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Abstract — Input nodes of neural networks are usually predetermined by using a priori
knowledge or selected by trial and error. For example, in pattern recognition applications
the input nodes are usually the given pattern features and in system identification applica-
tions the past input and output data are often used as inputs to the network. Some of the
input variables may be irrelevant to the task in hand and therefore may cause a deteriora-
tion in network performance. Some may be redundant and may increase the complexity of
the network and consume expensive computation time. In the present study, the mutual
information between the input variables and the output of the network is used to select
a suboptimal set of input variables for the netwerk. The variables are selected according
to the information content relevant to the output. Variables which have a higher mutual
information with the output and lower dependence on other selected variables are used as
network inputs. The algorithms are derived based on heuristics and performance is assessed
by wsing—radial basis fanction (RBF) networts trained with the orthogonal least squares
algorithm (OLS), which selects the hidden laver nodes of the network according to tire—
error reduction ratios on the network output. Both real and simulated data sets are used
to demonstrate the effectiveness of the new algorithms.

Keywords — Radial Basis Function, Mutual Information, Input Node Selection, Hidden
Node Selection, Network Structure, Pattern Recognition, System Identification.

1 Introduction

Radial basis function (RBF) neural networks have been studied by researchers in many
diverse disciplines in recent years. It has been proved (Light, 1992; Powell, 1992) that a
radial basis function network can approximate arbitrarily well any multivariate continuous
function on a compact domain if a sufficient number of radial basis function units are given.
A radial basis function network has a rather simple feedforward structure and network
learning is very simple. The network can be configurated with one radial basis function
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centre at each training data point. Thus, the complexity of the network is of the same
order as the dimensionality of the training data. In practice, a network with a finite basis
is often preferred. A variety of approaches for training radial basis function networks have
been developed. Most of these can be divided into two stages (Moody and Darken, 1989;
Chen, Billings and Grant, 1992; Kaviori and Venkata Subramanian, 1993; Xu, Krzyzak and
Oja, 1993; Vogt, 1993; Zheng and Billings, 1994) ¢). learning the centres and widths in the
hidden layer; 4i). learning the connection weights from the hidden layer to the output layer.
In these learning algorithms, various clustering algorithms have been used to partition the
input space and the connection weights were computed based upon least squares or similar
methods. The network structure however, including the input layer and the hidden layer
nodes are predetermined. Learning algorithms which incorporate selection mechanisms for -
hidden layer nodes were developed by researchers (Chen, Billings, Cowan and Grant, 1990b;
Holcomb and Morari, 1991; Lee and Rhee, 1991; Musavi, Ahmed, Chan, Faris and Hummels,
1992). In Chen’s work (Chen et al., 1990b), the network was trained using an orthogonal
least squares algorithm. Akaike’s information criterion was used to determine the number
of hidden layer nodes and an error reduction ratio was used to select the centres such
that the approximation errors of the network are most effectively reduced at each selection
step. The learning algorithm developed in (Holcomb and Morari, 1991) treats the radial
basis functions associated with the hidden layer nodes as approximately orthogonal to each
other. The network starts with one hidden layer node and additional nodes are added to
the network when they are necessary. The locations of the hidden layer nodes are optimized
using an optimization package. Training algorithms proposed by Lee (Lee and Rhee, 1991)
and Musavi (Musavi et al., 1992) are based on supervised hierarchical clustering methods.
In Lee’s work (Lee and Rhee, 1991), the learning starts with one hidden layer node with a
large width and creates additional nodes when they are desired. The associated widths and
the locations are also changed. In Musavi’s work (Musavi et al., 1992), the learning begins
with a large number of nodes and merges them when possible. The associated widths and
locations of the nodes are updated accordingly. All these algorithms can only select the
hidden layer nodes, the input layer nodes were predetermined or selected by trial and error.
In the present study, mutual information and the orthogonal least squeres algorithm are
used to select both the input layer and the hidden layer nodes respectively. The algorithm
selects the input layer nodes according to the information content relevant to the network
output. The hidden layer nodes are then determined according to the error reduction ratios
on the output.

The layout of the paper is organized as follows. Section two briefly describes the radial
basis function network and its structure. Section three introduces the basic concept of
mutual information and its application in input layer nodes selection. Two input nodes
selection algorithms are presented in this section. Section four presents an orthogonal least
squares algorithm for hidden layer node selection. Experimental results are given in section
five, which demonstrates the effectiveness of the algorithms. Finally, section six is devoted
to conclusions and disscusions on future research directions.
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Figure 1: Radial Basis Function Network Architecture

2 Radial Basis Function Networks

A basic radial basis function (RBF') network may be depicted as shown in Fig 1. Without
loss of generality, the number of outputs in the network will be assumed to be one, but the
architecture can be readily extended to cope with multi-output problems. The architecture
consists of an input layer, a hidden layer and an output layer. The input vector to the
network is passed to the hidden layer nodes via unit connection weights. The hidden
layer consists of a set of radial basis functions. Associated with each hidden layer node
is a parameter vector c; called a centre. The hidden layer node calculates the Euclidean
distance between the centre and the network input vector and then passes the result to a
radial basis function. All the radial basis functions in the hidden layer nodes are usually of
the same type. Typical choices of the radial basis functions are
i). the thin-plate-spline function:

d(v) =vix log(v) (1)
ii). the Gaussian function:
##)= (%) 2)

iii). the multiquadric function:

B(v) = (V2 + 87)F 3)
vi). the inverse multiquadric function:
1
H(v)= —— 4
o @

where v is a non-negative number and is the distance from the input vector x to the radial
basis function centre ¢, and § is the width of the radial basis functions. In radial basis
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function networks, the thin-plate-spline function has been used in (Chen et al., 1992; Chen
et al., 1990b), and the Gaussian and multiquadric functions have been used by Moody
(Moody and Darken, 1989), Broomhead (Broomhead and Lowe, 1988) and Poggio (Poggio
and Girosi, 1990). In the present work, the thin-plate-spline function will be implemented
in the network. However, other functions listed above can be readily included by using a
constant § parameter.

Note that the network structure is determined by the input layer and the hidden layer.
The input layer structure depends on the input vectors applied to the network, which are
usually formed using past input output data in system identification applications or pattern
vectors in pattern recognition applications. In the present work, we investigate the use of
mutual information between the input variables and the output variables to select a subset
of all the input variables available as the input of the network. The subset is selected
according to the information content relevant to the output. The principle of the selection
procedure is discussed in section three. In the remainder of this section however the input
variables to the network are assumed to be determined by the selection scheme.

The response of the output layer node may be considered as a map f: R™ — R, that is

N
f(x) = 6:¢(l x - ¢ ||) + bo (5)

1=1
where N is the number of training data and || || denotes the Euclidean norm. ¢; (i=1,
2; sy N) Is the it centre and is the i** data sample in this particular network structure.
x,¢; ER™ 6, (1 =1,2,...,N) are the weights associated with the itk radial basis function
centre. fg is a constant term which acts as a shift in the output level. When the input layer
nodes are determined, the training of the network may be seen as an interpolation problem
and the solution may be obtained by solving a set of constrained linear equations. The
complexity increases with the number of training data, which may make the implementation
of the network above unrealistic. In practical applications, it is often desirable to use a
network with a finite number of basis functions. A natural approximated solution would be

(x) =) 6;( x = ¢; )+ 6o (6)

=1
where n. is the number of radial basis function centres, ¢; is the §** centre which can be
selected from the data samples. Given a set of data (x;,y;), (i=1,2,...,N)x; € R", y; €

R, x; = (z:1, Ti2,..., Tin)?, the connection weights, centres and widths may be obtained
by minimizing the following objective function

N
Ji(8,¢) =3 (w - )T (3 ~ 1) (7)

=1

where 6 = (6p,61,6s,...,0,.)T, ¢ = (c1,¢2,...,n.)T. The above minimization problem
may be solved using a nonlinear optimization or gradient decent algorithm. Note that the
number of hidden layer nodes is predetermined in this network. The number of the hidden
layer nodes may be selected using a priori knowledge. However, an appropriate number
can only be determined by trial and error. It is therefore desirable to optimize the number
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of hidden nodes, the locations or centres and the connection weights simultaneously. The
objective function could be chosen as

=1 =1

N e T n.
Ja(nc,6,¢) =3 (yx‘ =D 8id(llxi—c; | - 90) (yz' =Y 6id(llxi—e;||) - 90) (8)
=1

Note that the best structure which minimizes the objective function J; has N hidden layer
nodes and the centres tend to the data samples such that the network reverts to the one
given in formula (5). The resulting network can only interpolate the particular data set
and will fail to capture the underlying functional relation in the data, which will certainly -
lead to overfitting. To provide a compromise between network performance and network
complexity, Akaike’s information criterion (AIC) may be used and the objective function
to be minimized can be amended to

N

T
1 e '
J3(n,8,¢) = N x log FZ (yi—zf’jé(llm*% H)-90)
gy

i=1

i=1

(yi—ieﬂi(llxz‘-cj ||)-90))+4><nc+4 (9)

In previous paragraphs, it is assumed that the number of input nodes is known and the
input layer nodes are predetermined. Therefore, the minimization of the objective function
in (9) would determine both the network structure and the parameters simultaneously.”In
section four it will be shown how this objective can be achieved using the orthogonal least
squares algorithm. The input nodes selection will be discussed in the next section.

3 Mutual Information and Input Nodes Selection

Mutual information is one of the most fundamental information measures in information
theory. It is usually discussed in conjunction with efficient coding of sources and their re-
liable transmission over noisy channels. But it has also been applied in other disciplines.
For example, Fraser and Swinney (Fraser and Swinney, 1986) used mutual information to
select an optimal time delay for phase-portrait reconstruction from chaotic time series data.
A slightly different formula was then used in (Ashrafi, Conway, Rokni, Sperling, Roszman
and Cooley, 1993) for the same purpose. Although it was found that (Martinrie, Albano,
Mees and Rapp, 1992) the method was not consistantly successful in identifying the opti-
mal window due to the flatness of the mutual information with different window lengths
for some time series. It was emphasized (Martinrie et al., 1992) that the importance of
mutual information in estimating metric entropy remains undisputed and that the mutual
information can be used for pattern recognition of noisy time series. In image processing,
Noonan and Marcus (Noonan and Marcus, 1990) used the concept of mutual information
for image restoration. The input image was restored by minimizing the mutual informa-
tion between the input image and the output image while keeping the mean squared error
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associated with the estimate of the input image equal to the known noise power. In neu-
ral networks, Linsker (Linsker, 1989) derived a learning rule by maximizing the mutual
information between input and output signals to generate ordered maps. Several processes
including a Hebb like modification, cooperation and competition among processing nodes
emerged as components of the learning rule. The mutual information between the inputs
and the outputs of the hidden neurons was introduced (Deco, Finnoff and Zimmermann,
1995) into the backpropagation training algorithm as a penalty term, which penalizes an
excessive extraction of information by the hidden neuron and prevents overfitting. Conese
and Maselli (Conese and Maselli, 1993) applied mutual information to select optimum band
subsets from remotely sensed scenes for visual interpretation. Recently, Battiti (Battiti,
1994) applied it to select pattern features for pattern recognition. In the present work,
we investigate the use of mutual information in selecting input nodes for radial basis func-
tion networks for pattern recognition applications. We also investigate the feasibility of
selecting a suboptimal set of input variables for system identification applications. Before
formulating the selection algorithm, we review the concepts of mutual information below.

Let Y be a random variable with a set of Ny outcomes Y;, Y,, ..., Yy, with
probabilities P(Y;) = p;, (7 = 1,2,...,Ny), a measure of informatuion for Y is the
entropy defined as

Ny Ny
H(Y)= -3 P(Y;) log P(Y;)=-3_p; log p; (10)
7=1 =1

When p; is zero, the value zero is signed to p; log p;. H(Y) measures the uncertainty in
the variable Y. It vanishes if, and only if there is complete certainty in the variable Y.

Let U be a random variable with a set of Ny outcomes Uy, Uy, ..., Uy, with probabil-
ities P(Ug) = gx,(k=1,2,..., Ny). The connection between the two variables is obtained
by specifying their joint probabilities P(Y;NUy) = pjr, (7 = 1,2,..., Ny, k= 1,2,..., Np).
The conditional probabilities are

P(Y;|Uy) = }';—: P(ULJY;) = B (11)
%)

The conditional entropy is defined as

Ny Ny Ny Ny D;
H(Y|U)= =" P(Ux) Y P(Y;|Us) log P(Y;|Uy) = - S>> " pii log (QL:) (12)
k=1 i=1 k=1 j5=1

H(Y|U) is a measure of the uncertainty in variable Y after knowing the variable U. The
combined uncertainty of variable Y and U is then given by the joint entropy

Ny Ny Ny Ny
HYNU)==3 3 P(Y;nU:) log P(Y;NUx)==3" > pjs logpix  (13)
1=1k=1 j=1k=1

From (12) and (13), it may be shown that the joint entropy H(Y N U) is the sum of the
conditional entropy H(Y|U) and the uncertainty H(U), that is

H(YNU)= H(Y|U)+ H(U) (14)
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In general, the uncertainty in variable Y will be reduced after knowing the variable U if
they are statistically related. The amount of reduction in uncertainty is

Ny Ny :
I(Y,U)=H(Y)-H(Y|U)= H(Y)+H(U)-B(YNU)= >3 p;i log (ffq"—k) (15)
1=1k=1 2

where I(Y, U) is the mutual information. It was shown (Jones, 1979) that the conditional
entropy H(Y|U) can not exceed the uncertainty in variable Y, i.e.

H(Y|U) < H(Y) (16)

The equalify holds only when the two variables Y and U are statistically independent.
When the two variables Y and U are perfectly associated to each other in the sence that
P(Y;|U;) =1{or all j and P(Y;|Ug) = 0 for k # j, then

H(Y|U)=0 (17)
Substituting (17) into equation (15) yields
I(Y, U} = H(Y) = H(U) (18)

This is to be expected since the reduction of uncertainty in variable Y after knowing variable
U can not be larger than the original uncertainty. Since the entropy can not be negative,
it follows from (15) and (16) that

0<I(Y,U)< H(Y) (19)

The equality on the left holds only when the two variables are statistically independent
and the one on the right holds only when the two variables are perfectly associated. The
formulae given above are also correct when U is replaced by a vector.

Mutual information is generally considered as a measure of the dependence between
two variables. If the two variables are independent, the mutual information between them
is zero, if the two variables are strongly dependent, e.g. one is the function of another,
the mutual information between them is large. Alternatively, the mutual information can
be considered as a measure of the stored information in one variable about another, or a
measure of the degree of the predictability of the output variable by knowing the input
variable. Note that the mutual information measures the general dependence including
nonlinear relations between variables. It may therefore be used to select input nodes for
neural networks. The training of neural networks may be seen as a process of information
extraction. The underlying functional relationship between the input and output variables
is learnt during the training process. It is clear that input variables which are irrelevant to
the output or which carry low information about the output may increase the computation
time unnecessarily and even cause a deterioration in network performance. It may therefore
be advantageous to eliminate these input variables before training.

Assume that there is a set S, with m input variables. The task is to find a subset S,
with n < m input variables which are maximaly informative about the output Y. In terms
of information theory, this may be seen as a problem of finding a subset S, from S, such
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that the mutual information between the output Y and the subset S, of input variables is
a maximum, i.e.

Sn = mazg, s, 1(Y, Sn) (20)

The number of all possible subsets of S, with n input variables amounts to 7: . To

consider all these subsets may be computationally expensive when n is large. In addition,

the number of data samples required to compute the mutual information I(Y,S,) may .
be in the order of millions. In real applications however, the number of data samples is

usually in the order of thounds or even hundreds. An alternative way therefore is to seek a

suboptimal solution by computing a lower dimension mutual information and to build up

the subset step by step. For an input variable to be selected, it seems natural that it should

satisfy the following heuristic criteria.

e It should be comparatively informative about the output.
o It should not be strongly dependent on other variables selected.

If a variable is strongly dependent on other variables in the subset S,, it adds little infor-
mation about the output and may be considered as redundant. Note that the two selection
criteria may conflict with each other. The concept of Pareto-optimality may be applied to
appropriately compare two variables using these two criteria. In the following analysis U
will be replaced by X and denoted by subscripts. Assume that I(Y,Xy), I(Y,X;) and
I(Y,X;) are known, where Xy € Sp, Xi,X; € Sm,1 # j. For any j # 1, if the following
two relations are not satisfied simultaneously

I(Y,X -)

S I(Xk X;
k

Then it may be said that the input X; is not dominated by X;. If X; is not dominated by
all X;,7 # 1, X, is nondominated or noninferior. A set of noninferior input variables may be
called a Pareto-optimal set. At each selection step, the input variables in the Pareto-optimal
set are candidates to be included in S,. Since the Pareto-optimal set may contain more
than one variable, the above selection method may lead to ambiguity. In practice however,
it is usually easy to judge which is the one to be selected. For example, variables which have
low mutual information with both the output variable and those variables already selected
may be excluded according to the heuristics. This procedure can be done interactively by
plotting the mutual information I(Y, X;) against °, I(Xk, X;) for every X;. Alternatively,
it can be automated by weighting the two criteria of those variables in the Pareto-optimal
set. In either case our experience shows that the final set S, are usually very similar.
It was also found that the noninferior variables at an early stage often turn out to be
noninferior later. An alternative would be to simply select the most informative variable
at each step. This strategy was used in references (Conese and Maselli, 1993) and (Battiti,
1994). This is clearly a special case of our selection procedure. Another alternative is to
maximize a weighted difference I(Y,X;)=a ¥, I(Xk, X;). HI(Y, X)) —a T I(Xk, Xi) >
I(Y,X;) — ay, I(Xk, X;), for j # i, then the variable X, is selected. Best results were
obtained when the parameter o was in the range of 0.5 to 1.0 (Battiti, 1994). It may be

1(Y,X,) (21)
S I(XeX (22)
k

=
b3
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seen that this procedure may select a variable which is dominated by others. It is also
possible to select a variable which is weakly dependent on other variables in S, but carries
little information about the output as well. This is clearly inconsistent with the heuristics
given above. Since the methods search for the set S, in a suboptimal way, it is conceivable
that no one selection procedure mentioned here can achieve consistantly better performance
than the others. The selection scheme may therefore be summarized as follows:

Input node selection algorithm A

1. Set S, as an empty set and S, to contain all the input variables available. Set the
desired number of input nodes K.

2. For each X; in S, compute I(Y,X;).

3. Select X; such that I(Y,X;) > I(Y,X;), for j # 1, move X; from set S,, into set S,,.
Set counter k=1.

4. Compute I(X7", X™), X" € 50, X" € Sm. Plot (Y, X$™) versus T, I(X3», X5m).
Select one Xf'“ from the Pareto-optimal set. Move Xf”‘ from set 5,, into set S,. Set
counter k = k + 1.

5. f k = K, output set 5,,, otherwise, go to step 4.

The main task in computing the mutual information is estimating the probabilities P(Y),
P(X;) and P(Y n X;). In the present work, these probabilities are approximated by
histograms. The range of variables Y and X; are divided into equal sized intervals. The
number of data samples falling into the intervals are counted and the probabilities are
obtained by dividing these numbers by the total number of data samples. Due to the finite
size effect of the data samples, estimation error exists in the mutual information. The
method always overestimates the mutual information (Li, 1990; Treves and Panzeri, 1995).
In the following, we denote the estimation of the probabilities over a finite data length N
as Py(Y), Pn(X;) and Py(Y NX;) respectively. Assume that the partition of the output
variable Y satisfies an independence condition i.e., the number of times a given interval is
occupied should depend only on the underlying probability P(Y) and that Py(X;) is given
by a binomial distribution of mean value P(X;). Average over all the possible N outcomes
of the variable Y, the difference between the average of the estimation < Iy > and the true
mutual information is (Treves and Panzeri, 1995)

<IN>=1+5 Cnm (23)

m=1

where Cp, (i =1,2,...) are the correction terms. The first term C; is
1
= — - = 24
Cr = 5 (Nx, = 1)(Ny - 1) (24)

where Ny and Nx, are the number of intervals of Y and X, respectively. This term is
invariant with respect to the probability distributions of Y and X;. The other terms depend
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explicitly on averages of inverse powers of Pn(X;), P(Y|X;) and P(Y). This dependence
can be very strong and produce strong fluctuations in the corresponding correction terms
as the underlying probability distribution varies by tiny amounts. It was shown in (Treves
and Panzeri, 1995) however by simulated results that C; was a good approximation of
< Iy > —I. A similar result was given in reference (Li, 1990) under the assumption that
the ratio of P(Y N X;)/P(Y)P(X;) does not change with the values of Y and X; very
much and that the fluctuation of the variables is of the magnitude of the square root of
the variable values, i.e. §Py(Y NX;) x /Py(Y NX;) and §Pn(X;) « /Py(X;). The
underlying probabilities are usually unknown in practical applications, the estimation of
the mutual information therefore must be treated with care. As a guildline, one should
ensure that the independence condition holds and C; <« 1.0. The number of intervals of the
variables should also be appropriately chosen. For a given number of data samples, using a
small number of intervals will give a more accurate estimate of the probabilities, but may
cancel the details of the distributions and reduce the values of the mutual information.
Using a large number of intervals will reveal the changes in the probability distributions
over short distances, but the fluctuations caused by a small sample size in each interval may
be interpreted as a small scale structure in the distributions and increase the values of the
mutual information. A better way would be to partition the range of the variables adaptively
(Fraser and Swinney, 1986). The methods described in reference (Silverman, 1986) may also
be used for probability estimation. Since the mutual information for different variables is
overestimated in @& similar way, the estimation errors may have a limited effect on input
node selection.

The selection algorithm presented above achieved promising results in pattern recog-
nition applications. However, it was found to be inadequate in system identification type
problems. This may be appreciated from the experimental results given later in section 5.2.
In system identification the input variables of the network are formed using past input and
output data from the system and these are usually strongly dependent on each other. This
strong dependence among the variables may lead the algorithm to select an incorrect subset
for the network in the sense that the selected variables are different from those of the real
system. Assume that the system output y(t) depends on both y(t — 1) and y(t — 2). The
mutual information between y(t — i) and y(t — i — 1) are all the same for i > 0. If variable
y(t —3) is selected at an early stage, variable y(z — 2) is likely to be excluded. If the system
is periodic with a period of T, it is highly possible that the algorithm will select y(¢ — T')
first instead of y(¢ — 1) and y(t — 2). Note that the selected variables may be useful for
output prediction but may fail to reveal the underlying system dynamics. In the following,
we present a selection scheme for system identification applications. This overcame the
above problems to a certain extent and achieved improved results for some systems.

Input node selection algorithm B

1. Set §, as an empty set and S5, to contain all the input variables available. Set the
desired number of input nodes K.

2. For each pair of variables X; and X;,j # 1 in S, compute I(Y,X; N X;).
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3. Select the pair X; and X; such that I(Y,X;n X;) > I(Y,X, N X,),{4,5} # {p,q},
move X; and X, from set S, into set S,. Set counter k=2.

4. For X and XJ™,j # i in Spm, X7 € S, select X5™ such that 3, I(Y, X3 n
My 5y I(Y,Xf" n Xf’“). Move X?™ from set S, into set S,. Set counter k =
k+ 1.

5. If k = K, output set S,, otherwise, go to step 4.

4 Orthogonal Least Squares and Hidden Nodes Selection

Assume the output y; can be represented by

Tie
%= 00 xi—¢; ||)+ 60+ & (25)
=1
where y; is the output or class membership, x; is the input or the pattern vector, £; represents
the moddelling error which is assumed to be uncorrelated with the outputs of the hidden
layer nodes ¢(|| x; — ¢; ||), 7 = 1,...,n.. Rearrange (25) in vector form to yield

Y=%0+= (26)
where
Y = [, %2 ..o wn)7
@ s [¢U: ¢11 ‘s hey ¢ﬂc]
©) (6o, 61, ..., 6.7
= [511 52} ey EN]T
dg s 3 e IF

& = [¢(lx1—c Dbl xe=ci|])se-d(xw = DT i#0

An orthogonal decomposition of @ is given as

$® = PA (27)
where
l:map @13 i Qg4

1 Q23 ... O2n.41

1 annetr
1

is an (n.+ 1) X (n. + 1) unit upper triangular matrix and

P= [p01 Pi1, R pﬂ-c] (28)
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is an N x (n.+ 1) matrix with orthogo'nal columns that satisfy

PTP =D (29)
and D is a positive diagonal matrix
D = diag{dy, dj ;v gtla} (30)
with
dy= Py e 3= 00 et (31)

where < o, e > denotes the inner product. Rearranging equation (26) yields

Y = (A )(A®)+=E=Pg+ 0@ (32)

where
AG =g (33)
Because &; is uncorrelated with the output of the hidden layer nodes, it may be shown that
g=D"'PTY (34)

or
gizi}l—i"—‘Y"—?'7 j=0115"'1nc (35)
<P;»P; >

Several orthogonal least squares methods including the classical Gram-Schmidt, the mod-
ified Gram-Schmidt methods and the Householder trasformation method may be used to
obtain the trianglar system (33) (Chen, Billings and Luo, 1989). The number of the can-
didate centres N may be very large, but a small number of centres may be adequate to
approximate the underlying functional relationship between x; and y;. These centres can
be identified using an efficient forward selection procedure derived in (Chen, Billings, Cowan
and Grant, 1990a). The principle of the method is shown below. From equation (30), the
sum of the squares of the output is

<Y, Y>=> ¢}<p;p;>+<E,E> (36)
=0

Where the errors are assumed to be uncorrelated with the hidden layer outputs. The error
reduction ratio (Billings, Korenberg and Chen, 1988) due to p; may be expressed as

93 < pj,p; >
<Y, Y >

err; = (37)
The best candidate centre at each step is the one which achieves the largest error reduction

ratio err;. The selection procedure may be terminated when a desired error tolerance
p (0 < p < 1)is achieved.

1- Zerrj <p (38)

1=0
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Note that the bias term may or may not be selected for a particular application. The
tolerance p will affect both the approximation accuracy and the complexity of the network.
An appropriate value for p, however can be learned during the forward selection procedure
and the selection can be automated (Billings and Chen, 1989). The criterion emphasizes the
approximation accuracy of the network only. As mention previously, the resulting network
may tend to interpolate the particular data set and thus lead to overfitting. A compromise
would be to terminate the selection procedure when the objective function given in equation
(9) is achieved. In the present work however, we simply terminate the selection procedure
when a given number of centres are found for ease of comparison.

5 Experimental Results

5.1 Applications in Pattern Recognition

In this subsection two real data sets will be used to demonstrate the performance of the
selection algorithm A described in section three. The first data set is a heart disease dataset
and the second is the Australian credit approval dataset. These datasets were obtained from
the machine learning databases of the Information and Computer Science Department at
the California University. The heart disease dataset contains 270 data samples, each has
13 pattern features which were extracted from 75 pattern features. The Australian credit
approval dataset contains 690 data samples, each has 14 pattern features. Both datasets
have two classes. In the following, the pattern features are considered as meaningless
symbols. The data samples are classified according to a winner-take-all rule.

Experiment 1: The heart disease dataset. The dataset were divided into two parts,
the training set contains the first 220 data samples and the remaining 50 data samples were
used as a test set. All the data samples were used for input node selection. The mutual
information between the classmembership and the pattern features are shown in Fig 2.
Three subsets each with six pattern features were selected using the input node selection
algorithm.

S8 = {X13,Xs,X12,X10, X5, Xs}
§¢ = {Xis Xi2,Xs, X1, X3, Xs}
S8 = {Xi3,Xi2,Xe, X1, X3, X2}

where the pattern fearures are presented in the order of selection. Each of the 6 pattern
features in the subset S has the largest mutual information with the output at each selection
step. The three subsets were used as inputs to the RBF network respectively and the
classification results were compared with the network with all 13 pattern features as inputs.
The hidden layer nodes were selected by the OLS algorithm. The results are shown in Fig
3 - 5. Note that improved performance was obtained when the selected subsets were used
as inputs. When compared to each other, the subset S} and SZ gave similar classification
results while 52 performed slightly better when a small number of centres were used and
slightly worse when the number of centres was higher than 8. It seems that the input
variables can be selected according to the mutual information with the output if they are
not highly dependent on other members of the subset.

Experiment 2: The Australian credit approval dataset. The data set were
divided into a training set and a test set. The training set contains the first 540 samples
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Figure 2: Mutual information (vertical axis) for the heart disease dataset between the
output and the pattern features X;,..., X3 (horizontal axis)
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Figure 3: Classification results for the heart disease dataset. ™*: training set, '+': test set
(all the 13 pattern features were used as network inputs), 'x’: training set, 'o’: test set (only
6 pattern features {X;3, X3, X12, X10, X, Xg} were used as network inputs)
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Figure 4: Classification results for the heart disease dataset. **’: training set, '+ test set
(all the 13 pattern features were used as network inputs), 'x: training set, ’o’: test set (only
6 pattern features {Xi3, X2, Xg, X11, X3, Xg} were used as network inputs)
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Figure 5: Classification results for the heart disease dataset. *’: training set, +’: test set
(all the 13 pattern features were used as network inputs), 'x’: training set, 'o’: test set (only
6 pattern features {X;3, X2, Xg, X11, X3, X3} were used as network inputs)
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Figure 6: Mutual information (vertical axis) for the Australian credit approval dataset
between the output and the pattern features X, ..., X4 (horizontal axis)

and the test set contains the remaining 150 samples. The mutual information between the

output and pattern features are plotted in Fig 6. Three subsets with 5 pattern features
were selected.

Sé = {X35X109X91X55x7}
Sg = {X83X53X91X71X13}
58 = {Xs Xs,Xe, X7, X3}

Again the pattern features are presented in the order of selection. The subset S} contains
the five pattern features which are most informative about the output. The three subsets
were then used as network inputs respectively and the network performance was compared
with the case when all the 14 pattern features were used as inputs. The classification results
are presented in Fig 7 - 9. It may be seen that a higher classification rate was achieved
when the selected subsets were used as network inputs. The effectiveness of the selection
algorithm may be further appreciated from Fig 10, in which the classification performance
of the network was compared when the subset 5?2 ({Xs, X5, Xg,X7,X13}) and the first
five pattern features ({X;,X,, X3, X4, Xs}) were used as network inputs respectively. The
former achieved a much higher classification rate than the later.

5.2 Applications in System Identification

In this subsection, four simulated examples will be used to investigate the performance of
the selection algorithms presented in section three.

Experiment 3: A Linear Stochastic System. 1000 data samples were generated
from the following stochastic system

y(t) = L.5y(t — 1) — 0.7y(t — 2) + u(t — 3) + 0.5u(t — 4) + e(2) — e(t — 1) + 0.2¢(¢ — 2) (39)

where the system input u(t) was a sequence of uniform distribution with zero mean and a
variance of 1.38, the system noise was a Gaussian sequence with zero mean and a standard
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Figure 7: Classification results for the Australian credit approval dataset. '*’: training set,
'+’: test set (all the 14 pattern features were used as network inputs), ’x’: training set, ’o’:
test set (only 5 pattern features {Xs, X;0, X, X5, X7} were used as network inputs)
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Figure 8: Classification results for the Australian credit approval dataset. **’: training set,
'+ test set (all the 14 pattern features were used as network inputs), 'x’: training set, 'o’:
test set (only 5 pattern features {Xsg, X5, Xg, X7, X135} were used as network inputs)
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Figure 9: Classification results for the Australian credit approval dataset. "*’: training set,
'+': test set (all the 14 pattern features were used as network inputs), x’: training set, 'o:
test set (only 5 pattern features {Xs, Xs, Xg, X7, X3} were used as network inputs)
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Figure 10: Classification results for the Australian credit approval dataset. ™*’: training
set, '+: test set (the first 5 pattern features {X;, X3, X3, X4, X5} were assigned as network

inputs), ’x’: training set, 'o’: test set (5 pattern features {Xs, Xs, Xq, X7, X13} were selected
as network inputs)
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Figure 11: -’ mutual information between the output y(t) and y(t — i) for the stochastic
system, vertical axis: mutual information I(y(t),y(t — )), horizontal axis: y(t —1),i =
1,...,5, - -’ mutual information between the output y(t) and u(t — 1) for the stochastic
system, vertical axis: mutual information I(y(t),u(t — 7)), horizontal axis: u(t — i),i =
1,...,5.

derivation of 0.2. Assume that 6 input variables are to be selected among 10 candidate
variables {y(t—1),...,y(t=5),u(t=1),...,u(t—5)}. The mutual information between the
output y(t) and the 10 candidate variables are shown in Fig 11. The five most informative
variables about the output are y(t — 1), u(t — 5),u(t — 4),y(t — 2) and u(¢ — 3). Note that
the four correct regressors for this system are included in this set. Consider the selection
of five input variables using the selection algorithm A. The first variable to be selected is
y(t —1). A plot of I(y(t),X;) against I(y(¢ — 1),X;) is shown in Fig 12a. The variables
u(t —3), u(t —4) and u(t — 5) seem to be the suitable candidates and u(t — 4) was selected
at this step because it gave a good compromise between I(y(t),X;) and I(y(t - 1),X;). A
plot I(y(t), X;) against I(y(t —1),X;) + J(u(t — 4),X;) is shown in Fig 12b. The variable
u(t — 3) may be selected at this step again because it provided a good compromise between
I(y(t),X;) and I(y(t - 1),X;) + I{u(t - 4),X;). Continuing this procedure, Fig 12c was
obtained. If y(t — 2) was selected, a perfect variable set would be achieved. However, if
y(t — 3) is selected as was done here, the next plot will be as shown in Fig 12d and the
variable y(t — 2) will certainly be excluded. This is because y(t — 2) has a high dependence
on both y(¢—1) and y(t — 3), so that after y(t — 3) was selected y(t — 2) became redundant.
It must be emphasized that this kind of situation may not cause any problem for pattern
recognition applications because there is usually a lower dependence among the pattern
features. When the selection algorithm B was applied to this system, the following variable
set {y(t—1),u(t—4),u(t—5),y(t—2),u(t—3)} was obtained for several different partitions
of the variables y(t) and u(t).
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Figure 12: Plots showing the selection procedure of algorithm A for example 3. vertical
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Figure 13: Pseudo-phase portrait of the autonomous system in example 4, y(t) (vertical)
vs y(t = 1) (horizontal), -’ data without noise, ’..” data with noise.

Experiment 4: An autonomous System. 2000 data samples were generated from
the following autonomous system

y(t) = (0.8 = o.se“v‘(t-l)) it iee 1) (0.3 4 o.ge-v’<*-1>) y(t—2)
+0.1sin (y(t — 1)7) + e(2) (40)

where e(t) was a Gaussian sequence with zero mean and a standard derivation of 0.1. A
pseudo phase portrait of the system is plotted in Fig 13. The clean data forms a limit cycle
as shown by the solid line in the plot. Assume that four variables are to be selected from
the following candidate variables {y(t—1),...,y(¢—10)}. The mutual information between
the output y(t) and the 10 variables are shown in Fig 14. It may be seen that the four
most informative variables about the system output are {y(t—5), y(t—8),y(t-3),y(t—2)}.
Two pseudo-phase portraits of the system were plotted in Fig 15 with y(t) versus y(t — 5)
and y(t) versus y(t — 8) respectively. Compare them with the pseudo-phase portrait in Fig
13, it may be seen that the variable y(t) is closely related to y(¢ — 5) and y(¢ —8). This may
be the reason why the algorithm failed to select y(t — 1). The selection algorithm B was
then used to select the input variable. For several partitions of the variable y(t), algorithm
B selected the following four variables in the order of {y(t — 1), y(t—2),y(t—3),y(t - 5)}.

Experiment 5: A nonlinear system. This system is taken from reference (Haber
and Unbehauen, 1990) (Haber and Unbehauen, 1990). The system is given as

y(t) = —0.637Ty(t— 1)+ 0.07298y(t — 2) + 0.03597u(t — 1) + 0.06622u(t — 2)
+0.06568u(t — 1)y(t — 1) + 0.02375%%(t — 1) + 0.05939 (41)

A data sequence of length 1000 was generated from this nonlinear system. The system input
u(t) was a uniformly distributed sequence. To make the data more realistic, a Gaussian
sequence was added to the output y(t) as noise. The resulting signal to noise ratio was 25 db.
The input u(t) and noisy output y(t) are shown in Fig 16. Assume that 5 variables are to be
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Figure 14: Mutual information (vertical axis) between the output y(¢) and the candidate
variables {y(t —1),...,y(t — 10)} (horizontal axis)
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Figure 15: Pseudo-phase portrait of the autonomous system in example 4, left: y(t) (verti-
cal) vs y(t — 5) (horizontal), right: y(t) (vertical) vs y(¢ — 8) (horizontal)
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Figure 16: The input and noisy output signals for experimental 5

selected from the following 10 candidate variables {y(t—1),...,y(t=5),u(t=1),...,u(t=5)}.
For several different partitions of the input and output variables, the following variable sets
were selected by using the selection algorithm B respectively.

S = {u(t-1),u(t-2),y(t=1),y(t-2),u(t-3)} -
53 = {u(t-=1)u(t=2),y(t-1),y(t-2),u(t-3)}
58 = {u(t-1),u(t-2),y(t-1),y(t-2),u(t - 5)}
S¢ = {u(t-1),u(t-2),y(t-2),y(t-1),y(t-5)}
52 = {u(t-1),u(t-2),y(t-2),y(t-1),y(t-5)}

The variables in the subsets were presented in the order of selection. Note that all the four
system variables were selected.

Experiment 6: A simulated turbogenerator. This example was also taken from
reference (Haber and Unbehauen, 1990). This is a single input signal output model between
the field current and the frequency of the generated voltage in a turbogenerator. The system
equation was given as

y(t) = 0.84y(t—1)— 0.0628u(t=2) — 0.0675u(t — 3) — 0.0215u(t — 4) — 0.0613y%(t — 1)
—0.053y(¢ — 1)u(t — 2) — 0.0526y(t — 2)u(t — 3) = 0.0071u(t — 2)u(t — 3)
—0.0234y(t — 1)u?(t — 2) — 0.044y(t — 1)u?(t — 3) + 0.0573y%(t — 1)u(t - 2)
—0.02¢%(¢ — 3) — 0.00113 (42)

A data sequence of 1000 was generated from this nonlinear system. The system input
u(t) was a sequence of uniform distribution. A Gaussian sequence with zero mean and a
standard derivation of 0.05 was added to the output y(t) to simulate the effects of noise.
This gave a signal noise ratio of 42 db. The input u(¢) and noisy output y(t) are shown
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Figure 17: The input and noisy output signals for experimental 6

in Fig 17. Assume that 8 variables are to be selected from the following 12 candidate
variables {y(t—1),...,y(t=6),u(t=1),...,u(t—6)}. For severa] different partitions of the
input and output variables, the following variable sets were selected by using the selection
algorithm B respectively.

Sg = {y(t—1),u(t-3),y(t-2),y(t - 3),u(t - 4),y(t - 4),u(t - 5),u(t - 2)}
58 = {y(t-1),u(t-3),y(t—2),u(t—4),y(t - 3),y(t — 4),u(t - 2),u(t - 5)}
Sz = {v(t=1),u(t-2),y(t-2),u(t-3),y(t - 3),u(t - 4),y(t - 4),y(t - 5)}
Sg = {y(t=1),u(t-3),y(t—2),y(t—3),u(t - 4),y(t — 4),u(t - 2),y(t - 5)}
Sg = {y(t_l) u(t_ ),y(f—-?) y(t—S), (t—é)ay(t )vu(t”2)au(t—5)}
Sg = {y(t—l)s )ay( 2) (t—4)1u(t‘4)1y(t_3)au(t_2)au(t—5)}

The variables in the subsets were again presented in the order of selection. Again all the 6
system variables were picked up by the algorithm.

6 Conclusions

In this paper, mutual information and orthogonal least squares algorithms were used to
select the input layer nodes and the hidden layer nodes for RBF networks. The input
variables to the network were selected according to the information content with respect
to the output. This not only reduced the complexity of the network but also improved
the network performance as demonstrated by using two real pattern recognition data sets.
Since the number of input nodes were reduced before network training, the method also
considerably reduced the computational power required. When applied to system identi-
fication problems, the selection algorithm picked out all the true variables of the system
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although a slightly larger variable set was obtained. The selection algorithms will certainly
be useful in pattern recognition and system identification applications. In pattern recog-
nition applications, the input variables are usually the available pattern features. Some of
the pattern features may be redundant and some may be irrelevant to the problem. These
features are certainly unnecessary and should be eliminated before network training. In
system identification applications, the input variables are usually formed from past input
output data. Lower and upper limits of the time delay are usually determined by using a
priori knowledge or by trial and error. These limits are often overestimated. For example,
the lower limit is usually assumed to be unity and the upper limit to be larger than some
time constant. Too small a time delay may result in a deterioration in network performance,
while too large a time limit may increase the computational time.

The performance of the input node selection algorithms were demonstrated based on
a RBF architecture. But it is obvious that the algorithms can also be applied to other
network architectures and system identification algorithms in general. Since the orthogonal
least squares algorithm selects a group of hidden layer nodes in a suboptimal way, it therefore
provides a reliable platform for comparing the network performance when different input
variables are used as input nodes to the network.

However, due to the strong dependence between the variables in system identification
applications care must be taken in applying the selection algorithms. Qur experience indi-
cates that the input signal may have a strong influence on the final results and the task is
not always straight forward. It is important to ensure that the partition of the variables
reflects the underlying distribution of the variables as well as possible and not to introduce
too larger an error in the estimation of the probabilities.
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