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Figure 17: Locus of intersection points of two circles, one �xed and one variable. The �xed circle
is the one with center (a; b); the variable one is with center (r; c) and radius (r2 + c2)1=2 and r is
allowed to vary (that is all circles in this family pass through the same two points on the y-axis).
The family of lines through the intersection points of the two circles are concurrent.
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Figure 16: The case of two points and a circle. The Voronoi vertex V can lie at the end-point of
VC(S1; S2; S3) (solid line in the picture) which is nearest to S2; S3 (left), or at the one which is
farthest from S2; S3 (right).

Consider the point p1 obtained in the �rst iteration, which by de�nition lies on the line segment
VC(S1; S2; S3). To show fpig ! V , it su�ces to show that p2 lies in the segment p1V (if p2 = p1,
then p1 = V ).

We show this with the following argument. Let Ci and ri, as before, denote the Voronoi circle
and its radius in the ith iteration (see Figure 16). Let Ci intersect S1 at ti; ui (one of these is the
point on S1 closest to pi�1). Let ti; ui divide S1 into two arcs termed the interior arc wrt Ci and
exterior arc wrt Ci.

Let �C(t) denote the polar angle of point t on circle C. In the following � stands for �S1 . Below,
we �rst show that the signs of the two quantities �(ti) � �(ti+1) and �(ui) � �(ui+1) are opposite
for all i (and converging to the limit they both converge to zero). This implies that both ti+1; ui+1
lie in the interior arc wrt Ci. To complete the argument simply observe that the interior arc wrt Ci

has to properly include that wrt Ci+1 (this is because the pi are all on a line segment and therefore
to \one side" of the circle).

Finally, we show that the signs of �(ti) � �(ti+1) and �(ui) � �(ui+1) are opposite. Consider
the intersections of a generic circle with center (a; b) and radius R and another with center (r; c)
and radius

p
r2 + c2, for varying r (see Figure 17). It is easily seen that these intersection points

t(r); u(r) (if they exist) lie on the line (for a given r)

y =
r � a

b� c
x+

a2 + b2 �R2

2b� 2c
:

Now as r varies, notice that the family of lines passes through the �xed point (0; a
2+b2�R2

2b�2c ).

Moreover, the slope of lines ( r�ab�c ) varies linearly with r. By considering the intersections of lines
passing through a �xed point with a circle, the desired property on the polar angles follows at once.
2

Remark: The proof goes through roughly as already presented for S1 being any �nite convex object
instead of being restricted to a circle.
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Cd(S1; S2)

Figure 15: S1 is a circle and S2; S3 are two point objects. The locus of the circle centers
VC(S1; S2; S3) is a segment taken from the perpendicular bisector of points S2; S3. At one end point
of this segment lies the Voronoi vertex V . The non-intersecting curves Cd(S1; S2) and CD(S1; S2)
partition the plane into the sets R1; R2 including S1; S2, respectively, and RM(S1; S2), the \middle"
region.

Let VC(S1; S2; S3) denote the locus of circle centers, i.e., the centers of circles that pass through
all possible triplets of points taken from S1; S2; S3.

In the case of two points and a line (in general position), the locus of circle centers VC(S1; S2; S3)
coincides with bis(S2; S3)nV+V�. However, in the present case in which S1 is a circle, we �rst show
that VC(S1; S2; S3) is a segment (a subset of bis(S2; S3)) and that V lies at one end-point of this
segment.

Towards this end, de�ne dist(p; S) to be the (Euclidean) distance from point p to the nearest
point on S; and Dist(p; S), the distance from p to the farthest point on S. Notice that these two
distance measures coincide if (and only if) S is a single point.

Now consider the locus of points p that satisfy dist(p; S1) = dist(p; S2); and likewise the locus
of points for Dist(p; S1) = Dist(p; S2). Call the two curves formed be Cd(S1; S2); CD(S1; S2),
respectively. Cd(S1; S2) is the same as bis(S1; S2). See Figure 15 for an example.

The open curves Cd(S1; S2); CD(S1; S2) clearly do not intersect (unless both S1; S2 are points,
in which case they are coincident) and therefore separate the plane into three unbounded regions
R1; R2; RM(S1; S2), where R2 is the region farthest from S1, R1, the region farthest from S2; and
RM(S1; S2), the \middle" region. The property of any point in R1 is that it is closer to every point
(or the farthest) in S1 than to any (or the nearest) point in S2. Likewise for R2. On the other
hand, points q in RM(S1; S2) satisfy the property that there exist points q1 2 S1, q2 2 S2 such that
dist(p; q1) = dist(q; q2).

From this last property of points in RM , it is clear that

VC(S1; S2; S3) � \i;j2f1;2;3g;i6=jRM(Si; Sj): (6)

For our case of a circle and two points, RM(S2; S3) = bis(S2; S3), and from (6) VC(S1; S2; S3) �
RM(S2; S3) \ RM(S1; S2). Therefore, VC(S1; S2; S3) is a line segment. To see that V lies at one
end-point of this line segment RM(S2; S3) \RM(S1; S2), notice that V is the intersection point of
RM(S2; S3) = bis(S2; S3) and Cd(S1; S2) = bis(S1; S2) which is a bounding curve of RM(S1; S2).
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Unfortunately, in extending this to the case c 6= 0, we get one factor that appears quite unwieldy.
Therefore we choose a di�erent approach. Let the x-coordinates of the Voronoi vertices, V�; V+, be
X�; X+ respectively. We show below that the sequence fxig converges to one of X+; X� depending
on x1. This is su�cient because the nearest point from pi on S1 is (xi; 0), fully de�ned by pi's x-
coordinate.

Let XM = max(X+; X�) and Xm = min(X+; X�). We show that fxig ! XM if x1 >
X++X�

2
=

ac=(a � b). A similar proof holds for showing fxig ! Xm if x1 < ac=(a � b). (The case of
x1 = ac=(a � b) leads to x2 being �1 and then onwards x2 may replace x1 in the following
analysis).

The proof that fxig ! XM if x1 > ac=(a� b) follows from the following propositions:

1. x2 > XM .

2. If x1 > XM then x2 < x1.

Proof. First consider x2 in terms of x1:

x2 =
a2b� ac2 � ab2 + ax21 � bx21

�2 ca+ 2 x1a� 2 x1b
: (5)

It can be easily veri�ed that the only solutions (for x1) to x2 = x1 occur at the x-coordinates
of the Voronoi vertices, i.e., at x1 = XM ; Xm. Further simple algebra shows that x2 < x1 in the
intervals x1 2 (Xm; ac=(a� b))[ (XM ;+1) and x2 > x1 when x1 2 (�1; Xm)[ (ac=(a� b); XM)
(as mentioned before, x1 = ac=(a� b) is a singularity).

This proves 2. To see 1, �rst assume XM = X+ (this is exactly when a > b) and consider solu-
tions to x2 = XM for x1. Working out the algebra shows that this quadratic equation has a double
root at x1 = XM and that for all x1 6= XM , x2 > XM . A similar proof holds for XM = X�.

Remark: The key to this solution was the fact that it was su�cient to consider x-coordinates alone
and the simple expression for x2 in terms of x1 (or in general any xi+1 in terms of xi). Unfortunately,
such expressions do not exist for other simple situations such as a circle and two points. However,
this proof can be extended to the case of a line segment and two points by further case analysis.

A.2 Case of Two Points and One Circle

In this section we consider S1 being a circle and S2; S3 being points (as before) outside the circle.
As long as the two points are visible from each other, a Voronoi vertex exists and is unique. Assume
S2; S3 are visible from each other and let the Voronoi vertex be V .

For the unit circle, and two point objects (a; 0) and (c; b), if (xn; yn) denotes the current point,
then

xn+1 =
bD(a2 � 1) + yn(c2 + b2 � a2)

2 (�xnb+ (c� a)yn + abD)

yn+1 =
cD(1� a2) + aD(c2 + b2 � 1) + xn(a

2 � b2 � c2)

2 (�xnb+ (c� a)yn + abD)

where D =
p
x2n + y2n. Since the explicit algebraic mapping is quite involved,3 we resort to a

geometric proof.

3The algebraic expressions for xn+1 and yn+1 get far more complicated for say two circles and a point, two circles
and a line, or three circles.
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Figure 14: Proving convergence for the case of two point objects and a line. Two Voronoi vertices,
shown as V+ and V�, can exist with de�nite regions of convergence. The proof is simpli�ed by
considering x-coordinates alone. If the initial seed point p0 has its x-coordinate greater (less) than
ac=(a� b) then the convergence is to V+ (V�). If the x-coordinate is exactly ac=(a� b), p1 is one
of two in�nities in opposite directions; the convergence depends on the direction chosen.

2. If a 6= b (and none equals zero)2 then two Voronoi vertices exist:

V� =

 
ac�p�
a� b

;
Poly(a; b; c)� p

�

(a� b)2

!
;

V+ =

 
ac+

p
�

a� b
;
Poly(a; b; c)+

p
�

(a� b)2

!
:

where � = ab(c2+ (a� b)2) (and Poly(a; b; c) is a polynomial in (a; b; c)).

Observe that the solutions are real if and only if ab > 0 (that is, if and only if S2 is 'visible'
from S3).

The second case of a 6= b is more general and is therefore considered in the rest of this section. We
also assume ab > 0. The proof is algebraic in nature and we are indebted to the Computer Algebra
system Maple V for saving us many frustrating hours.

Let point pi in the sequence fpig have coordinates (xi; yi), de�ne a Voronoi circle Ci of radius
ri.

We �rst give a simple \one-line" proof for the case c = 0. Consider the di�erence r21 � r22 and
its factorization:

r21 � r22 =

�
3 ab+ x21

� �
ab+ 3 x21

� �
ab� x21

�2
16 x2

1

�
ab+ x2

1

�2 :

Su�ces to observe that this is strictly > 0 (since ab > 0).

2none equal zero by the non-intersecting obstacles assumption. If exactly one of them equals zero, then exactly
one (real) Voronoi vertex exists.
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A Special cases

In this section we consider the case in which two of the objects are points. Although this is the
simplest deviation from the trivial case of three point objects, we �nd that the proofs of convergence
are not trivial. We consider two points and one line �rst in Section A.1 and then two points and
a circle in Section A.2. The latter can be extended to proving the general case of two points and
any third object.

A.1 Case of Two Points and One Line

In this section we prove convergence to a Voronoi vertex for the case of S1 being an in�nite line
and S2; S3 being single points (see Figure 14).

Without loss of generality, we assume S1 to be the x-axis and S2 = (0; a); S3 = (c; b), and S2; S3
di�erent (actually, this follows from our earlier assumption that no two of the obstacles intersect).
The following may be readily veri�ed and require no proof.

1. If a = b 6= 0 then only one Voronoi vertex exists: (c=2; (c2+ 4a2)=(8a).
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vertex, for some su�ciently small ". However, in practice we observed that the region of conver-
gence is much larger that this conservative "-neighborhood and in a relatively few number of trials
(between one and four), one always secured a hit.

The second part of our work dealt with implementing our ideas into an e�cient motion planner
for a planar robot with two degrees of freedom. We introduced suitable strategies to pick up triples
of obstacles in a complex scene that are likely to de�ne a Voronoi vertex, and discussed how to
capture the connectivity of the diagram and use it for path planning and navigation purposes. We
have assumed that the obstacles are modeled as polygonal objects for the implementations. This
is only because we do not yet have routines that return closest points on curved objects; a problem
that we hope to overcome in the future. Finally, we believe our implementation can be e�ciently
parallelized. Rather than sequentially running a �xed number of iterations from a single seed point,
we can pick a su�ciently large (depending on the required probability of success) number of seed
points and execute iterations on them in parallel. This also has an advantage that we do not have
to detect oscillations necessarily. If convergence isn't achieved from a seed point, we simply ignore
it. The Linda computational framework [7] seems to be the natural testbed to implement a parallel
version of our technique in which the search for vertices is executed by a number of processes in
parallel.

We plan to extend these ideas to con�guration spaces in higher dimensions. In doing this, we
expect other complications and interesting problems. In all our experiments with objects in the
plane, we experienced only the cases of convergence to a point (possibly at in�nity) or oscillation
of some �nite period, that is, well behaved and predictable behavior of the sequence fpig. Chaotic
behavior or curves with fractal dimension and strange attractors such as the attractor of H�enon1

were never observed. A general proof that chaos is impossible for our scheme in the planar case
would be di�cult; the map pi 7! pi+1 appears quite complicated except for the simplest of cases.
We analyze some special cases in the appendix.

Apart from the obvious reasons (curiosity, extension, more application to robotics) for studying
the behavior of our mapping in higher dimensions, there is another one: it might be easier to �nd
an example of chaotic behavior in higher dimensions. In d dimensions a Voronoi vertex is de�ned
by d + 1 objects; the new point will be the center of the circumhypersphere of the d + 1 points
on the objects nearest to the current point. Chaotic behavior and strange attractors are more the
rule than the exception in anything but the simplest of systems and it would be very interesting to
detect the presence or prove the absence of chaos in our system.
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for a 2 (3:6; 4); x0 = 1=25. The attractor of H�enon can be given by (xn+1; yn+1) = (yn � ax2

n
� 1; bxn); a = 7=5; b =

3=10; x0 = y0 = 0. For a gentle introduction, see [13]. For more than that, see [25].
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earlier trials; only 4% of the trials add to the existing knowledge of the environment. This could
be improved by changing the way in which starting points for the sequences fpig are chosen, e.g.,
we could `trace' the diagram instead of picking random points. It is our feeling that this would
dramatically increase the performance of our algorithm.

5 Discussion and Future Work

In this paper we have presented a simple iterative technique to seek Voronoi vertices of a set
of planar objects while being restricted to performing only nearest point queries on the objects.
Beginning at a random seed point, we query for the three nearest points on di�erent obstacles and
jump to the center of their circumcircle and repeat. Within a few iterations, this process usually
converges towards the desired Voronoi vertex. The spirit of this type of solution { make a random
initial guess, perform some computation which gives a re�ned guess, and reiterate { will be familiar
to puzzle solvers. A well-known puzzle is the following. We are given a self-referential sentence of
the form

\In this sentence, the number of occurrences of `a' is , of `b' is , : , of `z' is ."

and the desired solution is a 26-tuple of positive integers that makes the sentence true. A simple,
intuitive, and robust method to solve these genre of puzzles (works for most sentences in any
language) is to simply guess at random a 26-tuple, say twenty six ones, and plug it in to get the
(false) sentence: \In this sentence, the number of occurrences of `a' is one, of `b' is one, : : :, of
`z' is one." Now count the number of a's, b's, and so on in this false sentence; this becomes the
re�ned 26-tuple. Repeat this for a few iterations, and more often than not, you will arrive at a
stable solution (there may be several): a self-documenting sentence. Hofstadter calls this process
Robinsonizing after the logician Raphael Robinson [13].

The underlying space of 26-tuples being discrete, the exact solution is achieved in the case of
the puzzle. This is sometimes true in our Voronoi vertex-�nding technique as well; for instance,
when the Voronoi vertex is de�ned by points on convex objects where the tangent is not de�ned
(like vertices of polygons) we achieve it exactly. Otherwise, when the Voronoi vertex is de�ned by
smooth object boundaries, we achieve convergence: we get closer and closer to the Voronoi vertex
without actually reaching it. As an example, the Voronoi vertex in Figure 5, is achieved exactly
from a suitable seed point in its vicinity; however, for that in Figure 1, we achieve only convergence
(the Voronoi vertex is de�ned by interiors of the line segments). An open problem in this context
is to study rates of convergence.

We do not always achieve convergence to a Voronoi vertex from any seed point. We de�ned the
region of convergence of a Voronoi vertex to be the set of seed points that lead to convergence to
that vertex. When the initial random guess is outside the region of convergence, our technique was
observed to lead to oscillations with some �nite period. We present some geometric conditions when
each of convergence/oscillation occurs. We do not yet have simultaneously necessary and su�cient
conditions for convergence. In other words, we have not yet been able to precisely characterize
regions of convergence which we believe to be an interesting open problem.

In case the initial seed point misses the region of convergence (sequence oscillates), a di�erent
seed point is required for convergence. We showed that the region of convergence is of non-zero
measure proving the probabilistic completeness of our technique: the probability of missing the
region of convergence in N random tries decreases exponentially with N , if a Voronoi vertex exists.
We proved this by showing that the region of convergence included an "-ball around the Voronoi
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Figure 13: (a) There are a number of possible paths from the top left to the bottom right, of
which our algorithm �nds a relatively short one. The data structure consists of only 37 vertices
and 62 via-points and is computed in 2.54 seconds on average. (b) This scene is relatively di�cult
for Voronoi-based approaches because of the large number of obstacles. The data structure is again
very compact and comprises only 105 vertices and 168 via-points. Due to the ine�cient way of
picking starting points however, our algorithm takes 24.14 seconds to solve this scene. We believe
that this can be improved dramatically by choosing a better strategy.

rectangular robot having to pass through a narrow corridor in order to reach the goal con�guration.
The scene, together with our network representation of (part of) the Voronoi diagram and a path
for the robot, is shown in Figure 12. The safe edges in the network are drawn as solid lines, whereas
the unknown edges are dotted. Notice that only part of the Voronoi diagram, which is su�cient to
solve the posed problem, is built up. The resulting path for the robot was computed in an average
time of 1.21 seconds, taken over 20 runs of the program.

We compared our method with the others mentioned above and observed a comparable perfor-
mance in timings. Our approach also usually resulted in a more compact network. We discuss a
couple of more scenes now.

The second consists of a number of parallel rectangles with little room for the robot to move
between them; see Figure 13(a). The experiments again indicate that the data structure from our
approach is smaller, while the running time is competitive to the other approaches.

In the third and last scene, a triangular robot moves from the bottom left to the top right amidst
a large number of small obstacles. This scene is relatively di�cult for Voronoi-based approaches
because of the complexity of the Voronoi diagram. The running time of our algorithm re
ects this
complexity, by taking 24.14 seconds on average to compute a network of 105 vertices and 168 via-
points, while the random motion planner and the approximated diagram performed in about a third
of that time. Our approach still produces a more succinct network; the degrade of performance is
because of repetitive labor: we observed from experiments that in cluttered scenes almost 96% of
the trials (starting from a random point) result in Voronoi vertices which were already found in
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Figure 12: The robot (a tiny square) has to pass through a narrow corridor to move from the left
side of the scene to the right side. Our algorithm solves this problem through a network consisting
of 11 vertices and 20 via-points, which is built up in 1.21 seconds on average.

implies that collision detection must be performed only for those \unknown" edges which actually
participate in a candidate path. Inferring the presence of an edge while deferring its evaluation is
very convenient, as the latter requires the computation of the via point: the impact on the global
performance is relevant.

4.3 Experimental Results

A motion planner for planar robots based on the method described in the previous sections has
been implemented in C++ on a Silicon Graphics Indigo workstation, which is based on an R3000
processor clocked at 33 MHz and rated with 24.2 SPECfp92 and 22.4 SPECint92. The program
implements the computation of Voronoi vertices, the incremental construction of the graph G, and
the search for a collision-free path on the diagram. The source code consists of approximately
2000 lines, 25% of which implement our algorithm, while the rest is devoted to managing the
graphical interface and handling user interaction.

Testing has been based on a set of several representative scenes, each of which have their own
peculiarities. We compared the performance of our algorithm to other methods by running two
existing motion planning algorithms, which we now brie
y outline, on the same test scenes. The
�rst approach, called the approximated Voronoi diagram approach [28], constructs a network of cells
which approximates the con�guration space Voronoi diagram. It subdivides the con�guration space
into primitive cells, and recursively subdivides the cells that are intersected by the Voronoi diagram.
This method combines the advantages of a Voronoi-based approach (completeness, high clearance)
with fast execution speed. The second algorithm to which we compare our method is the motion
planning approach developed by Overmars [24] called the random motion planner , which builds up
a network of nodes in the con�guration space by connecting randomly chosen con�gurations of the
robot using a simple local planner. The resulting algorithm turns out to be generally applicable
and very e�cient in terms of running time. Both these methods have been implemented on the
same architecture as our method, which facilitates a fair comparison.

We now present experimental results for three of the test scenes. The �rst scene consists of a
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Figure 11: Connecting Voronoi vertices through their via points.

to the via point of obstacles A;B, we begin the iteration with q0 = v. When at qi, we obtain
the points on A;B closest to qi, and set qi+1 as their midpoint. It can be shown easily that this
sequence converges to the via point of A;B.

Via points help to precisely delimit the portion of the Voronoi diagram which is in
uenced
by a given vertex, and this makes it possible to incrementally assemble the complete diagram by
appropriately joining suitable sub-diagrams.

De�nition 4.1 Let the Voronoi vertex v be given, and p1; p2; p3 denote the associated via points.
The portion of the Voronoi diagram V relative to v, denoted as Vv, is de�ned as

Vv =
[

i=1;2;3

dvwi

where dvwi denotes the portion of the Voronoi diagram between points v; wi that lie on the Voronoi
diagram, and wi = pi if no other Voronoi vertex v0 lies on dvpi, wi = v0 else.

Consider now the two Voronoi vertices v and v0 which are adjacent in V , and let cvv0 = bis(A;B)\
V be the Voronoi edge connecting them. Consider the set S of all via points which belong to cvv0.
Assume that S is not empty, and let p and p0 be the via points associated to v and v0, respectively,
and lying on cvv0. Only two cases are then possible, namely either S is a singleton and therefore
p = p0, or S contains an in�nite number of elements, the points of the line segment pp0 � cvv0. The
two cases are depicted in Figure 11, left and right, respectively.

The complete diagram can be incrementally obtained by appropriately joining the sub-diagrams
corresponding to the portions relative to di�erent vertices. If part of the Voronoi diagram V has
been computed, and the portion Vv relative to a new vertex v must be added, it is then su�cient
to keep track of the via points found so far and of their de�ning obstacle pairs to correctly join Vv
to V .

Our implementation builds a graph G which captures the connectivity of the Voronoi diagram,
but di�ers from V in some regards for computational e�ciency. Nodes in G (vertices or via points)
correspond to points of V , but edges in G do not always represent edges in V : The presence of an
edge in G only indicates a possible motion for the robot between its end nodes. This deviation from
edges in V is motivated by the attempt to minimize the number of edges which must be checked for
collision although they might not appear in the path which is returned as result of the computation.

It is desirable to be able to infer the presence of as many edges as possible, delaying the check
for the safety of the corresponding path segments (\edge evaluation") as long as possible. This
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Figure 10: A Voronoi vertex and the three associated via points.

the triple-seed pair (T 0; v) in place of (T ; p). However, this could lead to triple-seed cycles: (T 0; v)
could lead back to (T ; p) eventually. If cycles are detected, a random p is chosen again.

All computations involved in determining a Voronoi vertex for a given candidate triple, except
for the occasional computation of nearest triples (twice for a random p, once otherwise), is performed
with local information only (independent of n) making the technique very e�cient. The only
geometric computations required throughout are that of nearest point queries (function �) and
their Voronoi vertex (function 
).

The approximation of the Voronoi vertex for triple T and with seed p0 = p as pi = (
 ��)i(p0),
i = 0; 1; : : :, can be terminated when pi and pi+1 are \su�ciently close," i.e., are at most some
chosen parameter � apart. It has been observed in practice that when convergence occurs, it is very
fast: distances d(pi; pi+1) start decreasing after a couple of iterations (�ve at most) and between
ten and �fteen iterations, d(pi; pi+1) is less than � = 10�6. This observation can be used to detect
oscillations of the sequence fpig; if it does not converge for a relatively large number of iterations (50
in our implementation just playing it very safe) we assume that oscillations have set in. However,
even if we falsely conclude oscillations (in case of extremely slow convergence), the completeness of
our method (Theorem 3.1) is not a�ected.

4.2 Incremental Construction of the Diagram

In this section we show how to incrementally infer the topology of the Voronoi diagram of the
obstacles.

To perform path planning, we build up a connectivity structure (graph) G around the Voronoi
vertices. The graph is computed by incremental construction: for every Voronoi vertex v found for
a triple T , the portion of the Voronoi diagram local to v and T is computed as follows. Consider
the portion of the Voronoi diagram given by VA;B = bis(A;B) \ V . A via point de�ned by the
obstacle pair A;B is a point p 2 VA;B such that 8q 2 VA;B : d(p; A) � d(q; A). We can uniquely
associate three via points to every Voronoi vertex as follows. Suppose that v is de�ned by the
obstacle triple T = fA;B;Cg; notice that v is an endpoint of VA;B by de�nition. Now follow VA;B
while walking away from v until a via point is encountered. This uniquely associates a via point to
VA;B. Analogously we can associate via points to VA;C and VB;C ; see also Figure 10.

To determine the via points associated to a given Voronoi vertex v, we perform an iterative
technique much like that for Voronoi vertices. The di�erence is we are dealing now with two
obstacles instead of three. Suppose we are at the Voronoi vertex v for obstacles A;B;C. To get
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4 Path Planning and Experiments

In previous sections we considered the problem of determining a Voronoi vertex for three planar
objects via a sequence of closest-point queries on the three objects. In this section we apply this
vertex-�nding technique to planning a path for a planar robot with two degrees of freedom that
avoids a set of n static planar obstacles in its workspace. We have currently assumed polygonal
obstacles for the implementation because of the lack of availability of software for handling curved
objects. Non-convex polygons are decomposed into convex pieces. Our method is based only on
nearest point computations performed in the workspace; replacing con�guration space operations
by equivalent workspace ones has also been considered in [24, 27].

Going from three obstacles to a scene with several obstacles raises the following key issue: not
every triple of obstacles de�nes a vertex in the Voronoi diagram of all obstacles. For example, for
convex obstacles in the plane there exists only a linear number of Voronoi vertices for the cubic
number of triples [23]. Therefore, we �rst need to devise a selection strategy that can e�ciently
suggest candidate Voronoi triples.

Applying techniques from previous sections, we compute the Voronoi vertices for these triples
of obstacles. Notice that this could lead to oscillation for a given triple of obstacles even if they
de�ne a vertex (see Section 2.1); we have to decide how to detect and deal with this case. Next, to
perform path planning, we build up a connectivity structure (graph) G around the Voronoi vertices
determined. This graph does not represent the exact topology of the Voronoi diagram, but for this
application it is a su�cient approximation thereof. Finally, a path may be searched in G between
given con�gurations using familiar methods.

Given start and goal con�gurations, G is incrementally built up until there is a path from start
to goal. Additional Voronoi triples are sought as and when necessary. When G is completely
determined (no new Voronoi triples are detected) but no path exists in G, we report failure. We
elaborate in Section 4.2.

4.1 Determining Voronoi Triples

As indicated in the previous section, we desire a strategy that can suggest candidate Voronoi triples
in a computationally e�cient manner and yet with a high \hit ratio". A candidate triple can then
be subjected to the iterative procedure described in previous sections.

The �rst step is the selection of a point p in con�guration space according to some criterion.
Borrowing from Overmars and �Svestka [24], we noticed that simply choosing p uniformly at random
over the con�guration space (not necessarily in free space) is a viable choice. Next, the nearest
three obstacles to p are determined by closest-point queries. These are denoted as triple(p) and
considered a candidate Voronoi triple.

This strategy provides a triple T of obstacles and a point p such that triple(p) = T . The results
of the previous section are applied here, and the sequence (
 ��)i(pi), i = 0; 1; : : :, relative to T and
with p0 = p is used to compute a Voronoi vertex for the given three obstacles. Notice that while
constructing the terms pi of the sequence, it is possible that for some pj , triple(pj) 6= T . To avoid
the repeated computation of the three nearest obstacles to pi (which is an expensive operation) we
initially disregard this possibility and assume that triple(pi) = T . Only when a Voronoi vertex v
for triple T is achieved, the triple T 0 of three nearest obstacles is recomputed for v. If T 0 = T ,
then v is a Voronoi vertex for the entire scene. Therefore, we add v to the set of Voronoi vertices
discovered and continue with another random seed point. On the other hand, if T 0 6= T , then v is
not a Voronoi vertex for the entire scene (although it is one for the triple T ) and we begin with
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Assuming that " satis�es (3), the further condition we are looking for can be obtained by simplifying
Y < "=6 which gives

" <
sin�� sin �

3 + j cos�j : (4)

Since any " that satis�es (4) also satis�es (3), the required choice of " can be made from (4).

Remark: If the initial circle is not a unit circle but has radius r > 0, then the right hand side of
(4) should be multiplied by a factor of 1=r.

Lemma 3.2 Let v be a Voronoi vertex for three convex objects S1; S2; S3. Consider a seed point
p0 at distance " from v. Then, for su�ciently small ", the next point p1 = �(p0) in the iterative
scheme, is at distance at most "=2 away from v.

Proof. Recall that near(S; p) denotes the closest point on S from p. Since the Si are convex and p0 is
" away from v, si = near(Si; v) is at distance at most " from near(Si; p0). Further, since the Voronoi
circle of v is tangent to S1 (by de�nition of a Voronoi circle), near(Si; p0) can be approximated,
for � su�ciently small, by the projection of p0 on this common tangent. This projected point s0i is
clearly at a distance of at most " from si.

Lemma 3.1 shows that the center of the circumcircle of the points fs1; s2; s03g is at most "=6
away from v for su�ciently small positive ". Repeating the argument, we get that the center of the
circumcircle of fs01; s02; s03g is at most

3 � "
6
=

"

2

away from v as required.

The following theorem shows probabilistic completeness of our iterative technique.

Theorem 3.1 Let v be a Voronoi vertex for three convex objects. The probability that n seed
points, chosen uniformly at random from a set including v and of �nite measure A, all fail to
converge to v falls exponentially.

Proof. From Lemma 3.2, it follows that there is an " neighborhood of convergence for v. Let the
measure of this neighborhood be �; � > 0. The probability of hitting the neighborhood of con-
vergence with a (uniformly distributed) random seed point is �=A. Thus the probability that n
random tries all fail to converge is (1� (�=A))n.

Remarks: As stated, the theorem above holds for convex objects. Even if the objects are not convex
but can be decomposed into a �nite number of convex components, then a region of convergence
of non-zero measure can still be shown to exist for every Voronoi vertex. For small enough ", the
closest points from anywhere in the region of convergence to any object will lie in the same convex
component of that object. In particular, the theorem holds for polygonal objects since they are
thus decomposable.

Also, the assumption that A be of �nite 2-D measure is also not really necessary. We can
generate seed points from points on the boundary of obstacles and directions in [0; 2�). These sets
are of �nite 1-D measure. A set of non-zero 2-D measure in the plane will then correspond to sets
of non-zero 1D measure. The details are omitted.
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Figure 9: Proving a bound on how much the center c of a circle de�ned by three points u; t; p can
move when one of the points p moves by a distance ". The center of the circle de�ned by u; t; p0 is
c0.

the seed point initially misses the region of convergence. Will a su�ciently large number of trials
guarantee a \hit" with high probability? This is the subject of this section; we answer the question
in the a�rmative in Theorem 3.1.

Lemma 3.1 Consider a circle de�ned by three points on its boundary. There exists a su�ciently
small " such that if one of the three points moves by " tangentially, then the center of the circle
shifts by at most "=6.

Proof. See Figure 9. Wlog consider a unit circle centered at the origin. Rotate the coordinate axes
such that the �xed points t and u have polar angles � and � � �, respectively; the perpendicular
bisector of the two �xed points is the y axis. Let p = (cos�; sin�) be the third point as shown,
sin� > sin �.

Let p0 be the point obtained by moving p by a distance " along direction z. Simple geometry
shows that the center of the circle de�ned by u; t; p0 has coordinates: 

0 ;
"2 + 2" cos(�� z)

2(sin�� sin � + " sin z)

!
:

If p0 is moved tangentially, then z = �� �=2. In such a case, cos(�� z) = 0 and the y-coordinate
of the new circle center becomes

Y =
"2

2(sin�� sin � � " cos�)
:

It now su�ces to show that jY j < "=6 for su�ciently small ". Note that jY j = Y if (sin�� sin � �
" cos�) > 0 which is true for (remember sin� > sin �)

" <
sin�� sin �

j cos�j : (3)
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Ci+1
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Figure 8: Establishing that the sequence fpig cannot have oscillations of period two if the objects
are completely visible from each other. Let oscillations of period two between points pi and pi+1
have set in after some number of iterations. fs1;i; s2;i; s3;ig denotes the triple of nearest points from
pi on the objects; Ci+1 is the circle through these points and from the iterative scheme, pi+1 is its
center. The closest points on the objects from pi+1 are also shown and they de�ne a circle which
coincides with Ci. The line l through the intersections of the circles then has to intersect all three
objects contradicting the premise of complete visibility.

may be labelled \towards S2" and \away from S2". Take the latter direction and travel on it. At
some su�ciently distant point on this bisector, because the line though ab separates S2 from the
current point, a or c clearly become nearer than point b and in fact nearer than the entire object
S2. This contradicts the statement that bis(S3; S1) lies entirely in Vor(S2).

To see that C1 ) C3, observe that convergence to a �nite point is impossible because of lack
of any Voronoi vertex (Lemma 2.1) and so is divergence to in�nity because that would imply there
be three collinear points on the three objects nearest to a point at in�nity (which is not possible
because these three points would have to be on their respective boundaries. This in turn is ruled
out because one object completely hides the other two from each other). Finally, C3 clearly implies
C1 because Voronoi vertices are the only stable points for the iterative scheme.

If convergence and oscillations are the only outcomes possible, then the previous theorem gives
an easy geometric criterion to conclude oscillations from any seed point. The reader might expect
that there exists a dual geometric criterion which guaranteed convergence, i.e., if three objects
are completely visible, then the sequence converges to a Voronoi vertex (which exists due to the
equivalence of C1 and C2 in Theorem 2.2). However, the example in Figure 1 counters this claim.
Nevertheless, we can show that, if S1; S2; S3 are completely visible from each other, oscillations of
period two are impossible (See Figure 8). Note that the example in Figure 1 has oscillations of
period three from points outside the region of convergence.

3 Probabilistic Completeness: Multiple Trials

In Section 2, we studied some convergence properties of the iterative scheme on a single trial. We
noticed that there is a region of convergence for every Voronoi vertex; a seed point taken from
within this region converges to the vertex. The region of convergence, however, may not include
the entire plane; seed points taken from outside this region can lead to oscillations after some
iterations. Therefore, there is clearly a need for multiple trials of the iterative scheme in case
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Figure 6: A more complicated example in which oscillation occurs. A;B;C are the three line-
segment objects. For p0 2 U shown, p1; : : : ; p4 result and thereafter p1; : : : ; p4 repeat. The circum-
circle of which pi is the center is denoted as Ci; i.e., the closest points on the objects from pi�1 lie
on Ci. The di�erence between this example and the previous one, other than the fact that they
are of di�erent periodicity, is that the initial closest points on objects are \visible" from each other
in this example but in the last �gure, object S2 hides the initial closest points on S1 and S3. This
rules out any prediction of convergence/oscillation in terms of visibility between the initial closest
points alone. However, there are connections between visibility and convergence; we explore some
in Section 2.2.

b

a c
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S3S1

bis(S2; S3)

a
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b

bis(S1; S2) bis(S1; S3)

b0

S3
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S1

Figure 7: Illustrations to the proof of Theorem 2.2. On the left, S2 (completely) hides S1 from S3.
Then any point (like b shown) equidistant from S1; S3 will be closer to S2. Therefore no Voronoi
vertices can exist for the three objects. On the right, no object completely hides the second from
the third. The proof works by showing that the three Voronoi edges have to intersect.
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p1

S1 S3

p2

S2

U

V

Figure 5: A case of three objects and seed points leading to oscillations in the sequence fpig. The
Si are the objects and U is the dark region bounded by segments perpendicular to the edges of
the objects. For any initial point from U , p1 is as shown. It is easy to verify that p2i = p0 and
p2i+1 = p1. The three objects have a Voronoi vertex V ; the relevant arc from the Voronoi circle is
indicated.

C3 The iterative procedure from any seed point on objects S1; S2; S3 produces a sequence fpig
that does not converge.

Proof. We �rst show the equivalence of C1 and C2 and then that of C1 and C3.
To see that C2 ) C1, consider the left of Figure 7. S1; S2; S3 are three objects such that S2

hides S1 from S3. To prove that no Voronoi vertex can exist, we show that any point equidistant
from S1; S3 will be strictly nearer to S2.

First a simple claim: in an isosceles triangle, the apex is strictly closer to any interior point
than to any of the two vertices of the base (this is true because the circle centered at the apex and
with radius one of the non-base edges includes all interior points of the triangle in its interior).

Consider a point b equidistant from S1; S3. Let a; c be the points on S1; S3 closest to b. Therefore
4abc is isosceles with apex b. From the hypothesis that S2 hides a from S3, we get that the edge
ac intersects the interior of S2. This clearly implies (from the claim made above) that there exists
a point p 2 @S2 such that d(b; p) < d(b; a) = d(c; a).

Now we prove :(C2)) :(C1). Notice that :(C2) readily implies that (and is implied by) there
exists a triangle abc with a 2 S1; b 2 S2; c 2 S3 such that each edge with end-vertices on two objects
does not intersect the third. See the right of Figure 7. Consider the three bisectors bis(S1; S2),
bis(S2; S3), and bis(S3; S1) between the three objects. Suppose there still exists no Voronoi vertex
then no two of these bisectors intersect and so one of the bisectors lies entirely in the Voronoi region
of the third. Without loss of generality, let bis(S3; S1) lie in Vor(S2). Modify a; b locally so that
the entire line through ab does not intersect S2. Since the bisector between two objects always
intersects any line segment between the two objects, let bis(S3; S1) intersect ac at b0. Now since
ab\ S2 = ;, b0\ S2 = ;. Therefore there are well de�ned directions from b0 along bis(S3; S1) which
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Figure 4: Illustration to the proof of Corollary 2.1 to Lemma 2.3. The corollary gives a upper
bound on the radius of circle C in terms of that of disc D where C is de�ned by three points
(p; q; r) that lie in D and include C's center in their convex hull. The proof is by showing that the
lower bound is achieved by the case of p; q; r being in the right most con�guration. The quantity "
is maximum of the distances of p; q; r from the the boundary of D. Obviously if " = 0, C = D.

2.1 Examples of oscillations in fpig

We now give an example of a sequence fpig that oscillates although the objects de�ne a Voronoi
vertex. Consider three sets S1; S2; S3 as depicted in Figure 5, and let U denote the region shown.
For any p0 2 U , �(p0), the set of closest points on objects, is the same. Therefore p1 = (
 � �)(p0)
is also the same for any p0 2 U . Now, p2 = (
 ��)(p1) is back in U and therefore the sequence fpig
will oscillate between the positions of p1; p2 for any seed point from U . The three objects, however,
do have a Voronoi vertex (V in the �gure). The region of convergence of V therefore de�nitely does
not include U .

A more complicated example of an oscillation with period three is now presented. Consider the
segments A, B, C as shown in Figure 6, and any point p0 2 U . Points p1; p2; p3; p4 follow as shown
and thereafter p2; : : : ; p4 repeat. This example also indicates that periods of oscillation need not
be bounded. By varying the lengths of the segments, any �nite periodicity can be obtained.

2.2 Visibility and Convergence

In this section we present some results relating the concept of visibility between objects to the
question of convergence or oscillation of the sequence fpig. This is motivated by the oscillation
examples shown previously.

An object S1 is said to (completely) hide S2 from S3 (or S3 from S2) if the set

CH (S2 [ S3) n int(S1)

is disconnected. On the other extreme, in a scene consisting of objects (S1; S2; S3), objects S2; S3
are said to be (completely) visible from each other if CH (S2 [ S3) \ S1 = ;. Three objects are
completely visible from each other if they are pairwise completely visible.

Theorem 2.2 The following three statements are equivalent.

C1 S1; S2; S3 have no Voronoi vertex.

C2 One of S1; S2; S3 hides the second from the third.

8



Proof. Without loss of generality, let "p = ". See Figure 4. p is " away from the top most point of
D. Let us select q; r such that

1. q; r 2 D (let T refer to 4pqr, and C the circumcircle of T ),

2. T is non-obtuse (this is equivalent to the condition that the center(C) 2 CH (p; q; r)), and

3. rad(C) is maximized.

The �rst claim is that p; q have to be on @D. To see this, let pqr form a non-obtuse triangle and
assume that q is not on the @D. See the left part of Figure 4. Let c denote the center of C shown
in dotted lines. Push q outwardly from c onto @D, and let the new point be q0. The operation does
not destroy the property of non-obtuseness. The circumcircle of 4pq0r with center c0 clearly has
larger radius than does T . Similarly, r can be pushed back to a point r0 along @D.

The next claim is that given q (on @D), the r such that rad(C) is maximized is a point (also
on @D) such that T is right-angled at p. See the middle part of Figure 4. This follows from
the following argument. Consider the perpendicular bisector l of pq. Since T is right-angled at
p, l intersects qr (the hypotenuse) at its midpoint c, the center of the circumcircle of T . Let, if
possible, there exist an non-obtuse triangle pqr0 with center of circumcircle c0 with larger radius of
circumcircle. Then, c0 has to be more distant from pq than is c implying rc0 < rc. Thus, to make
c0r0 = c0q = c0r, r0 has to be away from r as shown. This implies that 4pqr0 is obtuse.

Therefore, the problem reduces to �tting a triangle right-angled at p with largest hypotenuse
(the radius of the circumcircle of a right-triangle is half the length of the hypotenuse) with the two
other vertices being on the circumference of D. It should come as no surprise (and this can be
veri�ed by elementary calculus) that this extremal right-triangle is isosceles. See the right part of
Figure 4. It can be shown that the radius r of the circumcircle of this triangle satis�es

r2 =
R2

2
+
(R� ")

2

p
R2 + 2R"� "2 � R2 � "2

2

Thus,

r

R
�
s
1� 1

2

�
"

R

�2
� 1�

�
"

2R

�2
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The following theorem gives a su�cient condition for convergence based on Lemma 2.3.

Theorem 2.1 If in every iteration, the new point pi+1 lies in the convex hull of the three closest
points from pi (that is, every triple of closest points de�nes a non-obtuse triangle), then the sequence
fpig converges to a Voronoi vertex of S1; S2; S3.

Proof. Let the disk circumscribing the elements of �(pi) be denoted by Di of radius Ri. The center
of Di is pi+1. The hypothesis along with Lemma 2.3 imply that Ri is a non-increasing sequence,
Ri+1 � Ri and if Ri+1 = Ri, Di = Di+1. (The corollary to Lemma 2.3 gives an upper bound on
Ri+1=Ri in terms of Ri.)

This implies that the sequence fDig converges to a disk D�. Therefore the sequence of corre-
sponding centers fpig converges to a point p�. Lemma 2.1 implies p� = Vor(S1; S2; S3).

The above proof is quite general; it only relies on the de�nition of a Euclidean distance metric.
Notice that this proof also holds for non-regular or non-compact sets S1; S2; S3. It is also extendible
to objects in higher dimensions (with appropriate modi�cations to the number of objects forming
a Voronoi vertex etc.).
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Figure 3: Illustration to the proof of Lemma 2.3 which shows that the radius of C is upper-bounded
by that of D if three points de�ning C belong to D (an arbitrary disc) and include the center of C
in their convex hull. The proof is by contradiction: if the radius of C is larger or equal, then the
center of C cannot lie in the convex hull of the three points de�ning it.

Lemma 2.3 Given a circular disc D � R2 and three non-collinear points p; q; r 2 D, let C be the
unique circle through p; q; r. If center(C) 2 CH (p; q; r) then rad(C) � rad(D). Equality implies C
coincides with @D.

Proof. Given the hypothesis, towards a contradiction, suppose that rad(C) > rad(D). Since C

passes through points p; q; r 2 D, C \ D 6= ; and D cannot exist in C's interior. Denote the
intersection points of C with @D as s1; s2, respectively (see Figure 3). Now let l be the line
through the centers of C and D, t the unique intersection point of l with C \ D, m the line
through center(C) perpendicular to l, and u1; u2 the intersection points of m with C. Since it is
supposed that rad(C) > rad(D) it follows that d(t; center(C)) > d(t; center(D)), and hence that
points u1; u2 are outside D. Thus any line through the open (and disjoint) arcs s1u1 and s2u2 of
C separates p; q; r from center(C). From Lemma 2.2 it now follows that center(C) 62 CH (p; q; r)
which contradicts the hypothesis.

To prove the second claim, assume rad(C) = rad(D). Towards a contradiction, further suppose
that C is di�erent from @D. These imply that the centers of C;D cannot be coincident. Also
C;D intersect in an arc as before and s1; s2; l; t;m; u1; u2 can be uniquely de�ned. Via a similar
argument, it again follows that d(t; center(C)) > d(t; center(D)) and any line through the open
arcs s1u1; s2u2 separates p; q; r from center(C) contradicting center(C) being in CH (p; q; r).

In the following corollary we give a lower bound on the ratio rad(C)=rad(D). Refer to the
proof of the previous lemma. Let "p; "q; "r denote the distances of p; q; r, respectively, from the
circumference of D (that is, p is at distance r � "p from center(D) and likewise for q; r), and let
" = max("p; "q; "r). Let r = rad(C); R = rad(D). Note that R > " = 0 if and only if p; q; r lie on
the circumference of D.

Corollary 2.1 Let r; R be the radii of C and D, respectively. Then,

r

R
� 1�

�
"

2R

�2
:
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maps a triplet of points taken from the three sets to a point equidistant from the triplet (which
can be at in�nity, if the points are collinear). In other words,


(s1; s2; s3) = q such that d(q; s1) = d(q; s2) = d(q; s3) (1)

(notice that 
 is just Vor when restricted to point objects.) Our �rst goal in this paper is to study
the behavior of the composition of 
 with � which we denote by � : R2 ! R2.

� = 
 � �: (2)

Speci�cally, we wish to investigate the relationship between Vor(S1; S2; S3) and pi = �i(p0) for
su�ciently large i while varying the initial point p0 over R2. In the next section we study geometric
conditions for convergence of sequence fpig to Vor(S1; S2; S3).

Remark: Note that a Voronoi vertex could exist at in�nity. However, we still choose to use the
term \convergence" to the Voronoi vertex rather than \divergence" if the Voronoi vertex is �nally
attained.

2 Convergence of a Single Trial

In this section we study conditions for the convergence or the oscillation for the sequence fpig. We
begin with a su�cient condition under which the sequence converges to a Voronoi vertex. Then we
introduce the concept of oscillations in the sequence with some examples (Section 2.1). Conditions
linking inter-object visibility with oscillations are presented in Section 2.2; some special cases of
convergence are treated in the Appendix.

Lemma 2.1 Let objects S1; S2; S3 and a seed point p0 be given, and de�ne pi = �i(p0). If
limi!1 pi exists, then it is a Voronoi vertex for S1; S2; S3.

Proof. The limit could be �nite or in�nite. If the limit is �nite, let it be point p�. Then there exists
an N such that for all i > N and any chosen " independent of i, d(pi; p

�) < ". This implies that
there exists a constant c (independent of ") such that the maximum distance between any of the
corresponding elements of the point sets �(p�) and �(pi) is at most c". Since pi+1 is simply the
Voronoi vertex for the three points (treated as point objects) in �(pi), p

� is the Voronoi vertex of
the three points on the objects it is closest to. Therefore it is a Voronoi vertex for the three objects.

The proof in the in�nite case is similar. The sequence diverges to in�nity in a particular direc-
tion if and only if the closest points on the objects from in�nity in that direction are collinear in a
perpendicular direction.

If the limit does not exist, the sequence can oscillate with some �nite period or can exhibit
chaotic behavior. The latter phenomenon was not observed in our computer experiments. While
we do not rule out this possibility, we proceed to present conditions under which convergence or
oscillations are guaranteed. The following lemma is a well-known result from [12].

Lemma 2.2 Given a point p 2 Rd and a convex set S 2 Rd, then p 62 S i� there exists a hyperplane
which separates p from S.

For a circle or circular disk (a circle together with its interior) C, let rad(C) denote its radius
and center(C) its center.
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v v1 v2

Figure 2: Three non-intersecting convex sets can de�ne no Voronoi vertex (left), one vertex v
(middle), or two vertices v1 and v2 (right).

This paper has been submitted to a special issue of the journal Computational Geometry: Theory
and Applications devoted to papers selected from the sixth Canadian Conference on Computational
Geometry.

1.1 Preliminaries

Let R denote the set of reals, and R2 the plane. We include all points at in�nity in R2. The
boundary of a set S is denoted as @S and its interior as int(S), and its convex hull as CH (: : :).
Unless otherwise speci�ed, we work in R2 and therefore a point refers to an element of R2. The
Euclidean distance between two points p and q is denoted as d(p; q). Extend the notation to
include distances between points and sets: the distance between point p and the set S is de�ned as
d(p; S) = inffd(p; s) j s 2 Sg. It is clear that if p 62 S, d(p; S) is achieved at a point s 2 @S.

For a set Si, the Voronoi region Vor(Si) for Si is the set of points fp j 8j : d(p; Si) � d(p; Sj)g.
For a pair of sets Si; Sj , their bisector bis(Si; Sj) is the locus of points equidistant from both. Now
let three disjoint and regular sets S1; S2; S3 be given in the plane (a set is regular if it coincides with
the closure of its interior. Formal de�nitions can be found in Kuratowski and Mostowski [17]). A
Voronoi vertex for S1; S2; S3 is a point p such that the three distances d(p; Si) are all equal. In such
a case the distance d(p; Si) may be termed the Voronoi distance. The circle centered at a Voronoi
vertex and radius equal to the Voronoi distance is called a Voronoi circle. If the sets are convex
and a Voronoi vertex exists, the Voronoi circle intersects them in exactly one point.

While Voronoi regions and bisectors always exist and are uniquely de�ned, the set of Voronoi
vertices for three sets could be empty. On the other hand, more than one Voronoi vertex could
exist for three given sets. However, for three (possibly non-intersecting) convex sets, at most two
Voronoi vertices can exist (See Fig. 2). Whenever our attention is focused on one Voronoi vertex
for three sets, we refer to it as Vor(S1; S2; S3).

We de�ne two functions � and 
, and their composition � as follows. The function

� : R2 ! S1 � S2 � S3

maps a point p 2 R2 to the respective closest points in the three sets from p, i.e., �(p) = (s1; s2; s3)
where d(p; Si) is achieved at si 2 @Si. The function


 : S1 � S2 � S3 ! R2
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(�nite) period > 1. More complicated outcomes such as in�nite period oscillations and chaos are
possible and are in fact quite the norm in complex systems in nature. In this paper we will use
the intuitive terms of convergence and oscillations (instead of orbits of particular period); we never
observed the phenomena of chaos in our system.

After describing notation and de�ning the problem and the iteration sequence formally in Sec-
tion 1.1, we study the behavior of this sequence in Section 2 with the goal of obtaining geometric
conditions on the placement of the objects and the choice of the seed point under which convergence
(or oscillation) occurs.

We do not yet have conditions that are both necessary and su�cient for convergence; regions of
convergence appear di�cult to compute in general. However, in Section 3 we show that the region
of convergence for a Voronoi vertex de�ned by convex objects (or objects that can be decomposed
into convex components) is of non-zero (two dimensional) measure. Thus, a randomly chosen
seed point (assuming bounded space to make the random choices) will eventually hit the region
of convergence with high probability. This proves probabilistic completeness of our algorithm: the
probability that we have not detected the Voronoi vertex decreases exponentially with the number
of random seed point selections.

In tracking down Voronoi vertices from randomly chosen seed points, we also build an ap-
proximation to the Voronoi edges connecting up Voronoi vertices to maintain the topology of the
Voronoi diagram. This is motivated by applications in robot motion planning: the basic problem
is to determine a collision-free motion from a start con�guration to a goal con�guration for a robot
moving amidst but avoiding a set of obstacles. A well-known, natural, and intuitively appealing
approach is to try and plan a motion that keeps the robot as far away from the obstacles as pos-
sible; this approach is often referred to as retraction motion planning [22, 5, 19, 6, 26] (we refer to
Latombe [18] for an overview of other existing approaches). The Voronoi diagram is central to the
idea of retraction motion planning. Given the Voronoi diagram in the planar con�guration space
of a robot, retraction motion planning works by retracting the start and goal con�gurations onto
the diagram and then connecting them via edges and vertices of the diagram [21, 14, 1]. Whenever
there exists a path, this approach is guaranteed to �nd one which maximizes the clearance of the
robot.

In Section 4, we discuss the implementation of a planar robot path planner based on this iterative
idea for computing Voronoi vertices. Since we only require answers to nearest point queries and
do not assume an exact shape description for the obstacles, the method seems better suited for
real robotics applications than traditional Voronoi-based approaches. This approach is similar to
the sensor-based planning in the robotics literature [11, 20, 9]; the environment is partially or fully
unknown and the robot incrementally learns it by using its sensor.

Choset and Burdick have recently investigated a similar idea [8] in a method for tracing the
Voronoi diagram along with an account of the analytical properties of the Euclidian distance func-
tion between a point and a convex set. They show that the distance function is non-smooth, but
describe how a generalized gradient can be de�ned. Based on this, they propose a method of tracing
the Voronoi diagram by following bisectors, keeping track of the distance to the currently near-
est obstacles, and proceeding recursively when a Voronoi vertex is encountered. Our incremental
construction of the diagram is somewhat similar, although there are some substantial di�erences.
First, the size of the steps that the robot takes while following bisectors is adaptive in our method
and not �xed to some small positive number. Secondly, we try to infer the topology of the diagram,
and to delay collision detection (edge evaluation) up to the path-search phase. By tracing the entire
diagram in small steps as Choset and Burdick do, a large number of distance measurements are
required to construct parts of the diagram which may not be eventually needed for �nding a path.
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Figure 1: Three line segments, shown thick, with their Voronoi vertex marked and a subset of its
region of convergence shown lightly shaded. The heavily shaded regions, intersection of half spaces
bounded by perpendiculars to the line segments, may be termed \regions of oscillation": the reader
may verify that any seed point from them immediately locks into oscillations of period 3. These
are closed regions. Other regions appear di�cult to classify as converging or oscillating.

from the three points s1; s2; s3 (in other words, q is the Voronoi vertex for the three point objects
si). Now reiterate beginning from q. Clearly, if p was (accidently) chosen as the Voronoi vertex to
begin with, q = p and any further iterations remain at the vertex; the Voronoi vertex is a \stable
point" under this iterative scheme. This directly follows from the de�nition of the Voronoi vertex.

However, what does not follow directly from the de�nition of a Voronoi vertex, and which we
will prove in this paper, is that the Voronoi vertex is not merely a stable point under the iterative
procedure but is also a stable attractor, that is every Voronoi vertex is associated with a region of
convergence such that a seed point taken from anywhere inside this region converges to the vertex
under the iterative scheme. See Figure 1.

Contrary to optimistic expectations, however, the region of convergence does not always include
the entire plane. For seed points taken from outside the region of convergence, the sequence of points
can cycle between some �nite set of points none of which are the Voronoi vertex (see Figure 1).
Also, when three objects do not de�ne a Voronoi vertex (when one object \hides" the second from
the third), the sequence of points obtained from any seed point oscillate with �nite period.

Dynamical Systems and Chaos Theory have studied such problems which involve mappings
from <d 7! <d [4, 25]. The simplest outcomes of such mappings are the two that we observed
above: convergence and cycles of �nite period and the technical terms for these phenomena are
orbits. Convergence to a point is referred as an orbit of period 1 while oscillations are orbits of
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Hunting Voronoi Vertices�

Vincenzo Ferrucciy Mark Overmarsz Anil Raoz Jules Vleugelsz

Abstract

Given three objects in the plane, a Voronoi vertex is a point that is equidistant simultaneously
from each. In this paper, we consider the problem of computing Voronoi vertices for planar
objects of �xed but possibly unknown shape; we only require the ability to query the closest
point on an object from a given point. Our technique is simple, robust and iterative in nature:
beginning from some initial (seed) point, it computes a sequence of points based on intermediate
closest-point queries. This technique is observed to either converge to a Voronoi vertex or
oscillate with some �nite period. We study geometric conditions on shape/placement of the
objects and choice of the initial point that guarantee convergence or oscillation. We show
that our technique is probabilistically complete; selecting seed points at random will eventually
guarantee convergence to a Voronoi vertex, if one exists.

Our motivation for seeking Voronoi vertices comes from robot motion planning: a Voronoi
vertex is a natural haven for mobile robots avoiding obstacles. We conclude by brie
y describing
an e�cient implementation of a retraction-like path planner for a planar robot based on our
iterative strategy for seeking Voronoi vertices.

1 Introduction

A familiar notion in computational geometry is that of the Voronoi diagram [2, 16] which can
informally be de�ned as follows. Given a set of sites, the Voronoi region of a site is the set of points
closer (under the Euclidean metric) to that site than to any other. The Voronoi diagram is the
network formed by the boundaries of the individual Voronoi regions. In the plane, this network
is one-dimensional and is made up of Voronoi edges and Voronoi vertices ; Voronoi vertices are
points equidistant from three nearest sites while Voronoi edges are subsets of the locus of points
equidistant from two sites. If the space is bounded, the Voronoi diagram is connected and preserves
the connectivity of the space.

The problem of computing the Voronoi diagram for a given set of sites is a familiar one in the
�eld of computational geometry and has been extensively studied for polygonal and simple curved
sites [3, 15, 16, 29]. However, not much is known in regard to arbitrarily curved objects. Towards
this end, we propose a new technique, the novelty of which is that the (possibly complex) shapes of
the objects are not required exactly; instead we only need the ability to be able to answer queries
of the form: \What is the nearest point from point p on object S?"

Let three disjoint regular sets S1; S2; S3 be given in the plane; choose a (seed) point p. Determine
three points si 2 Si which achieve minimum distance from p. Next, compute the point q equidistant
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