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Introduction 

Mally of the most striking phenomena known from per­
ceptual psychology are a direct result of the first levels of 
neural processing. In the visual systems of higher animals, 
the well-known center-surround response to local stimuli is 
responsible for some of the strongest visual illusions. For 
example, Mach bands, the Hermann-Hering grid illusion, 
and the Craik-O'Brian-Comsweet illusion can all be traced 
to simple inhibitory interactions between elements of the 
retina (Ratliff 1965). The high degree to which a per­
ceived image is independent of the absolute illumination 
level can be viewed as a property of the mechanism by 
which incident light is transduced into an electrical signal. 
We present a model of the first stages of retinal process­
ing in which these phenomena are viewed as natural 
by-products of the mechanism by which the system 
adapts to a wide range of viewing conditions. Our retinal 
model is implemented as a single silicon chip, which con­
tains integrated photoreceptors and processing elements; 
this chip generates, in real time, outputs that correspond 
directly to signals observed in the corresponding levels of 
biological retinas. 

Retinal Structure 

Because our model of retinal processing is implemented 
on a physical substrate, it has a straightforward structural 
relationship to the retinas of higher animals. A thorough 
review of the biological literature up to 1973 can be 
found in The Vertebrate Retina (Rodieck 1973), and more 
recent work in The Retina: An Approachable Part of the 
Brain (Dowling 1987). Although each animal is unique in 
detail, the gross structure of the retina has been conserved 
throughout the vertebrates. 

The major divisions of the retina can be seen in the 
cross section shown in figure 1. Light is transduced into 
an electrical potential by the photoreceptors at the top. 



Figure 1 . 

Cross section through the biological retina. R, photoreceptor; H. 
horizontal cell; IB. invaginating bipolar cell; FB, flat bipolar cell; A. 
amacrine cell; rP, interplexiform cell; G, ganglion cell. The outer­
plexiform layer is beneath the foot of the photoreceptors. The 
invagination into the foot of the photoreceptor is the site of the triad 
synapse. In the center of the invagination is a bipolar cell process, 
flanked by two horizontal cell processes. 

The primary signal pathway proceeds from the receptors 
through the triad synapses to the invaginating bipolar 
cells, and thence to the ganglion cells, the axons of which 
fonn the optic nerve. This pathway penetrates two dense 
layers of neural processes and associated synapses; the 
outer plexiform layer just below the photoreceptors, and 
the inner plexiform layer just above the ganglion cell 
bodies. The horizontal cells are located within the outer 
plexiform layers, and the inner plexiform layer contains 
amacrine cells. The horizontal and amacrine cells thus 
spread across a large area of the retina, in layers trans­
verse to the signal flow. Information in the retina is 
represented by smoothly varying analog signals until it 
reaches the ganglion cell axons where it is encoded in 
nerve pulses which are quasidigital (digital in amplitude 
but analog in time). 

Our model is concerned with the processing that oc­
curs in the receptors and the outer plexiform layer. The 
key processing element in this region is the triad synapse, 
which is found in the base of the photoreceptor. This 
synapse is the point of contact between the photorecep­
tor, the horizontal cells, and the bipolar cells. The com­
putation performed by the model can be stated very 
simply in terms of these three elements: The photorecep­
tor takes the logarithm of the intensity. The photorecep­
tor output is spatially and temporally averaged by the 
horizontal cells. The bipolar cells's output is proportional 
to the difference between the photodetedor signal and 
the horizontal cell signal. We will describe our imple­
mentation of the model and compare its behavior with 
that observed in biological retinas. 

Photoreceptor 

The photoreceptor transduces an image focused on the 
retina into an electrical potential proportional to the loga­
rithm of the local light intensity. The logarithmic nature 
of the response has two important system-level conse­
quences: 

1. An intensity range of many orders of magnitude is 
compressed into a manageable excursion in signal level. 

2. The voltage difference between two points is propor­
tional to the contrast ratio between the two correspond­
ing points in the image, independent of incident light 
intensity. 
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The logarithmic nature of the output of the biological 
photoreceptor is supported by psychophysical and elec­
trophysiological evidence. It is common experience that 
the perception of a scene does not change over a wide 
range of illumination levels. Psychophysical investiga­
tions of human visual sensitivity thresholds show that the 
threshold increment of illumination for detection of a 
stimulus is proportional to the background illumination 
over several orders of magnitude (Shapley and Enroth­
Cugell 1984). Physiological recordings from photorecep­
tors show their electrical response to be logarithmic 
in light intensity over the central part of their range, 
as are the responses of other cells in the distal retina 
(Rodieck 1973). 

The primary transducer in our silicon retina is a photo­
detector described in (Mead 1985). This photodetector is 
a vertical bipolar transistor, which occurs as a natural 
by-product in the CMOS process used for implementing 
the analog processing elements. This transistor produces 
approximately 100 electrons for every incident photon. 
The current from the phototransistor is fed into a circuit 
element with an exponential current-voltage characteris­
tic, thereby creating an output voltage that is logarithmic 
in the incoming light intensity. The exponential element 
is realized by two diode-connected MOS transistors in 
series. In the subthreshold range, corresponding to the 
current levels out of the phototransistor, the drain current 
of an MOS transistor is an exponential function of the 
gate-source voltage. We use two transistors to ensure 
that the voltage range of the output is appropriate for 
subsequent processing by the kinds of amplifiers we can 
build in this technology. The voltage out of this photo­
receptor is logarithmic over four or five orders of magni­
tude of incoming light intensity, as shown in figure 2. The 
lowest photocurrent is about 10-14 A, which translates to 
a light level of 105 photons/ second. This level corre­
sponds approximately to moonlight, which is about the 
lowest level of light visiable using the cones in a verte­
brate retina. 

Horizontal Resistive Layer 

The horizontal cells in many species are connected to 
each other by gap junctions to form an electrically contin­
uous network in which signals propagate by electrotonic 
spread (Ehinger and Dowling, in press). The voltage at 
every point in the network thus represents a spatially 

333 

2.6 

2.4 

2.2 

~ 2.0 

:; 
a. 
:; 
0 1.8 
0 
a. 
"' (J 

"' 1.6 a: 

1.4 

1.2 

1.0 
-15 -14 -13 -12 -11 

Log Photocurrent (A) 

Figure 2. 
Measured response of logarithmic photodetector. Photocurrent is 
proportional to incident light intensity. Response is logarithmic over 
more than four orders of magnitude in intensity. 

weighted average of the photoreceptor inputs. The farther 
away an input is from a point in the network, the less 
weight it is given. The horizontal cells are usually mod­
eled as passive cables, in which the weighting function 
decreases exponentially with distance. 

Our silicon retina includes a hexagonal network of 
resistive elements, patterned after the horizontal cells of 
the retina. The network is constructed by linking each 
photoreceptor to its six neighbors with resistive elements, 
to form the hexagonal array shown in figure 3. The 
CMOS technology does not include a resistor of suffi­
ciently high value as an inherent part of the process. All 
of our circuit components-resistors, capacitors, etc.­
are made out of transistors (Sivilotti et al. 198 7). Our 
resistive circuit has two advantages over a linear resistor. 

1. The effective resistance of the connection can be con­
trolled by an external input. This property is shared by 
the elements used in biological systems: The effective 
range of electrotonic spread in the horizontal cells is 
modulated, probably by dopamine released by the action 
of the interplexiform cells (Dowling 1987). 
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Figure 3 . 

The silicon retina. Diagram of the resistive network and a single pixel 
element, shown in the circular window. The silicon model of the triad 
synapse consists of the conductance (G) by which the photoreceptor 
drives the resistive network, and the amplifier that takes the differ­
ence between the photoreceptor (P) output and the voltage on the 
resistive network. In addition to a triad synapse, each pixel contains 
six resistors and a capacitor C that represents the parasitic capaci­
tance of the resistive network. These pixels are tiled in a hexagonal 
array. The resistive network results from a hexagonal tilling of pixels. 

2. The current-voltage relation of the elment is linear for 
small voltage differences, but saturates at voltage differ­
ences larger than about 100 mV. Saturation is one of the 
more desirable properties of physical systems. In addition 
to warding off embarrassing infinities, saturation provides 
additional robustness to the collective system. For exam­
ple, if one of our pixels fails and generates an output out 
of range, the damage it can do to the computation of the 
network is limited. 

Both biological and silicon resistive networks have 
associated parasitic capacitances. The fine unmyelinated 
processes of the horizontal cells have a large surface-to­
volume ratio, and hence their membrane capacitance to 
the extracellular fluid will average input signals over time 
as well as space. Our integrated resistive elements have 
an unavoidable capacitance to the silicon substrate, and 
hence provide the same kind of time-integration as their 
biological counterparts. The effects of delays due to elec­
trotonic propagation in the network are most apparent 
when the input image is suddenly changed. Experiments 
in which this effect is dominant are discussed in the next 
section. 

Outer Plexiforrn Computation 

The receptive field of the bipolar cell shows an antagonis­
tic center-surround response (Werblin 1974). The center 
of the bipolar cell receptive field is driven by the photo­
receptors, while the antagonistic surround is due to the 
horizontal cell influence. The triad synapse is thus the 
obvious anatomical substrate for this computation. In our 
model, the center-surround computation is a result of the 
interaction of the photoreceptors, the horizontal cells and 
the bipolar cells in the triad synapse. 

One of the principal functions of this part of the bio­
logical retina is to prevent signals from saturating over 
the incredible dynamic range of the system. The first step 
in increasing the dynamic range is the logarithmic com­
pression done by the photoreceptor. The next step is a 
level normalization, implemented by means of the resis­
tive network. The horizontal cells of the retina provide a 
spatially averaged version of the receptor outputs, with 
which the local receptor potential can be compared. The 
triad synapse senses the difference between the receptor 
output and the potential of the horizontal cells, and gen­
erates a bipolar cell output from this difference. The maxi-
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mum response occurs when the receptor potential is 
different from the space-time averaged outputs of many 
receptors in the local neighborbood. This situation occurs 
when the image is changing rapidly in either space or 
time. 

The action of the horizontal cell layer is an example of 
lateral inhibition, a ubiquitous feature of peripheral sen­
sory systems (von Bekesy 1967). Lateral inhibition is used 
to provide a reference value with which to compare the 
signal. This reference value is the operating point of the 
system. In the case of the retina, the operating point of 
the system is the local average of intensity as computed 
by the horizontal cells. Because it uses a local rather than 
global average, the eye is able to see detail in both the 
light and dark areas of high contrast scenes, a task that 
would overwhelm a television camera with only global 
adaptation. 

The output of our silicon retina is analogous to the 
output of a bipolar cell in a vertebrate retina. Our triad 
synapse consists of two elements, as shown in figure 3. 

I. A conductance through which the resistive network is 
driven toward the receptor output potential. 

2. An amplifier that senses the voltage difference across 
the conductance, and thereby generates an output pro­
portional to the difference between the receptor output 
and the network potential at the location. 

Experimental Results 

The voltage stored on the capacitance of the resistive 
network is the space and time averaged output of the 
photoreceptors, each of which contributes to the average 
with a weight that decreases with distance. Figure 4 

shows the response of a single output to a sudden in­
crease in incident illumination. Output from a real bipolar 
cell is provided for comparison. The initial peak repre­
sents the difference between the voltage at the photo­
detector caused by the step input and the old averaged 
voltage stored on the capacitance of the resistive net­
work. As the resistive network equilibrates to the new 
input level, the output of the amplifier diminishes. The 
final plateau value is a function of the size of the stimulus, 
which changes the average value of the intensity of the 
image as computed by the resistive network. 

Figure 5 shows the shift in operating point of the 
bipolar output of both a biological and a silicon retina as 
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were centered on the receptive field of the unit. (a) Response of a 
pixel. Larger flashes increased the excitation of the surround. The 
surround response was delayed due to the capacitance of the resistive 
network. Because the surround level is subtracted from the center 
response, the output shows a delayed decrease for long time. This 
decrease is larger for larger flashes. (b) Response of Necturus bipolar 
cell. Data from Werblin (1974). 
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Curve shifting: Intensity-response curves shift to higher intensi ties at 
higher background illuminations. (a) Intensity response curves for a 
single pixel of the silicon retina. Curves plotted for three different 
background intensities. Stimulus was a small disk centered on the 
receptive field of the pixel. Steady-state response was reported. (b) 
Intensity-response curves for a depolarizing bipolar cell elicited by 
full field Bashes. Test Bashes were substituted for constant back­
ground illuminations. These curves are plotted from the peaks of 
bipolar response to substituted test Bashes. Peak responses are 
plotted, and measured from the membrane potential just prior to 
response. Data from Werblin (1974). 

a function of surround illumination. Using the potential of 
the resistive network as a reference center, the range over 
which the output responds depends on the signal level 
averaged over the local surround. The full gain of the 
triad synapse can thus be used to report features of the 
image without fear that the output will be driven into 
saturation in the absence of local image information. 

The mechanisms evolved to keep the visual system 
operating over an enormous range of viewing conditions 
have important consequences with regard to the repre­
sentation of data. In particular, the suppression of spa­
tially and temporally smooth image information may be 
viewed as a filtering operation. The response of our 
silicon retina to a spatial intensity step is shown in figure 
6. The way the second spatial-derivative computation 
comes about is illustrated in figure 7. A response of this 
type is produced by a receptive field that is a difference of 
Gaussians. A Laplacian filter, which has been used widely 
in computer vision systems, can be approximated by a 
difference of Gaussians (Marr 1982). Both of these mathe­
matical forms express, in an analytically tractable way, the 
computation that occurs as a natural result of an efficient 
physical implementation of local level normalization. 

The output of the bipolar cells directly drive sustained 
type retinal ganglion cells of the mudpuppy, Necturus 
maculosus. Consequently, the receptive field properties of 
this type of ganglion cell can be traced to the receptive 
field properties of the bipolar cells (Werblin and Dowling 
1969). Although the formation of the receptive field of 
cat ganglion cells is somewhat more complex (Nelson 
1977), the end result is qualitatively similar. The response 
of a sustained type ganglion cell to a contrast edge placed 
at different positions relative to its receptive field is 
shown in figure 6 (Enro th-Cugell and Robson 1966). The 
spatial pattern of activity found in the cat is similar to that 
measured on our silicon retina. 

Discussion 

The statement of the function of the retina is inseparable 
from the statement of its structure. Since Darwin's eluci­
dation of the principle of natural selection, biological 
science has been able to state the function of organic 
structures. The function of the visual system is to see 
things about the world under a wide variety of illumina­
tion conditions thereby increasing the likelihood of that 
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Figure 6. 

Spatial derivative response of a retinal ganglion cell and a pixel to a 
contrast edge. The vertical edge was held stationary at different 
distances from the receptive field center. Contrast of the edge was 
0.2 log units in both experiments. (a) Pixel output measured at steady 
state as edge was moved in increments of 0.01 cm at the image 
plane. lnterpixel spacing corresponded to 0.11 cm at the image plane. 
(b) On-center C-cell of the cat. The contrast edge was alternately 
turned on and off. The average pulse density over the period 10- 20 

seconds after the introduction of the edge was measured for each 
edge position (Enroth-Cugell and Robson 1966). 
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Model that explains the mechanism of the generation of pixel 
response to spatial edge in intensity. The solid line represents the 
voltage outputs of the photodetectors along a cross section 
perpendicular to the edge. The resistive network computes a 
weighted local average of the photoreceptor intensity, shown by the 
dashed line. The average intensity differs from the actual intensity at 
the stimulus edge because the photodetectors on one side of the 
edge pull the network on the other side toward their potential. The 
difference between the photodetector output and the resistive 
network is the predicted pixel output, shown in the lower trace. This 
mechanism results in increased output at places in the image where 
the first derivative of the intensity is changing. 

A Silicon Model of Early Visual Processing 



visual system being represented in the next generation. 
Unfortunately, this description of the function is not pre­
cise enough to design experiments that can be conducted 
in the lifetime of an investigator. There is a great diversity 
in the theories that explain the purpose of the retina. 
Different investigators emphasize different aspects of 
retinal function such as spatial frequency filtering, adapta­
tion and gain control, edge enhancement, or statistical 
optimization (Srinivasan et al. 1982). It is entirely in the 
nature of biological systems that the results of all the 
experiments designed to demonstrate one or another of 
these points of view can be explained by the properties of 
the single underlying structure. The evolved structure is 
able to subserve a multitude of purposes simultaneously. 

We have taken the first step in simulating the computa­
tions done by the brain to process a visual image. We 
have used a medium whose structure is in many ways 
similar to neural structures. The constraints on our silicon 
systems are very similar to those on neural systems. The 
design is fairly compact; we can fit a 48 x 48 array of 
pixels on a chip that's one quarter of a square centimeter. 
As in the biological retina, density is limited by the wire 
length. The chip is power efficient, using 100 µ W of 
power, and the computation is performed in real time. 

In a small way, we have embarked on a second evolu­
tionary path-that of a silicon nervous system. As in any 
evolutionary endeavor, we must start at the beginning. 
Our first systems are simple and stupid. Compared to 
what the entire visual system of an animal does, or even 
what an actual retina does, our system is very low level. 
It does, however, create a representation upon which 
higher level processing stages can be built; and that repre­
sentation is true to its biological counterpart. 

It is our conviction that our ability to realize simple 
neural functions is strictly limited by our understanding of 
their organizing principles, and not by difficulties in real­
ization. If we really understand a system, we will be able 
to build it. Conversely, we can be sure that a system is 
not fully understood until a working model has been 
synthesized and successfully demonstrated. 

The silicon medium can thus be seen to serve two 
complementary but inseparable roles: 

1. To give computational neuroscience a synthetic ele­
ment allowing hypotheses concerning neural organiza­
tion to be tested. 

2. To develop an engineering discipline by which real­
time collective systems can be designed for specific 
computations. 

The success of this venture will create a bridge be­
tween neurobiology and engineering, and will bring us a 
much deeper view of computation as a physical process. 
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