Las Vegas iis better than determinism 
in VLSI and distributed computing, in “14th STOC,” pp. 30-337. 

[M] MEINEL, C. (1987), The power of nondeterminism in polynomial size bounded width 
branching programs, in “Proceedings FCT’87,” Lect. Notes in Comput. Sci., Vol. 278, 
pp. 302-309, Springer-Verlag, New York/Berlin. 

[N] NECHIPORUK, E. I. (1966) A Boolean function, Dokl. Akad. Nauk 199, 765-766. 
[P] PAUL, W. (1977), A 2.5n-lower bound on the combinational complexity of Boolean 

functions, SIAM J. Comput. 6, No. 3, 427-443. 

[PZ] PUDLAK, P., AND ZAK, S. (1983), Space complexity of computation, preprint, Univer- 
sity of Prague. 



14 MATTHIAS KRAUSE 

[R] RAZBOROV, A. A. (1985), A lower bound on the monotone complexity of the logical 
permanent, Mat. Zametki 37, No. 6, 887-900. 

[W] WEGENER, 1. (1984). On the complexity of branching programs and decision trees for 
clique functions, Interner Bericht der Univ. Frankfurt, 1984; Assoc. Comput. Math. 35 
(1988), 461-171. 

[Y] YAO, A. (1982), The entropic limitation of VLSI-computations, in “13th STOC.” 
pp. 308-3 11. 


