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Abstract 

Pearson, D.J., Huffman, S.B., Willis, M.B., Laird, J.E. and Jones, R.M., A symbolic solution to intelligent real-time control, 
Robotics and Autonomous Systems 11 (1993) 279-291. 

Autonomous systems must operate in dynamic, unpredictable environments in real time. The task of flying a plane is an 
example of an environment in which the agent must respond quickly to unexpected events while pursuing goals at different 
levels of complexity and granularity. We present a system, Air-Soar, that achieves intelligent control through fully symbolic 
reasoning in a hierarchy of simultaneously active problem spaces. Achievement goals, changing to a new state, and 
homeostatic goals, continuously maintaining a constraint, are smoothly integrated within the system. The hierarchical 
approach and support for multiple, simultaneous goals gives rise to multi-level reactive behavior, in which Air-Soar responds 
to unexpected events at the same granularity where they are first sensed. 
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1. Introduction 

Autonomous systems must function well in dy- 
namic, unpredictable environments in real time. 
This paper describes a system for intelligent con- 
trol of an airplane, within a realistic flight simula- 
tor. The simulator used is the Silicon Graphics 
Flight Simulator, modeling a light aircraft similar 
to a Cessna. To fly the plane, our system must 

perform a range of tasks at different levels of 
complexity and granularity while responding to 
unpredictable events in the environment. 

To provide intelligent control in this domain, 
we have constructed Air-Soar, built within the 
general problem solving and learning architecture 
of Soar [9]. Air-Soar reasons simultaneously in a 
hierarchy of problem spaces at different levels of 
control granularity. At the highest level, it rea- 
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sons within a world-centered coordinate frame 
about absolute quantities such as altitude and 
heading. The level below this concerns rates of 
change of these quantities, such as the climb-rate 
(the rate of change of altitude). The next level 
down provides an even finer grain, involving ac- 
celerations (rates of rates of change). Below this 
level, the system reasons in plane-centered coor- 
dinates, mapping desired world-coordinate be- 
haviors into the appropriate  changes to the plane 's  
orientation, and eventually bottoming out at the 
level of operational stick commands. 

This hierarchy of concurrently active problem 
spaces allows Air-Soar to pursue multiple goals 
both within a reasoning level (such as achieving a 
new heading and altitude, at the highest level) 
and between levels (such as keeping the wings 
level at the plane orientation level, while per- 
forming a climb to a given altitude at the highest 
level, and climbing at a given rate at the rate-of- 
change level). The hierarchical approach com- 
bined with a uniform representat ion of goals sup- 
ports simultaneous reactive behavior at multiple 
levels of granularity, allowing Air-Soar to respond 
to constraint failures at lower levels without wait- 
ing for them to cause constraint violations at a 
higher level. 
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2. T h e  f l ight  d o m a i n  

2.1. The nature o f  flying 

Successful flight requires execution of a range 
of tasks at different levels of complexity and 
control granularity. High level tasks such as take- 
offs and landings, maneuvers,  such as banked 
turns and steady climbs, and lower level opera- 
tions such as keeping the wings level. Often, the 
pilot must achieve a number  of these tasks simul- 
taneously; for example, performing a banked turn 
while diving. To maintain stable flight, while per- 
forming these maneuvers,  requires continuous 
manipulation of the control surfaces. 

An important property of flight is that when 
the plane's  spatial orientation changes, as the 
result of a change in control surfaces or because 
of an external force, typically many instrument 
readings will change at the same time. In general, 
readings are changing continuously which may 
lead to perceptual  overload for the pilot, who 
must respond selectively to the values that are 
currently important.  

Unexpected events may occur in the course of 
flying, due to wind, air turbulence or plane mal- 
functions. Even without such occurances, the 
plane's  behavior is very difficult to predict, be- 
cause identical control movements  produce dif- 
ferent effects depending on the plane's  precise 
orientation and motion. Appropria te  corrections 
to the control surfaces must be made rapidly as 
the plane is very unstable, with slight deviations 
rapidly leading to significant changes in the 
plane's  motion, i Furthermore,  changes to con- 
trol surfaces do not produce immediate changes 
in the motion of the plane, so the pilot cannot 
depend on immediate feedback from h i s / he r  ac- 
tions. 

2.2. The simulated environment 

We have extended the Silicon Graphics Flight 
Simulator to allow asynchronous contro l  o f  the 
plane's  throttle, ailerons, elevator and o ther  con- 
trol surfaces by an external system and to prov ide  
limited sensing of the plane's  motion. Sensing is 

1 The simulated Cessna is much more unstable than a real 
Cessna, which we are told is not particularly unstable. 



Symbolic solution to intelligent real-time control 281 

Fig. 1. Instrument panel and display on the flight simulator. 

limited to the standard meter readings offered to 
a pilot (air-speed, heading, climb-rate etc.) as 
shown in Fig. 1. No attempt is made to model the 
visual information displayed by the flight simula- 
tor and therefore the agent is always forced to fly 
by instruments alone. 

The simulator's model of the plane is updated 
20 times a second, which places a tight real-time 
constraint on the agent's processing and speed of 

Fig. 2. SGI Flight Simulator and Air-Soar communication 
link. 

response. Air-Soar is connected to the flight sim- 
ulator through a local network, as shown in Fig. 
2. To help reduce the amount of network traffic, 
the simulator reports readings to the agent only 
when they change by more than a pre-specified 
amount. For example, small changes in the x, y, 
z coordinates of the plane are not reported. This 
reduction in communication means that Air-Soar 
spends about 1/3 of its time sending and receiv- 
ing messages on the network and 2/3 of its time 
reasoning. On average, during the course of a 
turn, Air-Soar takes 0.17 seconds to respond to 
an event on the simulator, of which 0.06 seconds 
is spent interfacing with the network. To help 
overcome perceptual overload, Air-Soar further 
screens the amount of input by reasoning about 
the level of accuracy currently required for a task, 
and rounding the input accordingly. When flying 
at around 10,000 feet the altitude to the nearest 
100 feet is usually sufficient, while when trying to 
land the altitude might be rounded to the nearest 
5 feet. 
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3. The reactive control problem 

In order to fly an airplane, a system must 
reason about the concepts and actions involved in 
directly controlling the flight, such as stick move- 
ments and button presses. One possible approach 
to this problem is to develop a purely reactive 
system, which would reason only at this level, 
mapping perceived inputs directly to motor ac- 
tions (e.g., Pengi [1]). Given enough time and the 
appropriate feedback, such a system could learn 
enough such mappings to maintain controlled 
flight in a large number of situations. 

However, there are at least two problems with 
a purely reactive approach, involving the transfer 
of knowledge to new situations, and the ability to 
coordinate reactive behavior with higher-level 
reasoning and planning. To illustrate these points, 
consider a typical flight plan for Air-Soar, consist- 
ing of a take-off, climbing to a series of altitudes 
and turning to specific headings before returning 
to the runway and landing. 

Such a plan requires Air-Soar to do more than 
simply map its current perceptions into actions 
that keep the plane aloft. It must also reason 
about high-level goals and constraints. If the sys- 
tem's high-level goals change, it must be able to 
generate new behaviors that address these goals 
but that also maintain stable flight. Such flexibil- 
ity entails a large number of possible interactions 
between high-level and lower-level goals and con- 
straints. In a single-level reactive system, all of 
these possible interactions would have to be pre- 
compiled into a large number of specific rules. 

In addition, Air-Soar's flight plans can be de- 
composed into intermediate goals and concepts, 
such as desired turn-rates and accelerations. Such 
a hierarchical decomposition is a methodological 
choice that enables the system smoothly to inte- 
grate perceptions and various types of goals in 
order to generate appropriate actions. The hier- 
archical representation of goals also allows the 
flexible transfer of knowledge between flight plans 
when they share particular subgoals. Thus, Air- 
Soar can execute a wide variety of flight-plans 
with a relatively small but general knowledge 
base. The ability to handle a wide variety of 
situations comes from the dynamic, combinatoric 
combination of smaller pieces of more general 
knowledge. The ability to combine intermediate 
goals and actions obviates the need for a large 

number of specific, reactive rules. It also allows 
the system to respond flexibly to particular, unex- 
pected situations, where a single-level system 
might lack the appropriate specific rules. 

Given our choice of representation, the system 
requires a number of capabilities to carry out 
general flight plans: 
• Multiple levels 

The agent must achieve goals at multiple levels 
simultaneously. For example, during landing 
the plane must be brought down to zero alti- 
tude at a particular place (on the runway). 
These high level tasks must be achieved at the 
same time as lower level subtasks such as keep- 
ing the wings level and the descent-rate low. 

• Reasoning in different coordinate systems 
Reasoning about the plane must be done both 
in terms of world-centered coordinates, where 
the plane is considered to be a point in space, 
and in plane-centered coordinates, which are 
based on the plane's orientation (Fig. 3). Both 
are required as adjustments to the plane's con- 
trol surfaces result in changes to the orienta- 
tion of the plane which in turn lead to changes 
in the plane's motion. 

• Maintaining constraints 
The agent must achieve new goals while main- 
taining other constraints, for example main- 
taining the current heading during a climb to a 
new altitude, or maintaining a steady rate of 
descent while reducing air speed. 

• Responding in real time 
The agent must respond promptly to goal and 
constraint violations at each level of its hierar- 

World Centered 
Coordinates of Turn 

Plane Centered 
Coordinates 

Fig. 3. World-centered and Plane-centered coordinate sys- 
tems. 
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chy. High-level goals can be addressed rela- 
tively slowly, because they take some time to 
achieve in any event. In contrast, the lowest- 
level goals generally require immediate atten- 
tion and reaction, because quantities at this 
level change rapidly and failures can cause 
disastrous results (such as crashing the plane 
or large deviations from the flight plan). 

These capabilities together lead to a difficult 
control problem where the agent must reason 
about different classes of goals, across many lev- 
els while responding in real-time. The structure 
of the task makes it most natural to reason in a 
top-down fashion, such that high-level goals are 
always active and lower levels follow from them. 
Because higher level goals are active more of the 
time, violations of high-level constraints can be 
noticed immediately, whereas there might be a 
slight delay in noticing constraint violations at 
lower levels. Thus, response time increases as the 
granularity of the task decreases. 

Unfortunately, this is in direct contrast to the 
real-time demands of the task. As we have men- 
tioned, the time available to respond to a goal 
violation decreases as the granularity of the task 
decreases (see Fig. 4). For instance, climb-rate 
changes more rapidly than altitude, allowing more 
time for corrections to changes in altitude than 
for corrections of climb-rate. Thus, the system 
must be able to detect violations in climb-rate 
goals at least as quickly as it can detect violations 
in altitude goals. 

Our solution to this problem is to keep all 
levels of Air-Soar's goal hierarchy active simulta- 
neously. When new goals arrive from the flight 
plan, the system decomposes the problem into 
intermediate steps until it generates appropriate 

Largest 
Grain Size 

1 
Smallest 

Grain Size 

Time available for response 
to a problem at that level 

Fig, 4. Time for a reaction varies by level. 

actions to achieve (or maintain) all of its new 
goals. When goals are achieved, they stay in 
memory so they can be monitored continuously. 
Portions of the goals stack only get regenerated 
when new high-level goals appear, either in re- 
sponse to changes in the flight plan or changes in 
the status of higher goals. Because goals are 
active even when they are already achieved, viola- 
tions can be detected immediately, regardless of 
the level at which the violation occurs. In this 
manner, the system derives the benefits of a 
hierarchical planning and reasoning system, while 
also retaining the ability to react to all levels of 
goal violations in real time. 

4. Air-soar problem spaces 

Air-Soar controls the plane through the suc- 
cessive application of operators within a series of 
subgoals and problem spaces. For instance, when 
the goal is to reach a new altitude, an operator to 
do is selected in the highest level space. There is 
no output command Air-Soar can issue to the 
simulator to take the plane directly to the desired 
altitude, therefore an impasse occurs and a sub- 
goal is created of applying this operator. New 
knowledge can then be brought to bear on this 
subgoal, by using a different problem space. In 
this example, Air-Soar reasons that in order to 
gain altitude the plane's climb-rate must be in- 
creased. The operator that represents this still 
cannot be directly implemented as changes to the 
plane's control surfaces, so another impasse oc- 
curs and a further subgoal, is created to imple- 
ment the 'achieve new climb-rate' operator. 

This naturally gives rise to a hierarchical ap- 
proach to solving problems using a series of prob- 
lem spaces, each corresponding to a different 
level of granularity, as shown in Fig. 5. Air-Soar's 
problem spaces are: 
• Absolutes space 

In this space the agent reasons about absolute 
quantities such as heading, altitude and speed. 
Reasoning at this level (and in the rates and 
accelerations problem spaces) is in the world- 
centered coordinate system. Changes in abso- 
lute quantities cannot be achieved by simply 
setting the control surfaces to a specific posi- 
tion. It is therefore necessary to reason at 
lower levels until the goal can be directly 
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Fig. 5. Air-Soar's problem space hierarchy. 

achieved through movements of the control 
surfaces. 

• Ra te s  space 

This space deals with rates of change of the 
absolute quantities. For instance, if the abso- 
lute goal is to achieve a particular altitude 
then reasoning about an appropriate climb-rate 
would happen in this space. 

• Acce lera t ions  space 

This space deals with changes in rates such as 
changes in climb-rate and changes in turn-rate. 
This level of precision is required for certain 
tasks such as leveling off after a climb. In such 
a situation it is necessary to decide whether 
the current climb rate is constant at 0 (and 
therefore truly level) or whether it is changing. 
Without being able to reason at this level of 
detail, the plane tends to oscillate around a 
desired climb rate. 

• Or ien ta t ions  space 

To achieve the desired changes in the plane's 
motion, which are described in world-centered 
coordinates, the agent must switch to reason- 
ing within the plane-centered coordinate sys- 
tem (see Fig. 3). The mapping from plane 
orientations to changes in motion is complex; 

many possible changes in orientation may be 
used to achieve a particular change in the 
plane's motion. For example, to lose altitude 
the plane's pitch could be decreased (putting 
the nose down), the plane's roll could be in- 
creased (causing a loss of lift) or the throttle 
could be decreased (causing a loss of speed 
and hence lift). 

• Controls  space 

Finally, the desired orientation of the plane is 
achieved by changes to the control surfaces 
(elevator, ailerons, flaps, etc.). Operators at 
this level send stick commands to the flight 
simulator to alter the corresponding surfaces 
on the plane. 

As Air-Soar uses purely symbolic reasoning it 
employs a range of responses proportional to the 
size of the detected deviation. If the plane begins 
to dive rapidly the stick will be pulled back far- 
ther and faster than for a shallow dive. In the 
absolutes space only two classes of response are 
used (one when the goal is almost achieved and 
one when it is far from being achieved) while at 
lower levels more divisions are used, allowing the 
response to be scaled to match the deviation. 
These proportional responses reduce pressure on 
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the control system by allowing it to make one 
large correction rather than a number of small 
corrections. 

5. Goals 

The domain requires that Air-Soar actively 
monitor and pursue multiple goals. These may 
occur at the same hierarchical level, for example 
climbing and turning to a new heading, or be- 
tween levels, such as keeping the wings level (a 
goal within the orientations space) during a climb 
(a goal within the rates space). Each goal may 
start and finish independently of others (the cor- 
rect altitude may be reached before the desired 
heading) so the system must be able to deal with 
a dynamically changing set of goals at each level 
in the hierarchy. Air-Soar meets this requirement 
by allowing an operator simultaneously to pursue 
more than one goal within each level of the 
hierarchy. These goals may be removed and added 
independently, since they may be achieved at 
different times. 

Air-Soar supports two types of goals [4,8]: 
• Achievement Goals where the goal is to achieve 

a particular state. Examples include achieving 
a particular altitude, a certain level of pitch 
etc. 

• Homeostatic Goals (or 'maintenance goals') 
continuously maintain a constraint. Examples 

include maintaining altitude during a turn, or 
keeping a steady rate of descent during a dive. 

Air-Soar represents both types of goals in exactly 
the same way, allowing the system to reason 
about them with the same knowledge. For exam- 
ple, climbing to a new altitude (an achievement 
goal) and then maintaining that altitude (a home- 
ostatic goal). Each goal is represented as a target 
value for a given flight parameter and an accept- 
able range. Air-Soar only reacts when values fall 
out of this range. Thus, whenever the current 
value is within the acceptable range a goal can be 
considered homeostatic. As soon as the value 
moves outside the range it becomes an achieve- 
ment goal. Within the system, goals are not 
marked as being homeostatic or achievement 
goals, and any transitions between the two types 
are implicit. 

5.1. Example of  goals 

To illustrate the way that different types of 
goals interact, consider an example of a plane 
initially flying due north (heading 0 degrees) at 
15,000 feet and attempting to turn west (heading 
90 degrees). The goals of the system are shown in 
Fig. 6, which for simplicity only shows informa- 
tion from the top two spaces. Achievement goals 
are in italics while homeostatic goals are in the 
regular typeface. 

The first frame shows the initial situation with 

Homeostatic Goals : Normal 
Achievement Goals : Italics 

Fig. 6. Example of interacting goals. 
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Fig. 7. Reacting to the violation of a top-level constraint. 

a series of homeostatic goals for heading, alti- 
tude, turn-rate and climb-rate. Initially all of the 
goals are satisfied. In the second frame Air-Soar 
makes the decision to turn to a new heading. The 
new heading goal is not satisfied so the system 
responds in an attempt to achieve it. Air-Soar 
updates the desired turn-rate to 1 degree/sec,  
which in turn is not currently achieved (as shown 
in the third frame). Air-Soar continues down the 
goal hierarchy until it can make a change to the 
plane's control surfaces. The final frame repre- 
sents the situation once the desired turn rate has 
been achieved. At this point the goal for turn rate 
conceptually becomes a homeostatic goal rather 
than an achievement goal (but notice that no 
modification is actually required to the data 
structure). 

6. Multi-level reactivity 

Typically many or even all of Air-Soar's levels 
are active simultaneously, trying to maintain or 
achieve their goals. The hierarchical structure 
and uniform representation of achievement and 
homeostatic goals supports reactive behavior at 
multiple levels of granularity. The reasoning 
method used to achieve a goal initially is also 
used to react to a goal with violated homeostatic 
bounds. The effects of reacting at any given level 
propagate down to the controls problem space, 
which ultimately results in commands being is- 
sued to the simulator. 

Sensitivity at different grain sizes means that 
Air-Soar is able to respond to unexpected events 
at the level where the deviation is first noticed, 
without having to wait for changes to reach higher 

Fig. 8. Reacting to the violation of a lower-level constraint directly. 
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Fig. 9. Trace of satisfied goals during a flight. 

levels. Although the system reasons 'top down' it 
does not have to return to the top level in order 
to react to lower level problems. Consider an 
example (shown in Fig. 7) where, after complet- 
ing a climb, the plane is not perfectly level caus- 
ing the altitude to continue to change slowly. 
Although the rate of climb is slow (and within the 
bounds), after a while (frame 2) Air-Soar notices 
the altitude is no longer within range and de- 
scends to correct it (frame 3). 

In this case, the reasoning proceeds from the 
top level. Consider next the case, shown in Fig. 8. 
Again Air-Soar is trying to maintain a constant 
altitude of 15,000 feet. If a sudden downdraft hits 
the plane causing a steep dive, as shown in frame 

2, the climb-rate goal is immediately violated and 
Air-Soar reacts to the sudden change in rate 
directly, before the altitude changes enough to be 
noticed (see frame 3). 

An example of this behavior taken from an 
actual simulation run is shown in Fig. 9. Each 
point on the figure represents a satisfied goal 
(within one of the top three problem spaces). 
When there is no point, it indicates that the goal 
was not achieved at that moment. During Phase I 
the plane is rolling down the runway and gaining 
speed until it reaches take-off speed (indicated by 
the goal in the Absolutes space being achieved). 
At this point, the flight plan changes the goal to 
fly to an altitude of 600 feet. In Phase II (as the 

West 60o' 
Land West 1200' 

East 800' Land 

Runway 2 

North 
1200' 

East 600' 

Fig. 10. Circular flight plan for Air-Soar. 
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plane is climbing) Air-Soar tries to maintain a 
target climb-rate, as shown by the goal in the 
Rates space. This shows Air-Soar attempting to 
achieve a new high level goal (the altitude of 600 
feet) while maintaining a homeostatic goal of the 
correct climb-rate. In the third phase Air-Soar 
reaches the target altitude at which point turbu- 
lence is simulated by putting the plane into an 
unexpected dive. As the figure shows Air-Soar 
corrects the change in climb-rate directly, without 
allowing the plane to violate its homeostatic alti- 
tude goal. 

The multi-level nature of reactive control in 
Air-Soar stands in contrast to single level ap- 
proaches, such as reactive planning in Pengi [1], 
and reinforcement based approaches (e.g., [12]). 
Soar's integrated approach to reactive, hierarchi- 
cal planning and execution also differs from ap- 
proaches in which planner and executor are sepa- 
rated into different modules (e.g., [6,5,3]). In Soar, 
'planning' knowledge (such as knowledge about 
internal simulation) and 'execution' knowledge 
(knowledge about how to select and carry out 
operators in the face of a changing environment) 
exist within a single architecture, allowing them 
to combine dynamically as needed. Air-Soar af- 
fords the possibility of dynamically creating dif- 
ferent problem space hierarchies in response to 
the demands of particular tasks. This capability 
differs from methods that employ a static hierar- 
chy of levels (e.g. [2]). 

7. Performance and evaluation 

One of Air-Soar's flight plans involves flying a 
circular path between two runways (taking about 
30 minutes) as shown in Fig. 10. This includes a 

take-off, climbing to specified altitudes and turn- 
ing to specified headings, searching for the next 
runway (which is at a known location on the 
ground) and landing. It then repeats the pattern 
endlessly. In order to land successfully, Air-Soar 
must line up with the runway, achieve a steady 
descent without allowing the plane to roll, and 
touch down with a low air-speed. Air-Soar has 
proved to be robust in normal flight even at very 
low altitudes (under 1000 feet) and is able to 
achieve stable flight within tightly constrained 
limits (e.g. achieving altitude to the nearest 100 
feet and headings to the nearest 5 degrees), all in 
real time. Air-Soar routinely lands the plane suc- 
cessfully, and then immediately opens the throttle 
fully and takes off to complete another circuit, 
allowing the system to fly for a number of hours 
without the plane crashing or getting lost. We 
believe, although we have have not yet confirmed 
this, that the plane only crashes eventually as a 
result of particularly long network delays or inter- 
ruptions to the Air-Soar process produced by 
swapping virtual memory. 

To evaluate the effectiveness of the multi-level 
reactivity approach an alternative system was de- 
veloped using a different reactive strategy. In this 
system, which we will call 'top-goal', each time it 
detects a constraint violation, the system reasons 
from the top-level goal, proceeding through each 
level in the hierarchy, and then issuing a com- 
mand. This is similar to a system reasoning about 
each goal in turn, and is in contrast to Air-Soar's 
multi-level approach, which only reasons from 
the level of the violation down to the stick com- 
mands. 

The two systems and a human, with experience 
of flying on the simulator, were first compared 
over the course of five circuits and judged on the 

[]  Top-goal 

• Air-Soar 

[ ]  Human 
Pilot 

50000 "I" 4oooo| 
3ooooI , • Air-soar 

20000 / [ ]  Human 
 ooo:  L 

Fig. 11. Relative performance of Air-Soar and replanning approach. 
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quality of landings (based on factors such as 
distance from the center-line of the runway, 
amount of roll and speed of descent), and total 
number of stick movements, giving a measure of 
the quality of control during the flight (more 
movements indicating worse control). The results 
are shown in Fig. 11. The quality of Air-Soar's 
landings, based on the SGI Flight Simulator's 
evaluation system, averages more than 4 times 
that of the replanning approach, while requiring 
only about a third of the stick movements. This 
results from 'top-goal' unnecessarily repeating 
reasoning at higher levels, which Air-Soar avoids, 
allowing it to react faster and therefore maintain 
better control of the plane, both when achieving 
new goals and maintaining existing ones. Air- 
Soar's landings are only slightly worse than the 
human pilot and required fewer stick movements. 
This is because the human pilot flies the plane in 
a less stable manner, using steeper changes in 
altitude and faster turns than Air-Soar. This 
means more stick movements are needed to 
maintain control, but higher performance can be 
achieved. 

To further evaluate Air-Soar we compared its 
ability to respond to simulated 'turbulence' to the 
alternate system and the human pilot. This was 
done by manually moving the mouse controlling 
the plane's stick a measured distance while Air- 
Soar was controlling the plane, putting the plane 
into unexpected dives, turns etc. 

First the turbulence was introduced during a 
climb, once the plane had reached a particular 
altitude, (forcing the plane to turn and dive). In a 
second trial, the same turbulence was introduced 
during a turn (forcing the plane to dive and turn 

in the opposite direction). In the first case, the 
time was measured for the system (or pilot) to 
return the plane to the correct course and alti- 
tude. In the second case, the time for the plane 
to return to the original turn. The results, aver- 
aged over five runs, are shown in Fig. 12. In both 
cases Air-Soar performed substantially better 
than the alternative reactive system. Air-Soar's 
multi-level reactive behavior allows it to respond 
more quickly when goals at any level are violated. 
The human pilot's performance is better than 
either reactive system as the pilot can maintain 
control of the plane while performing faster turns 
and steeper climbs to correct for the turbulence. 
Air-Soar's performance is more superior in the 
turning case than the climbing case, because this 
is an inherently more unstable situation for the 
plane, so speed of response is particularly impor- 
tant to avoid losing control of the plane. 

8. Conclusions and future work 

The domain of flight is highly dynamic and 
unpredictable. Achieving intelligent control in the 
domain involves reasoning and reacting at multi- 
ple levels of granularity, within multiple coordi- 
nate frames, both to maintain and achieve multi- 
ple simultaneous constraints in real time. We 
have presented a technique for achieving this 
control by employing symbolic reasoning within a 
hierarchy of simultaneously active problem 
spaces. The technique is embodied in Air-Soar, a 
system built within the Soar architecture that 
controls the flight of a Cessna in the SGI flight 
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Fig. 12. Time to recover from simulated turbulence. 
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simulator. Air-Soar's hierarchy of problem spaces 
allows it to react to changes in instrument mea- 
surements at the proper level of granularity; for 
instance, responding to a drastic fall in climb-rate 
directly, without having to wait for this change to 
affect the plane's altitude significantly. By using a 
uniform representation scheme for goals, Air-Soar 
can smoothly integrate both homeostatic and 
achievable goals. The system's performance dur- 
ing regular flight, in response to turbulence, and 
in landing is comparable to that of experienced 
humans. 

Three main areas in which this work can be 
extended are control, planning, and learning. 
First, the system's control ability is limited be- 
cause it only knows a single mapping between 
problem spaces in its hierarchy. For instance, if 
the goal in the highest space (absolutes space) is 
to achieve a lower altitude, Air-Soar always at- 
tempts to decrease the plane's pitch, which in 
turn is always achieved by pushing forward on the 
stick. Alternative ways to reduce altitude, such as 
decreasing thrust or increasing the plane's roll, 
and alternative ways to decrease pitch, such as by 
lowering the flaps, are not currently considered. 

Second, Air-Soar currently performs a pre-de- 
termined flight pattern. We have already inte- 
grated Air-Soar with a system that generates tac- 
tical flight plans for air combat [7], and we intend 
to build a more general mission planning capabil- 
ity, allowing the system to produce its own flight 
patterns from high-level specifications. Flight 
plans are represented as a series of local deci- 
sions rather than a single monolithic plan, allow- 
ing them to be integrated into the reactive hierar- 
chy. If an unexpected event occurs, driving the 
plane away from its original plan, the reactive 
component returns the plane to the intended 
path, allowing the plan to continue once the next 
local decision point is reached. 

Third, there are many opportunities for learn- 
ing in the flight domain. We have experimented 
with a type of speedup learning, in which Air-Soar 
learns to alter control surfaces directly in re- 
sponse to higher level goals. For example, the 
system might learn to pull back on the stick to 
increase altitude, allowing it to bypass the inter- 
mediate levels of reasoning that led to this result. 
This occurs through Soar's general learning 
mechanism, chunking (a form of explanation- 
based learning [10,11]). It increases the reaction 

speed of the system slightly; in essence, over time 
it selectively compiles portions of Air-Soar's 
knowledge into single-level reactive rules. 

In addition to speedup learning, which makes 
Air-Soar's reactions quicker, we plan to incorpo- 
rate learning to anticipate the effects of actions in 
the environment. For instance, when performing 
a banked turn a plane has the tendency to lose 
altitude, because lift from the wings is reduced. 
Air-Soar can react to this altitude loss; but expe- 
rienced pilots are able to anticipate and compen- 
sate for it before it happens. Learning to antici- 
pate involves extending (and possibly altering) the 
system's domain knowledge within the various 
problem spaces. 

Beyond anticipation knowledge, a pilot learns 
to expand the range of possible responses that 
are available in different situations. Earlier, we 
mentioned the limitation of Air-Soar's single 
mapping between problem spaces. This limitation 
could be overcome by learning mappings for a 
variety of responses. Such learning could occur 
through deliberate experimentation in the envi- 
ronment, or by reading textbooks or receiving 
tutorial instruction. One important advantage of 
Air-Soar's fully symbolic approach to control is 
that all of the agent's control structures take the 
form of knowledge that is open to both well- 
known and experimental symbolic learning algo- 
rithms. 
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