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Abstract. In this paper, we extend Valiant's sequential model of concept learning from

examples [Valiant 1984] and introduce models for the e�cient learning of concept classes
from examples in parallel. We say that a concept class is NC-learnable if it can be learned
in polylog time with a polynomial number of processors. We show that several concept
classes which are polynomial-time learnable areNC-learnable in constant time. Some other
classes can be shown to be NC-learnable in logarithmic time, but not in constant time.
Our main result shows that other classes, such as s-fold unions of geometrical objects in
Euclidean space, which are polynomial-time learnable by a greedy set cover technique,
are NC-learnable using a non-greedy technique. We also show that (unless P � RNC)
several polynomial-time learnable concept classes related to linear programming are not
NC-learnable. Equivalence of various parallel learning models and issues of fault-tolerance
are also discussed.

1. Introduction

Supervised concept learning from examples involves the construction of algorithms that
can e�ectively \learn" a target concept after seeing an appropriate sample of correctly
classi�ed examples. By \learn," we mean that the algorithm can with high accuracy
classify subsequent examples without need for supervision.

For example, suppose the target concept is a particular rectangle in the plane (as

speci�ed by its location and size). The sample consists of a sequence of randomly drawn

points in the plane; each point is classi�ed as to whether it is inside or outside the rectangle.
After seeing the sample, the algorithm develops its own \hypothesis" as to the location
and size of the rectangle. We can then test its hypothesis against some further randomly

drawn points to see if the points are classi�ed correctly.

Valiant [1984] developed an elegant model for learning in such a scenario. The points
in the classi�ed sample and in the sample used later for testing are both assumed to
be generated independently according to some �xed but arbitrary probability distribution.
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The concept class is learnable if with high probability the sample points that are generated

cause the learning algorithm to construct a hypothesis that fails only rarely on the test
cases. The relevant parameters from a computational point of view are how large the

sample size must be in order to achieve the desired accuracy and how fast the processing

of this sample can be done.

In this paper we extend Valiant's model to consider the fundamental computational

limits on learning using parallel processors. Our intuition suggests that, for some concept

classes, each learning algorithm must process the classi�ed sample points in a sequential
way in order to form a good hypothesis, whereas for some other concept classes, the sample

points can be processed with a high degree of parallelism.

By analogy to the well-known computational complexity class NC, we say that a class

of concepts is NC-learnable if the learning can be done in polylog time with a polynomial

number of processors. The full de�nitions for our model of parallel learning appear in
the next section. In Section 3 we show that several well-known concept classes are NC-
learnable, many of them in constant time. Some are learnable in logarithmic time, but not
in constant time.

We present our main result in Section 4, where we consider concept classes that are
sequentially learnable by \greedy" techniques that do not appear to be parallelizable. Our
main result is a polylog-time heuristic for set cover using random sampling techniques that
can be used for learning these concept classes in parallel. We demonstrate in Section 5
the equivalence of two alternative models for parallel learning. In Section 6 we show that
several problems related to linear programming are not NC-learnable, unless P � RNC,
which is very unlikely. Issues of fault-tolerance and conclusions are discussed in Section 7.

2. The Parallel Learning Model

We de�ne a concept class Cn to be a nonempty set of concepts. Each individual concept
c 2 Cn is a subset of some domain Xn; that is, Cn � 2Xn . In this paper we assume that
Xn is f0; 1gn or the n-dimensional Euclidean space <n. For brevity, we shall identify the
representation of a concept c 2 Cn with c itself. For each c 2 Cn, we let size(c) denote the
length of the encoding of c in some �xed encoding. We de�ne Cn;s to be the concept class
of all concepts in Cn that have size at most s; hence, Cn =

S
s�1Cn;s. A labeled sample

point (or example) for a concept c is a pair (x; label ), where x 2 Xn and label is \+" if
x 2 c and \�" if x 62 c; we call (x;+) a positive sample point and (x;�) a negative sample

point.

De�nition 2.1. We say that algorithm A is a learning algorithm for a concept class Cn

using hypothesis space Hn and sample size m(�; �; �; �) if for all n; s � 1, for all c 2 Cn;s,
for all 0 < �; � < 1, and for every probability distribution PrXn

on Xn, the following

holds: If A is given as input m(n; s; 1
�
; 1
�
) labeled sample points drawn independently

from the probability distribution, then A outputs a hypothesis c0 2 Hn that is probably
approximately correct; that is, with probability at least 1 � �, if m labeled sample points
are drawn independently, A produces a hypothesis c0 such that

PrXn
fx 2 Xn j c

0(x) = c(x)g � 1� �:



Section 2. The Parallel Learning Model / 3

A concept class Cn is learnable by hypothesis space Hn if there exists a (possibly random-

ized) learning algorithm A for Cn. It is properly learnable if Hn = Cn.

This model permits a learning algorithm to be randomized. The probability bound

of 1� � applies to the combined randomness resulting from drawing the m labeled sample

points and from the randomness inherent in the algorithm. The model can be modi�ed in

a straightforward way to incorporate similar notions of learning. For example, we could
consider a probability distribution for the positive sample points and another probabil-

ity distribution governing the negative sample points and allow the learning algorithm to

choose adaptively whether the next sample point in the input should be a positive or neg-

ative sample point. The reader is refered to [Haussler, Kearns, Littlestone, and Warmuth
1988] for some equivalent models in the sequential learning mode that can be generalized

to the parallel mode.

De�nition 2.2. A concept class Cn is polynomial-time learnable by hypothesis spaceHn

if there exists a polynomial-time learning algorithm A for Cn with sample size m(�; �; �; �),
where m is a polynomial; that is, A is a learning algorithm running in time polynomial in
the sample size m.

A large number number of parallel machine models have been proposed. The model
we shall primarily use in this paper is the priority CRCW PRAM, in which a number
of processors work synchronously, communicating with each other through random-access
shared memory. Each step of the algorithm is a comparison, a memory access, or an arith-
metic operation (addition, subtraction, multiplication, or division) involving arguments of
log I bits, where I is the input size. If the algorithm is randomized, each processor is al-
lowed to generate in constant time a random number in the range [1; I]. Concurrent reads
and concurrent writes are allowed. Write con
icts are taken care of with a priority scheme;
whenever more than one processor attempts to write to the same location in memory, the
processor with the lowest-numbered ID succeeds in writing and the others fail. When we
have to deal with real numbers (e.g., in learning geometrical concepts), we shall assume
that each memory location is capable of holding a single real number. This model may be
referred to as the arithmetic CRCW PRAM model (cf. [Preparata and Shamos 1985] and
[Karp and Ramachandran 1989]).

De�nition 2.3. A concept class Cn is NC-learnable by hypothesis space Hn if there
exists a learning algorithm A for Cn using Hn and sample size m(�; �; �; �), where m is a
polynomial, that runs in polylog time using a polynomial number of processors. That

is, A is a learning algorithm that runs in O(logkm) time with O
�
q(m)

�
processors on a

CRCW PRAM, for some k � 0 and some polynomial q. For the particular value of k used
above, we say that Cn is ACk-learnable. We also say that Cn is NCk-learnable if A can be
implemented by a uniform family of probabilistic polynomial-size bounded-fanin circuits

of depth O(logkm).

Stockmeyer and Vishkin [1984] show that there is a correspondence between (random-
ized) CRCW algorithms that run in O(logk I) time using a polynomial number of proces-
sors and uniform (probabilistic) polynomial-size circuits of depth O(logk I). This gives

us an alternate characterization of NC-learnable concept classes. It implies, for example,

that all NCk-learnable problems are also ACk-learnable, since NCk-learning requires that
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the circuits have bounded fanin, and ACk-learning allow unbounded fanin. It is also easy

to show that ACk-learnable concept classes are NCk+1-learnable, since each gate having
unbounded fanin can be replaced by a subtree of bounded fanin having depth O(log I).

In this paper, we make no restrictions on the representation of the hypothesis returned

by the parallel learning algorithm other than that it is NC-evaluatable:

De�nition 2.4. A concept class Cn is NC-evaluatable if the problem of determining

whether a given hypothesis c 2 Cn is consistent with a labeled sample point is in NC.

De�nition 2.5. A recognition algorithm for Cn is an algorithm that takes as input a

set S of labeled sample points of some concept c 2 Cn and returns a hypothesis in Cn that

is consistent with S. If the algorithm is randomized, it must succeed with probability at
least 3=4. An RNC recognition algorithm is a randomized recognition algorithm that runs

in polylog time using a polynomial number of processors.

The following lemma shows that any proper learning algorithm can be transformed
into a randomized recognition algorithm with the same time bound. The technique used
here was introduced by Pitt and Valiant [1986] and later generalized by Haussler, Kearns,
Littlestone, and Warmuth [1988].

Lemma 2.1. If there exists an O
�
T (m)

�
-time-bounded (possibly randomized and paral-

lel) proper learning algorithm for Cn, where T (m) is a constructible function, then there

exists a randomized O
�
T (m)

�
-time-bounded recognition algorithm for Cn.

Proof. Let A be a (possibly randomized and parallel) O
�
T (m)

�
-time-bounded proper

learning algorithm for a concept class Cn. We can make A into a randomized recognition
algorithm, as follows: To �nd a hypothesis consistent with the set S of m sample points,
we let the distribution over S be uniform and choose � = 1=(m + 1), � = 1=4. Then we
run A. Every nonconsistent hypothesis has error at least 1=m > �, so with probability at
least 3=4, A will return a consistent hypothesis.

Given a set of nonlabeled sample points S � Xn, we denote by �Cn
(S) the set of all

subsets P � S such that there is some concept c 2 Cn for which P = c\S. If �Cn
(S) = 2S ,

we say that S is shattered by Cn. The Vapnik-Chervonenkis dimension (VC dimension)

of Cn is the cardinality of the largest �nite set of points that is shattered by Cn; it is
in�nite if arbitrarily large sets can be shattered.

The following de�nition is a parallelized and randomized version of the de�nition for
Occam algorithm in [Blumer, Ehrenfeucht, Haussler, and Warmuth 1989].

De�nition 2.6. For every s;m � 1, let HA
Cn;s;m

denote the set of all hypotheses produced
by a recognition algorithm A when A is given as input any set of m labeled sample points

of a concept c 2 Cn with size(c) � s. We assume for simplicity that HA
Cn;s;m

� HA
Cn;s+1;m,

for each s � 1. We say that A is an RNC Occam algorithm for Cn if A is an RNC

algorithm such that the VC dimension of concept class HA
Cn;s;m

is at most njskm�, for

some constants j; k � 0 and 0 � � < 1, and A outputs a hypothesis h 2 HA
Cn;s;m

that is
consistent with the m sample points with probability at least 3=4.

Theorem 2.1. If there exists an RNC Occam algorithm for concept class Cn and Cn is

NC-evaluatable, then Cn is NC-learnable.
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Proof. The proof is a straightforward adaptation of the proof for the sequential case given

in [Blumer, Ehrenfeucht, Haussler, and Warmuth 1989]. Suppose there exists an RNC
Occam algorithm A for concept class Cn. We construct a parallel algorithm A0 as follows:

We make A0 simulate A concurrently log4
2
�
times and return any consistent hypothesis

encountered; if no consistent hypothesis is found, then A0 returns some default hypothesis.

The probability that A0 fails to return a consistent hypothesis is at most (1=4)log4(2=�) =
�=2: By a simple modi�cation of the proof of Theorem 3.2.1 in [Blumer, Ehrenfeucht,

Haussler, and Warmuth 1989], it follows that if the sample size is

m = max

(
4

�
log

4

�
;

�
8njsk

�
log

13

�

�1=(1��)
)
;

the probability that there is a consistent hypothesis with error greater than � is at most �=2.

Hence A0 returns a consistent hypothesis with probability at least 1� �.

These de�nitions can be altered in several ways without changing their impact. For
example, in Section 5 we show that providing the value of s as part of the input does not
make learning any easier.

3. NC-learnable Concept Classes

In this section we show that several concept classes, including monomials, pure disjunc-
tions, k-CNF, and k-DNF, are properly AC0-learnable; that is, they are learnable in con-
stant time with a polynomial number of processors on a CRCW PRAM. In several cases
the parallel algorithms are simple adaptations of known sequential learning algorithms. (In
contrast, in the next section, we consider concept classes that are NC-learnable using fun-
damentally di�erent techniques than the known sequential learning algorithms.) Based on
the results of Furst, Saxe, and Sipser [1984], we show that there are some natural learning
problems that are properly NC-learnable in logarithmic time, but not in constant time.
Finally, we show that several geometrical concept classes are properly AC0-learnable. In

this section, we use x = (x1; x2; : : : ; xn) to designate a (positive or negative) sample point.

We shall use the following two lemmas to construct learning algorithms:

Lemma 3.1 [Blumer, Ehrenfeucht, Haussler, andWarmuth 1987]. If the concept class Cn

contains rn < 1 concepts, then any recognition algorithm using m = 1
�
ln 1

�
+ 1

�
ln rn

independent labeled sample points is a learning algorithm.

Lemma 3.2 [Blumer, Ehrenfeucht, Haussler, and Warmuth 1989]. If the VC dimension

of the concept class Cn is dn < 1, then any recognition algorithm using m = 4
�
log 2

�
+

8dn
�
log 13

�
labeled independent sample points is a learning algorithm.

The following theorem shows that many well-known Boolean concepts are AC0-

learnable:

Theorem 3.1. Let k be any �xed positive constant. The following concept classes are

properly AC0-learnable, using an optimal number of processors:



6 / Learning in Parallel

1. Monomials, pure conjunctions, and internal disjuctions. A monomial is a boolean

formula of the form p1 ^ p2 ^ : : : ^ ps. Pure conjunctions are generalized monomials

in a non-boolean domain; a pure conjunction is an expression t1 ^ t2 ^ : : : ^ ts, where

each ti is an elementary literal (of the form value1 � attribute � value2). An internal

disjunction is an expression t1t2 : : : ts, where each ti is a compound literal (of the formW
1�i�k(valuei;1 � attribute � valuei;2)).

2. Pure disjunctions. A pure disjunction is an expression of the form t1 _ t2 _ : : : _ ts,

where each ti is an elementary literal.

3. k-CNF. A k-CNF concept is a formula t1 ^ t2 ^ : : : ^ ts, where each ti is a pure

disjunctive concept with at most k literals.

4. k-DNF. A k-DNF concept is a formula t1 _ t2 _ : : : _ ts, where each ti is a pure

conjunctive concept with at most k literals.

Proof. Since monomials are 1-CNF, pure disjunctions are 1-DNF, and k-DNF is the dual
form of k-CNF, we need only to prove the case for k-CNF. The k-CNF boolean formula
learning algorithm of [Valiant 1984] can be easily parallelized and can be modi�ed in a
straightforward way to handle non-boolean k-CNF concepts; sample size m = O(1

�
log 1

�
+

nk

�
) su�ces. The CRCW PRAM algorithm runs in constant time. The implementation

is obvious when there are nm processors. Intuitively each processor is responsible for
processing one bit of the input. There is a straightforward modi�cation that uses only
nm= log(nm) processors, in which each processor is responsible for a group of log(nm)
bits. The only requirement is that each processor be able to perform the logical addition
of two arguments of log I bits in constant time.

The next two theorems show that exact-count boolean functions, threshold boolean
functions, and symmetric boolean functions are learnable in logarithmic time, but not in
constant time. It should be mentioned that the results are representation-dependent, in the
sense that they depend upon the learning algorithm outputting a particular representation.

Theorem 3.2. The following concept classes are properly NC1-learnable, using an opti-

mal number of processors:

1. Exact-count boolean functions, which are boolean functions that are 1 when exactly T

variables are equal to 1, where 0 � T � n.

2. Threshold boolean functions, which are boolean functions that are 1 when at least T

variables are equal to 1, where 0 � T � n. (In the language of [Kearns, Li, Pitt, and

Valiant 1987], threshold boolean functions are boolean threshold functions restricted

so that ~y is the 1 vector.)

3. Symmetric boolean functions. A symmetric boolean function can be uniquely speci�ed

as a set of numbers A = fa1; : : : ; akg, where 0 � ai � n, such that it assumes the

value 1 when and only when ai of the variables are equal to 1 for some ai 2 A.

Proof. We present only the algorithm for symmetric functions; the learning algorithms
for exact-count boolean functions and threshold boolean functions are similar. Symmetric

boolean functions are NC1-learnable by the following parallel recognition algorithm with
sample size m = O(1

�
log 1

�
+ n

�
): Let A be the set of sums f

P
1�i�n xig, for all positive
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sample points x. If
P

1�i�n xi 62 A for all negative sample points x, then we return A;

otherwise, there is no consistent symmetric boolean function. The algorithm can be im-
plemented in O

�
log(nm)

�
time by NC1 circuits having width (number of processors) equal

to nm= log(nm).

Theorem 3.3. The following properly NC1-learnable concept classes are not properly

AC
0-learnable:

1. Exact-count boolean functions.

2. Threshold boolean functions.

3. Symmetric boolean functions.

Proof. The reasoning in our proof is based upon the following results: The construction in
[Stockmeyer and Vishkin 1984] shows that any randomized constant-time CRCW algorithm

can be transformed into a (uniform) probabilistic polynomial-size constant-depth circuit
with unbounded fanin, and the randomness can be removed from the circuit by the results
of [Ajtai and Ben-Or 1984] (although the resulting circuit is no longer uniform). Furst,
Saxe, and Sipser [1984] show that the problem of computing the majority function (which
is equal to 1 if at least half the input bits are 1 bits, and to 0 otherwise) cannot be
computed by a polynomial-size constant-depth circuit with unbounded fanin. In this proof,
we show that computing the majority function is constant-depth reducible (see [Chandra,
Stockmeyer, and Vishkin 1984]) to the the recognition problems of exact-count boolean
functions, threshold boolean functions, and symmetric boolean functions. Combined with
Lemma 2.1, we can then conclude that if exact-count boolean functions, threshold boolean
functions, and symmetric boolean functions areAC0-learnable, then there exist randomized
constant-time recognition algorithms, and thus there exist constant-depth polynomial-size
unbounded-fanin circuits for majority, which is a contradiction.

1. To prove part 1, we show that exact-count boolean functions are not AC0-learnable
by showing that majority is constant-depth reducible to the recognition problem of exact-
count boolean functions. To compute the majority of x, we use one positive sample point

1x1 : : : xn

and one negative sample point

0x1 : : : xn:

The majority of x is 1 if and only if the value of T found is greater than or equal to
dn=2e + 1. (Note that the comparison can be done in constant time.) To see this, it
su�ces to note that the only T consistent with the sample is T = 1 +

P
1�i�n xi.

2. The constant-depth reduction of majority to the recognition problem of threshold
functions is similar to that of part 1.

3. We now show that majority is constant-depth reducible to the recognition problem

of symmetric boolean functions. In the following, let 0i denote the i-bit 0-vector. To
compute the majority of x, we use one positive sample point

11x1 : : : xn
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and the following n+ 2 negative sample points:

x(1); x(2); : : : ; x(n); 0n+11; and 0n+2;

where x(i) = 0i1xi : : : xn. The majority of x is 1 if and only if the symmetric function A

found satis�es minai2Afaig � dn=2e + 2. To verify this, it su�ces to note that in order

for A to be consistent with all negative sample points, we must have ai > 1 +
P

1�i�n xi
for each ai 2 A. And since 11x1 : : : xn is a positive sample point, A must include 2 +P

1�i�n xi. Finding the minimum can be done in constant time using n2 processors; all

possible pairwise comparisons are performed simultaneously, and any element that wins
all its comparisons has the minimum value.

Isothetic hyperrectangles (also known as axis-parallel rectangles) are easily seen to be

properly AC0-learnable. The next theorem shows that several other interesting geometri-

cal concept classes are AC0-learnable on an arithmetic CRCW PRAM. Here we are not
concerned about optimal processor-time bounds (which is another line of research), but
for simplicity we concentrate on showing that the concept classes are AC0-learnable. For
relevant background on computational geometry, we refer the readers to [Preparata and
Shamos 1985].

Theorem 3.4. Let k be any �xed positive constant. The following geometrical concept

classes are properly AC0-learnable:

1. Rectangles. Each concept consists of the set of points corresponding to a (possibly

nonisothetic) rectangle in <2.

2. Convex k-gons. Each concept consists of the set of points corresponding to the interior

and boundary of a convex polygon with k sides in <2.

3. Linearly separable functions in <k (cf. Section 5). Each concept c~w;T , where ~w is a

k-vector and T is a scalar threshold, consists of the k-vectors ~a for which ~a � ~w � T .

Proof. For learning geometrical concepts, we use the arithmetic CRCW PRAM model,
where each memory location can hold a single real number and the arithmetic operations
include addition, subtraction, multiplication and division. The recognition algorithms
outlined below can be implemented as parallel exhaustive search algorithms and are easily

seen to run in constant time with a polynomial number of processors.

1. Rectangles are AC0-learnable by the parallel recognition algorithm outlined below
with sample size m = O(1

�
log 1

�
+ 1

�
log 1

�
). We assume that there are at least two distinct

positive sample points; otherwise, the problem can be trivially solved. We also assume
that the positive and negative sample points are separable by rectangles. The main part

of the algorithm is to identify an orientation along which it is possible to form a consistent
rectangle. We claim that we can �nd the right orientation by examining lines constructed

from pairs of sample points, at least one of which positive.
The proof for the claim is as follows: Let the target rectangle be R. Consider hy-

pothetically the unique rectangle R0 that is oriented like the target rectangle, but having

minimum area under the constraint that it encloses all the positive sample points. (We
can imagine moving all four sides of the target rectangle R toward the center until its four

sides border on at least one positive sample point.) Let a, b, c, d be the positive sample
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Figure 1. The hypothetical nonrigid rotation of R0 about a in the proof for part 1 of Theorem 3.4.

Equivalently, we may think in terms of simultaneously rotating the top, left, bottom, and right

side of R0 about a, b, c, and d, respectively. We stop the rotating when either (a) one of the sides

of the rectangle contains two distinct positive sample points, or (b) one of the four sides hits a

negative sample point.

points (not necessarily distinct) that lie on the top, left, bottom, and right sides of R0,
respectively. It is possible that the four points are not distinct, but by assumption there
are at least two distinct points; any repeated points must be corners of R0. Imagine rotat-
ing R0 continuously about a (clockwise and counterclockwise) and adjusting the boundary
of R0 at the same time to keep its four sides aligned as a rectangle and passing through a,
b, c, and d, respectively. Equivalently, we may think in terms of simultaneously rotating

the top, left, bottom, and right side of R0 about a, b, c, and d, respectively. Clearly this

is not a rigid rotation. We stop the rotating either when one of the sides of the rectangle
contains two distinct positive sample points (as in Figure 1(a)) or when one of the four
sides hits a negative sample point (as in Figure 1(b)). One of these two stopping conditions

must occur, since there are at least two positive sample points. There exists a rectangle R00

that satis�es this property and requires a minimal amount of rotation (either clockwise or
counterclockwise).

By the construction, one of the edges of R00 borders on at least two sample points, one
of them positive, so R00 can be uniquely identi�ed by two sample points s and t, where s

is a positive sample point. If R00 hits no negative sample points, it will be a consistent
rectangle. Otherwise, we can imagine rotating R00 about s toward the positive side by a

su�ciently small angle to make it consistent with the sample points. (We will explicitly
de�ne this rotational angle later.) Let us call the resulting hypothetical rectangle R000.
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Before we proceed, we need a function �(�; �) de�ned as follows: For any sample point s

and any rectangle R, �(s;R) gives the minimum distance from s to any of the lines that
are extensions of the sides of R and do not pass through s.

The algorithm for �nding a consistent rectangle is as follows: For each pair of sample

points s and t, where s is a positive sample point, we �nd the minimum area rectangle Rs;t

with one side along the line between s and t that contains all positive sample points, but no
negative sample points, except possibly on the boundary. These rectangles are candidates

for R00; denote this set of rectangles as R. If there is a rectangle in R that contains no

negatives sample points on its boundary, then we return it. Otherwise, for each rectangle

Rs;t 2 R, where t is a negative sample point, we rotate it about s by a small angle �s;t
toward the positive side and adjust the boundary to get the negative sample points o� the
border and still include all positive sample points. By some algebraic manipulation we can

show that it su�ces to choose the angle �s;t of rotation so that d1 � sin �s;t < min(d2; ds;t),

where d1 is the distance between the two farthest-apart sample points, d2 is the minimum
nonzero distance between any sample point and lines that pass through two other sample
points, and ds;t is the minimum of �(s0; Rs;t) over all sample points s0. We remark that d1
and d2 can be �xed, but ds;t depends on Rs;t. Since R includes R00, at least one such
rectangle obtained by this procedure is a valid choice for R000 above and thus is consistent
with the sample points.

2. Convex k-gons are AC0-learnable by the following parallel recognition algorithm
with sample size m = O(1

�
log 1

�
+ 1

�
log 1

�
). As before, we assume there are at least two

distinct positive sample points. The main part of the algorithm is to identify orientations
for the k sides such that it is possible to form a consistent k-gon.

The reasoning behind this algorithm is similar to that of part 1: Let the target con-
vex k-gon be G. Consider hypothetically the unique k-gon G0 that is obtained by shrinking
G (without changing the orientations of each side) until each side hits at least one positive
sample point. Let the k positive sample points (one per side of G0) be a1, : : : , ak. Note
that it is possible that the k points are not distinct, but by assumption there are at least
two distinct points; all repeated points must be the vertices of G0. For each ai, where
1 � i � k, let `ai be the line that passes through ai and has the same orientation as the ith
side of G0. If there are points other than ai on `ai, we relabel `ai as `

0
ai
; otherwise, imag-

ine rotating the line `ai continuously about ai (clockwise or counterclockwise, whichever

requires less amount of rotation) until it hits either a positive or negative sample point.
If it hits a negative sample point, we can imagine rotating it back by a su�ciently small
angle to get the negative points o� the line and keep all positive points on the same side.
Let us call the resulting k hypothetical lines `0a1; : : : ; `

0
ak
. For each line `0ai , let h

+(`0ai) be

the closed halfplane containing all positive points. Thus G00 = h+(`0a1) \ : : : \ h
+(`0ak) is a

consistent convex k-gon. Note that for simplicity we allow the possibility that some of the
halfplanes are the same.

The algorithm for �nding a consistent convex k-gon is as follows: For each pair s and t

of distinct labeled sample points, where s is a positive sample point, we �nd the line `s;t
they uniquely determine. For each line `s;t that has all positive points on the same side
(allowing positive points to lie on `s;t itself), we check if there are any negative sample

points on `s;t. If so, in addition we consider the line obtained by rotating `s;t about s
by a su�ciently small angle � to get the negative points o� the line and keep all positive
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points on the same side. It su�ces to choose the angle � so that d1 � sin � < d2, where d1 is

the distance between two farthest sample points and d2 is the minimum distance between
any sample point and lines pass through any other two sample points. These lines `s;t
and their rotations will be the candidates for `0ai . For each set of k candidate lines, which

are not necessarily distinct, we form the polygon they identify and check if the polygon

separates the positive sample points from the negative sample points. (allowing positive
points to lie on the boundary). This can be done in parallel in constant time since k is a

�xed constant. At least one such convex k-gon obtained by this procedure is a valid choice

for G00 above and thus is consistent with the sample points.

3. Linearly separable functions in <k are AC0-learnable by the parallel recognition

algorithm outlined below with sample size m = O(1
�
log 1

�
+ 1

�
log 1

�
). For simplicity, we

assume here that not all sample points lie on the same hyperplane, or else we consider the

(k � 1)-dimensional problem.

Let S+ be the set of positive sample points and S� be the set of negative sample
points. Suppose S+ and S� are linearly separable. We can imagine putting a su�ciently
small k-dimensional cube (or k-cube) around each negative sample point. Let the set of
all k-cube corners be S. It is clear that if the k-cubes are small enough, S+ and S will still
be linearly separable. Furthermore, the separating hyperplane h for S+ and S will also
be a separating hyperplane for S+ and S�. We can imagine rotating and translating h to
a hyperplane h0 such that h0 separates S+ and S, except that there are at least k points
on h0, some of which may be k-cube corners. It follows that h0 is a consistent separating
hyperplane for S+ and S�; that is, all points in S� are on the same side of h0 and none
are on h0.

The algorithm for �nding a consistent separating hyperplane is as follows: We replace
each negative sample point by 2k k-cube corners as described above. The size of each
k-cube can be chosen so that the distance from any negative point to its corresponding k-
cube corner is � times the minimum value of distance(s; hA), where � is the ratio of the
distance between two nearest sample points and the distance between two farthest-apart
sample points, hA is any hyperplane determined by a set A of of k sample points, and s is
any sample point not on hA. This can be done in parallel in constant time since k is a �xed
constant. We now use these k-cube corners S as negative sample points and disregard the
original negative points S�. For each subset A0 of k points from the new set of sample
points, we consider the hyperplane hA0 that they uniquely determine. If hA0 separates S+

from S�, then hA0 is a valid choice for h0 above. If S+ and S� are separable, there will

be at least one valid choice.

4. Alternatives to Greedy Learning Algorithms

In this section we present the main result of this paper|a simple polylog-time learning

algorithm for the s-fold union of isothetic rectangles in the plane <2. Blumer et al. [1989]
show that this concept class is learnable sequentially in polynomial time via a greedy

Occam algorithm for set cover [Johnson 1974], [Chv�atal 1979], which produces a cover
containing at most s logm + 1 sets, where s is the size of the minimum cover and m is
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the number of points covered. The greedy set cover algorithms appear to be inherently

sequential.

Our learning algorithm is based instead upon an alternative randomized Occam algo-
rithm that can be parallelized and is of independent interest. For simplicity of presentation,

we restrict ourselves to s-fold unions of rectangles in <2, and we assume that the value of s

is known to the learning algorithm; we show in Section 5 that knowledge of s does not a�ect

the NC-learnability of the concept class. The ideas used here can be easily generalized to
higher dimensions or to other geometrical objects, like circles, triangles with �xed-oriented

sides, and c-oriented polygons (in which each side has one of c �xed orientations).

Below we give a high-level description of the RNC Occam algorithm Cover, which

gives a parallel learning algorithm when used in conjunction with Theorem 2.1. We use

�(R) to denote the set of positive sample points covered by a rectangle R, and for a
collection R of rectangles we use �(R) to denote the positive sample points covered by the

rectangles in R.

Algorithm Cover

Input: A set of m labeled sample points of an s-fold union of isothetic rectangles in <2.
We denote the sets of positive and negative sample points by POS and NEG.

Output: A set F of isothetic rectangles in <2 that covers all the points in POS and none
of the points in NEG.

f limit is a certain function of m, and a1 is a constant, 0 < a1 < 1. g

F  ;; S+
 POS ;

while S+
6= ; do

begin

num tries  1; success  false;

repeat

call PartialCover to produce a set F 0 of isothetic rectangles;

if j�(F 0)j � a1jS
+
j then success  true;

num tries  num tries + 1

until success or num tries > limit ;

if not success then exit with failure;

S+
 S+

� �(F 0); F  F [ F 0

end

The procedure PartialCover constructs the set F 0 of isothetic rectangles as follows:
For some integer a3, we pick a3s random points uniformly and independently from S+;

call this set G. For each set g � G of two points, we form the minimum area rectangle
covering g. If this rectangle doesn't include any negative sample points, then we include
this rectangle in F 0. Since G containsO(s) points, it follows that there are O(s2) rectangles
in F 0.

The following theorem, combined with Theorem 2.1, shows that unions of rectangles

is NC-learnable:

Theorem 4.1. Algorithm Cover is an RNC Occam algorithm for the s-fold union of

isothetic rectangles in <2. It produces a cover of size O(s2 logm).
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To prove this theorem we make use of the following theorem (which we shall prove

later) about the performance of PartialCover :

Theorem 4.2. For some constants 0 < a1; a2 < 1, the subroutine PartialCover returns

with probability a2 a set F 0 of O(s2) rectangles that covers at least a1jS
+
j positive sample

points not already covered; that is,

Pr
�
j�(F 0)j � a1jS

+
j
	
> a2:

Proof of Theorem 4.1. A successful execution of the body of the repeat loop reduces the

size of S+ by a factor of at least a1; hence, in the worst case all the points in POS will get

covered after 1 � log1�a1 m consecutive successful executions of the body of the repeat

loop. We de�ne limit so that

limit > � log1�a2
�
4(1� log1�a1 m)

�
:

We can bound the probability that the repeat loop does not succeed by

(1 � a2)
limit <

1=4

1� log1�a1 m
:

Thus the probability that the while loop fails at least once in 1 � log1�a1 m consecutive
executions is at most 1=4. This means that our algorithm Cover produces a cover of size
O(s2 logm) with probability at least 3=4. It follows from this and Lemma 3.2.3 in [Blumer,
Ehrenfeucht, Haussler, and Warmuth 1989] that the VC dimension of the hypothesis space
of algorithm Cover is O

�
s2 logm(log s+ log logm)

�
.

Proof of Theorem 4.2. The rest of this section is devoted to the proof of Theorem 4.2. Con-
sider (hypothetically) any optimum cover fR1; : : : ; Rsg of size s. Without loss of generality,
let j�(R1)j � : : : � j�(Rs)j. We de�ne R = fR1; : : : ; Rtg to be the set of rectangles Ri

such that j�(Ri)j � jS
+
j=2s. The rectangles not in R cover less than sjS+

j=2s = jS+
j=2

positive sample points, and hence j�(R)j � jS+
j=2; that is, the rectangles in R cover at

least half the positive sample points.
For eachR 2 R, consider the �ve overlapping closed subrectanglesRtop, Rleft, Rbottom,

Rright, and Rcenter, such that j�(Rlabel)j � j�(R)j=8, for all label 2 ftop, left, bottom,
rightg and j�(Rcenter)j � j�(R)j=2. The subrectangles are oriented as shown in Figure 2.
To form Rtop, for example, we could initialize the top and bottom sides of Rtop to be the

top side of R, and gradually lower the bottom side of Rtop until it covers at least j�(R)j=8
points. The top, left, bottom, and right boundaries of Rcenter coincide, respectively, with
the bottom boundary of Rtop, the right boundary of Rleft, the top boundary of Rbottom,
and the left boundary of Rright. Note that any point on a boundary belongs simultaneously

to more than one subrectangle.
The proof of Theorem 4.2 follows from the following four lemmas.

Lemma 4.1. For each R in R, there is at least a constant probability that the random

sample G \hits" each of R's four outer subrectangles. That is, there is some constant

0 < a4 < 1 such that for each R in R we have

Pr
�
�(Rlabel ) \ G 6= ; for all label 2 ftop; left; bottom; rightg

	
> a4:
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Figure 2. Decomposition of a typical rectangle R 2 R into the overlapping subrectangles Rtop,

R
left , Rbottom , Rright , and R

center . The subrectangle Rtop is shaded. The �gure shows the case

where we have points of G in each of the four outer subrectangles Rtop , Rleft , Rbottom , and Rright .

By forming the minimum area rectangles covering every two distinct sample points, Rcenter will

be totally covered.

Proof. For each R in R and for each label 2 ftop, left, bottom, rightg, we have
j�(Rlabel)j � jS+

j=16s, and thus the probability that a random point from S+ hits Rlabel is
at least 1=16s. Let a3s be the size of the random sample G of positive sample points. Let
I
Rlabel denote the event that R

label is hit, and let IR =
T

label2ftop; left; bottom; rightg IRlabel

be the event that all four outer subrectangles of R are hit. We denote the complement of
event A by A. For each label 2 ftop, left, bottom, rightg, we have

Pr(I
Rlabel ) �

�
1�

1

16s

�a3s
< e�a3=16:

Let a4 = 1� 4e�a3=16. We choose a3 large enough so that a4 > 0. We have

Pr(IR) = 1� Pr(IR) � 1�
X
label

Pr(I
Rlabel ) > 1� 4e�a3=16 = a4:

Lemma 4.2. If the random sample G hits each of the four outer subrectangles of rect-

angle R, then the rectangles F 0 returned by PartialCover cover at least half of the sample

points in R.

Proof. The situation is pictured in Figure 2. Given any four (possibly nonunique) points

a 2 Rleft, b 2 Rtop, c 2 Rright, and d 2 Rbottom, the four minimum-area rectangles
containing fa; bg, fb; cg, fc; dg, and fd; ag, respectively, completely cover Rcenter, which by

de�nition contains at least j�(R)j=2 sample points.
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Lemma 4.3. An average of at least a constant fraction of the positive sample points are

covered by the rectangles F 0 returned by PartialCover ; that is,

E
�
j�(F 0)j

�
>

a4

4
jS+
j:

Proof. For each rectangle R in R, let ZR be the zero-one random variable corresponding

to the event IR that all four outer subrectangles of R are hit by the random sample G, as

de�ned in the proof of Lemma 4.1. Lemma 4.2 implies that

j�(F 0)j �
X
R2R

�
ZR
j�(R)j

2

�
:

Taking expectations and using the fact that E(ZR) > a4 from Lemma 4.1 we get

E
�
j�(F 0)j

�
�

X
R2R

�
E(ZR)

j�(R)j

2

�
�

a4

2
j�(R)j �

a4

4
jS+
j:

Manipulating Lemma 4.3 gives us the �nal lemma we need for the derivation of The-
orem 4.2:

Lemma 4.4. We have

Pr
n
j�(F 0)j �

a4

8
jS+
j

o
>

a4

8� a4
:

Proof. Let p = Pr
�
j�(F 0)j � a4

8
jS+
j
	
. We have

E
�
j�(F 0)j

�
� pjS+

j+ (1� p)
a4

8
jS+
j:

The proof follows by substituting the lower bound for E
�
j�(F 0)j

�
from Lemma 4.2.

Continuation of the Proof of Theorem 4.2. We can complete the proof of Theorem 4.2 by
substituting the values a1 = a4=8 and a2 = a4=(8� a4) into Lemma 4.3.

To generalize our techniques to higher dimensions, say <k, the procedure PartialCover

must be modi�ed slightly. We decompose a hyperrectangle into 2k+1 subhyperrectangles

in a similar manner and we consider k sample points at a time. As for other geometrical
objects, the necessary modi�cations to PartialCover depend on the particular geometrical
properties of those objects.

5. Equivalence of Two Parallel Learning Models

In this section we justify our previous assertion that knowing the size s of the concept c
to be learned does not make the learning problem easier. We assume, as before, that Cn

is NC-evaluatable.
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Theorem 5.1. If there exists an RNC Occam algorithm for a concept class Cn, where

the algorithm is given s as part of the input, then we can construct an RNC Occam

algorithm for Cn in the sense of De�nition 2.6, in which s is not provided in the input.

Proof. Let A be an RNC Occam algorithm for Cn that is given the value of s in the input.

Given m � s sample points, it returns a consistent hypothesis in HA
Cn;s;m

with probability
at least 3=4. We can construct an RNC Occam algorithm A0 for Cn that does not require

knowledge of s by simultaneously simulating A for all possible size values 1 � s0 �m. (Or

alternatively, if A only needs to know the value of s to within a factor of 2, we can use

fewer processors by simulating A for s0 = 1, 2, 4, 8, : : : .) We let A0 return the hypothesis
that is consistent for the smallest value of s0. Since A is simulated with s0 = s (or in the

alternate case, since A is simulated with s � s0 < 2s), A0 returns a consistent hypothesis

in HA
Cn;s;m

(or alternatively, in HA
Cn;2s;m

) with probability at least 3=4. Hence A0 is an

RNC Occam algorithm.

In the last section we constructed an RNC Occam algorithm for rectangle cover
assuming that the size of the optimal cover s was known. By Theorem 5.1, we can convert
it into an RNC Occam algorithm that doesn't use knowledge of s, and thus unions of
rectangles are NC-learnable. We can further extend our results to the general problem of
learning:

Theorem 5.2. If a concept class Cn is NC-learnable when s is given as part of the

input, and the hypothesis space has VC dimension of at most njskm�, for some constants

j; k � 0 and 0 � � < 1, then Cn is also NC-learnable in the sense of De�nition 2.3, in

which s is not provided in the input.

Proof. The polylog-time learning algorithm that uses s as part of the input gives anRNC
Occam algorithm that uses s as part of the input, by Lemma 2.1 and the fact that the VC
dimension of the hypothesis space is limited. By Theorem 5.1 this gives an RNC Occam
algorithm, which by Theorem 2.1 gives a polylog-time learning algorithm Cn.

The reader is referred to [Haussler, Kearns, Littlestone, and Warmuth 1988] for an
extensive discussion of the equivalence of various sequential learning models. Building on
their techniques we can remove the assumption about the VC dimension of the hypothesis
space in Theorem 5.2, but the proof becomes more complicated. In particular, we can

show that learning with knowlege of s is as hard as learning with knowledge of s to within
a polynomial factor of 1

�
, 1
�
, and n, which in turn is as hard as general learning.

6. Negative Results

In this section we show that some concept classes related to linear programming are not
NC-learnable, unless P � RNC. In contrast, the problems are polynomial-time learnable
in the sequential setting via linear programming techniques. We assume here that the

concept classes are NC-evaluatable. Our results are representation-dependent.

De�nition 6.1. A consistency algorithm for Cn is a decision algorithm that takes as
input a set S of arbitrarily labeled sample points and determines if there exists at least

one hypothesis in Cn that is consistent with S. If the algorithm is randomized, it must
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succeed with probability at least 3=4. An RNC consistency algorithm is a randomized

consistency algorithm that runs in polylog time using a polynomial number of processors.

The following lemma shows that any polylog-time learning algorithm can be trans-

formed into an RNC consistency algorithm.

Lemma 6.1. If Cn is NC-learnable and NC-evaluatable, then there exists an RNC

consistency algorithm for Cn.

Proof. The proof is similar to the proof for Lemma 2.1, except that when A returns a
consistent hypothesis (this can be checked in NC, since Cn is NC-evaluatable), A0 answers

\yes." Otherwise, A either produces an inconsistent hypothesis or fails to terminate within

the T (m) time bound; in this case A0 answers \no." Thus A0 is an RNC consistency

algorithm with error at most 1=4.

The next theorem gives several consistency problems that are log-space complete
for P ; if one of them is in RNC then P � RNC, a consequence that is considered very
unlikely by researchers in complexity theory. The concept classes corresponding to these
consistency problems are NC-evaluatable. Hence, by Lemma 6.1, the concept classes are
not NC-learnable unless P � RNC.

Theorem 6.1. The following consistency problems are logspace-complete for P:

1. Linear inequalities (LI): Given an integerm�n matrix A = (~ai)1�i�m and an integer

m-vector ~b, is there an n-vector ~w such that ~ai � ~w � bi, for all 1 � i �m?

2. Mixed linear inequalities with its right-hand sides greater than 0 (MLI+): Same as LI,

except that bi > 0 and the requirement is ~ai � ~w � bi, for 1 � i � m0, and ~ai � ~w < bi,

for m0 + 1 � i �m.

3. Linearly separable functions (LS): Given two sets S+ and S� of integer n-vectors, are

there an n-vector ~w and a scalar threshold T such that ~a � ~w � T , for all ~a 2 S+, and

~a � ~w < T , for all ~a 2 S�?

4. Linear spherical separation (LSS): Same as above, except that S+ and S� are two

sets of rational n-vectors on the unit sphere in <n.

Proof. LI. Dobkin, Lipton, and Reiss [1979] show that Horn formula satis�ability
(HORN), which is a restricted form of solving linear inequalities (LI), is logspace-hard

for P. Combined with the results in [Khachiyan 1979] and [Karmarkar 1984] that linear

programming is in P in the bit model, where the input size is measured as the num-
ber of bits required to encode the input, this shows that linear programming and LI are
logspace-complete for P.

LI /MLI+. Each instance of the LI problem

~ai � ~w � bi; for 1 � i � m;

is solvable if and only if the �-perturbed system

~ai � ~w < bi + �; if bi � 0; for 1 � i � m;

~ai � ~w � bi; if bi < 0; for 1 � i � m;
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is solvable, where � = 2�2L and L is the length of the encoding of LI (see [Papadimitriou

and Steiglitz 1982], for example). Multiplying the ~ai and bi entries by �1 in the equations
of the second type gives us an instance of MLI+.

MLI+ / LS. Let us consider an instance of the MLI+ problem

~ai � ~w � bi; where bi > 0; for 1 � i �m0;

~ai � ~w < bi; where bi > 0; for m0 + 1 � i � m:

We can reduce MLI+ to LS by multiplying each constraint by the appropriate scalar so that

the right-hand side of each constraint is the same, call it U . For example, we could choose U

to be the least common multiple of b1, b2, : : : , bm, or we could choose U =
Q

1�i�m bi. We
form the following two sets:

S+ =

�
U ~ai

bi

�
1�i�m0

and S� =

�
U ~ai

bi

�
m0+1�i�m

:

If the MLI+ instance has a solution ~w, then the corresponding instance of LS has a solution
with ~w and threshold U . Conversely, if the instance of LS has a solution ~w and threshold T ,
then the instance of MLI+ has a solution with U ~w=T .

LSS. Dobkin and Reiss [1980] show that the spherical separation problem, which is the
same as LSS except that the positive sample points are not allowed to lie on the separating
hyperplane, is logspace-complete for P. We can show that LSS is also logspace-complete
for P by �-perturbing the separating hyperplane.

7. Conclusions

This paper examines quantitatively what we can gain by using parallelism to learn concepts
from examples. Our results are summarized in Section 1. Many open questions remain.
Only a relatively few concept classes have been considered, and the time-processor products
are nonoptimal for some of these. Another step is to examine more specialized parallel
models of learning, such as neural networks and connectionist architectures, which are

used heavily in arti�cial intelligence applications. Neural nets that learn can be viewed

as partially-parallel learning algorithms: the sample points are input sequentially, but the
components of each sample point are handled in parallel.

It is generally unrealistic for learning algorithms to depend strongly on having error-
free (or noiseless) data. Errors can occur in data for a variety of reasons, such as sensor

inaccuracy, �nite precision, and transmission error. There may be classi�cation noise (in
which the sample point is mislabeled) and attribute noise (in which the sample point itself is
changed). Also noise may be maliciously or randomly generated. Our research shows that
most published sequential fault-tolerant learning algorithms for various noise models can be

parallelized in a straightforward manner to get parallel fault-tolerant learning algorithms.
We refer the reader to [Vitter and Lin 1988] for the details. The fault-tolerant algorithms

for sequential learning appear in [Valiant 1985], [Angluin and Laird 1988], [Kearns and Li
1988], [Laird 1988], [Shackelford and Volper 1988], and [Sloan 88].
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Recently, an NC Occam algorithm for general set cover was developed by Berger,

Rompel, and Shor [1989], partly motivated by the conference version of our paper. This
allows more general intersections and unions of concept classes to be learned in parallel.

The algorithm produces a cover containing O(s logm) sets, where s is the size of the mini-

mum cover and m is the number of points covered. This matches, up to a constant factor,

the s logm + 1 performance bound of the sequential greedy methods of [Johnson 1974]
and [Chv�atal 1979]. An interesting open question is whether randomization can be used

in a sequential setting to improve upon the performance guarantees of [Johnson 1974] and

[Chv�atal 1979].
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