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Peter Deuflhard Roland Freund Artur Walter

Fast Secant Methods for the Iterative Solution

of Large Nonsymmetric Linear Systems

Abstract

A family of secant methods based on general rank-1 updates has

been revisited in view of the construction of iterative solvers for

large non-Hermitian linear systems. As it turns out, both Broy-

den's "good" and "bad" update techniques play a special role m but

should be associated with two different line search principles. For

Broyden's "bad" update technique, a minimum residual principle

is natural -- thus making it theoretically comparable with a series

of well-known algorithms like GMRES. Broyden's "good" update

technique, however, is shown to be naturally linked with a mini-

mum "next correction" principle D which asymptotically mimics

a minimum error principle. The two minimization principles differ

significantly for sufficiently large system dimension. Numerical ex-

periments on discretized PDE's of convection diffusion type in 2-D

with internal layers give a first impression of the possible power of

the derived "good" Broyden variant.

Key Words: nonsymmetric linear system, secant method, rank-1

update, Broyden's method, line search, GMRES.
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1. Introduction

The solution of large sparse systems of linear equations

Az=b (1.1)

is one of the most frequently encountered tasks in numerical computations.

In particular, such systems arise from finite difference or finite element ap-

proximations to partial differential equations (PDEs). For Hermitian positive
definite coefiicient matrices A, the classical conjugate gradient method (CG) of

HESTENES/STIEFEL [11] is one of the most powerful iterative techniques for

solving (1.1).

In recent years, a number of CG type methods for solving general non-Hermitian

linear systems (1.1) have been proposed. The most widely used of these algo-

rithms is GMRES due to SAAD/ScHuLTz [13]. However, solving non-Hermitian

linear systems is, in general, by far more difficult than the case of Hermitian

A, and the situation is still not very satisfactory. For instance, this is reflected
in the fact that for methods such as GMRES work and storage per iteration

grow linearly with the iteration number k. Consequently, in practice, one can

not afford to run the full algorithm and restarted or truncated versions are

used instead. Notice that, on the contrary, CG for Hermitian A is based on a
three-term recursion and thus work and storage per iteration remain constant.

Non-Hermitian linear systems (1.1) are special cases of systems of nonlinear

equations. For sufiiciently good initial guesses, secant methods (see e.g. DEN-
NIs/SCHNABEL [3]) based on Broyden,s rank-1 updates are known to be quite

e_cient techniques for solving these more general problems. However, up to

now, secant methods for solving linear systems have had a bad reputation.

The purpose of this paper is to take an unusual look at secant methods for

non-Hermitian linear systems (1.1). In particular, as will be shown, combining

Broyden's good and bad updates with different line search principles leads to
iterative schemes which are competitive with GMRES. More than that, these

secant methods typically exhibit a better reduction of the Euclidean error than

GMRES. This is of particular importance for solving linear systems which arise
in the context of multilevel discretizations of PDEs. There, linear systems are

only solved to an accuracy corresponding to the discretization error on the
respective level. In order to obtain such approximate solutions with as few iter-

ations as possible, reduction of the Euclidean error is typically more crucial than

minimizing the residual norm as GMRES does. For a description of such mul-

tilevel techniques, see the recent paper of DEUFLHARD/LEINEN/YSERENTANT

[51.
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It is well known (see e.g. FLETCHER [7, Chapter 3]) that CG for Hermitian

positive definite A is intimately connected with minimization algorithms based

on Broyden's family of rank-2 updates. In view of this result, the similar

behavior of GMRES and secant methods based on rank-1 updates might not

come as a surprise. Nevertheless, there appears to be no strict connection

between the two techniques. Recently, however, EIItOLA/NEVANLINNA [6] have

established a connection between GMRES and a certain rank-1 update based

on a nonstandard secant condition (d. Remark 1 in Section 2.1).

The paper is organized as follows. In Section 2.1, we introduce a general fam-

ily of secant methods. In Sections 2.2 and 2.3, special rank-I updates and line

search principles, respectively, are discussed. In Sections 3.1 and 3.2, we present

convergence results for secant methods based on Broyden's bad and good up-

dates. These results are then illustrated for a linear system arising from a

simple 1-D boundary value problem in Section 3.3. Next, we discuss actual

implementations of the proposed secant methods in Section 4. Typical numer-

ical experiments are reported in Section 5. Finally, we make some concluding

rein2_ks.

Throughout this paper, all vectors and matrices are assumed to be complex.

As usual, M" - (rri-_) denotes the conjugate transpose of the matrix M -

(mjk). The vector norm Ilzll - _ is always the Euclidean norm and HMH --

suPllzll=l IIMzll the corresponding matrix norm. Occasionally, the Frobenius

IIMII,,= (Y,j,,,Irrtjkl2) 1/2 will be used.
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2. A Family of Secant Methods

The paper deals with the solution of linear systems (1.1) where A is a non-

Hermitian n x n matrix and b E C_. From now on, it is always assumed that A

is nonsingular, and x := A-lb denotes the exact solution of (1.1).

The methods studied in this paper are iterative schemes. For any given starting

vector x0 E Cn, a sequence of approximations zk, k = 1, 2,..., to x is computed.

Furthermore, in each step an n x n matrix Hk which approximates A -1 is

generated. Here Ho is a given nonsingular initial approximation of A -1.

In the sequel,

ek:=x--xk and rk:=b-Azk

always denote the error _ector and residual vector, respectively, corresponding

to the iterate zk. Moreover,

EL :-- I - H_A

is the error matriz associated with the "preconditioning" matrix Hk and

Ak := Hkrk

is the "preconditioned" residual vector. Finally, for nonsingular H_, we denote

by

Bk :=Hf 1

the approximations of A.

2.1 The General Algorithm

The approximation Hk+l of A is obtained from the one of the previous iteration,

Hk, by adding a rastk-1 correction. In conjunction with the requirement that

the following secant condition (or quasi-Neutron condition)

H_+IAAk = Ak (2.1)

holds, this leads (see e.g. [3, Chapter 8]) to the general update

-
Ht+I = Hi, + (I- HtA) v_kAAi tik (2.2)

due to BROYDEN [1]. Here, vt E C" is any vector such that v_HtAAt _ O. By

applying the Sherman-Morrison formula to (2.2), one readily verifies that Hk+l

is nonsingular with inverse

Bk+1 = Bk + (A- B_)_, (2.3_
vz_xk k

as long as Hk is nonsingular and v_Ak _ 0.
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Remark 1. EIROLA/NEVANLINNA [6] study secant methods which are based

on the "conjugate transposed" secant condition

H_,+lA* ck - ck (2.4)

instead of (2.1). For the special choice ck = AAk in (2.4), the resulting algorithm

([6], see also [14]) is mathematically equivalent to GMRES.

In each iteration, the new approximation xk+l to z is obtained by correcting

the previous iterate xk along the preconditioned residual Ak. In combination

with the update (2.2), this leads to the following informal algorithm.

Algorithm 2.1

Start: a) ro:=b-Axo

Iteration loop: k = 0, 1,... :

b) Ak := Hkr,

q_ := AA_

zk := Hkqk

c) zk+l := zk + tkAk

rk+l :---- rk -- _kqk

Update:

d) Hk+1:=/h + (A_- zk)_
?3kZk

Notice that Algorithm 2.1 describes a whole family of secant methods which

still depend on the choices of vk in the update d) and the step length t_ in c).

Strategies for the selection of these parameters will be discussed in Sections 2.2

and 2.3.

In the following lemma, we collect some simple recuxsions that are valid for all

choices of vk and t_. Here and in the sequel, the notations

,,_A_ = _"_ H,AA,, , .- Er_, := _._ := and 7_ .- v_z'_ (2.5)
vT_zk ' v, z_

are used.



Lemma 2.2 Let v[zi # 0, i = 0,..., k - 1. Then:

a) ek+_= ((I- tk)/+tkEk)ek,

b) Ak+l =(1--tk +rk)Ak--rkzk)=((1--tk)I:4-rkEL)Ak, (2.6)

c) zi+l = z'i + 7A (Ai+ 1 _ (1 -- ti)Ai), i = O,...,k- 1 .
r_

Proof. Note that eL+l = eL - tkAL and A k = (I - Ek)eL. Combining these

two identities yields (2.6a).

Next, one easily verifies that

&L+I = HL+lrk+l = (1 -- tL)AL + rk(AL -- Zk). (2.7)

Since Ek/kk = AL -- zk, (2.7) immediately leads to (2.6b).

By using (2.5) and the update formula which connects H_+I and Hi, one obtains

_,+1 = _, + _,,(A,- z,). (2.8)

Finally, by rewriting the term Ai -- z_ in (2.8) by means of the first identity

(with k = i) in (2.6b), one arrives at (2.6c). •

2.2 Special Rank-1 Updates

First, note that, by (2.2), the error matrix associated with the preconditioner

HL satisfies the update formula

A (2.9)EL+I = Ek I -_zk nL_) .

Clearly, one would like to improve the preconditioner from step to step. Thus,

v_ in (2.9) should be chosen such that a suitable norm of EL is decreasing. In

this section, three special choices of vL are discussed.

(A) The first one is the so-called Broyden's "good" update [1]. Here, in each

iteration, one sets

vk := Ak. (2.10)

Assume that Hk is nonsingular and that zL # z, which implies Ak # 0.

With (2.10), (2.9) can be rewritten as
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Remark that, except for the trivial case HkA = I, P_ in (2.11) is an

oblique, non-orthogonal projection. Thus, one cannot guarantee that

[[Ekl] is decreasing. However, for the different error matrix

E_ := I - A-1Bk ,

one obtains such a reduction property:

Ek+l =/_k0k where 01, := I A_Ak ] .
(2.12)

Now, Qk is an orthogonal projection. Consequently, (2.12) guarantees an

improvement of the preconditioner in each step, in the sense that

II_k+lll_<I1_,,11 (2.13)

and

II_'k+,ll_.= II.Ekll_.II'Ek_xkll2 (2.14)
IIAkll=

Obviously, in view of (2.2) and (2.10), Broyden's good update is only

defined as long as

_iHkA/'k # 0 (2.15)

which (d. (2.3)) guarantees that with Hs, also Hk+l is nonsingular.

In particular, the more restrictive condition

AillkAAt > 0 (2.16)

certainly implies (2.15). Clearly, (2.16) can be rewritten as

et := < I. (2.17)
A_Ak

Since ek < IIE_II,a suffident condition for (2.17) is

I1_11< 1. (2.18)

Now, it is easily verified that/_k and Ek are connected by

E,,= -(Z- _,,)-'._,_,

and it follows that

II.Ekll< I1_,_11 (2.19)
- 1-I1._11"
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By (2.19),the condition

i (2.20)

implies (2.18). If (2.20) is satisfied for k = 0, then (2.13) guarantees that

(2.20) holds for a/l k. Finally, by (2.18), HkA and, since A is assumed to

be nonsingular, Hk isnonsingular.

Therefore, we have proved the following

Lemma 2.3 Let Ho be a non.singular n × n matriz such that II_oll< ½.
Then, Bro_./den's good update (2.2), with vk chosen as in (2.10), /s well

defined as long as xk _ z.

(B)The so-called Broyden's "bad" update [1] is obtained by choosing vk in

(2.2) such that

H_vk = AAk = qk

holds. Then, (2.9) reduces to

E_+I=E,(I q_q,q'q_A) . (2.21)

Remark that Broyden's bad update is well defined as long as Ak # 0. In

particular, no additional restrictions for H0 are needed.

For the special error matrix

_)_:= AE_A -1 = l - A//_,

(2.21) leads to the update formula

(2.22)

(2.23)

From (2.23),it followsthat Hk+1 is an improved preconditioner,in the

sense that

I1_,+_!1< I1_),11 (2.24)

and

II_+ffill_= II_kll_- II_kqkll2
Ilq_ll2

(2.25)
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(C) A third obvious choicefor vk in (2.2)is

V k :_ Z k •

The corresponding update (2.9) for the error matrix is

Ek+l = Ek (I A'kZ_ HkA_zf,zk /
(2.26)

Here, one needs to ensure z_ _ 0. Obviously, this is guaranteed if Hk is

nonsingular and xk _ x. If Hk is nonsingular, then (2.26) can be rewritten

in terms of an orthogonal projection as follows:

zkz_ HkA.Ek+l = EJ,(I'I_A)-1 I z_zk] (2.27)

However, unlike as for updates (A) and (B), (2.27) does not imply a reduc-

tion property of some "natural" measure for the preconditioner Hk. This

suggests that this type of update is not competitive with Broyden's good

and bad ones. Indeed, this was confirmed by our numerical experiments.

2.3 Line Search Principles

In thissection,the selectionof the step length tk in part c) of Algorithm 2.1 is

discussed. Ideally,one would liketo choose tk such that

Ilek+l(tk)ll = rainIlek+_(t)tl
teC

(2.28)

where

ek+_(t):= eL- tA_.

Unfortunately, since x and hence eL isunavailable,the step length defined by

(2.28)can not be computed. However, in view of

eh+,(t) = A-lrt+l(t) where rk+l(t) := r_ -- tqk , (2.29)

(2.28)can be satisfiedat leastapproximately by choosing tk such that

IlCkrk+,(tk)ll ----rain IlCkr_+l(t)ll • (2.30)
.................. t¢C .............

± : :

Here Ck is some appro_ate inverse of A:==At: iteration k of _gofithm 2.1,

there are three natural choices for Ct, namely Hr+l, Hr, or simply Ck = I,

which lead to the line search principles (a), (c), or (b), respectively. Next, these

three strategiesare discussed.

i0



(a) With Ck = Hk+1 and Ak+1 = Hk+irk+1, (2.30)reads as follows:

II>,_+:(t_)ll_, llZ,k+,(t)ll• (2.31)

Using (2.6b) and the second relationin (2.29),one readily verifiesthat

(2.31)isequivalent to

A_Ak+I = 0 where Ak+l = (1 + r_)Ak -- rkzk -- t_Ak • (2.32)

Recall that rt was defined in (2.5) and note that rk still depends on the

particular choice of the rank-1 update (2.2).

Finally, from (2.32), it follows that the step length for the line search

principle (2.31) is given by

*Z
Ak k (2.33)

t_= _ :=1+_- _,SFA-;•

Note that for the specialcase, vk = Al,,of Bro_,Iden'sgood _pdate, (2.33)

A_Ak (2.34)
Aizk

leads to

(b) For Ck "-I, (2.30)reduces to

II,'k+,.(t,,)ll= _ II,'_,+,.(t)ll

or, equivalently,

q_rt+l = 0 where r_+l = rt - tkqk •

Hence, by (2.36), the minimization principle (2.35) leads to

. q_rk
tk ----tk .-- _ •

q_qk

Remark that for Broyden's bad update, (B), one has

(2.35)

(2.36)

(2.37)

(2.3s)

(c)With Ct = Hk, (2.30)specifiesto

IIm',',,+,.(tk)ll= _ IIm,'_+:,(t)ll• (2.39)
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By rewriting (2.39) in the form

z_IJkrt+l = 0 where Hkrk+l = At --t, zt ,

it follows that

z_'/xl' (2.40)tk = t_ := _.

Here, for update (C), one has

t_ : ft. (2.41)

Notice that, in view of (2.34), (2.38), mad (2.41), the choice tt = rk for the step

length leads to a natural coupling of the three special rank-1 updates (A), (B),

and (C) with the line search principles (a), (b), and (c), respectively.

More general, for t_ = rt, the following properties hold.

Lemma 2.4 In Algorithm 2.1, let tt = _'t be chosen and assume that v_zt # O.

Then:

a) The iterate zk+x /s uniquely defined by the Galerkin type condition

Htrt+l 3_ vk and Zk+l 6 Zk + span{At} , (2.42)

b) Ht+lrt+l = Hkrk+l.

Proof. By the second condition in (2.42), zt,+l = zt + tAt, and thus

H_rt+l = Ak -- tzk

for some t 6 C. Together with the definition of rt in (2.5), it follows that

vT,
v_Htrt+l = v_At - tv_,zt = 0 ¢_ t "" -- = rt ,

v zt

and this concludes the proof of a).

Next, one easily verifies that

Htrt+x = (1 - tt)A_ + ttEtAt. (2.43)

By comparing (2.6b) and (2.43), one obtains the relation stated in b). •

Remark that the classical step length used in combination with Broyden's up-

date (2.2) is 6, - 1. Somewhat surprisingly, this choice guarantees that the

resulting method -- at least in theory -- terminates after at most 2n steps with

the exact solution of (1.1), as was shown by GAY [9] (cf. also [10]). Obviously,

this f-mite termination property is not of practical importance for large sparse

linear systems. Here, we take another look at the choice tk = 1.

12



Lemma 2.5 In Algorithm 2.1, assume that v_zk _ O. Let x_ and xk+2 be

the iterates generated by two successive steps of Algorithm 2.1 with step length

tk = tk+l = 1. Then:

zk+2 = _k+l + Bk_'k+l, r_+2 = (I- AHk)e_+_, (2.44)

where

_k+l = xk + rkAk , _k+l = (I- rkAHk)rk , (2.45)

and

Proof. Since tk = tk+l = 1, we have

xk+2 = xk + Ak + Ak+l • (2.46)

For tk = 1, the first identity in (2.6b) reduces to Ak+a = rk(I -- HkA)Ak and,

thus, (2.46) can be rewritten as

xk+2 = xk + rkAk + Hk(l -- r_AHk)rk • (2.47)

Now, (2.44) and (2.45) readily follow from (2.47). •

Note that, in view of part a) of Lemma 2.4, the intermediate quantity _+1,

(2.45), is just the Galerkin iterate in the sense of (2.42).

Therefore, Lemma 2.5 shows that, by combining two successive steps, Algo-

rithm 2.1 with t_ E 1 can be interpreted as follows. At the beginning of step k,

the approximate solution xk and the preconditioner Hk are available. From these

quantities, the iterate xk+2 of step k + 2 is obtained by applying one Galerkin

step, namely (2.45), followed by one step of Richardson iteration, namely (2.44),

to the preconditioned linear system

HkAz = Hkb.

In general, the "virtual" iterate _k+l and the actual iterate zk+_ are different.

Note that (2.44) is a Richardson step without line search. In particular, if Hk

as is to be expected in the early stage of the iteration _ is not yet a good

approximation to A -1, then (2.44) will lead to an increase rather than a decrease

of lira+211. In order to prevent such undesirable effects, it appears preferable to

combine Broyden's update with the line search principles (a), (b), or (c), instead

of using tk - i.

13



3. Convergence Analysis

In principle, Algorithm 2.1 could be implemented with any of the 9 combinations

(Aa), ..., (Cc) of rank-1 updates (A), (B), and (C) with line search strategies

(a), (b), and (c). As already mentioned in Section 2.2, the update (C) is not

competitive with (A) and (B), and, therefore, (C) is dropped here. Among

the remaining 6 combinations, only the pairs (Aa), (Bb), and (Ac) will be

considered.

As a first step, the following auxiliary result for the case of the line search

principle (b) is established.

Lemma 3.1 In the general Algorithm 2.1, let the step length (2.37), _k = {k,

be chosen. Then,

II_k+all< Ii_k_ll < II_kll (3.1)

with _ = l- AHk defined as in (2.22).

Proof. From part c) of Algorithm 2.1 and (2.37), one obtains

q_rk ( qkq_ _ ( qkq_ __+, = _ - t_q_= _ - q-_q_ = I q-_] _ = I qtq_m/(__ q_).

Since

r_ -- qk = _krk, (3.2)

it follows that

II_k+lll II
\ qkqk ]

and thus (3.1) holds. •

Recall from Section 2.2 that the error matrix Ek is closely connected with

Broyden's bad update (B), d. (2.23)-(2.25). In the following section, Lemma

3.1 will be used to obtain a convergence result for update (B).

3.1 Broyden's Bad Update

Theorem 3.2 (B-update)

Consider Algorithm 2.1 with update (B) and step length tn = tk = rk, (2.37), or

t_ = 1. Assume that

I1_oll_<_0< 1.

14



Then, the iteration converges globally satiafTing

IIAek+,ll I1_+_1_.._._1< II_k_kll
IIAe_ll- I1"1,11- II_kll

and

_'k>O for rk _ O.

Moreover, if rk _ 0 for all k - O, 1,..., then,

lim "tk = 1 ,

and the convergence is superlinear in the sense that

tim IIa_k+,ll= O.
k--.®Ilae,,ll

_<_'o< 1 (3.3)

(3.4)

(3.5)

(3.6)

Proof. First, global convergence is shown for tt = ft. By I.emma 3.1,

Ikk+_ll< II_k_ll < II_kll•
I1_11- Ik_ll -

(3.7)

In view of (2.24), (3.7) _p].i_

I1_+,11< IIR_II< I1_oll< $o< i.
Ik_ll - - -

(3.8)

By combining (3.7) and (3.8), the statement in (3.3) follows. By (2.37), (2.38),

and (3.2), the step length _'k = rk satisfies

q_r_ II,-_112,.;_';_,-,_ (3.9)
q;qk Ilqkll2 Ilqkll2

Using (3.7), one deduces from (3.9) that

r, _>IIr_ll_ Ir_R,_,l > (1 -IIR_II)II_ll----_Ilqkll2 IIq_ll_ _ Ilqkll2 > 0 for rk # 0,

and (3.4) holds true.

Next, based on the Frobenius norm property (2.25), superlinear convergence

is shown. Following the proof technique of BROYD_.N/DENNiS/MOR_ [2], one

obtains

II/_kqkll (3.10)lim -0.
"-'® IIq,_ll

15



By (3.8),the assumption _0 < 1 guarantees that the matrix (1- ]_k)isnonsin-

gular. Thus the relation(3.2)can be rewritten as

rk = (I- _k)-'qk • (3.11)

Using (3.II)and (3.8),one readilyverifiesthat

II.g,r,II _ II_'k(x- .Ek)-'qkll < 1 + ll.gkll IIEkq_ll< z + _'o II-gkqkll
Ilrkli ll(Z--,_k)-'q_ll -- 1 --II.g,_ll Ilqkll -- 1 -- _o IIq_ll

Therefore, by means of (3.7) and (3.10), one concludes that

• Ilrk+lll 1÷ _o II_q_ll
-< =o,

which immediately yields (3.6). Similarly, from

q_rk q_(I- Ek)-lqk
tk--_--

q_qk q_q,

one deduces that

Therefore, (3.10)implies

]tk --i[ < •
-1-_o

which confirms (3.5).

1 tl_q_ll

IIq_ll

lira Irk- 11- 0
k....*_c,

For the case tk = I,the relation(2.6a)reduces to

ek+l -- Ekek

which is equivalent to

ri,+z = Ekrk. (3.12)

Now (3.12), also yields (3.7). The rest of the proof can just be copied. •

3.2 Broyden's Good Update

Theorem 3.3 (A-update)

Con.sider Algorithm 2.1 with update (,4) and line search either (a) or (c). As-

sume that
[[Eol[ < _o < .1. (3.13)m 3 °
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Then, the iteration converges 9lobally satis hjin#

and

IIEkzkll II_k/Xkll
Ilek+,ll< Ilzk{I+ IIA,,II < 2fro" _<1

{l,kll- 1 {{E_kll - 1 - _'o

H",,II

(3.14)

_'k > 0 for eL _ O . (3.15)

Moreover, if ek _ 0 for all k = O, 1,..., then the convergence is superlinear with

I_ {{e,,+,l{= 0 (3.1_)
,_-.ooHe,,{l

lira tk = 1. (3.17)
k.--t.e,o

and

Proof. First, line search (a) with tk = rk (cf. (2.34)) is considered. Rewriting
(2.6a) in terms of Ek yields

e_+, = (1 - rk)A_ - SkAk. (3.18)

By means of the relations

and

one obtains from (3.18)

1-'rk = 1
Aizk A;,z,

_ = (1- $,),k, (3.10)

_,_zk. zxk- _kZXk.
e,,+l = Af,zk (3.20)

Moreover, using the formula (3.19) once more, one easily verifies that

= l_,;J_,zJ,l. 11 ll_,z,ll'{
. z,E,zj, <__,.1-_, -gk,

{

17



where

_k:= IJzkl----Y- -
_g v

With these inequalities, (3.20) leads to the estimates

II_ka,llII_+,I...___AI< ek+ < 2_o (3.21)
]]Ak]l- ]lAk]! -- "

Finally, with

one obtains

_k= (1 + $,)Ak,

II_kAkll_Ilekl] > 1 _ /tlA_II >_ (1- _0)llAkll . (3.22)

By combining (3.21) and (3.22), one ends up with (3.14).

Similarly, one shows

ck= 1 Aigkzk > 1- gk,
A_z_ -

which certainly confirms the assertion (3.15).

In order to prove superlinear convergence, first remark that the Frobenius norm

result (2.14) implies

II_kAkll
lira =0. (3.23)*-'® Ilakll

Along lines similar as in the proof of Theorem 3.2, one then verifies that

lira g'k -- 0. (3.24)
k-too

Now, by using (3.23), (3.24), and the estimates in (3.14) of this theorem, one

obtains (3.16) and, with

Irk- 11< _,

also (3.17). This completes the proof for line search (a).

Next, consider the line search principle (c) where, by (2.40),

As before, one starts with

ek+l = (1 - tk)Ak -- E_Ak,

18



which now leads to

z_,zk

From this, one derives the estimate

Ilek+,ll<

z_E_Zk Ak EkAk
ek÷ , _ _ .

which is the same as (3.21). The rest of the proof can essentially be copied. •

For the choice tk -- 1, Broyden's classical good method is obtained. The con-

vergence behavior of this algorithm is studied in BBOYDEN/DENNXS/MORI_
1 As already[2]. In this case, the assumption (3.13) can be relaxed to _0 < 7"

mentioned, the choice tk - 1 guarantees that Broyden's good method stops

after at most 2n steps. A slight modification, the so-called projected Broyden's

method, even terminates after at most n iterations. This algorithm is analyzed

in GAY/SCHNABEL [8].

Conjecture. The authors were unable to get rid of the factor 2 in (3.14). If

this factor drops, then only _0 < ] would be required -- which seems to be

more reasonable in view of (2.20).

3.3 An Illustrative Example

In this section, we discuss a simple illustrative example, namely a convection-

diffusion problem in 1-D. Consider the ODE boundary value problem

a) -u"+ Zu' 0 on (0,I), (3.25)
b) u(O)=l, u(1)=O.

By using upwind discretization on a uniform grid with step size h = 1/n, (3.25)

leads to a linear system Ax = b with the diagonally dominant tridiagonal matrix

A ---

-1

° w

w. •

-(1 q- fib)

(3.26)

Let n = 50 and set b = (1,0,... ,0) r. Moreover, choose z0 as the prolongation

obtained from the exact solution on the coarser grid h = 1/25. For H0, we

19



chose simple diagonal preconditioning as in (5.1). In this case, one is able

to compute all quantities of interest directly and to compare the convergence

theory of Sections 3.1 and 3.2 with the actual behavior of the algorithms -- see

Table 3.1.

fl=5

fl = 100

I1_:ollI1_oll
415 0.99

64 I 0.99

I1_o,"o11/11,"ollII£ozoll/llzollI1_o/',o11/11_oll
0.53 0.43 2.72

0.37 0.28 0.24

Table 3.1: Quantities used in convergence theory of Sections 3.1

and 3.2 for F._xamph (3.25).

These results seem to justify the relaxation of the rather restrictive convergence

criteria in Sections 3.1 and 3.2 -- compare (2.16) and (2.17) in the light of

(2.18), (2.20), and (3.13).

In Fig. 3.1 and Fig. 3.2, the convergence history of 3 codes (see Section 5 for a

description of these codes) is compared m both in terms of the residual norms

]]rk][ and the error norms. !]ek[]: _i.i _:_ _::i :._ _i _ _ _::'

In this example, both GM_S and the "ha_d Br°_den" c°de BB successively

reduce the residual norm, whereas the "good Broyden" code GB reduces the

error norm -- a property that has been shown to hold at least asymptotically

without a storage restriction: just compare the minimization property (2.31),

I1_+,11-- rain, for tk - _k with the asymptotic property (see (4.2) below)

IIA_+,II--"Ile,+,llfor_, - 1. As an illustration, Fig. 3.3 givesa comparison of
the true and estimated errors.
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10-5
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lO-S

104

Residual
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•... ...'-._.. / ";..

........ iIIKLo.L..

GMRE.S(_

Figure 3.1:

ample (3.25).

10o

Comparative residual norms Ilrkll2for 3 iterative solvers for Ex-

Hn_

iO'l ._ _-

104 _ ......

10"6 / .a , i i I
$ 10 15 20 25 30

Figure 3.2: Comparative error norms II<,li,for 3 iterative solvers with

- 10 for Example (3.25).
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Figure 3.3: Iterative behavior of true errors I1_*11and estimated errors IIA_II

for GB(3) in Example (3.25).
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4. Details of Realization

The secant methods based on Algorithm 2.1 with update either (A) or (B) are,

of course, implemented in a storage saving compact form.

Algorithm (A): "Good Broyden"

Start: a) ro:=b-Az0

/M := Horo

_o := A_Ao

Iteration loop: k = 0, 1,... :

b) qk := AAk

3o := Hoqj,

Update loop: i = 0,..., k - 1 (for k >__1)

_) _,+_:=_,+ n'_'(n,+1- (i- _,)n,)
_/iri

d) z. := _k

7k :=/_7,z_

rk :_ O'k/'Tk

tk := rt or tk := _'_ = q_r_/q;qk or tk := 1

xt+l := xt + $kAt

rk+l :-- rk -- tkqk

Ak+_ := (1 -- tk + rk)Ak -- r_zk

Array storage. The above implementation requires to store (up to iteration

step k) the vectors
Ao, . . . , Ak, q, z = 7 ,

for step length tk = rk or tk = 1 and, in addition, r = rk in the case of step

length tj, = tl,, which sum up to

(k+2)n or (k+a)n (4.1)

storage places.
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Operation count. Per iteration step k one needs 1 matrix-vector multipli-

cation, 1 solution of a preconditioned system of the form BoZ - q in order

to obtain _0 in b), and (2k + 7)n multiplications. Obviously, the inner loop

vectorizes.

Termination criteria. Under the assumptions of Theorem 3.3 (cf. (3.22)),

one has

IIBkA"II llAkll< llekll< I + IT_[i / '1 I1%11 - -

winch means that, at least asymptotically, lln,,llisa reasonable computationally

available estimate for lle,,ll to be written as

II/',_,II- llekll• (4.2)

This motivates the convergence criterion

< e (4.3)
II_,+,II-

where e is some relative accuracy parameter to be specified by the user.

In order to ensure that Hk+tA is nonsingular, recall condition (2.17), which

reads *k < 1 in the notation of Section 2.2. By replacing this condition by the

stricter one I
ek<l---,

'rma x

we arrive at a restart condition

rk<0 or rk>rm--

which can be easily monitored. Here, r=,= is some internal parameter, and we

have chosen rm_ = 10 in all the numerical experiments described in this paper.

Remark 1. The convergence criterion (4.3) nicely agrees with requirements

needed in the global inexact Newton algorithm for nonlinear problems as given

by DEUFLHARD [4].

Remark 2. Clearly, the Euclidean inner product in Algorithm (A) can be

replaced by any other inner product (., .) -- possibly scaled and certakLly de-

pending on the problem to be solved.
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Algorithm (B): "Bad Broyden"

Start: a) r0 := b- Am0

A0 := Horo

Iteration loop: k = 0, 1,... :

b) qk := AAk

_o :=//oq_

Update loop: i=O,...,k-l(for k>_l)

C) Z'/+I :_- Z'i q" ._(Ai+ 1 -- (1 -- ti)Ai)

d) zk := _k

flk := q_qk

r_qk
tk :--

_k

xk+l :m x_ -l-;[kAk

rk+l :-- rk -- $kqk

Ak+l := Ak - tkz_

The version for tk = 1 was ignored for obvious reasons.

Array Storage. The implementation of this algorithm requires to store (up

to iteration step k) the vectors

Ao,...,A_,qo,...,qk, z ----_,r ,

which sums up to

(2k -k 2)rt

storage places-- to be compared with (4.1).

Operation count. Per iterative step k one needs 1 matrix-vector multipli-

cation, again solution of I linear preconditioned system with B0 as coefficient
matrix, and (2k + 8)n multiplications.Once more, the inner loop e.sillyvector-

izes.

Termination criteria. Since update (B) is closely connected with minimiza-

tion principle (2.35), the convergence criterion for Algorithm (B) will be based
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on the residual norm. In view of the property (for tk = r_)

Algorithm (B) is stopped as soon as

is reached.

restarted, if

I],',,+,11-<@o]t

Again, _ is to be specified by the user. Moreover, the iteration is

lt_l, Ila_ll< _11_oll•
Note that in view of Theorem 3.2, the iteration would need to be just termi-

nated, if

II/_11 IIq_- _1[
II"_,ll - I1"_11> 1,

which can be shown to be equivalent to the condition

tk=rk<½.

Restricted storage versions

For large n, one needs to restrict storage to some m. n such that

km_ + 2 = m for (Aa),

2k_+2=m for(Bb).

Several options are possible to satisfy this restriction.

(I) Both Algorithms (A) and (B) can be just restarted after km_ iterations

using zk,,. as the new starting guess Zo. Under the assumptions of the

convergence theorems in Sections 3.1 and 3.2, these restricted variants can

be shown to converge linearl_l.

(II) Both (A) and (B) can be modified by restricting the update loop to indices

i = 0,..., _ - 1 (initial window).
J

This means a fixed preconditioning of the problem associated with Hj,,_,

-- with preconditioning from the right in (B) and from the left in (A).

Again, linear convergence can be shown under the assumptions made in

Sections 3.1 and 3.2.
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(III) Once k > k,,_ is reached, one may also consider restricting the update

loop to indices

i = k - k_,..., k (moving window) .

For update (A), such a variant seems to be hard to interpret. For update

(B), however, the update loop c) in Algorithm (B) can be solved to yield

k-1

a) zk = HoA_k + _,_ . (_,+1 - (1 - _,)A,)
i---O

with factors

b) 3',k := q_q_._._k
_iq'_qi

Note that the corresponding factors 7ik in Algorithm (A) would contain zi.

Obviously, the moving window variant in Algorithm (B) means replacing the

above sum by its most recent iterative contributions. Such a variant might seem

reasonable in view of the superlinear _nvergence properties of secant methods.

However, it is unclear whether such a variant converges at all.

Each of the above restricted storage versions was implemented and tested on

several examples. It turns out that all the window variants are not competitive

with variant (I). Therefore, only (I) will be studied in Section 5.
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5. Numerical Experiments

On the basis of the above derivation, the following storage restricted algorithms

are compared here:

GB(kmax): Update (A) with line search (a), Broyden's "good"
method, restricted storage version (I).

BB(k_): Update (B) with line search (b), Broyden's Ubad"
method, restricted storage version (I).

GMRES-L(km_): Program GMRES(k) [13] with left preconditioning.

GMRES-R(k_): As above, but with the usual right preconditioning.

Any other variants of GB or BB are not included here, since their performance

was not competitive with the two versions above. This excludes both window

variants (II) and (III) of Section 4 and the different line searches tk _ rk for

GB. The distinction of left and right preconditioning for GMRES has been

made deliberately, since GB may be understood as some successively refined

left preconditioner, whereas BB may be interpreted as some successively refined

right preconditioner B which can be seen in the matrices Ek for GB and _k for

BB.

Recall from Section 4 that BB(km_) requires about twice the array storage as

the other 3 codes. Moreover, the GB code and the GMRES codes supply the

residual vector only, if explicitly wanted. If the successive iterates zk are explic-

itly wanted (say, within an adaptive code or a nonlinear code [4]), then both

GMRES codes need some modification, which in GMRES-R includes an addi-

tional preconditioned system solve per each iteration. Throughout the present

section, only the rather simple preconditioning

H0 = D -_ , D := cling(a,1, ..., an,) , (5.1)

is chosen. In a PDE context, this preconditioner takes care of the elliptic part

(d. [511 -- the rest must be taken care of by the rank-1 updates. A detailed

study of different preconditioning techniques in a PDE setting will be given

elsewhere.

Our test examples arise from convection-diffusion problems in 2-D of the fol-

lowing type:

a) -_Au + _. Vu = f on N C IR2 ,

b) ulr0 = u0, - 0 on. 0f_ = r0 u rl, r0 n rl = ¢.
FI

In order to solve this problem, streamline upwind discretization with anisotropic

adaptive grid refinement due to KORNHUBER/Rorrzsca [121/is used.
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Example 1. Circular layer problem

As a first special case of (5.1), we study a problem with a circular layer. For

this, we set e = 10 -5, f = 0 and/7 = (y,-x). The domain fl is (0,1) x (0,1)\Fo

with ro = {(x,y) : x = 0.5, V _< 0.5}. On the inflow boundary, we prescribe

0 if y>0.3 , (z,V) EI'o.Uo(X,y)
t 1 if V <0.3

In Fig. 5.1, the underlying grid with n = 4238 is shown. Starting point Xo is

the interpolated solution on a coarser grid.

\

7

i

/

"'--.2

Figure 5.1: Anisotropic grid for Example 1, due to [12].

With only diagonal preconditioning, the BB code fails to solve the problem

within n steps (nearly constant residual norm throughout the iteration). First,

the behavior of GMRES with /_ _< 10 has been studied (Fig. 5.2 and 5.3),

which led to the selection of GMRES-R(10) as best version. This version has

been compared with GB(10) -- see Fig. 5.4. To measure the error norms, the
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final iterate of a GB(10) run with required relative accuracy _ - 10 -s in (4.3) has

been taken as an estimate of the exact solution. Unlike the illustrative example

in Section 3.3, the estin_ted error in GB(10) behaves only qualitatively as the

true error -- compare Fig. 5.5. Asymptotic_Uy, true and estimated error exhibit

the same behavior, apart from oscillations caused by the k_-restriction.

10s

Error in OMRES00

102

lO-I

104

10-7

10-1o

10-130

Figure 5.2:

Example i.

"""-,,..

100 150 200 250 300 _50 400 450 500

Comparison of 3 GMRES versions with right preconditioning in

3O
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10 4
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1o 4
0 I 0 &lO0

Enur

L(' I0)

1_o 2_o _o _o 3_o

Figure 5.3: Comparison of left and right preconditioning in Example 1.

Errar

10 ° : ......

10-I

10-2

10"3 GB(IO)

104

lO-S

Io- _ i_o _o _o _ _o

Figure 5.4: Comparison of error for GMRES and GB in Example i.
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Figure 5.5: Comparison of true and estimated error in GB(10) in Example 1.
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Example 2. Straight interior layer problem

The second test case was the convection-diffusion equation (5.1) on f/= (0, 1) x

(0, 1) with a straight interior layer. To obtain this, we set e = 10 -s, f = 0 and

/3 = (1.0; 0.5). The inflow boundary F0 is given by r0 = {(x,y) E aft :

max(x, y) < 1}. We prescribe the boundary condition

0 if y>0.3 , (x,y) er0.
B0(Z_ Y)

t 1 if y _< 0.3

In Fig. 5.6, the final grid with n = 2874 is shown.

The behavior of the true error with diagonal preconditioning during the iteration

is shown in Fig. 5.7. Once more, as in Example 1, GB appears to be the best

solver. Note that the behavior in case k_ = 5 is typical also for other choices

of k_fx.

1

Figure 5.6: Anisotropic grid for Example 2, due to [12].
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Figure 5.7: Comparison of error in GB(5), GMRES(5) and BB(5) in Exam-

ple 2.
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Conclusion

Two variants of secant methods based on Broyden's "good" and "bad" rank-1

updates have been studied. It turned out to be important that each update

technique is combined with its associated line search. In comparison with GM-

RES, the up to now bad reputation of secant methods for linear problems is

certainly not justified, if a reasonable preconditioning is at hand. Especially,

the "good" Broyden variant appeared to be the more competitive, the larger

the system dimension was. This observation is backed not only by the given

examples, but also by further more extensive tests. In the context of multilevel

discretizations of PDEs, the derived secant methods seem to have the struc-

tural advantage that the arising inner products can be especially adapted to

the underlying PDE problem.
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