
Robotics and Autonomous Systems 11 (1993) 279-291 279
Elsevier

A symbolic solution to intelligent
real-time control

D o u g l a s J. P e a r s o n *, Sco t t B. H u f f m a n , Mark . B. Willis, J o h n E. Lai rd ,

R a n d o l p h M. J o n e s

The University of Michigan, Artificial Intelligence Laboratory, 1101 Beal Ave., Ann Arbor, MI 48109-2122, USA

Abstract

Pearson, D.J., Huffman, S.B., Willis, M.B., Laird, J.E. and Jones, R.M., A symbolic solution to intelligent real-time control,
Robotics and Autonomous Systems 11 (1993) 279-291.

Autonomous systems must operate in dynamic, unpredictable environments in real time. The task of flying a plane is an
example of an environment in which the agent must respond quickly to unexpected events while pursuing goals at different
levels of complexity and granularity. We present a system, Air-Soar, that achieves intelligent control through fully symbolic
reasoning in a hierarchy of simultaneously active problem spaces. Achievement goals, changing to a new state, and
homeostatic goals, continuously maintaining a constraint, are smoothly integrated within the system. The hierarchical
approach and support for multiple, simultaneous goals gives rise to multi-level reactive behavior, in which Air-Soar responds
to unexpected events at the same granularity where they are first sensed.

Keywords: Reactive control; Real time; Symbolic; Soar; Architecture; Flight

1. Introduction

Autonomous systems must function well in dy-
namic, unpredictable environments in real time.
This paper describes a system for intelligent con-
trol of an airplane, within a realistic flight simula-
tor. The simulator used is the Silicon Graphics
Flight Simulator, modeling a light aircraft similar
to a Cessna. To fly the plane, our system must

perform a range of tasks at different levels of
complexity and granularity while responding to
unpredictable events in the environment.

To provide intelligent control in this domain,
we have constructed Air-Soar, built within the
general problem solving and learning architecture
of Soar [9]. Air-Soar reasons simultaneously in a
hierarchy of problem spaces at different levels of
control granularity. At the highest level, it rea-

Douglas J. Pearson is a doctoral stu-
dent in the Artificial Intelligence
Laboratory at the University of
Michigan. He received a B.S. in Com-
puter Science and Mathematics at the
University of St. Andrews, Scotland,
in 1988 and an M.S. in Computer
Science from the University of Michi-
gan in 1992. His primary research in-
terests include the integration of
learning strategies and applications of
learning to problem solving.

* Corresponding author.
E-mail: dpearson@engin.umich.edu

Scott B. Huffman is a doctoral candi-
date in the Artificial Intelligence Lab-
oratory at the University of Michigan.
He received a B.S. in Computer Engi-
neering from Carnegie Mellon Uni-
versity in 1988, and an M.S. in Com-
puter Science from the University of
Michigan in 1990. His main research
interests include machine learning,
intelligent agenthood, and cognitive
architectures. His dissertation re-
search focuses on instructable au-
tonomous agents: agents that learn to

perform new tasks from tutorial instruction, rather than hav-
ing to be programmed.

0921-8890/93/$06.00 © 1993 - Elsevier Science Publishers B.V. All rights reserved

280 D.Z Pearson et aL

sons within a world-centered coordinate frame
about absolute quantities such as altitude and
heading. The level below this concerns rates of
change of these quantities, such as the climb-rate
(the rate of change of altitude). The next level
down provides an even finer grain, involving ac-
celerations (rates of rates of change). Below this
level, the system reasons in plane-centered coor-
dinates, mapping desired world-coordinate be-
haviors into the appropriate changes to the plane 's
orientation, and eventually bottoming out at the
level of operational stick commands.

This hierarchy of concurrently active problem
spaces allows Air-Soar to pursue multiple goals
both within a reasoning level (such as achieving a
new heading and altitude, at the highest level)
and between levels (such as keeping the wings
level at the plane orientation level, while per-
forming a climb to a given altitude at the highest
level, and climbing at a given rate at the rate-of-
change level). The hierarchical approach com-
bined with a uniform representat ion of goals sup-
ports simultaneous reactive behavior at multiple
levels of granularity, allowing Air-Soar to respond
to constraint failures at lower levels without wait-
ing for them to cause constraint violations at a
higher level.

Mark B. Willis received his B.S. from Taylor University in
1991. He is currently employed by BallPoint Systems, Ann
Arbor, MI (313) 449-5638. His interests include interactive
pen based computing, machine learning and cognitive archi-
tectures.

John E. Laird received his B.S. from
the University of Michigan in 1975
and his Ph.D. in Computer Science
from Carnegie Mellon University in
1983. He is currently an Associate
Professor in the Electrical Engineer-
ing and Computer Science Depart-
ment of the University of Michigan.
His primary research interests are in
the nature of the architecture under-
lying artificial and natural intelli-
gence. His work is centered on the
development and use of Soar, a gen-

eral cognitive architecture.

' ~: ResearchRand°lph ScientistM" JoneSin theiS anArtificialASSistantin_
telligence Laboratory at the Univer-
sity of Michigan. He received his
Ph.D. in Information and Computer
Science from the University of Cali-
fornia, Irvine, in 1989. He came to
Michigan after three years as a Re-
search Associate at Carnegie Mellon
University and the University of Pitts-
burgh. His research interests include
machine learning, problem solving,

~ ! ~ ! ~ : ~ ~ psychological modeling, and intelli-
gent autonomous agents.

2. T h e f l ight d o m a i n

2.1. The nature o f flying

Successful flight requires execution of a range
of tasks at different levels of complexity and
control granularity. High level tasks such as take-
offs and landings, maneuvers, such as banked
turns and steady climbs, and lower level opera-
tions such as keeping the wings level. Often, the
pilot must achieve a number of these tasks simul-
taneously; for example, performing a banked turn
while diving. To maintain stable flight, while per-
forming these maneuvers, requires continuous
manipulation of the control surfaces.

An important property of flight is that when
the plane's spatial orientation changes, as the
result of a change in control surfaces or because
of an external force, typically many instrument
readings will change at the same time. In general,
readings are changing continuously which may
lead to perceptual overload for the pilot, who
must respond selectively to the values that are
currently important.

Unexpected events may occur in the course of
flying, due to wind, air turbulence or plane mal-
functions. Even without such occurances, the
plane's behavior is very difficult to predict, be-
cause identical control movements produce dif-
ferent effects depending on the plane's precise
orientation and motion. Appropria te corrections
to the control surfaces must be made rapidly as
the plane is very unstable, with slight deviations
rapidly leading to significant changes in the
plane's motion, i Furthermore, changes to con-
trol surfaces do not produce immediate changes
in the motion of the plane, so the pilot cannot
depend on immediate feedback from h i s / he r ac-
tions.

2.2. The simulated environment

We have extended the Silicon Graphics Flight
Simulator to allow asynchronous contro l o f the
plane's throttle, ailerons, elevator and o ther con-
trol surfaces by an external system and to prov ide
limited sensing of the plane's motion. Sensing is

1 The simulated Cessna is much more unstable than a real
Cessna, which we are told is not particularly unstable.

Symbolic solution to intelligent real-time control 281

Fig. 1. Instrument panel and display on the flight simulator.

limited to the standard meter readings offered to
a pilot (air-speed, heading, climb-rate etc.) as
shown in Fig. 1. No attempt is made to model the
visual information displayed by the flight simula-
tor and therefore the agent is always forced to fly
by instruments alone.

The simulator's model of the plane is updated
20 times a second, which places a tight real-time
constraint on the agent's processing and speed of

Fig. 2. SGI Flight Simulator and Air-Soar communication
link.

response. Air-Soar is connected to the flight sim-
ulator through a local network, as shown in Fig.
2. To help reduce the amount of network traffic,
the simulator reports readings to the agent only
when they change by more than a pre-specified
amount. For example, small changes in the x, y,
z coordinates of the plane are not reported. This
reduction in communication means that Air-Soar
spends about 1/3 of its time sending and receiv-
ing messages on the network and 2/3 of its time
reasoning. On average, during the course of a
turn, Air-Soar takes 0.17 seconds to respond to
an event on the simulator, of which 0.06 seconds
is spent interfacing with the network. To help
overcome perceptual overload, Air-Soar further
screens the amount of input by reasoning about
the level of accuracy currently required for a task,
and rounding the input accordingly. When flying
at around 10,000 feet the altitude to the nearest
100 feet is usually sufficient, while when trying to
land the altitude might be rounded to the nearest
5 feet.

282 D.J. Pearson et al.

3. The reactive control problem

In order to fly an airplane, a system must
reason about the concepts and actions involved in
directly controlling the flight, such as stick move-
ments and button presses. One possible approach
to this problem is to develop a purely reactive
system, which would reason only at this level,
mapping perceived inputs directly to motor ac-
tions (e.g., Pengi [1]). Given enough time and the
appropriate feedback, such a system could learn
enough such mappings to maintain controlled
flight in a large number of situations.

However, there are at least two problems with
a purely reactive approach, involving the transfer
of knowledge to new situations, and the ability to
coordinate reactive behavior with higher-level
reasoning and planning. To illustrate these points,
consider a typical flight plan for Air-Soar, consist-
ing of a take-off, climbing to a series of altitudes
and turning to specific headings before returning
to the runway and landing.

Such a plan requires Air-Soar to do more than
simply map its current perceptions into actions
that keep the plane aloft. It must also reason
about high-level goals and constraints. If the sys-
tem's high-level goals change, it must be able to
generate new behaviors that address these goals
but that also maintain stable flight. Such flexibil-
ity entails a large number of possible interactions
between high-level and lower-level goals and con-
straints. In a single-level reactive system, all of
these possible interactions would have to be pre-
compiled into a large number of specific rules.

In addition, Air-Soar's flight plans can be de-
composed into intermediate goals and concepts,
such as desired turn-rates and accelerations. Such
a hierarchical decomposition is a methodological
choice that enables the system smoothly to inte-
grate perceptions and various types of goals in
order to generate appropriate actions. The hier-
archical representation of goals also allows the
flexible transfer of knowledge between flight plans
when they share particular subgoals. Thus, Air-
Soar can execute a wide variety of flight-plans
with a relatively small but general knowledge
base. The ability to handle a wide variety of
situations comes from the dynamic, combinatoric
combination of smaller pieces of more general
knowledge. The ability to combine intermediate
goals and actions obviates the need for a large

number of specific, reactive rules. It also allows
the system to respond flexibly to particular, unex-
pected situations, where a single-level system
might lack the appropriate specific rules.

Given our choice of representation, the system
requires a number of capabilities to carry out
general flight plans:
• Multiple levels

The agent must achieve goals at multiple levels
simultaneously. For example, during landing
the plane must be brought down to zero alti-
tude at a particular place (on the runway).
These high level tasks must be achieved at the
same time as lower level subtasks such as keep-
ing the wings level and the descent-rate low.

• Reasoning in different coordinate systems
Reasoning about the plane must be done both
in terms of world-centered coordinates, where
the plane is considered to be a point in space,
and in plane-centered coordinates, which are
based on the plane's orientation (Fig. 3). Both
are required as adjustments to the plane's con-
trol surfaces result in changes to the orienta-
tion of the plane which in turn lead to changes
in the plane's motion.

• Maintaining constraints
The agent must achieve new goals while main-
taining other constraints, for example main-
taining the current heading during a climb to a
new altitude, or maintaining a steady rate of
descent while reducing air speed.

• Responding in real time
The agent must respond promptly to goal and
constraint violations at each level of its hierar-

World Centered
Coordinates of Turn

Plane Centered
Coordinates

Fig. 3. World-centered and Plane-centered coordinate sys-
tems.

Symbolic solution to intelligent real-time control 283

chy. High-level goals can be addressed rela-
tively slowly, because they take some time to
achieve in any event. In contrast, the lowest-
level goals generally require immediate atten-
tion and reaction, because quantities at this
level change rapidly and failures can cause
disastrous results (such as crashing the plane
or large deviations from the flight plan).

These capabilities together lead to a difficult
control problem where the agent must reason
about different classes of goals, across many lev-
els while responding in real-time. The structure
of the task makes it most natural to reason in a
top-down fashion, such that high-level goals are
always active and lower levels follow from them.
Because higher level goals are active more of the
time, violations of high-level constraints can be
noticed immediately, whereas there might be a
slight delay in noticing constraint violations at
lower levels. Thus, response time increases as the
granularity of the task decreases.

Unfortunately, this is in direct contrast to the
real-time demands of the task. As we have men-
tioned, the time available to respond to a goal
violation decreases as the granularity of the task
decreases (see Fig. 4). For instance, climb-rate
changes more rapidly than altitude, allowing more
time for corrections to changes in altitude than
for corrections of climb-rate. Thus, the system
must be able to detect violations in climb-rate
goals at least as quickly as it can detect violations
in altitude goals.

Our solution to this problem is to keep all
levels of Air-Soar's goal hierarchy active simulta-
neously. When new goals arrive from the flight
plan, the system decomposes the problem into
intermediate steps until it generates appropriate

Largest
Grain Size

1
Smallest

Grain Size

Time available for response
to a problem at that level

Fig, 4. Time for a reaction varies by level.

actions to achieve (or maintain) all of its new
goals. When goals are achieved, they stay in
memory so they can be monitored continuously.
Portions of the goals stack only get regenerated
when new high-level goals appear, either in re-
sponse to changes in the flight plan or changes in
the status of higher goals. Because goals are
active even when they are already achieved, viola-
tions can be detected immediately, regardless of
the level at which the violation occurs. In this
manner, the system derives the benefits of a
hierarchical planning and reasoning system, while
also retaining the ability to react to all levels of
goal violations in real time.

4. Air-soar problem spaces

Air-Soar controls the plane through the suc-
cessive application of operators within a series of
subgoals and problem spaces. For instance, when
the goal is to reach a new altitude, an operator to
do is selected in the highest level space. There is
no output command Air-Soar can issue to the
simulator to take the plane directly to the desired
altitude, therefore an impasse occurs and a sub-
goal is created of applying this operator. New
knowledge can then be brought to bear on this
subgoal, by using a different problem space. In
this example, Air-Soar reasons that in order to
gain altitude the plane's climb-rate must be in-
creased. The operator that represents this still
cannot be directly implemented as changes to the
plane's control surfaces, so another impasse oc-
curs and a further subgoal, is created to imple-
ment the 'achieve new climb-rate' operator.

This naturally gives rise to a hierarchical ap-
proach to solving problems using a series of prob-
lem spaces, each corresponding to a different
level of granularity, as shown in Fig. 5. Air-Soar's
problem spaces are:
• Absolutes space

In this space the agent reasons about absolute
quantities such as heading, altitude and speed.
Reasoning at this level (and in the rates and
accelerations problem spaces) is in the world-
centered coordinate system. Changes in abso-
lute quantities cannot be achieved by simply
setting the control surfaces to a specific posi-
tion. It is therefore necessary to reason at
lower levels until the goal can be directly

284 D.J. Pearson et al.

] Change Altitude 1
I n

V --'Cl~'u~ge rate''-'-% f tu~ i
R.te~ I I C~ge~ateofclimb I

-~.ccelerations I | Rate of change of climb 1
I of c ge of a=el. I

Change Roll i
Change Pitch
Change Yaw

ii i

Change Ailerons
Change Elevator
Change Throttle

i

World-centered
coordinate system

Plane-centered
coordinate system

I
Fig. 5. Air-Soar's problem space hierarchy.

achieved through movements of the control
surfaces.

• Ra te s space

This space deals with rates of change of the
absolute quantities. For instance, if the abso-
lute goal is to achieve a particular altitude
then reasoning about an appropriate climb-rate
would happen in this space.

• Acce lera t ions space

This space deals with changes in rates such as
changes in climb-rate and changes in turn-rate.
This level of precision is required for certain
tasks such as leveling off after a climb. In such
a situation it is necessary to decide whether
the current climb rate is constant at 0 (and
therefore truly level) or whether it is changing.
Without being able to reason at this level of
detail, the plane tends to oscillate around a
desired climb rate.

• Or ien ta t ions space

To achieve the desired changes in the plane's
motion, which are described in world-centered
coordinates, the agent must switch to reason-
ing within the plane-centered coordinate sys-
tem (see Fig. 3). The mapping from plane
orientations to changes in motion is complex;

many possible changes in orientation may be
used to achieve a particular change in the
plane's motion. For example, to lose altitude
the plane's pitch could be decreased (putting
the nose down), the plane's roll could be in-
creased (causing a loss of lift) or the throttle
could be decreased (causing a loss of speed
and hence lift).

• Controls space

Finally, the desired orientation of the plane is
achieved by changes to the control surfaces
(elevator, ailerons, flaps, etc.). Operators at
this level send stick commands to the flight
simulator to alter the corresponding surfaces
on the plane.

As Air-Soar uses purely symbolic reasoning it
employs a range of responses proportional to the
size of the detected deviation. If the plane begins
to dive rapidly the stick will be pulled back far-
ther and faster than for a shallow dive. In the
absolutes space only two classes of response are
used (one when the goal is almost achieved and
one when it is far from being achieved) while at
lower levels more divisions are used, allowing the
response to be scaled to match the deviation.
These proportional responses reduce pressure on

Symbolic solution to intelligent real-time control 285

the control system by allowing it to make one
large correction rather than a number of small
corrections.

5. Goals

The domain requires that Air-Soar actively
monitor and pursue multiple goals. These may
occur at the same hierarchical level, for example
climbing and turning to a new heading, or be-
tween levels, such as keeping the wings level (a
goal within the orientations space) during a climb
(a goal within the rates space). Each goal may
start and finish independently of others (the cor-
rect altitude may be reached before the desired
heading) so the system must be able to deal with
a dynamically changing set of goals at each level
in the hierarchy. Air-Soar meets this requirement
by allowing an operator simultaneously to pursue
more than one goal within each level of the
hierarchy. These goals may be removed and added
independently, since they may be achieved at
different times.

Air-Soar supports two types of goals [4,8]:
• Achievement Goals where the goal is to achieve

a particular state. Examples include achieving
a particular altitude, a certain level of pitch
etc.

• Homeostatic Goals (or 'maintenance goals')
continuously maintain a constraint. Examples

include maintaining altitude during a turn, or
keeping a steady rate of descent during a dive.

Air-Soar represents both types of goals in exactly
the same way, allowing the system to reason
about them with the same knowledge. For exam-
ple, climbing to a new altitude (an achievement
goal) and then maintaining that altitude (a home-
ostatic goal). Each goal is represented as a target
value for a given flight parameter and an accept-
able range. Air-Soar only reacts when values fall
out of this range. Thus, whenever the current
value is within the acceptable range a goal can be
considered homeostatic. As soon as the value
moves outside the range it becomes an achieve-
ment goal. Within the system, goals are not
marked as being homeostatic or achievement
goals, and any transitions between the two types
are implicit.

5.1. Example of goals

To illustrate the way that different types of
goals interact, consider an example of a plane
initially flying due north (heading 0 degrees) at
15,000 feet and attempting to turn west (heading
90 degrees). The goals of the system are shown in
Fig. 6, which for simplicity only shows informa-
tion from the top two spaces. Achievement goals
are in italics while homeostatic goals are in the
regular typeface.

The first frame shows the initial situation with

Homeostatic Goals : Normal
Achievement Goals : Italics

Fig. 6. Example of interacting goals.

286 D.J. Pearson et aL

Fig. 7. Reacting to the violation of a top-level constraint.

a series of homeostatic goals for heading, alti-
tude, turn-rate and climb-rate. Initially all of the
goals are satisfied. In the second frame Air-Soar
makes the decision to turn to a new heading. The
new heading goal is not satisfied so the system
responds in an attempt to achieve it. Air-Soar
updates the desired turn-rate to 1 degree/sec,
which in turn is not currently achieved (as shown
in the third frame). Air-Soar continues down the
goal hierarchy until it can make a change to the
plane's control surfaces. The final frame repre-
sents the situation once the desired turn rate has
been achieved. At this point the goal for turn rate
conceptually becomes a homeostatic goal rather
than an achievement goal (but notice that no
modification is actually required to the data
structure).

6. Multi-level reactivity

Typically many or even all of Air-Soar's levels
are active simultaneously, trying to maintain or
achieve their goals. The hierarchical structure
and uniform representation of achievement and
homeostatic goals supports reactive behavior at
multiple levels of granularity. The reasoning
method used to achieve a goal initially is also
used to react to a goal with violated homeostatic
bounds. The effects of reacting at any given level
propagate down to the controls problem space,
which ultimately results in commands being is-
sued to the simulator.

Sensitivity at different grain sizes means that
Air-Soar is able to respond to unexpected events
at the level where the deviation is first noticed,
without having to wait for changes to reach higher

Fig. 8. Reacting to the violation of a lower-level constraint directly.

Symbolic solution to intelligent real-time control 287

Absolums

Ra~s

Acceleration,,

• |

Take.off Reached
Speed 600 feet O Goal is satisfied

for this tlrrmstep.

I I I I

50 100 150 200 250
Hight time (seconds)

Fig. 9. Trace of satisfied goals during a flight.

levels. Although the system reasons 'top down' it
does not have to return to the top level in order
to react to lower level problems. Consider an
example (shown in Fig. 7) where, after complet-
ing a climb, the plane is not perfectly level caus-
ing the altitude to continue to change slowly.
Although the rate of climb is slow (and within the
bounds), after a while (frame 2) Air-Soar notices
the altitude is no longer within range and de-
scends to correct it (frame 3).

In this case, the reasoning proceeds from the
top level. Consider next the case, shown in Fig. 8.
Again Air-Soar is trying to maintain a constant
altitude of 15,000 feet. If a sudden downdraft hits
the plane causing a steep dive, as shown in frame

2, the climb-rate goal is immediately violated and
Air-Soar reacts to the sudden change in rate
directly, before the altitude changes enough to be
noticed (see frame 3).

An example of this behavior taken from an
actual simulation run is shown in Fig. 9. Each
point on the figure represents a satisfied goal
(within one of the top three problem spaces).
When there is no point, it indicates that the goal
was not achieved at that moment. During Phase I
the plane is rolling down the runway and gaining
speed until it reaches take-off speed (indicated by
the goal in the Absolutes space being achieved).
At this point, the flight plan changes the goal to
fly to an altitude of 600 feet. In Phase II (as the

West 60o'
Land West 1200'

East 800' Land

Runway 2

North
1200'

East 600'

Fig. 10. Circular flight plan for Air-Soar.

288 D.J. Pearson et al.

plane is climbing) Air-Soar tries to maintain a
target climb-rate, as shown by the goal in the
Rates space. This shows Air-Soar attempting to
achieve a new high level goal (the altitude of 600
feet) while maintaining a homeostatic goal of the
correct climb-rate. In the third phase Air-Soar
reaches the target altitude at which point turbu-
lence is simulated by putting the plane into an
unexpected dive. As the figure shows Air-Soar
corrects the change in climb-rate directly, without
allowing the plane to violate its homeostatic alti-
tude goal.

The multi-level nature of reactive control in
Air-Soar stands in contrast to single level ap-
proaches, such as reactive planning in Pengi [1],
and reinforcement based approaches (e.g., [12]).
Soar's integrated approach to reactive, hierarchi-
cal planning and execution also differs from ap-
proaches in which planner and executor are sepa-
rated into different modules (e.g., [6,5,3]). In Soar,
'planning' knowledge (such as knowledge about
internal simulation) and 'execution' knowledge
(knowledge about how to select and carry out
operators in the face of a changing environment)
exist within a single architecture, allowing them
to combine dynamically as needed. Air-Soar af-
fords the possibility of dynamically creating dif-
ferent problem space hierarchies in response to
the demands of particular tasks. This capability
differs from methods that employ a static hierar-
chy of levels (e.g. [2]).

7. Performance and evaluation

One of Air-Soar's flight plans involves flying a
circular path between two runways (taking about
30 minutes) as shown in Fig. 10. This includes a

take-off, climbing to specified altitudes and turn-
ing to specified headings, searching for the next
runway (which is at a known location on the
ground) and landing. It then repeats the pattern
endlessly. In order to land successfully, Air-Soar
must line up with the runway, achieve a steady
descent without allowing the plane to roll, and
touch down with a low air-speed. Air-Soar has
proved to be robust in normal flight even at very
low altitudes (under 1000 feet) and is able to
achieve stable flight within tightly constrained
limits (e.g. achieving altitude to the nearest 100
feet and headings to the nearest 5 degrees), all in
real time. Air-Soar routinely lands the plane suc-
cessfully, and then immediately opens the throttle
fully and takes off to complete another circuit,
allowing the system to fly for a number of hours
without the plane crashing or getting lost. We
believe, although we have have not yet confirmed
this, that the plane only crashes eventually as a
result of particularly long network delays or inter-
ruptions to the Air-Soar process produced by
swapping virtual memory.

To evaluate the effectiveness of the multi-level
reactivity approach an alternative system was de-
veloped using a different reactive strategy. In this
system, which we will call 'top-goal', each time it
detects a constraint violation, the system reasons
from the top-level goal, proceeding through each
level in the hierarchy, and then issuing a com-
mand. This is similar to a system reasoning about
each goal in turn, and is in contrast to Air-Soar's
multi-level approach, which only reasons from
the level of the violation down to the stick com-
mands.

The two systems and a human, with experience
of flying on the simulator, were first compared
over the course of five circuits and judged on the

[] Top-goal

• Air-Soar

[] Human
Pilot

50000 "I" 4oooo|
3ooooI , • Air-soar

20000 / [] Human
 ooo: L

Fig. 11. Relative performance of Air-Soar and replanning approach.

Symbolic solution to intelligent real-time control 289

quality of landings (based on factors such as
distance from the center-line of the runway,
amount of roll and speed of descent), and total
number of stick movements, giving a measure of
the quality of control during the flight (more
movements indicating worse control). The results
are shown in Fig. 11. The quality of Air-Soar's
landings, based on the SGI Flight Simulator's
evaluation system, averages more than 4 times
that of the replanning approach, while requiring
only about a third of the stick movements. This
results from 'top-goal' unnecessarily repeating
reasoning at higher levels, which Air-Soar avoids,
allowing it to react faster and therefore maintain
better control of the plane, both when achieving
new goals and maintaining existing ones. Air-
Soar's landings are only slightly worse than the
human pilot and required fewer stick movements.
This is because the human pilot flies the plane in
a less stable manner, using steeper changes in
altitude and faster turns than Air-Soar. This
means more stick movements are needed to
maintain control, but higher performance can be
achieved.

To further evaluate Air-Soar we compared its
ability to respond to simulated 'turbulence' to the
alternate system and the human pilot. This was
done by manually moving the mouse controlling
the plane's stick a measured distance while Air-
Soar was controlling the plane, putting the plane
into unexpected dives, turns etc.

First the turbulence was introduced during a
climb, once the plane had reached a particular
altitude, (forcing the plane to turn and dive). In a
second trial, the same turbulence was introduced
during a turn (forcing the plane to dive and turn

in the opposite direction). In the first case, the
time was measured for the system (or pilot) to
return the plane to the correct course and alti-
tude. In the second case, the time for the plane
to return to the original turn. The results, aver-
aged over five runs, are shown in Fig. 12. In both
cases Air-Soar performed substantially better
than the alternative reactive system. Air-Soar's
multi-level reactive behavior allows it to respond
more quickly when goals at any level are violated.
The human pilot's performance is better than
either reactive system as the pilot can maintain
control of the plane while performing faster turns
and steeper climbs to correct for the turbulence.
Air-Soar's performance is more superior in the
turning case than the climbing case, because this
is an inherently more unstable situation for the
plane, so speed of response is particularly impor-
tant to avoid losing control of the plane.

8. Conclusions and future work

The domain of flight is highly dynamic and
unpredictable. Achieving intelligent control in the
domain involves reasoning and reacting at multi-
ple levels of granularity, within multiple coordi-
nate frames, both to maintain and achieve multi-
ple simultaneous constraints in real time. We
have presented a technique for achieving this
control by employing symbolic reasoning within a
hierarchy of simultaneously active problem
spaces. The technique is embodied in Air-Soar, a
system built within the Soar architecture that
controls the flight of a Cessna in the SGI flight

During
Climb

• Top-goal

• Air-Soar

[] Human
Pilot

During
Turn

I I Top-goal

• Air-Soar

[] Human
Pilot

Fig. 12. Time to recover from simulated turbulence.

290 D.J. Pearson et al.

simulator. Air-Soar's hierarchy of problem spaces
allows it to react to changes in instrument mea-
surements at the proper level of granularity; for
instance, responding to a drastic fall in climb-rate
directly, without having to wait for this change to
affect the plane's altitude significantly. By using a
uniform representation scheme for goals, Air-Soar
can smoothly integrate both homeostatic and
achievable goals. The system's performance dur-
ing regular flight, in response to turbulence, and
in landing is comparable to that of experienced
humans.

Three main areas in which this work can be
extended are control, planning, and learning.
First, the system's control ability is limited be-
cause it only knows a single mapping between
problem spaces in its hierarchy. For instance, if
the goal in the highest space (absolutes space) is
to achieve a lower altitude, Air-Soar always at-
tempts to decrease the plane's pitch, which in
turn is always achieved by pushing forward on the
stick. Alternative ways to reduce altitude, such as
decreasing thrust or increasing the plane's roll,
and alternative ways to decrease pitch, such as by
lowering the flaps, are not currently considered.

Second, Air-Soar currently performs a pre-de-
termined flight pattern. We have already inte-
grated Air-Soar with a system that generates tac-
tical flight plans for air combat [7], and we intend
to build a more general mission planning capabil-
ity, allowing the system to produce its own flight
patterns from high-level specifications. Flight
plans are represented as a series of local deci-
sions rather than a single monolithic plan, allow-
ing them to be integrated into the reactive hierar-
chy. If an unexpected event occurs, driving the
plane away from its original plan, the reactive
component returns the plane to the intended
path, allowing the plan to continue once the next
local decision point is reached.

Third, there are many opportunities for learn-
ing in the flight domain. We have experimented
with a type of speedup learning, in which Air-Soar
learns to alter control surfaces directly in re-
sponse to higher level goals. For example, the
system might learn to pull back on the stick to
increase altitude, allowing it to bypass the inter-
mediate levels of reasoning that led to this result.
This occurs through Soar's general learning
mechanism, chunking (a form of explanation-
based learning [10,11]). It increases the reaction

speed of the system slightly; in essence, over time
it selectively compiles portions of Air-Soar's
knowledge into single-level reactive rules.

In addition to speedup learning, which makes
Air-Soar's reactions quicker, we plan to incorpo-
rate learning to anticipate the effects of actions in
the environment. For instance, when performing
a banked turn a plane has the tendency to lose
altitude, because lift from the wings is reduced.
Air-Soar can react to this altitude loss; but expe-
rienced pilots are able to anticipate and compen-
sate for it before it happens. Learning to antici-
pate involves extending (and possibly altering) the
system's domain knowledge within the various
problem spaces.

Beyond anticipation knowledge, a pilot learns
to expand the range of possible responses that
are available in different situations. Earlier, we
mentioned the limitation of Air-Soar's single
mapping between problem spaces. This limitation
could be overcome by learning mappings for a
variety of responses. Such learning could occur
through deliberate experimentation in the envi-
ronment, or by reading textbooks or receiving
tutorial instruction. One important advantage of
Air-Soar's fully symbolic approach to control is
that all of the agent's control structures take the
form of knowledge that is open to both well-
known and experimental symbolic learning algo-
rithms.

References

[1] Phillip E. Agre and David Chapman, Pengi." An imple-
mentation of a theory of activity, Proc. Sixth National
Conference on Artificial Intelligence, Seattle (1987) 196-
201.

[2] Rodney A. Brooks, A robust layered control system for a
mobile robot, IEEE Journal of Robotics and Automation
RA-2 (1) (1986) 14-23.

[3] Paul R. Cohen, Michael L. Greenberg, David M. Hart
and Adele E. Howe, Trial by fire: Understanding the
design requirements for agents in complex environments,
AI Magazine 10 (3) (1989) 34-48.

[4] Arie A. Covrigaru and Robert K. Lindsay, Deterministic
autonomous systenm, AI Magazine 12 (3) (1991) 110-117.

[5] M. Drummond and J. Bresina, Anytime synthetic projec-
tion: Maximizing the probability of goal satisfaction, Proc.
Eighth National Conference on Artificial Intelligence,
Boston, MA (1990) (AAAI Press) 138-144.

[6] Erann Gat, Integrating planning and reacting in a het-
erogeneous asynchronous architecture for controlling
real-world mobile robots, Proc. Tenth National Confer-

Symbolic solution to intelligent real-time control 291

ence on Artificial Intelligence, San Jose, CA (1992) (AAAI
Press) 809-815.

[7] Randy M. Jones, Milind Tambe, John E. Laird and Paul
S. Rosembloom, Intelligent automated agents for flight
training simulators, Proc. Third Conference on Computer
Generated Forces and Behavioral Representation, Or-
lando, FL (1993) 33-42.

[8] Leslie Pack Kaelbling, An architecture for intelligent
reactive systems, in: Michael P. Georgeff and Amy L.
Lansky, eds., Reasoning about Actions and Plans: Proceed-
ings of the 1986 Workshop (Morgan Kaufmann, 1986)
395-410.

[9] John E. Laird, Allen Newell and Paul S. Rosenbloom,

Soar: An architecture for general intelligence, Artificial
Intelligence 33 (1) (1987) 1-64.

[10] Tom M. Mitchell, R.M. Keller and S.T. Kedar-Cabelli,
Explanation-based generalization: A unifying view, Ma-
chine Learning 1 (1986).

[11] Paul S. Rosenbloom and John E. Laird, Mapping expla-
nation-based generalization onto Soar, Proc. National
Conference on Artificial Intelligence (August 1986) 561-
567.

[12] Richard S. Sutton, Integrated architectures for learning,
planning and reacting based on approximating dynamic
programming, In Proc. Seventh International Conference
on Machine Learning (1990) 216-224.

