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1 Abstract

This paper reports on the Heart Failure Program, which uses multiple models and multiple rea-

soning operators to provide patient management information for physicians. The program uses a

causal probabilistic knowledge base of pathophysiology for reasoning diagnostically, a quantitative

physiologic model for reasoning about the e�ects of interventions, and a case base for an alternate

form of diagnostic reasoning. Using these knowledge bases are reasoning operators to turn patient

data into evidence for causal reasoning, using the evidence to assert speci�c physiologic states, gen-

erating a diagnosis or di�erential from the causal knowledge base or from the case base, using the

current diagnostic state to determine what further information would be useful, using the diagnos-

tic state to suggest therapies, predicting the possible e�ects of therapies, and using the diagnostic

hypotheses or the e�ect predictions to generate graphical explanations for the user. By combining

the models and reasoning methods, each potential use of the program bene�ts because each oper-

ator provides conclusions that simplify the task of other operators. The result is a program with

uses in many phases of the patient management process.

2 Introduction

Over the past few years we have been developing a program to assist the physician in reasoning

about the diagnosis and management of patients with cardiovascular disease characterized by mani-

festations of heart failure[16]. Since heart failure just means that the disease process makes cardiac

output inadequate for the demands of the body, there are many possible causes. This domain

is particularly rich in opportunities to reason from causal models because the manifestations are

primarily the result of the compensatory mechanisms of the cardiovascular system. When cardiac

output becomes inadequate, the system alters the capacitance and volume of 
uid compartments to

increase the heart input pressure (preload) in an attempt to increase cardiac output. This increased

preload, propagated back to the lungs and venous system may lead to the pulmonary congestion or

peripheral edema clinically recognized as heart failure. Since a number of disease states can produce

the same general picture, the determination of the source of the problem in a particular patient �ts

very naturally into a paradigm of causal reasoning | in this case linking causes to observed e�ects

to produce a causal explanation. Similarly, reasoning about the e�ects of an intervention involves

causal reasoning because the compensatory mechanisms that produced the manifestations are also

a�ected by the interventions and the overall result depends on how these mechanisms change the

physiologic state of the patient.

Reasoning about the causes or e�ects of the patient state involves reasoning about the mecha-

nisms of the cardiovascular system and the pathophysiology of the diseases. The mechanisms are

su�ciently important that we have organized the reasoning of the Heart Failure Program around

an integrated physiologic model of the cardiovascular system. The model has probabilistic causal

relations and a case base for reasoning diagnostically and quantitative relations for predicting the
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e�ects of therapy. This model acts as the organizing structure for the various reasoning operators.

The operators use the appropriate part of the model as the knowledge base of medical knowledge

to carry out their function and as a template for building the patient speci�c model (PSM) that

records the accumulating conclusions about the patient. The organization of the knowledge base

and the operators is sketched in �gure 1. The operators are identi�ed by boxes and the data they

use and produce are the ovals. The three parts of the model are the ovals with heavy borders.

This diagram identi�es the main interactions but is not intended to be complete. For example, the

diagnostic causal model is actually used to some extent by all of the operators.

Figure 1 goes here.

When the program is used to reason about a patient, the diagnostic causal model is the repos-

itory for the knowledge to understand the �ndings. As input data is gathered into the initial PSM

by the evidence generator, the model is used to organize and evaluate that data as evidence for

the physiologic state of the patient. Some of the input data can be used directly to assert aspects

of the physiologic state of the patient. The state determining operator uses logical implication to

�nd such instances and assert them as part of the PSM. However, most aspects of the patient state

remain unknown, with multiple possible explanations for the �ndings.

The next step is reasoning about a di�erential diagnosis. There are two operators that can do

this. The �rst, the probabilistic diagnostic reasoner, uses the �ndings and known states in the PSM

to identify the likely overall causes and then builds suitable causal explanations for the �ndings

from those causes. These causal hypotheses can be compared by computing their probabilities.

The set of ranked causal hypotheses is the di�erential diagnosis for the case.

The second method of diagnosis is the case-based diagnosis program, CASEY, developed by

Phyllis Koton[9, 10]. This makes use of the data base of cases to �nd a close match to the �ndings

and then uses the physiologic model to resolve the di�erences, if they are minor. This produces a

diagnosis, but depends on there being a close match to the case in the case base.

The di�erential diagnosis presents alternate explanations for the same �ndings. Even a single

diagnostic hypothesis leaves many physiologic parameter states unknown because there is no need

to hypothesize a state to explain the �ndings. However, it is often important to know the state

of these parameters to manage the patient. The diagnosis re�nement part of the information

suggestion operator uses individual hypotheses and the di�erential to determine what further input

data would be useful for re�ning the diagnosis.

Once the gaps in the causal disease description have been �lled, the next step is to select

therapies to manage the patient. This is a two stage process. First, the information suggestion

operator looks through the PSM and diagnosis and determines what therapies might be appropriate.

Since many of the diseases that cause heart failure are not themselves curable (short of a heart

transplant), the appropriate approach is to look for therapies that have the potential to break the

causal chains that are producing the undesirable e�ects.

Since the desired e�ects of therapies may not be the only e�ects and even the desired e�ects

may trigger multiple compensatory mechanisms, the second stage of therapy selection is to predict

the overall e�ect of the therapies. This is done using quantitative constraint equations that relate

the values of the parameters and using signal 
ow analysis to predict the e�ects of changes in the

parameter values. Thus, the therapy prediction operator is able to predict the likely changes in the

major parameters in the model given a change in one or more of the possible therapies.

The �nal operator produces the explanations. This provides graphical explanations for both

disease hypotheses and therapy e�ects. The method for explaining a disease hypothesis is simply

to graph the causal relations among the physiologic state nodes and the abnormal input �ndings in

the hypothesis. This displays all of the causal mechanisms involved in producing the input �ndings

and is an e�ective way of reviewing the hypothesis for logical consistency. Explaining the therapy
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predictions is done by identifying the pathways through the model that have the greatest in
uence

on the predicted change of a parameter of interest. In the process, the explanation identi�es

parameters that are important in determining the change.

Thus, these operators work together with the various aspects of the knowledge base to provide

mechanisms to assist the physician in the diagnosis of the patient, the re�nement of that diagnosis,

the selection of therapy, predicting what the therapy might do, and understanding the justi�cations

for the reasoning.

The Heart Failure Program is still in an active state of development, with some parts more

thoroughly developed than others. The diagnosis algorithm has been developed over a couple of

years and has been applied to a hundred or more cases with considerable success. The therapy

prediction algorithm has also undergone considerable development, although the testing has been

less extensive, primarily because it is di�cult to collect suitable cases to really test it. The case

based reasoner has been tested with a case base of forty cases and collection e�orts have been

completed to test it on a case set of 240 cases. The information and therapy selection operators are

simpler and have not been tested in any formal way. The program is implemented on a Symbolics

3650 in Lisp.

This paper will discuss the structure of the knowledge base and then discuss the di�erent

operators, how they make use of the information in the knowledge base, and how they interface

with one another.

3 Knowledge Base

There are three di�erent models that make up the knowledge base of the Heart Failure Program.

Two of these are integrated and form a static physiologic knowledge base and the third is built

dynamically from cases. The �rst is the diagnostic causal model. This model consists of patho-

physiologic states connected by probabilities representing the likelihood of causation. The second

is the quantitative physiologic parameter model used for therapy prediction. It consists of param-

eters related by equations representing the constraints between the parameters. The �nal model is

the case base of completed diagnoses built by the case based reasoner and organized for matching

against new cases. It is also used for diagnosis and o�ers an alternate way of producing a diagnosis.

The following sections give a description of each of these models and highlight the relationships

that bind them into a uni�ed whole.

3.1 Diagnostic Causal Model

The diagnostic causal model is a clinical level physiologic model of the cardiovascular system. The

intent of the model is to represent the causal relations needed to generate explanations of the

�ndings corresponding to the physician's understanding of the physiologic mechanisms. The model

can be divided in several ways: parameters versus states, states versus measures, and knowledge

base versus PSM.

The model consists of parameters representing diseases such as myocardial infarction (heart

attack), therapies such as hydralazine (which reduces blood pressure), as well as the physiologic

parameters such as heart rate, cardiac output, pressures in the left and right heart, renal function,

and so forth. The disease parameters are either primary causes or the important diagnostic entities

in the model. The primary causes do not require further causal explanation, although some do

have causal explanations within the model (e.g. anemia, below). Therapies are included in the

model because they often have side e�ects that contribute to the patient condition, may be needed

to explain the absence of expected �ndings, and because they provide the knowledge base for the
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therapy selection process. Most of the parameters in the model are the intermediate physiologic

parameters that detail the causal mechanisms from the diseases to the �ndings. In this model there

are often lengthy causal chains sometimes exceeding ten parameters in length. The primary reason

for the long causal chains is the need to reason about the e�ects of therapy as well as do diagnostic

reasoning when multiple diseases are involved. Thus, the parameters are the interface between the

diagnostic model and the model for therapy prediction.

The basic structures in the diagnostic model represent qualitative states of the parameters. The

qualitative states are typically present and absent for diseases and other conditions and low, normal,

and high for physiologic parameters. These parameter states are linked by probability relations.

The probabilistic representation was chosen because of the nature of the information available to

make a diagnosis. The quantitative and logical relationships among the parameters do not provide

enough constraint to allow diagnosis or even very many useful conclusions, but the experiential

knowledge of cardiologists about the frequency of diseases and their e�ects provides the knowledge

necessary to draw useful conclusions in a probabilistic framework. Besides the parameter state

nodes, representing the physiology, there are measures representing the observables: the history

items, the symptoms, the physical exam �ndings, and laboratory results. These measure structures

provide the interface for the interpretation of patient input data.

One of the parameter states is the presence of anemia. Part of the de�nition of anemia in the

�le that produces the knowledge base is:
(defstate anemia

causes (primary (0.05 (prange age 0.04 70 0.08))

P+ (renal-insu�ciency-chronic prob 0.3))

measure ((CBC (prob anemic 1.0))

(dyspnea (prob on-exertion 0.5)) : : :))
This states that the probability of anemia without other causes is 0.04 if age is less than 70

and 0.08 if age is greater. If the age is unknown, 0.05 is used. If chronic renal insu�ciency (kidney

disease) is present, the probability that it causes anemia is 0.3. The P+ indicates that it is a

possible cause for the anemia. For some states there are also worsening factors, that can increase

the likelihood of a state, but not cause it themselves, and correcting factors (usually therapies), that

decrease the probability of a state. The measures are the observable facts about the patient. Values

of the measures, such as dyspnea on exertion (shortness of breath), are linked to the parameter

states by probabilities. The de�nition speci�es that anemia causes dyspnea on exertion 50% of the

time and would always be apparent if a CBC (complete blood count) were done. The measures

also have de�nitions which contain such things as the probability that abnormal values might exist

without there being a cause within the model, e.g., dyspnea on exertion can exist for reasons outside

of the domain of the model. The measures themselves are used in the input menu to gather the

patient data.

The measure for complete blood count has the following de�nition:
(defmeasure CBC

type multi-value

format (:case :val (normal :val :meas)(t :val))

speci�city (high-WBC .9 high-HCT .8)

constraints (xor normal (* (xor anemic high-HCT) high-WBC)))

This is a test that can provide information about both the white cell count (WBC) and the

hematocrit (HCT), so it can have more than one value and the legal combinations of values it can

have are determined by the constraints clause. Both high WBC and high HCT can be caused by

conditions that are outside of the domain of the model, so the speci�city clause speci�es the fraction

of cases that need to be explained by the model. The program uses this number to estimate the
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prevalence of this condition as a primary entity. The format clause provides the information needed

to print the values of the CBC measure as part of any textual representation.

In addition to the parameter, state, and measure structures, which constitute the �xed diagnos-

tic knowledge base, there are structures that are computed from these when the model is loaded to

generate the enhanced model. The enhanced model adds structures to represent the links between

the states and structures to represent the causal paths through the states. The links are used

to record the conditions of causality and simplify reasoning about causes and e�ects. The paths

are generated to speed up the process of diagnosis and reasoning about the probabilities of states.

Because of the high degree of connectivity in the model, there are many more path structures than

any other type of structure but these allow for operations such as rapid intersections of causal

paths and hypotheses that make diagnosis feasible. When the model is loaded, there are many

additional slots in the structures that are computed from the rest of the knowledge base, such as

the prevalence of �ndings (above) that make the job of the reasoning operators feasible.

The PSM is generated from the enhanced model to represent the patient when data is entered.

The parts of the PSM used in diagnosis consist of structures representing the values of the measures

entered on input, copies of the parameter states called nodes, and links connecting the nodes to

each other and to the measure values representing the speci�c relations including the probabilities

between nodes and the measure values as constrained by the input. Thus, the PSM consists of

a personalized set of node and value structures connected by link structures, ready to accept the

results of the reasoning operators.

It would be possible to include tables of probabilities for each combination of the possible values

of the incoming links to each node but in practice a default rule for combining the probabilities

on individual links is adequate. In fact, actual data on the probabilities of combinations of causes

is very sparse. The combining rule used is the \noisy-or"[19] except for worsening factors, which

require another cause, and correcting factors, which decrease the probability. Thus, if causes are

P , worsening factors W , correcting factors C, and primary probability is p0, the probability of a

node is:

9iji 2 P ^ (pi = 1:0)) 1:0; 9iji 2 P ) (1�
Y

i2P;W

(1� pi))
Y

i2C

(1� pi); else) p0

Similarly, each measure value has a probability of being produced by a subset of the nodes in the

model, which is computed in the same way.

The diagnostic part of the model covers all of the common causes of heart failure. It also has

non-cardiac diseases that cause the same symptoms or complicate the hemodynamic situation such

as pulmonary, renal, liver, or thyroid diseases, anemia and infection. The model has been designed

for clinical relevance. We have included the parameters and states that make sense to the clinician

and provide the signi�cant distinctions for diagnosis and therapy. As a result, diagnostic hypotheses

explain �ndings in terms that make sense to the physician and the therapy predictions are easily

related to clinical concerns.

3.2 Prediction Constraint Model

The therapy prediction model uses quantitative constraint equations to specify the relations among

the physiologic parameters and consists of a subset of the parameters in the diagnostic model. Since

the e�ects of therapy are determined by the parameters that govern the short-term hemodynamic

state of the patient, these are the only ones that are needed in the model. These relations capture

the changes that take place in minutes, hours, and to some extent days. Including mechanisms that

function over longer time periods would be di�cult because of the external factors that in
uence
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longer terms changes and not as important for the acute management decisions that are the primary

domain of the program.

Like the diagnostic model, the prediction model has a �xed part speci�ed by the �le that de�nes

the model, an enhanced part that is computed when the model is loaded, and additions to the PSM

that are computed for each patient case. In the �xed part of the model, equations are speci�ed

for each parameter that relate the parameter to other parameters in the model. For example, the

primary slots of the de�nition of blood pressure are as follows:
(defparam blood-press

equation (+ (* cardiac-output systemic-vascular-resistance)

ra-press)

measure ((arterial-pressure (value mean-arterial-pressure)))

: : :)
This de�nition provides the equation for the relationship between blood pressure, cardiac out-

put, systemic vascular resistance, and the right atrial pressure. This equation includes right atrial

pressure (which is often ignored) because it has signi�cant e�ects in many heart failure situations

when the blood volume is high. Parameters are included in the equations if they are important

for predicting the clinical hemodynamic e�ects of the important therapies. The equations in the

model conform to the usual notion of causality in the cardiovascular system (basically related to

the direction of blood 
ow), even though the equations are actually directionless. This makes the

relations easier to understand for the physician. The measure clause indicates that the current

value of blood pressure is determined by the computed mean arterial pressure from the input data

on arterial pressure (which provides the systolic and diastolic pressures). This is the source of the

quantitative value used in the equations.

Notice that these equations must be consistent with the causal probability relations of the diag-

nostic model, but neither is a substitute for the other. The causal probabilities represent a summary

of experience with what happens in actual cases that is not apparent from the equations and the

equations provide constraints that make it possible to combine the e�ects of many mechanisms in

the feedback system.

The equations are used by the therapy prediction operators to determine the gains on the links

between the parameters. The gains are computed as the partial derivative of the equation with

respect to the parameter on the link and the link structures become part of the enhanced model.

The enhanced model also includes all of the paths through the parameters and the feedback loops

that are in the model. These are analogous to the causal paths in the diagnostic model and allow

for the rapid computation of the prediction of changes given therapies. The PSM also has parts

that correspond to the prediction model, but these are implemented as slot values for the parameter

values and the computed changes and are not separate structures.

The model includes equations from several sources. Some equations were readily available from

the physiology literature, such as the relationship between cardiac output, vascular resistance,

and pressures. Others were determined from data in the literature, such as the relation between

heart rate and systolic time. Basic hemodynamic relations were also borrowed from existing mod-

els such as Coleman's Human Program[2], including the relation between blood pressure and vagal

stimulation. Included are equations for the hemodynamic e�ects of congestive cardiomyopathy (pri-

mary muscle disease) and four of the valvular diseases (aortic stenosis, aortic regurgitation, mitral

stenosis, and more recently mitral regurgitation). The valvular diseases are modeled by equations

relating the pressure drops or regurgitant volumes to the e�ective valve area from the original

hydraulics equations developed by Gorlin[6, 7]. The therapies in the model include representative

drugs from most of the major classes of cardiovascular therapies. Each therapy is represented by

its direct e�ects on parameters, with proportions determined by comparing the model predictions
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to published results. The parameters included in the model are those likely to be measured in the

patient or reported in the literature, plus the parameters needed to account for the actions of the

usual cardiovascular agents.

3.3 Diagnostic Case Base

The diagnostic case base is a data base of patient cases with completed diagnoses organized as a

discrimination net by the �ndings, to use in case-based diagnostic reasoning. This case base uses a

self-organizing memory system implemented by Koton[10] and patterned after the memory system

developed by Kolodner[8]. It consists of two kinds of data structures gens, which are generalizations

representing two or more cases, and cases, which contain the identi�cation, description, input

�ndings, and accepted diagnosis of an individual case. These structures are organized as a network

with the case structures as terminal nodes. Each gen has a feature list with the features that

occur in at least two-thirds of the cases represented by the gen, a di�s list with features used to

di�erentiate among the cases, a causal list with the parameter states common to all of the cases,

and a node count.

Whenever the correct diagnosis is determined for a case, it is added to the discrimination net. A

case structure is generated to represent it and an appropriate location is found for it by following the

di�s list paths through the network. At each point in the network, if a gen is found the appropriate

features on the di�s list of that gen are followed, if a case is found a new gen is produced from the

two cases, if nothing is found the case becomes the new terminal node. Thus, the network is built

re
ecting the features found in the cases diagnosed by the program. The purpose of this structure

is to allow the case-based reasoner to rapidly �nd the cases that are similar to a new case as a

starting point for a diagnosis.

4 Reasoning Operators

The reasoning operators are the active elements of the program. They take the input, turn it into

a patient speci�c model, and generate the diagnostic information and the management informa-

tion that assists the physician in managing a patient. Each one uses the appropriate part of the

knowledge base to transform parts of the PSM or the input into new parts of the PSM or output

to the user. The eight operators are discussed in the following sections with emphasis on how they

support each other.

4.1 Converting Data to Evidence

The �rst operator takes the input from the user and starts the PSM. The input is gathered by a

dynamically expanding menu allowing textual summarization. It includes the patient history and

presenting symptoms, vital signs, physical exam and the laboratory results. There is limited reason-

ing within the menus that enforces constraints among categorical values and appropriate precision

for numeric values. The intention is to capture the information pertinent to the cardiovascular

disease without requiring the system to do extensive reasoning beyond the program's intended

medical domain and to provide physicians with a display of only the relevant patient information

in an e�ective manner. Thus, it is assumed that the data has been interpreted and �ltered by the

user. For example, a single blood pressure is entered and assumed to be representative. Also, the

program asks for interpreted �ndings on the electrocardiogram rather than the raw properties of

the signal, as is more traditional. The physicians using this interface have found it to be an e�ective

method of capturing and reviewing the data.
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The evidence generator turns the data gathered from the menus into the initial PSM by using

the data values to create value structures. These value structures cause a node structure to be

created for each parameter state that could cause the value and those nodes in turn cause nodes

to be generated for each possible cause of the node. Thus, by creating the value structures, the

evidence generator creates the basic PSM structure used for most of the diagnostic reasoning.

4.2 Physiologic State Determination

The next operator does the local processing on the PSM to customize it to the patient by adjusting

the probabilities, asserting any nodes that have de�nite values, and checking for inconsistencies.

The �rst step is to go through the links in the PSM and do all of the partial evaluation possible

on the probabilities to take into account input information such as patient age and sex. Then

the program can compute the probabilities along paths to prepare the PSM for the probabilistic

reasoning of diagnosis.

The local determination of the state of nodes in the patient speci�c model can be done at several

levels. The primary source of information for this determination is the value structures created by

the evidence generator. If there is a value with only one cause (and it requires a cause), that cause

node is asserted true. If there is a node that always produces a value and that value is asserted

false or otherwise inconsistent with the cause, the node is false. Nodes asserted in this way are

certain and the automatic state determination stops at this point. However, it is sometimes useful

for the user to assume that nodes with high probability are also true. Because of the large number

of loops in the causal model, it is not computationally feasible to compute the exact probability of

the nodes. It is possible to compute a conservative estimate of the probability of a node by locally

comparing the probability of the node being true from the immediate evidence, to the probability

that the evidence is caused by other nodes. If the probabilities of the causes are conservatively

estimated and the threshold for asserting the node is high, this method identi�es nodes that have

a high probability from which the user can select ones to be asserted.

These determinations are added to the PSM and constrain it. There is also a truth maintenance

system (TMS)[18] that assures that the assertions added to the PSM are consistent and adds any

further implications of the nodes. Technically a TMS is not necessary because the probabilities

of such nodes would be 1 or 0. In fact, the TMS in e�ect precomputes when the probabilities

would go to 1 or 0 and provides an e�cient mechanism for asserting such facts. It also provides

a mechanism to track the source of any inconsistencies in the input. As a result, all hypotheses

considered later in diagnosis include the nodes known to be true and exclude those known to be

false. If a considerable amount of information is known about the patient, this simpli�es di�erential

diagnosis. When this operator is �nished, the PSM has all of the information from the input and

all of its de�nite implications asserted.

This operator is also used after the di�erential diagnosis to assert the consensus nodes. That

is, the hypotheses with any signi�cant probability are intersected to determine what nodes are

common to all of them. These are then added to the PSM with the appropriate justi�cations to

simplify the task of information gathering for diagnosis re�nement and therapy selection.

4.3 Di�erential Diagnosis

A di�erential diagnosis is a set of hypotheses that could account for what is known about the

patient. The process of di�erential diagnosis starts with the input �ndings and the nodes with

known values as determined by the previous reasoning operators. Each hypothesis in the di�erential

is an explanation of these �ndings in terms of causal pathways through the model. The di�erential
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consists of the hypotheses found that have the highest probability.

The appropriate mechanism for �nding the di�erential depends on the nature of the diagnostic

causal model. The model is similar to those investigated by Pearl[19] as Bayesian probability

networks. The di�erence is that this model has forward loops (excluded by Pearl) and nodes

with multiple paths between them (handled only in exponential time by Pearl's methods). We

investigated modi�cations to Pearl's algorithm and to our model. However, even eliminating the

forward loops in an earlier model version there were still about 40 links that would have to be cut

to analyze multiple paths between nodes. Thus, Pearl's algorithm would require weighted summing

of about 240 solutions, which is completely infeasible. Lauritzen and Spiegelhalter's algorithm[11]

might improve on this as well as more recent e�orts to provide fast implementations[1], but the

computation would remain infeasible. Indeed, Cooper has shown that the problem is NP-hard[3].

Thus heuristic methods are necessary to handle the complex networks required to represent this

domain.

We have developed a mechanism to generate the di�erential diagnosis based on the causal paths

from primary nodes to the �ndings. Since only about 50 of the 150 nodes in the model are primary

(having a non-zero probability of existing without some other cause), all of the paths from these

nodes to all others are generated and stored when the model is loaded. The probabilities along

those paths are computed when the patient data is entered. Given these pathways, the task is to

�nd sets of pathways that together account for all of the �ndings that need a causal explanation. In

comparing hypotheses we discovered that the natural notion of di�erent hypotheses requires that

they di�er in some signi�cant node, nodes which we have labeled diagnostic. The algorithm is as

follows: 1) collect the abnormal values from the input and the abnormal nodes asserted to be true

in the PSM; 2) �nd all of the diagnostic or primary nodes that could account for each �nding; 3)

rank the diagnostic and primary nodes by the number of �ndings they account for; 4) use the nodes

that account for the largest or nearly largest number of �ndings as seeds for small covering sets

of primary nodes; 5) for each covering set, order the �ndings by the di�erence between the �rst

and second highest probability path to it; 6) for each �nding, �nd the best path from the partial

hypothesis and add it to the hypothesis; 7) and then prune the hypothesis of unneeded primary

nodes and extra paths that decrease the probability. Finally, the probabilities of the hypotheses

are computed by multiplying the probabilities of the nodes given the other nodes in the hypothesis

and they are rank ordered and presented to the user. These probabilities could be normalized by

the probability of the �ndings but that is an intractable problem and unnecessary as long as we

are only rank ordering hypotheses. The algorithm is discussed in detail in a paper[12].

This approach to diagnosis di�ers considerably from others that have appeared in the literature.

Reggia's minimal set covering approach[20] ignores the fact that the best hypothesis may not be

minimal and would not �nd the hypothesis in �gure 2. Other approaches to diagnosis based on

digital circuit analysis[4, 21] assume that every node is primary and every node can be measured.

If every node were treated that way, a network of this size would be computationally intractable.

Figure 2 goes here.

Our mechanism is e�ective for producing a meaningful set of hypotheses for the �ndings in the

cases we have tested and it usually takes a couple of minutes on a Symbolics 3650 workstation.

The user can compare the hypotheses, see explanations, and consider the di�erences. Figure 2

is the display of the �rst of �ve hypotheses in the di�erential generated for an actual patient

with �ndings that included rales (
uid sounds in the lungs), pedal edema (ankle swelling), high

BUN (poor renal function), nausea, S3 (abnormal heart sound), and runs of VT (arrhythmia).

The display graphically presents the complete explanation for the �ndings and provides a textual

summary of the case at the bottom of the screen. In the display the �ndings are in lower case,

intermediate nodes in upper case, primary nodes in bold face, primary probabilities in parentheses,
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causal probabilities on links and W+ indicating worsening factors that increase the probability and

P{ indicating correcting factors that decrease it. This hypothesis accounts for the �ndings with

congestive cardiomyopathy and renal insu�ciency while the second hypothesis accounts for the

�ndings with congestive cardiomyopathy alone. Those hypotheses nicely capture the actual physi-

cian's initial dilemma: whether the high BUN was the result of renal disease or inadequate blood


ow to the kidney. Other hypotheses included valve disease, which is an important consideration.

This hypothesis illustrates several features of the algorithm: 1) it handles multiple causes; 2) it

handles multiple pathways between nodes; 3) �ndings can be left unexplained (the murmur); and

4) �ndings caused by therapies (digitalis toxicity here) are handled. (This example is discussed in

more detail in[15].)

This method of generating hypotheses is heuristic and indeed it is possible to construct networks

where it does not �nd the best answer. However, only the search is heuristic, not the use of

probabilities in ranking hypotheses. Thus, if a better diagnosis is found, it is easy to test that it

is better. As a result, it is possible to add hill-climbing techniques or even alternative diagnosis

generators and be able to compare the probabilities of the diagnoses. We have tested over 100

actual cases thus far as well as many created cases and have found the algorithm to be e�ective.

On one set of 42 cases, collected while developing the algorithm, the performance was tabulated.

In 31 of these the program produced reasonable hypotheses. In �ve, the hypotheses were almost

right but parts of the mechanisms were inappropriate. In the other six cases the best hypothesis

was missed. There were two main reasons for these problems: 1) the program did not reason

appropriately with the temporal relationships between cause and e�ect, and 2) it did not handle

severity relations appropriately. These problems are part of our research agenda.

4.4 Case Based Diagnosis

CASEY, developed as a doctoral thesis by Phyllis Koton[10], adds a case-based diagnostic reasoning

operator to the Heart Failure Program. This is an alternative diagnosis generator, allowing a

comparison of di�erent methodologies. It also allows the user to �nd similar cases for comparison.

The CASEY operator uses the values from the input, the causal diagnostic model, and the case

base. The �rst step in case-based diagnosis is using the input �ndings to �nd similar cases in the

case base. CASEY has no predetermined list of important �ndings, so all of the �ndings are used

at this stage to search for matches. From the causal diagnostic model, CASEY has a mechanism

for assessing the similarity between �ndings. For example, rales on the physical exam and vascular

redistribution on a chest X-ray are both evidence for the same physiologic state, cardiac pulmonary

congestion. Thus, CASEY can �nd and justify the matches, not because the �ndings exactly match,

but because the �ndings can provide evidence for the same physiologic states. Once a partial match

has been found, the next step is to try to adapt the stored case to the new �ndings. There may be

parts of the old case for which there is no support in the �ndings or �ndings that require additions

to the old causal model. CASEY has a set of operators that take care of these situations. The

simplest situation is new �ndings which add support for states already in the causal hypothesis. If

the �nding can not be explained by an existing state, CASEY makes use of the mechanism in the

diagnostic reasoner to look for a good pathway from some part of the hypothesis to the new �nding.

If this will require new diagnostic states or primary causes, the search is abandoned and the match

is rejected. If when all of the new �ndings have been added, there are parts of the hypothesis that

are unsupported, CASEY has a pruning procedure that eliminates states until the whole structure

is supported. The result of this process is a hypothesis that completely explains the �ndings and

can be treated in the same way as a hypothesis from the causal diagnostic reasoner.

A case-based reasoner also needs to learn from the cases that are handled. Thus, CASEY needs
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a source of correct answers. After diagnosis has taken place, using CASEY, the causal reasoner,

or a user guided diagnostic procedure, the user can assert that a diagnosis is correct and allow

CASEY to add it to the case base. The structure and entry process for the case base is described

in section 3.3.

CASEY is quite conservative in its approach to revision, but even with 50 cases in the ini-

tial database (including about ten di�erent primary diseases) it was able to �nd su�ciently close

matches to satisfactorily diagnose cases 80% of the time. Usually, the diagnoses generated with the

probabilistic reasoner are better, but there are a few instances where CASEY has found a better

hypothesis. The interaction between the case-based reasoner and the causal model reasoner gives

CASEY the leverage needed to handle cases when the super�cial similarity of the �ndings may be

quite small and add the potential e�ciency of the associational reasoning to the system. Indeed,

CASEY is the �rst e�ective combination of case-based reasoning with an extensive causal model.

4.5 Additional Information Suggestion

When the program has produced a hypothesis that the user has accepted as the diagnosis, there

still may be unknown aspects of the patient state. Perhaps the user accepted only part of the

hypothesis because of uncertainties about data or because additional complicating factors have not

yet been ruled out. Resolving these issues may uncover easily treatable aspects of the disease or

a�ect the selection of appropriate therapy.

The mechanism we use for examining these possibilities and looking for additional patient data

that would be useful in re�ning the diagnosis is quite simple. For a single diagnosis it traverses

the diagnostic causal chains of the hypothesis looking for unknown states with links into or out of

the chain that are likely. For a di�erential it starts with the nodes that are di�erent among the

hypotheses. From these it searches for measurements (observations or tests) that might clarify the

state of the node (positive or negative). If there are no measurements, it examines the possible

causes of the node for measurements to clarify the situation at that level. This mechanism identi�es

the measures that could have a bearing on the situation and lists them for the user. The justi�cation

for these suggestions are the nodes that they will clarify. Thus, this operator uses the PSM with

the diagnosis to produce a list of suggested measurements with justi�cations.

4.6 Therapy Suggestion

When the user has decided on the diagnosis, the next step is to determine appropriate therapies.

The program looks for candidate therapies by searching along the causal chains in the diagnosis that

lead to undesirable outcomes. Therapies are included in the model as having corrective e�ects on

the nodes (as well as possible detrimental e�ects). The therapies with the potential to break some of

the causal paths are collected as a list of potential therapies. This approach allows the program to

�nd therapies that are appropriate even though the �ndings that usually trigger their consideration

are absent. For example, hydralazine decreases the systemic vascular resistance, so it is commonly

used to decrease blood pressure. However, in a patient with primary cardiac muscle dysfunction,

the systemic vascular resistance can be too high even though the blood pressure is normal when the

cardiac output is low. In such a patient, the use of hydralazine will be suggested because of the high

systemic vascular resistance and is quite appropriate. Since the therapies typically have multiple

e�ects or the primary e�ect has multiple potential consequences, it is necessary to determine what

the e�ects of the therapy actually will be. That is done by the therapy prediction algorithm. There

are also other considerations when selecting therapies for the patient, such as side-e�ects outside

the domain of this model, requirements for monitoring drug e�ects, and known patient sensitivities,

12



that are not covered by the program.

4.7 Therapy E�ect Prediction

Therapy e�ect prediction uses the physiologic state determined by the diagnosis and the values of

parameters to estimate the e�ect of adding or removing one or more therapies. The mechanism for

prediction of the e�ects of therapy is based on signal 
ow analysis[17] and computes the changes

in the parameters from steady state to steady state. The choice of a constraint representation for

therapy prediction rather than a probabilistic representation is appropriate because there is usually

enough information available to solve the constraints and because the complex interactions among

the parameters make the generation of a probabilistic model extremely di�cult.

The advantage of the signal 
ow mechanism over other means of solving the equations is that

it produces a record of the paths of in
uence on the parameters and their relative contribution.

This record provides the basis for an explanation of the change and may in the future allow a

way to deal with some of the uncertainty in the relationships and measurements. Initially, we

applied this mechanism to a model with qualitative relations on the links between parameters.

This worked well in our early tests in which the actions of drugs in the normal patient were

compared to the model predictions[14], but we had considerable di�culty extending the model to

account for the behavior of mitral stenosis, the �rst valvular disease considered. Since most of

the parameters have known quantitative relationships to other parameters and the computational

mechanism supports quantitative reasoning, we converted the model to use quantitative relations.

To do so required adding the handling of integrated parameters and compensating for non-linearities

as well as developing a new model.

The prediction constraint model conforms to the usual notion of causality in the cardiovascular

system. Since one normally thinks of the hemodynamic relations on the right and left sides of the

heart separately, there is a problem in representing the equality of left and right outputs in steady

state. Physiologically blood volume shifts between circulations equalizing the outputs. To capture

this we have levels (integrated variables) representing the volume in each circulation.

Integrated relationships can be handled because the derivative of an integrated parameter in

steady state is zero. This provides the additional constraint needed to determine the level of the

parameter. The steady state assumption is justi�ed because the time constants of concern di�er

by an order of magnitude or more. Typically, we are either interested in the changes that take

place in minutes (immediate hemodynamic changes) or in the 
uid balance involving renal function

which takes place in days. Other changes require weeks or longer to take place. Thus, physiologic

mechanisms with longer time constants than the time of interest can be ignored. With this extension

the procedure for determining the change in all parameters requires two steps: determine the levels

of the integrated parameters necessary for their derivatives to be zero, then use these values plus

the original change to determine the �nal values of all of the parameters.

The second extension to the reasoning was to handle non-linearities in the relationships between

parameters. A non-linearity implies that the gain between two parameters varies over the amount

of the change. For example, in the relation determining the blood pressure (section 3.2) the e�ect of

cardiac output depends on the systemic vascular resistance, which will also change. The algorithm

uses the initial gain to determine the changes, but that is not always adequate. Our solution is

to adjust all of the gains to be the average gain over the range of the change and iterate until the

�nal values conform to the constraint equations. This approach has theoretical limitations, but it

usually converges rapidly to a consistent solution. Once a solution is proposed, its adequacy can

easily be tested by verifying that all of the equations are satis�ed.

The model has been validated by comparing published data to the model predictions. The data
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came from papers in the literature in which patients with one of the diseases were given a therapy or

exercised and the hemodynamic variables are reported before and after the intervention. When the

hemodynamic data are fairly complete, the initial values of the model parameters can be computed

or estimated and the model can simulate the patient. Our e�orts in validating the model were very

fruitful[13]. The model proved su�cient to account for the average behavior reported in each of

the �ve papers studied. With only two or three minor exceptions, the predictions were within the

errors of the mean reported for all of the modeled parameters, once appropriate distributions of

direct e�ect were determined for the therapies and the exercise the patients experienced.

Therapy prediction starts with the PSM as determined so far. Since this is a quantitative

model, the primary source of data is the parameter values that are entered in the input. For

example, if the user enters a heart rate of 110 in the input, the diagnostic reasoning treats that as

a high heart rate, but the therapy prediction reasoning uses the actual value. Many of the other

parameter values needed in the model are computable from those that the user enters, and the

program automatically computes these. Estimates of other parameter values are determined from

the diagnosis. Most of these are simple to determine. For example, all of the diseases that are not

in the diagnosis are given the parameter value zero. However, when important parameters such as

the cardiac output have to be estimated, the program picks a number in the appropriate range that

is consistent with the other parameters that in
uence it. Once a complete and consistent initial

state is determined, the program can be used to predict the e�ect of one or more therapies. This is

done by indicating a change in the value of the desired therapy (an increase, a decrease, or multiple

therapies). The primary e�ects of examples of most of the important classes of therapies have been

determined by our study of the literature and are included in the model. However, other therapies

can be considered if the user knows the primary e�ects by specifying changes in the values of the

primary e�ect parameters. The program then shows the predicted changes in all of the parameters.

One problem is determining the appropriate dose for comparing e�ects. There is a mechanism in

the program that will adjust the dose until a desired change is achieved in a particular parameter.

That allows the user to answer such questions as, \if enough of the therapy is given to increase the

cardiac output to 5.0 L/min, what will happen to the other parameters?"

Figure 3 goes here.

Figure 3 shows the prediction of the exercise response of a patient with mitral stenosis (actually

the average data for 10 patients). The display excludes unneeded diseases and associated parameters

and links with no or very small gain. The parameters are organized by type and region of circulation

with arrows showing the circulatory 
ow. The data in the paper included the heart rate, cardiac

output, left ventricular systolic pressure, left ventricular end diastolic pressure, pulmonary artery

pressure, and pulmonary wedge pressure[5]. The rest of the initial parameter values (shown at

the bottoms of the parameters) were computed from these to run the model, making assumptions

consistent with the state of the patient. For this example, the amount of exercise applied was

chosen to produce the cardiac output of 8.0 L/min reported in the paper. The changed values are

printed at the tops of the parameters. The predictions for the other reported parameters were all

within the errors of the mean.

4.8 Explanation

The �nal operator is the explanation operator. This takes the PSM and the results of other opera-

tors and provides the user with a way of understanding them. There are two kinds of explanation

produced by the program, one that provides information about the causal model and the diagnostic

hypotheses and one that allows the user to explore the therapy predictions.

An example of the kinds of graphical explanations provided for diagnostic hypotheses was
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shown in �gure 2. The diagnostic hypothesis consists of two lists of nodes, a list of nodes true in

the hypothesis and a list of false nodes. These are explained to the user by graphing the causal

relations in the list of true nodes. This kind of explanation is a rich source of information. It justi�es

the hypothesis by proposing the mechanisms by which they might have been produced in physiologic

terms understandable to the physician. This helps the physician to see what assumptions are being

made and therefore may identify aspects that need veri�cation and whether the hypothesis is really

appropriate given what the physician knows.

This method of graphical explanation is also useful for a number of other aspects of understand-

ing the analysis and the model. Because parts of the display can be highlighted or italicized, it can

be used for comparing two hypotheses, generated with the same or di�erent input or with variations

in the causal model. This makes it readily apparent what is common and what is di�erent about

the hypotheses. It is also useful for examining the conclusions of other operators. One can display

the nodes with de�nite values and see what must be explained by the diagnostic process. It can

display suggested therapies to see where their expected e�ects intersect the diagnosis. It can also

be used to show where additional information might a�ect the diagnosis. This graphical method of

display is also a good way of exploring the causal model for model development or to gain a better

understanding of the model.

The explanation of the therapy prediction operator requires a somewhat di�erent approach. The

causal links as determined by the model equations are represented in the initial display, providing an

overview of the model. When therapy prediction is done, the display shows the expected changes

in the parameters as well. Still, that does not provide the user with any understanding of why

those changes should take place. Indeed, with simulation based methodologies for predicting the

changes, there is no good way of sorting out the relative importance of di�erent in
uences on

the changes. With the signal analysis based approach, all of the in
uences are recorded on the

pathways through the model. This allows the program to identify the major in
uences in any

expected change. In �gure 3, this is shown. The user asks to see the major in
uences of exercise on

cardiac output under these conditions by selecting highlight on the cardiac output parameter menu

and the program highlights the two pathways that have the largest e�ect on this parameter. This

helps the user to see which relations are most in
uential in determining what will actually happen.

Both of these methods of explanation have the advantage that they provide a lot of information

about the conclusions of the program. In essence, they answer many questions without the user

having to ask them. This high bandwidth communication has proven to be an excellent method of

model development as well as an e�ective method for explaining analyses to the user.

5 Summary

Thus, the Heart Failure Program consists of a set of knowledge bases and a number of operators that

take input about a patient from the user, build a patient speci�c model, and provide mechanisms

for the user to understand the analyses of the operators. This structure of many operators and

multiple reasoning strategies, provides a 
exibility that does not limit the ways in which the user

can apply the program. The user is able to concentrate on questions of diagnosis, if that is what is

important in the case, or move on to the potential e�ects of therapies if that is what is important.

In real cases, it is clear that these issues are closely interrelated and the program allows the user to

move back and forth between diagnosis and management considerations as appropriate. The other

advantage of this structure is the power gained by each operator by building on the conclusions of

previous operators. For example, the diagnostic process is simpli�ed because de�nite conclusions

have already been made and these can be handled as if they were additional input constraining the
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possible conclusions.
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Figure legends

Figure 1: Overview of Heart Failure Operators and Data Structures

Figure 2: Congestive Cardiomyopathy and Renal Insu�ciency Hypothesis

Figure 3: Prediction for Mitral Stenosis with Exercise
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