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Abstract--In this work, we use Potts neurons for the competitive mechanism in a self-organization model. We obtain 
new algorithms on the basis of  a Potts neural network for coherent mapping, and we remodel the Durbin algorithm 
and the Kohonen algorithm with mean field annealing. The resulting dimension-reducing mappings possess a highly 
reliable topology preservation such that the nearby elements in the parameter space are ordered as similarly as 
possible on the cortex-like map, and the objective function costs between neighboring cortical points are as smooth as 
possible. The proposed Potts neural network contains two sets of  interactive dynamics for two kinds of  mappings, one 
from the parameter space to the cortical space and the other in the reverse way. We present a theoretical approach to 
developing self-organizing algorithms with a novel decision principle for competitive learning. We find that one Ports 
neuron is able to implement the Kohonen algorithm. Both implementation and simulation results are encouraging. 
Copyright ©1996 Elsevier Science Lid 
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1. INTRODUCTION 

The idea of self-organization is an important 
principle in many powerful neural systems in solving 
complex tasks, such as vector quantization (Koho- 
nen, 1982), speech recognition (Kohonen, 1988), 
combinatorial optimization (Angeniol et al., 1988; 
Durbin & Willshaw, 1987), and formation of ocular 
dominance stripes (Durbin & Mitchison, 1990; 
Goodhill & Willshaw, 1990). Two typical examples 
of such self-organizing algorithms are the Kohonen 
algorithm (Kohonen, 1988) and the Durbin algo- 
rithm (Durbin & Mitchison, 1990). These methods 
produce cortex-like maps from the many-dimensional 
parameter space to the surface of the cortex with the 
property of topology preservation. The surface of the 
cortex is realized by a lattice structure with a cortical 
point or receptive field on each node site. By the 
Conwey argument (Conwey, 1979), the principle of 
self-organization can be stated as that the neighbor- 
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ing elements in parameter space should map closely 
together on the cortex. The two self-organizing 
algorithms we develop operate explicitly from the 
cortex to parameter space. They assign parameter 
values to cortical points, and attempt to put nearby 
cortical points close in parameter space. In general, 
the algorithms contain a competitive sharing-out of 
the domain of inputs among units of the cortex and a 
continuity constraint for a coherent mapping. To 
obtain the competitive interactions between units, the 
Durbin algorithm uses the normalized Gaussian 
activation function, for which the response property 
is characterized by a control parameter. When the 
control parameter is set to one extreme, all units 
equally respond and when to the other extreme, they 
act as the winner-take-all, which is the exact 
mechanism used in the Kohonen algorithm. For the 
continuity constraint the Kohonen algorithm uses a 
dynamical neighboring structure, which is initially set 
to be large and then monotonically decreased, 
whereas the Durbin algorithm uses a static neighbor- 
ing structure as defined by the lattice. 

The central idea of this work is to use the Potts 
neurons as a competitive mechanism for self- 
organization. Following this idea, we incorporate 
essentials of self-organization into energy functions 
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and derive dynamics for each component by mean 
field annealing. Along the annealing process, the 
states of  Potts neurons will converge toward the 
global or near global minimum of the energy function 
and internally represent the desired coherent map- 
ping. The self-organization will be naturally derived 
from the competitive mechanism, and the effective 
objective and continuity constraints. 

Yuille et al. (1991) devised a generalized deform- 
able model to encode criteria of the development of 
ocularity. In their work, based on an energy function 
containing both binary and continuous variables, one 
can use analytical statistical techniques (Yuille, 1990) 
to derive two different algorithms for ocular 
formation, the elastic net algorithms of Durbin and 
Willshaw (1987), Durbin and Mitchison (1990), 
Goodhill and Willshaw (1990), and the model of 
Miller et al. (1989) and Tanaka (1990). In current 
work, the energy functions used for encoding the 
criteria of self-organization also contain two sets of 
variables, one binary and the other continuous. The 
difference from all previous works (Miller et al., 1989; 
Durbin & Mitchison 1990; Tanaka, 1990; Yuille, 
1990; Yuille et al., 1991) is that we discretize the 
continuous variables into the feature space and use a 
joint free energy to characterize two sets of variables 
and further theoretically derive mean field equations 
for both sets of variables. This leads to Potts models 
with coupling dynamics. This idea has been applied 
to treat the traveling salesman problem in the thesis 
(Wu, 1994) and successfully unifies three typical 
neural approaches to the traveling salesman problem. 
They are the elastic ring method (Durbin & Willshaw, 
1987), the Hopfield neural network (Hopfield & 
Tank, 1985) and the Peterson and Srderberg's Potts 
encoding (1989). 

In accordance with the different operation mode of 
the two algorithms, we classify the self-organizing 
algorithms into two types, the batch type and the on- 
line type. The former has prior knowledge about the 
full description of the parameter space so that the 
algorithm processes inputs in batch to make use of 
explicit information among all parameter elements. 
The Durbin algorithm is the batch-type algorithm. 
The on-line algorithms lack such prior knowledge so 
that they process inputs one by one. No immediate 
information between parameter elements can be used. 
The Kohonen algorithm belongs to the on-line type 
of algorithm. 

In the next section, we will formulate models for 
both types of algorithms. For the batch algorithm, we 
simultaneously maintain two essential mappings, one 
from the parameter space to the cortex and the other 
in the opposite way. The two mappings work 
together so that the nearby elements in the 
parameter space are ordered as closely as possible 
on the cortex and the wiring difference between 

neighboring cortical points are maximally reduced to 
meet the continuity constraints. We formulate the 
two mappings as an optimization model and then 
devise an energy function to incorporate them. By 
mean field annealing, we derive two sets of mean field 
equations for the two mappings. The Durbin 
algorithm is then shown to be a special form of the 
new batch algorithm. For the on-line algorithm, our 
model greatly reduces the complexity of the 
algorithm so that one Potts neuron is sufficient for 
the required computation. The new on-line algorithm 
is experimentally shown to be consistent with the 
Kohonen algorithm in competitive decision making. 
In Section 3, we generally state our algorithms in the 
forms of hairy models proposed by Szu (1989) to 
guarantee the convergence properties of our algo- 
rithms. We list our simulation results and conclude 
our work in the final section. 

2. DESIGNING SELF-ORGANIZING 
ALGORITHM BY MEAN FIELD ANNEALING 

In this section, we first derive the new batch-type self- 
organizing algorithm in Subsection 2.1, and then use 
our model to examine the Durbin algorithm in 
Subsection 2.2. The on-line self-organizing algo- 
rithm is developed in Subsection 2.3. 

2.1. The New Batch-Type Self-Organizing Algorithm 

In this subsection, a topology preserving mapping 
from K-dimensional parameter space, ~)--{xi, 
1 <<.i<~N} and Xi=[Xil, . . . ,XiK] t, t o  a two- 
dimensional lattice structure is first formulated using 
an energy function and then incorporated into Potts 
neural networks. The lattice has the size M x M and 
each site (a, b), 1 ~< a, b ~< M, has four neighbors, 
( a - l , b ) ,  ( a + l , b ) ,  ( a , b - 1 ) ,  ( a , b + l ) ,  collec- 
tively denoted by ~ab; "0" and " M  + 1" in site index 
are automatically equivalent to "M" and "1" 
respectively for the circular representation of the 
lattice to smooth the edge effect of the lattice plane. 
Each site (a, b) defines a cortical point Yah which has 
the same dimensions as each parameter element. In 
the general case, the total number of the cortical 
points is much less than the size of the parameter 
space. That is M 2 << N in the usual case but in our 
formulation it is also valid for M 2 to be larger than N 
in recognition of the fact that the number of cortex 
neurons is much larger than necessary. We will 
describe the modified method where M 2 >> N briefly. 

In the general case, to obtain a valid mapping, 
we enforce the constraint that (i) each element in 
the parameter space should be mapped to only one 
site, (ii) each cortical point should be assigned to 
one parameter element, and (iii) no two cortical 
points are assigned to the same parameter element. 
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The second and third constraints lead to the 
competitive sharing-out of the cortical points 
among parameter space. In computation, we need a 
batch process of parameter elements for such 
competitive interaction. When all three constraints 
are satisfied, we have selected M E different repre- 
sentatives, each for a cortical point, among N 
parameter elements and mapped each element to 
one representative, which is closest to the element. 
An underlying neighboring structure for the M E 
representatives is also formed as the lattice struc- 
ture. Each representative should have four neigh- 
boring representatives which are correspondingly 
attached to the four neighboring sites on the lattice. 
Two explicit quantities that have been equipped for 
self-organization (Durbin & Mitchison, 1990) are 
used to qualify the valid mappings. The first 
quantity, LI, is the sum of the distance between 
each element and its corresponding representative 
and the second quantity, L2, is the sum of the 
distance between any two neighboring representa- 
tives. Simultaneous minimization of these two 
quantities aims at both putting all nearby parameter 
elements as close as possible on the lattice sites and 
assigning neighboring cortical points close in the 
parameter space. The latter goal obtains a smooth 
distribution of the cortical points on the lattice. 
With the constraints and the minimizing objectives, 
we can formulate the self-organizing algorithm in 
terms of energy functions as in the Hopfield model. 
In the unusual case of M 2 > N, the third constraint 
is then altered to say that two parameter elements 
should not be mapped to the same cortical point 
which implies a competitive sharing-out of the 
parameter elements among the cortical nodes. 
Formulating the energy function for each case uses 
the same technology. The unusual case can be easily 
translated to the usual case by duplicating the 
parameter elements and by adding very small 
random noise to each parameter element evenly. 
Without losing generality, we only need discuss the 
formulation for the general case as follows. 

Let o'i denote a unitary vector with M 2 com- 
ponents, o'i = [ a i l , . . .  ,O'iM2] t, 1 <~i <~N, ai~ E {0, 
1}. The only active bit, for example the a th  bit, 
among M E components is used to indicate that the ith 
parameter element is mapped to the site (a, b) or (a) 
with a = ( a  - 1) x M + b. In notation, the site index 
can appear in one or two dimensions. When 
appearing in subscript, in the following context, a 
and ab denote the same thing, as 
c ~ = ( a - 1 )  x M + b  is satisfied, for instance, 
Y~ = Yah, Y$,~ = Ylab. Let q~ = [q~t, . . . ,q~N] t also 
be a unitary vector. The only active component qoti 
indicates that the ith parameter element is occupied 
by the cortical point y,~. The sets {cri} and {q~} 
constitute two elementary mappings, one from the 

parameter space to the lattice, the other in the 
opposite way. Then the self-organizing algorithm is 
modeled by minimizing 

L = LI + L2 

=c E E  ,olX,-yol 
I ~ i ~ N  I ~ ° ~ M  2 

+ ~ E [Y~-Y~]' 
I ~ M  2 ')'E~o 

(1) 

subject to 

(a) E oi~ = l ,  1 <~ i <~ N,  
l~a~M ~ 

all ai~ E {0 ,  1 } [as stated in (i)] 

(b) E qai= 1, 1 ~<a ~<M 2, 
I ~ i < N  

(c) 

allq~i E {0, 1} [as stated in (ii)] 

E q~ i=Oor l , l  <~i ~<N[asstatedin(iii)] 
I ~ ° ~ M  2 

(d) y,, = ~ qoiXi [as statedin (ii)]. (2) 

The self-organizing algorithm now turns to find the 
sets {or/} and {q~} satisfying all constraints and 
minimizing the objective L. In the constraint (d), ya 
is expressed as a linear combination of all parameter 
elements. This representation discretizes the domain 
of the cortical points. In conventional self-organizing 
algorithms (Durbin & Willshaw, 1987; Kohonen, 
1988), the cortical points are dynamically continu- 
ously traced within the space spanned by all 
parameter elements. The final position of a cortical 
point may not be at the position of any parameter 
element. In the current algorithm, we will apply the 
mean field annealing to find the mappings {or i } and 
{qa}. At each intermediate temperature, the two 
mappings are represented in terms of the mean 
configurations {(or/)} and {(q~)}. During the 
annealing process, the intermediate cortical points 
(Ya)  = E l  <~i<~ N(qai)Xi are also dynamically traced 
among the space spanned by all parameter elements. 
However we expect each cortical point y~ will finally 
stand at the position of some parameter element at 
the end of the annealing process, since the constraint 
(b) has encoded the winner-take-all principle in the 
model when the temperature parameter is reduced 
sufficiently low. Constraint (c) says that no two 
cortical points should occupy the same parameter 
elements. This leads to a competitive sharing-out of 
the cortical points among the parameter space, which 
is a critical feature in designing a batch-type self- 
organizing algorithm. 

The terms in model (2) are combined to obtain an 
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energy function. The constraints (a) and (b) are 
considered as the unitary conditions of  the Potts 
neurons for vectors oi  and qo correspondingly. They 
will be implicitly embedded within the activation 
function of  the Potts neurons. Using Lagrange 
multipliers, the following energy function sums up 
the objective L, constraints (a), (b) and (c), and 
reserves the notation y~. 

n (~ ,  q) = c 
i a 

7E~IWa 

A 
+-2 E E E q.iq,~j a i j#i 

A 
-]-T E E EO'iotlYifl 

i a [3#~ 

: c E  E  ,olX,-,ol 
i a 

+~-'~ ~ lY,~-Y,~I 
a 7E~lla 

ai io " 

A (N+ M2), +~ 

qa i) 2 

(3) 

where a and q denote the collections of  all cri and q~ 
respectively, the index i runs from 1 to N, ~ and 7 
range between 1 and M 2, and A, B, and C are 
Lagrange multipliers. The constant term is negligible 
in (3). The two A terms in the second line of  (3) are 
used to represent the constraint terms (a) and (b) and 
are further reduced to these simple forms based on 
the unitary conditions of  q~ and ~ri. The B term 
represents the constraint (c) to prevent more than one 
cortical point from being assigned to the same 
parameter element. In (3), the vectors y~ are not 
resolved by the constraint term (d) in model (2) until 
the derivation of  the mean field equations for the 
energy function in the latter context, where we need 
to calculate the means of  all terms containing vectors 

Ya. 
We apply the mean field annealing (MFA) to 

minimize the energy function (3). The minimization 
includes two steps, each for one kind of  variable. We 
briefly review the mean field annealing for optimiza- 
tions. The mean field annealing has been shown 
powerful for optimizations (Peterson & S6derberg, 
1989). For  a system, of  which the energy function is 
well defined as a function of  the system configuration, 
the MF A attempts to find the mean configuration 
under thermal equilibrium at each temperature. The 
temperature parameter is initially set high and then 
slowly scheduled down. When applying the MFA to 
minimize an energy function, such as H(s), where s 

denotes the system configuration with variables {si }, 
we first characterize the M F A  by the common formal 
free energy function ~b(u, v,/3) (Peterson & S6der- 
berg, 1989): 

~b(u,v, fl) ( H ( s ) ) + E  t l ~i = ,,u,- ~ l~  ~ ( u , ,  ~) 
i 

z(ui, /3) = E exp(/3ui,), 
(4) 

where (.) denote the mean operator. We then 
determine the mean field configuration (si) at each 
control temperature T = 1//3 as the stationary point 
of  the free energy function: 

O~b ~_ 0 ::~ uia - o(n("¢)-------~) (5) 
Ol?i~ OVi a 

0¢  exp(/3u/~,) 
Oui~ = 0 ~ vi. =- (si~) -- y~a exp(/3uia)" (6) 

We use the following procedures to operate the 
M F A  for our model (3). The formulation of  our 
procedure is similar to the hairy model developed by 
Szu (1989). We will develop two sets of  mean field 
equations for these two kinds of  variables, {¢ri } and 
{q~}, within the energy function H(a, q) in (3). When 
we fix one kind of  variable at its mean configuration 
under thermal equilibrium, we can obtain a set of  the 
mean field equations similar to eqns (5) and (6) for 
the mean configuration of  the other kind of  variable. 
The two sets of  the mean field equations are then 
executed in turn to determine the means of  the two 
mappings. Let Ho(a, q) denote the energy function 
when each variable q~ is fixed at its mean (q~) and 
the quantities involving y~ are also fixed at their 
means. We have: 

H.(a,  q) = C E E am<lxi-Y~I) 
i ot 

A 
+~--]~ ~ ( lYo-YTI)-~- Y]~ (q~i) 2 

+2  ~ (q,~i) _ A  ~i o.2i~" (7) 

The mean of  the energy function Ho (a, q) is derived 
as follows. 

H~(o', q) = C E E (a~) ( lx , -  y,~[) 
i ot 

A 

o 7 6 ~  a i 

B A 
+ 2  ~i" (q~i) --~ Ei,~ (am). (8) 
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In the above derivation, the last term (tr2a) is 
substituted by (a /a)  since in the Bernoulli distribu- 
tion: 

(a 2) = 02p(aia = O) + 12p(ai,~ = I) 

= e(o,~ = I) = (,r,~). (9) 

By substituting the mean energy function 
(Ho(tr, q)) into the (H(s)) term in the free energy 
(4) and setting the partial derivatives of the free 
energy with respect to v/a and Uia to zero, we can 
obtain the following mean field equations for each 
variable aia. 

A 
u,,, = - c ( I  x,  - y~ I> + 5 '  ( lO)  

exp(/31 u,~) (11) 
v,~ -- (ai~,) -- ~'~'r exp(/31 ui.r ) ' 

where the form of ( I x / -  Ya l) will be determined later 
in developing the mean field equations for the other 
set of variables {qa}, and the control parameter is 
denoted by/31. 

We then consider the following energy function, 
which is obtained by fixing the variables {o'i} at their 
mean values: 

Ha(a' q ) = C E  E (a,~)lx,-y~l 
i a 

A 2 
+~-~ ~ lY~-Y~I- 5 E q ~ i  

B .4 
+ 2  ~ q~i - 5  E (ai~)2 (12) 

The mean energy function (Hq(tr, q)) is approxi- 
mated as 

(Hq(tr, q))= C E E (tr,,~) E (q~k) lX,-- xkl 
i a~ k 

+ E E ~ (qaJ)(qTk)lXj--Xk[ 
a " fe ,~  jk  

__ (A B)~ (q,,,)2 

+ B E E E (qai)(q.,) 
i a B#a 

A 
2 ~ (O'ic~)2" 

a i  

(13) 

The middle three terms on the right side in eqn (13) 
are based on the property in eqn (9) and the strong 
independent assumption that the joint probability 
distribution of q~,j and qTk, P ( qaj, q-~k), is separable, 

P(qaj, q'rk)= P(qaj)P(q'rk), or that the two vari- 
ables qaj and q'rJ are independent. That is, 

(q~,q~k) = f f q~jq.rkP(q~y, qTk)dq~,jdq.~k 

= f f q'Jq'tkP(q~J)P(q'rk)dq~jdq'tk 

= f q~jP(q~j)dq~j f qTkP(q,k)dq~k 

= (q~j)(qTk)" (14) 

Then we insert the constraint (d) in deriving (13) by 
substituting the quantity (I x; - Ya l) with 
r.,(qak)lx/--xkl. In the same way as for the 
variables {or/}, the free energy and the mean field 
equations for the variables {qa} can be obtained. The 
mean field equations are: 

W a  i 
A B 

B E PTi 2 2 "r#a 

x (15) 

exp(/32 w~i) (16) 
Pai  ---- (qai) = ~--~7 exp(/32 w~,) " 

The two sets of mean field equations (10), (11) and 
(15), (16) are used to compute the means of two 
elementary mappings, {~ri} and {qa}. The annealing 
process is controlled by two temperature parameters, 

1 
TI = -  

El 

and 

1 r~=~. 

At each intermediate temperature, the two elemen- 
tary mappings are described by the two sets of 
probabilities, {vi } and {Pa} as depicted in mean field 
annealing (Peterson & Sfderberg, 1989). When the 
temperature parameters are reduced sufficiently low, 
the probabilities will approach binary values. We 
then determine each cortical point at the position of 
the parameter element, to which the cortical point is 
mapped. The procedure for the new self-organizing 
algorithm thus invokes the two sets of mean field 
equations (10), (11) and (15), (16) in turn during 
iteration as listed in Appendix A. The method for 
setting initial cortical points is also suggested in 
Appendix A. 

The above batch-type self-organizing algorithm 
makes most use of prior knowledge. In eqns (10) and 
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(15), the distances between parameter elements are 
coupled with the evolution of  the mean configuration 
{vi} and {p~}. These two sets of  mean field equations 
can be interpreted as the balance of two kinds of  
collective forces, which are the attracting forces and 
the restoration forces. The collective attracting forces 
are the forces between parameter elements and the 
cortical points. The collective restoration forces are 
the forces among the neighboring cortical points with 
the essential constraints, L2, (b) and (c), as for an 
elastic ring (Durbin & Willshaw, 1987). The 
activation functions in eqns (10) and (15) encode 
these essential constraints and serve as a competitive 
mechanism. When the parameter elements have 
cluster type distributions, these collective forces are 
enhanced and will direct the cortical points toward 
the cluster center. These collective forces eliminate 
the individual element differences and constitute a 
kind of  global field surrounding the cluster centers. 
This property leads to the success of  our method in 
good behavior of  convergence. 

Examining the two sets of  mean field equations 
developed for the two elementary mappings, we see 
that the computational  load of  the mean mapping 
{p~} is heavier than that of  the mean mapping {vi}. 
By replacing ( I x / -  y,~ I) in eqn (10) with Ek(qak) 
I x / -  Xk I, we have 

A 
ui~ = -~ - C ~ (q,~)  I x ,  - Xk I 

k 

__.4_ c ~ p ~ l x , - x , I .  
2 

k 

(17) 

In the above equation, the effective mean field of  each 
variable vi,~ is not  affected by any v variables except 
itself. However in eqn (15), there are 4 N +  M 2 + lp  
variables contributing the effective mean field of  each 
variable Pia. To balance the computation of  these two 
mean mappings, we revise the energy function (3) as 

H*(a, q) = C ~ ~ ~r,~Ix~-Y~I 
i 

+ ~  ~ ~ ak,~lxk--Y,rl 
" tEa°  k 

A A 2 
2 ~ , 4 o , - ' ~  ~-~q,~i 

i ~  o~i 

+-2 ~i q'~ ' 
(18) 

where each distance term l Y ~ -  Y?I in the original 
energy function which represents the restoration 
force is replaced by the term 

k 

and the constant term is neglected. The original term 
ly,~- Y-rl measures the distance between two neigh- 
boring cortical points, a and 7- The new term sums 
up the distance between each parameter element that 
is represented by the cortical point t~ and the cortical 
point  7- This replacement makes the representation 
of  restoration forces consistent with that of  attracting 
forces as in the first term of  eqn (18). This consistency 
becomes obvious when the second term of  eqn (18) is 
rewritten as 

k o~ ~E.~I'o 

For  each pair of  cortical point a and parameter 
element i, the first two terms of  the quantity H* (a, q) 
is a weighting sum of  the distance between them and 
that between the parameter element i and each 
neighboring cortical point of  the cortical point a, 
and can be combined as 

The replaced term will smooth the effective individual 
cortical point and act in a way similar to the 
restoration forces which smooth the local cortical 
point with its neighbors. In the same way as for the 
two sets of  mean field eqns (10), (11) and (15), (16), 
we can obtain another set of  mean field equations for 
the energy function (18): 

u, / i,~ Cp,~k+ ~-'~p,~k Ix,--xkl + - -  
~ o  I 2 ' 

(19) 

exp(81 u'i,~) (20) 
v,o -- (~,~) -- E ~  exp(~ ,  u ,~)  ' 

, A B 3-" 
w ' ~ i - 2  2 Bz._,p.ri 

(21) 

exp(l~ w ' , )  
P s i -  (q~i} = ~--~.r exp(/~2 w~i ) • (22) 

Here we briefly introduce the fundamental model 
used in obtaining the procedure of  relaxing two sets 
of  variables. Szu (1989) has developed the hairy 
neural network model which shows how the 
dynamics of  the two sets of  neural variables in the 
neural network can be characterized by a joint global 
energy function and their convergence can be 
guaranteed. To prove the convergence properties, 
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we develop the hairy models for our new algorithms. 
For the energy function (3), we can obtain a joint 
global free energy function to characterize the two 
sets of the mean field equations (10), (11) and (15), 
(16): 

~(1/, V, W,p, ~1, /~'2) = (H(o' ,  q)) 

+ Y~ v, ui + Z P,,w~, 

1 
~l ~ In z (u. Bl) 

1 
~ t~ z(wo, ~1, (23) 

where the form of (H(a, q)) is the same as in eqn 
(13). By taking the partial derivatives of the joint free 
energy with respect to vi~, ui~, P,~i, and w~i, we can 
obtain the mean field equations (10), (11), (15), and 
(16) correspondingly for the stationary point of the ~b 
function. To derive the continuous time mode of 
evolution of the mean field equations, we set the time 
ratios of ui,~ and w~i proportional to the negative of 
the partial derivative of the free energy (23) with 
respect to via and P,~i correspondingly: 

dui. OO(u, v, w, p, ¢l, ~)  
dt = Ovi~ (24) 

dwi, O¢(u, v, w, p, #l, ~ )  
T = Op~, (25) 

The whole set of continuous mean field equations 
then consist of the eqns (11), (16), (24), and (25). The 
convergence of the set of continuous mean field 
equations can be shown for the joint free energy (23). 
The proof is given in Appendix B. For the on-line 
self-organizing algorithm developed in the latter 
context, we can also develop the corresponding 
continuous mode of evolution for the obtained 
mean field equations and show the gradient descent 
property of the corresponding free energy. 

The only approximation used in our derivation is 
the strong independent assumption as in eqn (14), 
which is used to obtain the form of the mean of an 
energy function, such as (H(S ) )  in free energy (4). In 
two places the strong independent assumptions are 
employed: in eqns (8) and (13). The strong 
independent assumption is also the basic assumption 
of the mean field annealing. The derivation of a hairy 
neural network uses no assumption. The derivation 
of eqns (24) and (25) from the joint free energy is 
exactly based on the gradient descent method. 
However, to obtain a stationary point of a hairy 
neural network, eqns (24), (25), (11), and (16), we use 
a simulation algorithm as in Appendix A. In the 
simulation algorithm, two Potts models are relaxed 

separately in turn. Such an execution saves computa- 
tional effort, but actually makes an independent 
assumption between two Potts models. This is a 
problem involving implementation not theory. This is 
reasonable since our computational tool is a digital 
computer. 

2.2. Relation to the Durbin Algorithm 

To obtain Durbin's self-organizing algorithm, the 
distance terms in the energy function (3) are first 
changed to the terms of distance squared. The 
changed energy function is denoted by H e . The 
absolute distance l" I will provide a median type of 
smoothing effect among the neighbors, and the 
distance squared will smooth neighbors in terms of 
mean. In the same way as for the derivation of eqns 
(10) and (11), we can then derive a set of mean field 
equations for the variables {cri} in the energy 
function H e. Let H~ denote the energy function 
when each try; is fixed at its mean value similar to the 
energy function Hq (12). When we simply relax the 
energy function H~ by using the gradient descent 
method instead of using mean field annealing, we 
obtain the dynamic equation for the cortical points 
proposed by Durbin. That is, we set the change of 
each cortical point y~ as follows. 

Ay~ -- OH~ 

0ya (26) 
= 2 C  Z (a,~i)(xi-y,~) +2 Z (Y~-Y'~) 

where (tr) can be obtained from eqn (11) with a minor 
modification, replacing (Ixi - y,~ I) with Ixi - y~ 12 
The version in eqn (26) is exactly the same as the 
gradient version of the elastic ring proposed by 
Durbin and Willshaw (1987). The derivation of eqns 
(10) and (11) illustrates that Durbin and Willshaw's 
elastic net algorithm makes the same mean field 
approximations as in a Potts model. From the 
dynamics of the Durbin algorithm, we categorize 
the Durbin algorithm as a batch-type self-organizing 
algorithm. However the Durbin algorithm uses only 
weak constraints and makes no use of the distribu- 
tion information among parameter elements. In the 
above derivation for the Durbin algorithm, the 
partial derivative of H~ with respect to y~ eliminates 
all of the q variables, which carry with them the 
critical constraints. Thus the competitive sharing-out 
of the cortical points among the parameter space is 
not included in the Durbin algorithm. The key points 
of the new algorithm are to use the mean field 
annealing for determining the motion of the cortical 
points gradually and to add essential constraints for 
coherent mapping from the cortex to the parameter 
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space. The mean field annealing is able to avoid 
becoming trapped in any of  the tremendous number 
of  bad local minima within the energy function. 
Hence the new algorithm can much improve the 
Durbin algorithm in quality. 

2.3. A New On-Line Self-Organizing Algorithm 

This type o f  algorithm can process one input at a time 
since no explicit information between any two 
parameter  elements is used in the algorithm. This 
property restricts the development of  the new on-line 
algorithm toward a Potts model with two sets of  
coupling dynamics. Unlike the batch-type algorithm, 
an on-line algorithm can not resolve the mean 
position of  a cortical pont  into a linear combination 
of  parameter  elements, since at each time instance the 
system knows only one parameter element and 
memorizes nothing. It is impossible to replace the 
mean position of  a cortical point with a Potts neural 
variable. Following this argument, we reserve the 
dynamics of  the cortical positions in the last 
subsection for constructing a new on-line self- 
organizing algorithm. This construction may result 
in incompletion of  Potts models with two sets of  
dynamics as in Subsection 2.1, but it stresses that the 
function of  the Kohonen algorithms can be accom- 
plished by using Potts models, which possess solid 
theoretical foundation. 

The Kohonen algorithm is an on-line self- 
organizing algorithm. It uses a dynamical neighbor- 
hood structure to maintain the smooth distribution of  
the cortical points and a winner-take-all principle to 
implement the competition among cortical sites for 
each parameter element. In this section, we will 
provide a new on-line self-organizing algorithm on 
the basis of  using only one Potts neuron. We start 
with Ritter's version (Ritter & Schulten, 1988) of  the 
Kohonen  algorithm. For  each parameter element x~, 
the change in the cortical point y~ is: 

Ay~ = r/A(c~, a ' ) (x i -y~) ,  (27) 

where c~* denotes the winner site, of  which the 
cortical point is closest to the input element: 

lYo*-x,I ~ l ye -  x,I. (28) 

The neighborhood function A(a, a*) is 1 for a = a* 
and falls off with distance r ~ , ,  which is the distance 
between sites t~ and c~* on the cortex surface lattice. A 
typical choice for A(a, a*) is: 

(29) 

where d is a tunable width parameter  that is gradually 
decreased during the training. 

In the above Kohenon algorithm, the movement 
of  the cortical point y~ depends on the neighborhood 
function A(a, a*), of  which the time varying size and 
distribution are heuristically predetermined and the 
center is chosen as the nearest cortical point to the 
input element. In the following formulation, we 
propose an altenative design for the neighborhood 
function. We aim at obtaining an optimal neighbor- 
hood function for each parameter element under the 
critical objective and the constraints. 

Given a parameter element xi, we need to 
determine the membership function of  the input to 
all cortical points. We use a set of  binary neural 
variables ~ ,  1 ~< a ~< M 2, to serve as the member- 
ship function. Each ~ plays the same role as each 
A (a, a*) in eqn (27). The objectives that need to be 
optimized include the weighted distance between the 
input and the cortical map and the smoothness of  the 
membership function. The only constraint is the 
unitary condition for all neural variables. All terms 
can be quantified. Our formulation now is: 

minimizing Li = E ~ Ix/ -  Y~ 12' 

and 

subject to 

~--~ ~ = 1, 

~ c  {o, 1). (30) 

The first objective LI in the above formulation favors 
the activation of the neural variable for which the 
corresponding cortical point is closest to the input. 
We interconnect M 2 neural variables as a lattice 
structure. In the second objective, ~ denotes the set 
of  the four neighbors of  the a th  neural variable; L2 is 
used to measure the smoothness of the analog 
membership function at each intermediate state 
toward the binary solution. The optimal binary 
solution of  the membership function is easy to find 
for the formulation (30). By the unitary condition, we 
know only one neural variable is on and the others 
are off. Then the L2 term is a constant with value 4. 
The Ll term can be simply minimized by activating 
the neural variable, for which the corresponding 
cortical point is closest to the input xi. The optimal 
binary solution of  the formulation (30) indeed follows 
the winner-take-all principle. To naturally emulate 
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the dynamics of the neighborhood function used in 
eqn (27), we need to calculate the analog membership 
function at each intermediate state toward binary 
solution. For this purpose, we will first translate the 
formulation (30) into a Hopfield type energy function 
and then use mean field annealing to find the mean 
configuration. 

To include the Kohonen algorithm into a Potts 
neural network, we consider the following energy 
function: 

2 

a 7E~'o ° 7~0 

Cx 
= - g -  }--~ &Ix,  - y~l 2 

- ( A x - 8 ) ~ + 2 + A x ,  
OL 

(31) 

where Cx and Ax are the Lagrange multipliers. The 
constant is negligible. The term with coefficient Ax in 
the first line of eqn (31) is equivalent to the unitary 
condition. All terms are rearranged and further 
simplified by applying the unitary condition. By 
mean field annealing, we can derive the free energy 
and the mean field equations for the energy function 
HK: 

l 
~bx= (HX) + E rn~((~) -fix ~ in E exp(/3xm,~), 

o ot 

(32) 

and 

Cx 
m" = - ~  ly '~-xi l2-2 E (~7)- (Ax-8) ,  (33) 

7 E , ~ o  

exp( flx m~) 
(~'~) -- Y]'r exP(/3KmT)' (34) 

where ms is an additional auxiliary variable and/3r is 
a control temperature parameter. The mean of the 
energy (31) can be approximated by replacing each 
neural variable with its mean. 

The mean field equations (33) and (34) character- 
ize the behavior of the Potts neuron. This Potts 
neuron performs an idealized dynamical winner-take- 
all function as mentioned by Kohonen (1993). The 
critical temperature of this Potts neuron can be 
analytically obtained by the method in the work of 
Peterson and Sfderberg (1989). Above the critical 
temperature, each neural variable responds equally. 
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FIGURE 1. (s) Clustering phenomenon of a Polls neuron in one 
dimension. (b) Positions of nodes and input point used in Figure 
a. Thirty nodes are arranged as a small circle. 

At sufficiently low temperature, among the M 2 neural 
variables, only one variable is one and the others are 
zero. At each intermediate temperature, the responses 
of neural variables show a clustering phenomenon as 
a result of the excitatory interaction and the 
normalized activation function, which represents the 
inhibitary interactions among neural variables. 
Figure la shows the function of this Potts neuron 
in the one-dimensional case. In this case, the 
positions of nodes and input element in a plane are 
arranged as in Figure lb. The Potts neuron can be 
naturally used to emulate the neighboring function 
(29) in the parallel and distributed process. The 
interconnections within the Potts neuron is indeed 
simple and regular such that the hardware imple- 
mentation is easily achievable. The function of the 
Potts neuron describes the responses of all cortical 
points to the input. The responses are then used to 
tune the cortical points toward the input xi. By 
setting the change of each cortical point negatively 
proportional to the partial derivative of the free 
energy ~b x with respect to y,~, we have: 

Oy~ 
= r/(~)(xi - y~). (35) 

The updating rule is similar to the Kohonen 
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algorithm, except the neighborhood function 
replaced by (~). 

is 

3. SIMULATIONS AND CONCLUSIONS 

We test the new algorithm described by (19)-(22) 
using two examples. The first one is the taxonomy 
example, for which the data are the same as in 
Kohonen (1988). We duplicate each element by 
adding small random noise to form the parameter 
space, which then contains 64 parameter elements. In 
the following simulations, we use the mean field 
equations (19)-(22) with constants A =0.2 and 
B = 0.4, and an 8 x 8 lattice. The four edges of the 
neuron lattice are connected as in Subsection 2.1. The 
annealing process is controlled by two temperatures 
TI and T2; TI is initially set larger than T2 to 
synchronize the convergence of the two mappings. 
The taxonomy example demonstrates the topology 
preserving property of the new algorithm, which has 
potential for hierarchical classification. The results 
are shown in Figure 2. Figure 2a shows the 
hierarchical structure of the original data. We see 
that the embedded hierarchical structure within the 
data set is captured by the algorithm in Figure 2b as 
squeezed into the lattice space. Figure 2b is obtained 
by labeling each data symbol on its mapped site. The 

) 
;) 

a 
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* H G * * * W * 

I * K * O P Q * 

* J L M N * R * 

* * * S * * * 6 

FIGURE 2. (a) Hierarchical presentation of the data in the 
taxonomy example. (b) Self-organization map of the data in (a), 
which Is obtained by labeling each data on its mapped site on 
the lattice. 
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FIGURE 3. (a) The distribution of the data in the second example. 
The arrows Indicate a tracing path starting from the outer circle 
to the inner pofnL (b) The trained cortical points on the lattice are 
drawn on the parameter space. The two neighboring cortical 
points are connected by a line In the figure. (c) A corresponding 
path in the self-organization map captures the geometrical 
feature of the tracing path in Figure 2a. 
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TABLE 1 
The Resulting Measurement Quantities, L1 and L2, of the three 

Self-Organizing Algorithms for two Examples 

K o h o n e n  
HAPER AIg. Durb in  AIg. AIg. 

Examp le  1 L1 0 1.587 0.546 
L2 25.986 29.342 27.386 

L1 + L2 25.986 30.929 27.932 

L1 1.745 2.995 3.653 
L2 17.756 23.488 24.115 

/1 + L2 19.501 26.483 27.768 

Examp le  2 

second example is a two-dimensional case. The four 
edges of  the lattice are not connected in this example. 
The 100 parameter elements are arranged as in Figure 
3a. As a result, the cortical points with lines to its 
neighbors are shown in parameter space as in Figure 
3b. If  we trace all elements by following the arrows as 
in Figure 3a, we see a corresponding path in the 
cortex as shown in Figure 3c. The tracing path in the 
cortex explicitly displays the geometrical feature of 
the path in the parameter space. These two examples 
experimentally show the success of  self-organization 
by the new self-organization algorithm. When 
compared with the Durbin algorithm and the 
Kohonen algorithm, the new self-organizing algo- 
rithm produces a well-qualified self-organization 
map. The resulting measurement quantities, LI and 
L2, from the new self-organizing algorithm are 
shorter than those from the other two algorithms as 
in Table 1. The measurement quantities of  the new 
algorithm and the Durbin algorithm for the second 
example along simulation epochs are shown in 
Figures 4 and 5 respectively. 

Now we examine application to the formation of 
ocular dominance stripes (Goodhill & Willshaw, 
1990). This application mainly employs the self- 
organizing algorithm as the mechanism for projecting 
the cells from the two retinae onto the cortex and 
explain the development of  ocular dominance stripes 
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FIGURE 4. M e a s u r e m e n t  quent lUes  of the  n e w  se l l -o rg lmlz lng  
algorithm for the second example. Lower curve: L1. Middle 
curve: L2. Upper curve L: + L2. 
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FIGURE 5. Measurement quantities of the Durbln algorithm tot 
the second example. Lower curve: LI. Middle curve: L:. Upper 
curve: L1 +/-2. 

in the vertebrate visual system. We follow the 
simulation model of  Goodhill and Willshaw (1990) 
to test the new self-organizing algorithm. Two cases 
are studied: a simplified case of  two one-dimensional 
retinae mapping to a one-dimensional region of  the 
cortex, and the general case of a two-dimensional 
retinae mapping to a two-dimensional region of  the 
cortex. For  the one-dimensional case, the simulation 
model can be described as a traveling salesmen 
problem, of  which the cities are regularly arranged 
as two parallel rows within a unit square, the rows 
running in the horizontal direction and separated by 
a certain specified distance. The position along the 
horizontal axis then represents the position within 
one retina and the vertical separation of two rows 
indicates ocularity. Then a one-dimensional elastic 
ring representing the cortex is used to classify the city 
set. The elastic ring we use has a break in it like that 
used by Goodhill and Willshaw. Each node on the 
elastic ring has two neighbors except for the two end 
points, which have only one neighbor. The receptive 
field of  a node contains two real components for 
representing the node position. By appropriately 
adjusting the neighboring structure, the new algo- 
rithm described by eqns (19)-(22) can be used. In our 
simulations, 40 nodes and 40 cities are used. When 
the elastic ring is initially set as a small circle, the city 
set is well classified into two disjoint clusters and no 
stripe occurs. When the initial positions of the elastic 
nodes are set as in Figure 6, the resulting patterns 
form stripes. Figure 7 shows the patterns generated 
for different vertical separations. All these patterns 
are obtained by drawing each node at the position 
specified by its receptive field and connecting any two 
neighboring nodes. When the distance d between two 
cells is not less than the vertical separation /, the 
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FIGURE 6. One-dimensional simulation model for ocular dominance stripes. The elastic ring is linearly initialized along the middle of 
two layers, d denotes the distance between two cells. I denotes the ocularity. 

resulting stripes have minimal size, such as the 
patterns in Figures 7a and 7b. As the ratio d/ l  gets 
smaller, the size of the predicted stripes gets larger as 
shown in Figures 7c-7e. 

Obviously, the formation of  stripes is caused by 
deeply local minima of  the energy function. F rom the 
viewpoint of  optimization, although the mean field 
annealing has improved the gradient descent method 
in performance, yet it is unable to obtain global 
minima in complicated situations. This is for two 
reasons, one the mean field approximation made 
during derivation and the other the numerical 
simulations in the digital computer. For  the former 
reason, further theoretical effort can be made. The 
independent assumption between two Potts neurons 
in deriving a Potts model can be released by using a 
new version of  the free energy the same as that for 
deriving the TAP equations (Thouless et al., 1977) in 
spin glasses. Potts models using TAP equations (Wu, 
1994) have been shown to essentially compensate for 
the illegality at high temperature and overcome the 
initial problem in the mean field annealing neural 
networks. 

The 2D case is a straightforward generalization of  
the I D case. The two retinae are represented as two 
planes of  cells, lying on top of  one another  and 
separated by a small gap. The cortex is represented 
by an elastic net arranged as a 25 x 25 lattice. The 
resulting patterns are shown in Figure 8. 

In this work, the self-organizing algorithms are 
derived thoroughly from the viewpoint of  optimiza- 
tion. With proper optimization of  the objective and 
constraints, the task of  dimensional reduction with 
the property of  topology preservation is incorporated 
into energy functions as in the Hopfield models and 
the Potts neural networks. The optimizing quantities 
we use are viewed as significant clues for under- 
standing principles behind the formation of cortical 
maps in physiology (Durbin & Mitchison, 1990). Our 
formulation further exploits these quantities for self- 
organization. We are able to add the direct objective 
to the model. In minimizing the developed energy 
functions, we use the technology of mean field 
annealing and then obtain Potts neural networks as 
the computational model. The Potts neural networks 
are the general modes of  the Hopfield neural 
networks and are for the first time extended to the 
task of  self-organization. The Potts neural networks 
have a high degree of  parallelism. This is helpful for 
applying the new self-organizing algorithm to many 
real time applications. We also show that the Potts 
neural networks obtained belong to the category of 
hairy models proposed by Szu (1989) which we use to 
show their convergence properties. The convergence 
of  the new batch-type self-organizing algorithm can 
be qualified by measuring the optimizing quantities 
of the final mapping table. This makes the neural 
networks realizable. 

U7 T[U UL515  

FA]SZS2S7 

(a) Separation of retinae 1 = 0.03 

(b) Separation of retinae 1 = 0.05 

(c) Separation of retinae 1 = 0.08 

(d) Separation of retinae 1 = 0.10 

(e) Separation of retinae 1 = 0.15 

FIGURE 7. The generated patterns |or different vertical separations in one-dimensional case. d = 0.05 for all patterns. 
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The new a lgor i thm provides high reliabili ty a nd  
efficiency for self-organizat ion.  F o r  the batch- type 
self-organizing a lgor i thm,  we have enhanced  the 
design of  the D u r b i n  a lgor i thm by  apply ing  mean  
field annea l ing  to increase reliability, by inc luding  
complete  cons t ra in ts  to make  the mos t  use of the 
pr ior  knowledge of  the paramete r  space, and  by 
in t roduc ing  collective attractive and  collective re- 
s tora t ion  forces to smooth  the resul t ing cortex 
surface to facilitate convergence.  These collective 
forces can form a rough field su r round ing  the cluster 
centers. These collective forces near  a cluster can 
e l iminate  the indiv idual  force differences of  each 
e lement  in the cluster and  enhance  the force toward  
the cluster center. This  collective behavior  results in 
well-behaved convergence in our  me thod  when the 
d is t r ibut ions  of  the paramete r  e lement  are clustered 
in several places. F o r  the on- l ine  self-organizing 

a lgor i thm,  we have provided a new set o f  differential 
equa t ions  to model  the idea of  the K o h o n e n  
algori thm. This novel  method  can  serve as the 
f o u n d a t i o n  for explor ing the physiological  implica- 
t ions  of  this popu la r  self-organizing algori thm.  The  
hardware  imp lemen ta t ion  of  the serial-type self- 
organiz ing  a lgor i thm can be realized by a regularly 
in te rconnec ted  Pot ts  neuron .  Us ing  this new techni- 
que, t empora l  re la t ional  da ta  can be processed in  real 
time. 
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A P P E N D I X  A 

The procedure for the new batch-type self-organizing algorithm is: 

1. Set initial 7"1 and 7"2, and initial cortical points. 
2. Relax eqns (10) and (11). 
3. Relax eqns (15) and (16). 
4. Reduce T~ and 7"2 by a scalar 0.98 and if terminating criterion is 

satisfied, end the algorithm, otherwise go to step 3. 
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One exception in the above algorithm is notable. When the mean 
field equations (10) and (11) are invoked for the first time, the term 
(I x, -Y~(~)I> in eqn (10) is substituted by the term I x , -  (Y~I~))I, 
where (y,) is the initial cortical point. In the latter relaxation, this 
mean term is substituted by Ek Poklx~--x~ l- 

Two methods are suggested for setting the initial cortical points. 
One is by regular assignment. We first find the mass center o f  the 
set o f  the parameter elements. Around this mass center, we have a 
K-dimensional hyper-sphere. We shift the origin o f  the parameter 
space to the center o f  mass. Assume the radius of  the hyper-sphere 
is a small value r. The hyper-sphere contains an inner hyper-cube, 
which has 2 K vertices. The positions of  the 2 x vertices are 

± 1  
{(al . . . . .  aria,) = x/-K' 1 <.i <~K}. 

We recursively partition the lattice R into 2 K regions, denoted by 
R = { P~,...bx I b~ = 0 or 1, ! ~< i ~< K} and assign the coordinate o f  
each vertex to the cortical point of  the center o f  the corresponding 
region. At each partition step, a subregion Rb is equally partit ioned 
into left-up, right-up, left-down, right-down subregions, denoted 
by P~oo, RbO 1, Rb I o, Rb t 1 respectively. Then the cortical point  o f  the 
center o f  each region Rbx...bjr is assigned to the coordinate 

with each c~ = 2b, - 1, 1 ~< i ~< K. I f K i s  even and 2 x- 1 divides into 
the side length M of  the lattice integer times, all primitive regions 
have equal size. I f  not, a slight modification can partition the lattice 
as equally as possible. We assign the undetermined cortical points 
to zeros and then determine them on the basis of  the determined 
cortical points. We synchronously update cortical points by the 
equation 

y~+, _ r(y~ + E ~ s .  Y~r) (36) 

until all points are stable. The above updating rule smooths the 
initial distribution of  cortical points. This procedure has also been 
used to calculate the artificial flow fields for autonomous 
navigation within complex environments (Liou & Wu, 1992). 

The other method is to first randomly set initial cortical points 
and then use the serial-type self-organization algorithm to organize 
the distribution of  the cortical points for several steps 

A P P E N D I X  B 

dap/dt <~ 0 is proved as follows: 

1 t 

(37) 

where MI is the Hessian of  l n z ( u , / ~ ) ,  and M2 is that of  
lnz(w~, ~ ) .  

Ml -- EI-,I exp (a , , l o , ) [o ,  - , ,][o, - , ,1'  

M2 = y'~(q'] exp(/~2P~q°)[q~ - Po][qo - po]t 

[oi] and [qo] run over (et , . . . ,e jv}.  Since both MI and M: are 
positive definite, 

~ .  MI ~ -  > 0, 

and 

(dw~) ' dw~ 
- ~ -  M~ - ~ >  O. 

Q 

dt 

is shown. 


