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Abstract--This paper describes a learning rule of  neural networks via a simultaneous perturbation and an analog 
feedforward neural network circuit using the learning rule. The learning rule used here is a stochastic gradient-like 
algorithm via a simultaneous perturbation. The learning rule requires only forward operations o f  the neural network. 
Therefore, it is suitable for  hardware implementation. First, we state the learning rule and show some computer 
simulation results o f  the learning rule. A comparison between the learning rule, the usual back-propagation method, 
and a learning rule by a difference approximation is considered through the exclusive-OR problem and a simple 
pattern recognition problem known as the TCLX problem. Moreover, 26 alphabetical characters' recognition is 
handled to confirm a feasibility of  the learning rule for  large neural networks. Next, we describe details of  the 
fabricated neural network circuit with learning ability. The exclusive-OR problem and the TCLX problem are 
considered. In a fabricated analog neural network circuit, input, output, and weights are realized by voltages. 

Keywords--Analog feedforward neural network circuit, Simultaneous perturbation, Learning rule, Hardware imple- 
mentation. 

1. INTRODUCTION 

Nowadays, we can implement artificial neural networks 
using several media (De Gloria, 1989; Mead & Ismail, 
1989). In such implementations, emulation by a digital 
computer is the most widely used. The high-speed emu- 
lation of neural networks becomes possible by the ad- 
vance in digital computer technology. Typical examples 
are digital processors designed to emulate neural net- 
works (e.g., Neuro-07 by NEC or NEUROSIM/L by Fu- 
jitsu). These approaches for neural networks' implemen- 
tation will be developed much more. At the same time, 
we also know that digital computer may not be the most 
adequate medium for neural networks' implementation. 

Implementation by hardware elements (e.g., electronic 
element or optical elements, etc.) is profitable because of 
parallel operations, even though such a neural network is 
not flexible with respect to structure (number of cells, 
number of layers or connections between cells, etc.) and 
a learning rule. A hardware realization of neural network 
is very important in that it operates very fast. To apply 
neural networks to various areas, realizing the neural net- 
work physically is an imperative issue. 

Requests for reprints should be sent to Yutaka Maeda, Depart- 
ment of Electrical Engineering, Kansai University, 3-3-35, Yamate- 
cho, Suita, Osaka 564 Japan; E-mail: maedayuta@kansai-u.ac.jp 
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We consider an analog hardware implementation of 
feedforward neural networks with learning ability. One 
of the difficulties of implementing such neural networks 
by physical elements is realization of its learning rule. 
Usually, the back-propagation method (Rumelhart et al., 
1986) is the most widely used as a leaning rule of neural 
networks in software emulation. To use the back-propa- 
gation method, we must calculate the first-differential co- 
efficient of the error function corresponding to all 
weights. The calculation of this first derivative consists of 
multiplications, additions, and the sigmoid functions. 
Then, it is complicated to embody this calculation, elec- 
trically. Moreover, if the circuit gets intricate, we must 
take a dynamic range of the weights and the offset errors 
into account more crucially (Eberhardt et al., 1992). 

Such being the cases, the difficulties of implement- 
ing neural networks with learning ability depend on the 
learning rule. Accordingly, we must contrive a suitable 
learning rule for the hardware implementation. 

From this point of view, we propose a learning rule 
via a simultaneous perturbation. In this learning rule, 
we substitute a mechanism calculating first-differential 
coefficient by a kind of a difference approximation of 
the error function. By using the value of the error func- 
tion with the perturbation and the value of the error 
function without the perturbation, we can apply a kind 
of a difference approximation to approximate the first- 
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differential coefficient. In this case, only forward op- 
erations of the neural network give the modified quan- 
tities of each weight. Therefore, configuration of the 
circuit becomes simple. 

Usually, the learning rule of neural networks via a 
simple sequential parameter perturbation was proposed 
and a hardware implementation was reported (Jabri & 
Flower, 1992). Independently, the authors also pro- 
posed and fabricated an analog neural network circuit 
using the same learning rule (Maeda, Yamashita, & 
Kanata, 1991 ) and investigated a usefulness of this type 
of learning rule in an inverse problem (Maeda, 1992). 
However, as pointed out in Maeda, Yamashita, and Ka- 
nata (1991),  the learning rule using the simple pertur- 
bation requires n-times ~ forward operations of the neu- 
ral network for one modification of all weights. 
Therefore, if the neural network is too large, it is prac- 
tically impossible to expect a feasibility of this learning 
rule in the sense of the operation speed. Therefore, it 
is imperative to devise a learning rule using a simul- 
taneous perturbation-like method. In this simple per- 
turbation technique, perturbations are added sequen- 
tially to all weights. Cauwenberghs proposes a 
stochastic version of this kind of learning rule (Can- 
wenberghs, 1993). In his algorithm, a single weight is 
selected randomly to add a perturbation. He analyzes 
the convergence of his learning rule. 

On the other hand, the learning rule via a sinusoidal 
perturbation signal was proposed (Matsumoto & Koga, 
1990). This learning rule uses multifrequency sinusoi- 
dal perturbations simultaneously. Therefore, updating 
of  each weight is carried out simultaneously. However, 
this multifrequency oscillation learning method needs 
many detection units. Moreover, we must take cross 
talk into account, because the method utilizes multifre- 
quency. 

In this paper, from another point of view, we pro- 
pose a learning rule via a simultaneous perturbation. 
Instead of the simple perturbation or the sinusoid per- 
turbation, we introduce a simultaneous perturbation. As 
a result, the described learning rule requires only twice 
forward operations per one modification of all weights, 
no matter how large the neural network is. Moreover, 
the configuration of our rule becomes simpler. The 
learning rule via the simultaneous perturbation is suit- 
able to hardware implementation because there is no 
need to carry out so-called backward calculation of the 
back-propagation method and it makes the best use of 
a feature of the parallel operation of neural networks. 
The usefulness of this kind of learning rules in neuro- 
control problem has been examined (Maeda & Kanata, 
1993). 

The basic idea of the simultaneous perturbation 
method was proposed by Spall as an extension of the 

J n denotes the total number  of  weights.  

Kiefer-Wolfowitz stochastic approximation method 
(Spall, 1992). He proved that his algorithm converges 
to a minimum of a regression function with probability 
1, under certain conditions. To guarantee theoretical 
convergence, his algorithm requires strict conditions on 
the perturbation, a gain coefficient, and a shape of the 
regression function. However, our emphasis is on prac- 
tical usefulness as a learning rule of neural networks: 
practical convergence and/or feasibility for hardware 
implementation. From these points, the algorithm de- 
scribed here is simplified, compared with Spall's idea. 
Alspector et al. (1993) propose a parallel gradient de- 
scent method that is identical to ours. They describe 
superiority of this kind of learning rule for hardware 
implementation. Moreover, Fujita (1992) proposes 
trial-and-error correlation learning of neural networks. 
His learning rules include these learning rules in a 
broad sense. 

In this paper, we show some computer simulations 
of the proposed learning rule and a comparison be- 
tween this learning rule, back-propagation method, and 
a learning rule using the simple perturbation. In addi- 
tion, we fabricated an analog neural network circuit 
using the learning rule. We describe details of the cir- 
cuit and show some results by the circuit. This reveals 
a proof of feasibility of the learning rule by hardware. 

2. LEARNING RULE VIA SIMULTANEOUS 
P E R T U R B A T I O N  

We use the following nomenclature in this paper. 

w~(i = 1,2 . . . . .  n):  A weight at tth revision. 
w '  = ( w'~, w'2 . . . . .  W'~)T: A weight vector that consists 

of all weights at the tth revision, w' contains thresh- 
olds as weights with input value 1. T denotes trans- 
pose. 

w~ = (w'~ . . . . .  w~ + c . . . . .  w t )T :  A weight vector at 
tth revision with a perturbation c ( c  * 0) in the ith 
weight. 

s '  = (s~ . . . . .  S',)T: A sign vector, s~ = +-_1. The sign 
of s~ is randomly determined. Moreover, the sign of 
s~ is independent with the sign of the other s~ ; that 
is, E(s~) = 0, E(s~s~) = 0 (i = j ) .  E denotes the 
expectation. 

• . An output of the j th  cell in the kth layer for the Opj. 
pth  pattern. A superscript denotes the layer number. 
Especially, out  denotes the output layer. A subscript 
represents the cell number in the layer. 

de j: A teaching signal (i.e., desired output) of the j th  
cell in the output layer for the pth pattern. 

We define an error function for a certain pattern p 
a s  

1 
= - opj ) . (1) JAw') ~ Z (a~j oo,.~ 

J 
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FIGURE 1. Revision. One epoch means a revision of the 
weight vector for all  pa t t e rns .  

Our problem is to find a value of the weight vector 
that minimizes this error function for all pattern. The 
gradient method, including the Newton method, is the 
most fundamental approach for this problem. Basically, 
this method needs the first derivative of  the error func- 
tion. Therefore, we must obtain OJp(wt ) /Owi  for all 
i( = 1 . . . . .  n).  The back-propagation method performs 
this calculation using so-called backward error propa- 
gation. 

On the other hand, we can estimate the first-differ- 
ential coefficient of  the error function using a differ- 
ence approximation: 

O J , ( w ' ) _  J~(w;) - JAw') (2) 
OWl C 

On the basis of  this estimated first-differential coeffi- 
cient, we can modify the weight vector as with the 
back-propagation method. 

However, to modify all the weights in the neural 
network, we need (Jp(w~)  - J p ( W ' ) ) / c  for all i ( =  1, 
. . . .  n) .  This means that we need n times forward op- 
erations of  the neural network. This causes a decline of  
an operating speed of the neural network. 

In this paper, we introduce a simultaneous pertur- 
bation. In eqn (2) ,  we added the perturbation to each 
weight one by one. On the other hand, we add the per- 
turbation to all weights simultaneously. However, the 
sign of  the perturbation is randomly determined as de- 
scribed by the definition of the sign vector s '  in the 
nomenclature. That is, by using the constant coefficient 
c and the sign vector s ' ,  we consider the following 
quantity: 

Aw[ J A w '  + cs ' )  - J , ( w '  - c s ' )  = s;. (3) 
2c 

We expand the right-hand side of  eqn (3)  at the point 
w' .  Then, using Taylor expansion, there exist points w,] 
and Wsz such that 

cs~ ,T( O % ( w ~ , )  ~ , 
Aw~= s[s'rOJ'(w')ow + 4 s ~ Ow 2 ) s  

- 's 'r - - ~  ) s .  (4) 

We take an expectation of eqn (4) .  From the conditions 
of  the sign vector s ' ,  we have 

E(Aw~) - OJp(w') (5) 
0wi 

That is, Awl approximates O J ( w ' ) / O w i  in the sense of 
the expectation. We can rewrite eqn (5) as 

Aw;  OJ,(w' )  = + ~ (6) 
Owi 

where ~ is a stochastic variable with zero mean. From 
eqn (6) ,  we can find the learning rule a kind of a sto- 
chastic gradient method. 

As a result, we present the following learning rule 

w'+l:= w' - a A w '  (7) 

where the ith element of  Aw '  is defined in eqn (3) .  
We repeat this revision for the pattern number p .  

s [ ( J p ( w '  + c s ' )  - J p ( w '  - c s ' ) ) / ( 2 c )  is an esti- 
mated value of the first-differential coefficient at the tth 
revision. On the other hand, the coefficient a is an ade- 
quate positive number. This coefficient adjusts the 
magnitude of the modification. 

This learning rule carries on the modification of each 
weight vector at every presentation of patterns. In other 
words, revision number is renewed; t changes to t + 1, 
when a new pattern is presented; p changes to p + 1 
(see Figures 1 and 2). Basically, our algorithm updates 
all weights after each pattern is presented. Related to 
the work by Vogl et al. (1988),  we can modify this 
learning rule to update the weights after all patterns 
have been presented. However, this modification needs 
many more memories. In this paper, we adopt the basic 
scheme. In this algorithm, there is no need to calculate 
the first-differential coefficient of  the error function an- 
alytically. Moreover, this algorithm needs only twice 
feedforward operations of  the neural network. It is rel- 
atively easy to realize the feedforward circuit electron- 
ically. Thus, we can easily obtain an estimated value 

for p:=l to Pmax do (* Pmax is a total number of patterns *) 

begin 
• Add the perturbation c s~ to the weight vector wl. 

• Obtain a value of the error function Jp(wZ+cs'). 

• Subtract the perturbation cS'from the weight vector wt. 

• Obtain a value of the error function ,Je (wt - cst ). 
• Calculate a difference between these values. 

(* Jp(wt +cst)- jp(w'-cs') *) 
for i:=1 t o n d o  

begin 
• Multiply this by oa~/c. 

end; (* We obtained the modifying quantities for all weights. *) 
• Update the weight vector. (* w'+]:=w t - otAw' *) 
• Renew the iteration. (* t:=t+l *) 

end. 

FIGURE 2. Procedure of the learning rule. This shows the p r o -  
cedure in each epoch. We need the values of J(w:  + cs~ and 
J (w  t - cs~. Therefore, we require only twice forward o p e r a -  
tions of the network in each modification of the weights. 
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T A B L E  1 

Simulation Results for the Exclusive-OR Problem 

Learning Rule via the Simultaneous 
Perturbation Back Propagation 

Learning Rule via the Difference 
Approximation 

Coefficients ~ = 0.8, c = 0.2 a = 0.4, c = 0.1 a = 0.8 ~ = 0.4 ~ = 0.8, c = 0.1 a = 0.4, c = 0.1 
Convergence rate (%) 79.7 82.4 82.0 57.3 42.9 18.9 
Average number of 

epoch for 
convergence 13591 16567 7809 15868 22499 25235 

Total trial number  is 2000 t imes. If the total error funct ion Zp Jp (-) < 0.001 or  epoch was greater than 100,000, we s topped the trial. 

of the first-differential coefficient using an electronic 
circuit. Therefore, we expect the high-speed operation 
and easy configuration. 

Instead of the constant perturbation c, we can apply 
random numbers (Maeda & Kanata, 1993). In this 
modified version of the learning rule described here, a 
random number sequence in an interval [ - c c ] is used 
as the perturbation. However, in case of a hardware 
implementation, we need a random numbers generator 
and extra analog memories corresponding to all 
weights. For a simplicity of  the circuit configuration, 
we used a constant as the perturbation. 

3. S IMULATION RESULTS 

We emulate the proposed learning rule via a digital 
computer and compare results with those of  the usual 
back propagation and the simple perturbation learning 
rule. The exclusive-OR problem, the TCLX problem, 
and 26 alphabetical characters recognition problem as 
a simple pattern recognition problem are considered. 
Input-output  characteristic of  each neuron is the sig- 
moid func t ion f (x )  = 1/( 1 + e-X). Initial values of all 
weights were generated randomly on [0.1 - 0.1]. A 
three-layered feedforward neural network is used. 

First, we handle the exclusive-OR problem. Num- 
bers of  neurons in each layer are 2, 2, and 1. Table 1 
shows the convergence rate to a global minimum and 
the average convergence epoch by using the learning 
rule (7)  and (3) ,  the back-propagation method, and the 
learning rule via the simple perturbation. One epoch 
means modification of all weights for all patterns. In 
this table, the average convergence epochs by the learn- 

0.60 

C I .  

r,,,q ~- 0.40 

0.20 

0.00 
1000 2000 3000 4000 5600 6000 

epoch 

FIGURE 3. A simulation result for the exclusive-OR problem 
w i t h  c = 0.1, a = 0.4. 

ing rule described here are 13591 and 16567 with c~ = 
0.8, c = 0.2 and a = 0.4, c = 0.1, respectively. Figure 
3 shows a typical simulation result with a = 0.4, c = 
O. 1. In the learning rule using the simple perturbation, 
the right-hand side of  eqn (2)  is used as an ith com- 
ponent of Aw' .  

The back-propagation method with a = 0.8 is faster 
than the other rules. On the other hand, for smaller 
learning coefficient a = 0.4, the learning rule by the 
simultaneous perturbation and the back-propagation 
method need much the same number of epochs. 

As concerned with the convergence rate to a global 
minimum, the learning rule by the simple perturbation 
has the worst results. Relatively, the learning rule by 
the simultaneous perturbation had good results. It 
seems possible to improve the convergence rate by ad- 
justing the magnitude of the perturbation. 

Next, we consider the TCLX problem. Numbers of  
neurons in each layer are 9, 4, and 2 for the problem. 
Nine input signals and the combination of the two cells 
in the output layer represent T, C, L, and X (see Table 

T A B L E  2 
I npu t  Signals and Output Signals. Nine input signals show 

T, C, L, and  X characters. The combination of the two 
output signals represent T, C, L, and  X 
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TABLE 3 
S imu la t ion  Resul ts  f o r  the  TCLX Prob lem 
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Learning Rule via the Simultaneous 
Perturbation Back Propagation 

Learning Rule via the Difference 
Approximation 

Coefficients e = 0.8, c = 0.2 a = 0.4, c = 0.1 a = 0.8 e = 0.4 a = 0.8, c = 0.1 e = 0.4, c = 0.1 
Convergence rate (%) 96.4 100 100 100 100 100 
Average number of 

epoch for 
convergence 3678 6077 4444 8076 2224 4279 

Total trial number is 2000 t imes. If the total  error funct ion Ep Jp (.) < 0.001 or  epoch was greater than 100,000, we stopped the trial. 

2).  We obtained Table 3. Figure 4 shows a simulation 
result with a = 0.4, c = 0.1. 

For this example, we could not find the remarkable 
difference between the back-propagation method and 
the learning rule by the simultaneous perturbation. 
However, the results by the simple perturbation were 
good. Totally, the learning rule described here has an 
equivalent capability to the back-propagation method. 

Moreover, to confirm a usefulness of  the learning 
rule using the simultaneous perturbation, we apply it to 
a larger neural network. We examine an alphabetical 
characters recognition problem. Numbers of  neurons in 
each layer are 35 (5 x 7) ,  26, and 26. The 26 output 
neurons correspond to each alphabet letter. Figure 5 
shows a result of  a learning process with a -- 0.005, c 
= 0.05. Average convergence epoch was 34,570 for 50 
trials. Average convergence rate was 36.0%. In this 
simulation, if epoch was greater than 50,000 or the total 
error function was less than 0.1, we stopped the trial. 

We could obtain a neural network learning the 26 
characters by using our learning rule. The network has 
over 1500 connections (i.e., weights). Even in this 
case, we require only twice forward operations of  the 
network to obtain the modifying quantities correspond- 
ing to all weights. 

4. A FABRICATION OF A NEURAL 
N E T W O R K  C I R C U I T  

We make an electronic neural network circuit using the 
algorithm (7)  and (3)  in trial. Figure 6 shows a picture 
of  the fabricated neural network circuit system. Figure 
7 shows a picture of  a board for a weight part. 

Firstly, we must decide by what we replace the in- 
put, output, and weights. In our fabrication, we replace 
the input, output, and the weights by voltage. The con- 
figuration of our circuit is shown in Figure 8. The neu- 
ral network circuit mainly consists of  two units: a neu- 
ron unit and a learning unit. 

The neuron unit contains three parts: a weight part, 
a summation part, and a function part (see Figure 9). 
The weight part holds the weight value and the sign of 
the perturbation. Moreover, a multiplication of the 
weight value, which is stored in the sample hold circuit, 
and the input, which is given by the previous layer, is 
carded out. This part also contains a mechanism to re- 
new the weight value. The summation part sums up all 
outputs of  the weight part. The function part realizes 
the sigmoid function. 

The learning unit gives the approximated value of 
the first-differential coefficient and multiplies the esti- 
mated value by c~/(2c). The result is delivered to all 
weight parts in the neuron unit. 

Of  course, except these two units, we need a control 
unit that controls all timing of the teaching signals, in- 
put signals, and sample hold circuits. These signals are 
generated by a personal computer. 

An operation of the circuit is shown in Figure 10. 
For a certain pattern p ,  the circuit operates as shown 
in Figure 10. The circuit repeats this procedure for each 
pattern. 

4.1. Neuron Unit 

The neuron unit embodies the forward operation of the 
neural network totally and renews the weight value in- 
dividually. The neuron unit is described in Figure 9. 

1.20 

..~ 1.00 

r~cz 0.80 

0 . 6 0  

0.40 

0.20 

0.00 1000 2600 3doo 4600 
epoch 

FIGURE 4. A s imu la t ion  resu l t  f o r  the  TCLX p rob lem w i th  c = 
0.1, a = 0.4. 

~ 4.005"00 ,~,_.., ...... ~. 

3.00 

2.00 

1.00 

0.00 ~ ............ - . . . . . . . . . . . .  
10000 20000 30000 40000 50000 

epoch 

FIGURE 5. A s imu la t ion  resu l t  f o r  the  26 alphabetical  char-  
acters'  recognit ion problem with c = 0.05, a = 0.005. 
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FIGURE 6. A picture of the fabricated neural network system. 

The weight part memorizes the value of each weight 
and the sign of the perturbation in sample hold element 
and D-FF, respectively. 

In a forward operation mode, the multiplier in this 
part multiplies an input that is from the previous layer 
(or an input of the neural network) by the correspond- 
ing weight value. This value is sent to the summation 
part. The summation part is composed of the usual op- 
erational amplifier. The part sums up all values. The 
sigmoid function is realized by the saturation property 
of diodes. The output of this part is connected to the 
other neuron units or the output of the neural network. 

In a learning mode, all weight parts in the unit up- 
date the weight values in parallel by using the quantity 
delivered from the learning unit and the sign of the 
perturbation held in each D-FF. Therefore, concurrent 
modifications of all weights are possible. 

4.2. Learning Unit 

The learning unit generates the quantity c t ( J p ( W  t + c s  t) 

- J p ( w '  - c s ' ) ) / ( 2 c )  and delivers the quantity to the 
weight part in the neuron unit. 

FIGURE 7. A picture of a board for weight part. In this 15 × 20 cm board, five weights are implemented. 
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f-~ NEURON U N I T S  

INPUT =~ OUTPUT 

S I G N A L S  SIGNALS 

. . . .  . . . .  . . . . . . . . . . .  

LEARNING UNIT =:::::: 
FIGURE 8. The conf|g-~Uon of the analog ~ o ~ a r d  n e u -  
ral  network circuit. The circuit consists of t w o  units:  a neuron 
uni t  and  a l e a m i n g  unit ,  w h e r e  AJ(vl/)  = Jp(W t + CS ~) -- Jp(W t 

- CS~. 

In usual back-propagation method, the learning of  
neural networks is derived from so-called backward op- 
erations of  the neural network. However, in our algo- 
rithm, only the forward operations of  the neural net- 
work give the quantity that is used to modify the 
weights. Therefore, our constitution is relatively sim- 
ple, compared with a straight implementation of  the 
ordinary back propagation. Figure 11 shows the con- 
figuration of the learning unit. 

Two forward operations for the weight (w'  + cs ' )  
and ( w '  - c s ' )  give the corresponding values Jp(w'  + 
c s ' )  and Jp (w  t - -  CS t) of the error function. To obtain 
the quantity o feqn  (3) ,  Jp(w'  + c s ' )  and Jp(w'  - c s ' )  
are stored in the sample hold element of  this unit, tem- 
porarily. After a calculation of  a difference between 

f -  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  .~ 
i to next neuron un,t i .@ i . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  i 

° ---::==::-:----i,~l SUIiIATION FUNGI'ION ] ii 
INPUT! I1141-I-"-~t bY 'PART PART! i 
s l m s t  ['11i4  i  . . . .  = r  . . . .  !OUTPUT 

G ,, I l l i l F d ~  "L~II~/IO,.I I ! . . .  ' ' .---~,'= , , i :  . . . . .  ;NAL 
I ,. • , lllll l 7 ' ?  . . . . .  ,,i i sl 
t I lii.-:---i- . . . . .  ____:llqGltT: ii I . . . . . .  [ 

i i III H PART ,i' i i 
! ' i o i  I I I - i  . . . . . . . . . . . . . . . . . . .  ~/L __.  / I  I l' 
i , 2 3 - - - - ;  . . . . . . . . . . . .  i 

CONTROL ~ I : ...... " ........... , i 
i u~., '--- i SIGNALS i 3 ~ ' i i i 

! i : : r -  . . . . . . . . . . . . . . . .  N E U R O N  . . . . . .  , , 

i UNIT ' 
i 

J to next neuronunit NETWORK = L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

from learning unit 

FIGURE 9. The configuration of the neuron  unit .  The neuron 
unit consists of three parts: a weight  pert, a summat ion part, 
and a function part. 

• A sign is generated by a random digits sequence in the controlling 
computer. The sign is shifted and latched by each D-FF in Figure 9. 
(* The generation of the sign vector s I. *) 

for i:=1 to n do (* This loop is carried out simultaneously *) 
begin 
• On the basis of the sign of #i that is latched in D-FF, we add the 

perturbation +c or -c  to the weight w~i for all i simultaneously. 
(* w'+c # *) 

end; 
• Perform the forward operation. Then, we get the value Jp(w%csr). This 

value is memorized in a sample hold element. 
for i:=1 to n do (* This loop is carried out simultaneously *) 

begin 
• On the basis of the sign of.C,, we subtract the perturbation +c or - c  

from the weight w~i for all i simultaneously. (* wLc#  *) 
end; 

• Perform the forward operation. Then, we get the value Je(w ~ -c#) .  
This value is memorized in a sample hold element. 

• CalculatethedifferencebetweenJp(w%cs~)andJe(w'-cs~). 
(* J#wS+cY)- J#w'-cs ') *) 

• Multiply Jp(w'+c#)-Jp(w~-cs t) by the voltage corresponding to ¢x/(2c). 
(* ot(Jp(w'+c#)- Jp(wLc#))l(2c) *) 

for i:=1 to n do (* This loop is carried out simultaneously *) 
begin 
• Multiply the value by the sign st~ for all i simultaneously. (* ot&M *) 
• Subtract i-th component of Ot&w ~ from the previous value of the 

weight. 
e n d .  ( *  ~+.,:__., ,s _ o t A w '  * )  

FIGURE 10. Operation of the neural network circuit. The cir- 
cuit repeats this procedure for each pattern. 

Jp(w'  + cs ' )  and Jp(W' - c s ' ) ,  we multiply the quan- 
tity od(2c)  by Jp(w'  + c s ' )  - Jp(w'  - c s ' ) .  The  result 
is sent to the weight parts to update the weight values. 

4.3. Control Unit 

This circuit needs control signals that manage all timing 
of sample hold elements and presentations of  input sig- 
nals and teaching signals and so on (see Figure 12). 
The control unit is composed of  a personal computer. 

5. RESULTS 

5 . 1 .  T h e  E x c l u s i v e - O R  P r o b l e m  

We get the neural network circuit to learn the exclu- 
sive-OR problem. Figure 13 shows the waves of  the 

to neuron unit 

i - ~  ~ ~^+ ,~OUTPUT 
i .rE h S ICNALS 
• 

I ,  . I I ~ i z ~  ' I~ . ,+ :LTEACHING 
i] ~ I ] - ~  i SIGNALS 

CONTROL I L~,_F~LI~ # #_ I I L i 
SIGNALS i l  -J ILl u ~  ~ G I I  ! 

: \  / I I / i 
41 LEARNING i 

U N I T  
FIGURE 11. The configuration of the learning unit. The learn- 
ing uni t  de tec t s  the squared error and generates the quant i t y  
• , ( J ~ I w '  + c s ' )  - J ~ I w '  - c s ' ) ) / ( ~ ) .  
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NEURON UNITS 

II TEACHING 
J l SIGNALS 

FIGURE 12. The flow of the control signals. The control unit 
generates timing signals of sample hold elements, input sig- 
nals, teaching signals, and so on. 

learning pattern (input signals and teaching signal) and 
the observed output of  our circuit. In a period T, the 
control part gives the four patterns of  the exclusive-OR 
to this neural network circuit. The good agreement be- 
tween the observed output of  our neural network circuit 
and the teaching signal shows that the circuit learned 
the exclusive-OR problem. 

In a period T/4,  that is, in a period presenting a 
certain pattern, there are nine modifications of the 
weight. 

In these results, T is about 11.1 ms. In other words, 
it takes about 2.8 ms to learn one pattern in this case. 
In Figure 13, the operation speed is approximately 3.2 
kcups. On average, we need about 2 - 3  min to obtain 
a stable result (for example, shown in Figure 13 ). This 
time corresponds to 10,000-15,000 epochs. 

Figure 14 shows that the circuit is captured in so- 
called local minimum. With the difference between the 
teaching signal and the practical output, the output of 
this circuit is stable. Our neural network circuit learns 
OR, though the teaching signal is the exclusive-OR. 

In such a case, we adjust the values of  coefficients. 
Potentially, our leaning rule contains an ability to pass 
through the local minimum. The modifying quantity 
defined in eqn (3)  consists of the first-differential co- 
efficient and an another error as described in eqn (6) .  

INPUT1 

INPUT2 

I I 

1 r - ]  
l 1 

I TEACHING 
I I SIGNAL 

OUTPUT m N I m B i  r ~  ] IV/DIV 

2msecJDiV 

FIGURE 13. A result for the exclusive-OR problem. The agree- 
ment between the teaching signal and the observed output 
shows that the circuit learns the exclusive-OR problem. 

INPUT1 ~ 1 F " 

INPUT2 1 

TEACHING [ 
SIGNAL 

OUTPUT 

t 
[ 

2msec/DIV 

1V/OtV 

FIGURE 14. A local minimum. The circuit is captured in a local 
minimum. The circuit learns the OR relation. 

If  the weight w, is located in the neighborhood of a 
certain minimum point, from eqn (4) ,  the perturbation 
c prescribes the magnitude of the error. Thus, the larger 
c is, the larger the error is, and vice versa if c is smaller. 
From this point of view, the learning rule has a property 
like the simulated annealing. By adding an adequate 
mechanism, we can obtain the neural network circuit 
that passes through the local minimums in some mea- 
sure. However, we need detailed discussions, analysis 
and experiences for this point. 

5.2. The TCLX Problem 

Secondly, we consider the TCLX problem. The number 
of cell in each layer is 9-4-2. The number of weights 
including thresholds is 50. 

Figure 15 shows the teaching signals and the ob- 
served outputs for this problem. This figure shows that 
the neural network circuit learns the TCLX patterns. 
Also in this problem, the modifications of all weights 
are performed for a period T/4. That is, 50 weights are 
updated for 8.4 ms. In this case, we need 2 - 3  min to 
obtain a result. This corresponds to 3500-5500 epochs. 
The operation speed in this figure is approximately 6.0 

- - T  >; 

I 

I i ] Y l  J 

OUTPUTI ] J   iiJi 
OUTPUT2 J I I ~ ' ~  IV/DIV 

10msecJDIV 
FIGURE 15. A result for the TCLX problem. The circuit learns 
the TCLX problem. 
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kcups. This speed depends on a clock frequency of the 
circuit. 

At this stage, we use individual  parts, that is, oper- 
ational amplifiers, sample hold ICs, switching ICs, and 
so on. Basically, we can replace these devices by LSI. 
Such an integration will contribute to the high-speed 
operation and stability of our circuit. 

6. C O N C L U S I O N  

In this paper, we described the learning rule of neural  
networks using the s imultaneous perturbation. We  
showed some computer  s imulat ions of the rule and a 
comparison between this m e t h o d  and the other meth- 
ods. This learning rule needs only the forward opera- 
tions of neural  networks. Therefore, this learning rule 
is superior to the convent ional  back-propagation 
method for large networks. Moreover,  it is relatively 
easy to realize it electrically. We fabricated the analog 
feedforward neural  network circuit with learning abil- 
ity by using the proposed learning rule. The circuit 
learned the exclusive-OR problem and the TCLX prob- 
lem. We  stated the details and the operation results of  
the analog neural  network circuit. 

This learning rule is useful not only for mult i layer 
feedforward neural  networks but also for recurrent neu- 
ral networks. However,  a more detailed discussion and 
experiences are needed. 
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