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Abstract— We extend lazy propagation for inference in paper. The method allows exact and autonomous infer-
single-agent Bayesian networks to multiagentlazy inference ence in a cooperative multiagent system that is efficient
in multiply sectioned Bayesian networks (MSBNs). Two \hen the dependence structure is sparse. An agent's in-

methods are proposed using distinct runtime stru_ct_ures. We ference isautonomousf it can be performed by the agent
prove that the new methods are exact and efficient when . . N .
. . ; .~ independently without communication with other agents,
domain structure is sparse. Both improve space and time : .
complexity than the existing method, which allow multia- an.d. after the. inference the aQ?”t is able to answer prob-
gent probabilistic reasoning to be performed in much larger abilistic queries exactly conditioned on all local knowl-
domains given the computational resource. Relative perfor- edge and observations and on all global knowledge and
mance of the three methods are compared analytically and observations up to the last communication. See [14] for a

experimentally. comparison of methods regarding autonomy.

The product-based inference with LJF has been com-
I. INTRODUCTION pared [14] with extensions of other inference methods for

Multiply Sectioned Bayesian Networks (MSBNS) [20]single-agent BNs_, in partipular, the loop-cutset methpds
extend Bayesian networks (BNs) [8] for modular and fle@nd two stochastic sampling methods. The comparison
ible knowledge representation and inference. AIthoug?#'OWS that product-based inference with LJF is superior

h

they were originally motivated within the single-agent'@n these alternatives. In this paper, we present two
paradigm [19], their modularity allows natural extensioRE€W 9eneral inference methods for MSBNs which extend

into the multiagent paradigm [13]. From a small set dh¢ [azy propagation [6] for single-agent BNs. The two

meta-requirements, (1) exact probability measure of ag&fgthods will be referred to dazy inference with double-
belief, (2) agent communication by belief over small set{1kéd junction forest (DLJFandlazy inference with LIF
of shared variables, (3) a simpler organization of agen?é?d we will explain later the corresponding terminologies.

(4) a directed acyclic graph (DAG) domain dependené@e two new methods are also exact and autonomous, and

structure, and (5) the joint belief of agents admitting indf€Y Promise to deliver improved run-time inference effi-
which we will demonstrate with experimental re-

vidual belief on internal variables and combining their be='€NCY:
liefs on shared variables, it has been shown [18] that tfH!tS-
resultant representation of a cooperative multiagent sys\We assume that readers are familiar with common ter-
tem is an MSBN. These meta-requirements distinguisfinologies used in the literature of Bayesian networks,
MSBNs from a number of alternative knowledge repsuch as DAGs, mapping of domain variables and nodes
resentations which do not simultaneously satisfy thefiea BN, parent, child and family of a node in a BN, d-
meta-requirements [18]. The multiagent paradigm will beeparation, moralization, node elimination and fill-ins, tri-
followed in this paper. angulation and cliques, junction trees, clusters and separa-
The first general inference method in MSBNSs [20], [11fors in a JT, conditional independence, conditional proba-
was an extension of a junction tree (JT) based infereniitity tables, a potential (hon-normalized probability dis-
method [5] for single-agent BNs. We shall refer to thitribution) and its domain, consistence of potentials, mes-
method as th@roduct-based inference with linked juncsage passing in JTs, etc. Definitions of these terminolo-
tion forest (LJF)and we overview the method later in thagies can be found in a number of reference books such as



[8], [71, [1], [2], [4], [13]. The overall structure of an MSBN is a hypertree MS-
Theremainder of the paper is organized as follows: B&®AG:
sics of MSBNs are introduced in Section Il. Section Ill Definition 3: A hypertree MSDAG G = | |, G;, where
overviews product-based inference with LJF and SeeachG; is a DAG, is a connected DAG such that (1) there
tion IV overviews lazy propagation. Section V presen@xists a hypertre& over G, and (2) each hyperlink i
lazy inference with DLJF and it is an extension of [17]is a d-sepset.
Section VI presents lazy inference with LJF and it is an Graphically, a hyperlink separates the hypertree MS-
extension of [16]. Experimental comparison of the thrd@AG into two subtrees. Semantically, this corresponds to
methods is reported in Section VII. Section VIl drawgonditional independence given the d-sepset. An MSBN
conclusions from this work. is then defined as follows:
Definition4: An MSBN M is a triplet M =
(N,G,P). N = |, N; is thedonai n where eachV;
Il. OVERVIEW OF MULTIPLY SECTIONED BAYESIAN i< 4 set of variables? — L], G: (a hypertree MSDAG)
NETWORKS is thest r uct ur e where nodes of each DAG; are la-

An MSBN M is a collection of Bayesian subnets, on8€led by elements alV;. Letz be a variable and (z)
from each agent, that together defines a BM.repre- be all the parents of in G. For eachr, exactly one of
sents probabilistic dependence ofdamain partitioned its occurrences (in &; containing{z} U (z)) is as-
into multiple subdomaingach of which is represented bysigned P(z|r(z)), and each occurrence in other DAGs
a subnet. Agents cooperate to reason about the statéSadssigned a constant tabt®. = [[, (V) is thej pd
the domain in order to take proper actions. Without cofioint probability distribution), where eack;(XV;) is the
fusion, we refer to an agent, its subdomain, and its suproduct of probability tables associated with nodesin
net interchangeably. To ensure exact and autonomousk@ch tripletS; = (NV;, G;, ) is called asubnet of M.
ference, subnets are required to satisfy certain conditiof0 subnetsS; and S; are said to bedj acent if G;
[18] described below: andG; are adjacent on the hypertree MSDAG.

Given a graphG = (N, E), a partition of N into Ny
and N such thatNg U Ny = N and Ny N Ny # 0, and |; L e ®c 3
subgraphs; of G spanned byV; (: = 0,1), Gis saidto |: P(h)h aNI\Ik 2
besectionednto Gy andG;. A multi-subdomain graphi- |. | T epa) P(lab) ® P(klb.c)
cal model is defined based on sectioning: D B e G

Definition 1: Let G = (N, E) be a connected graph | § I/I\I\ 0
sectioned into subgrapHgs; = (N;, E;)}. Letthe sub- | ¢ 'y .' m 4" 0
graphs be organized into an undirected tfewhere each || pja) P(elb) P(c) ! P(lab) P(mb) P(nb,c) P(olc)
node is uniquely labeled by &; and each link between—————
G and G,, is labeled by the non-emptiynt er f ace Fig. 1. A trivial MSBN with three subnets and hypertree structure
Nk N N, such that for each andj, N; N N, is con- G1 — Go — G2. The two d-gepsets are identic_al and each_ consists of
tained in each subgraph on the path betw@eande in iﬁéﬁ;c}. Each d-sepnode in each subgraph is shown with a dashed
U. ThenV is ahypertree overG. EachG; is ahy- '
per node and each interface iskayper | i nk. A pair of An example MSBN is shown in Figure 1.
hypernodes connected by a hyperlink is said tadga-
cent.

Each hyperlink serves as the information channel be- .
tween subnets connected and is referred to as an agent
terface. Agents communicate by exchanging beliefs overProduct-based inference with LIJF conducts probabilis-
their interfaces. An interface must bedasepset, as de-tic reasoning in an MSBN by message passing. Each
fined below: message is a potential over a subset of variablascal

Definition 2: Let G be a directed graph such that a hyinferencewithin each agent passes intra-subnet messages
pertree overG exists. A noder (whose parent set in which bring a subnet into consistencommunication
G, possibly empty, is denoted(z)) contained in more among agents passes inter-subnet messages which brings
than one subgraph i@ is ad—sepnode if there exists at the multiagent system into global consistency.
least one subgraph that containge). An interfacel is a To pass these messages efficiently for exact inference,
d—sepset if everyx € I is a d-sepnode. each agent compiles its subnet into a JT. The compilation

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

|. PRODUCTBASED INFERENCE WITHLINKED
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is a cooperative process [12]. First, agents perform dmsAd observations of its own.
tributed moralization and triangulation. Each agent then
constructs its local JT. This is followed by local potential
assignment: For each variable in the agent’s subnet, its
conditional probability table is associated with a cluster Lazy propagation [6] is an inference method for single-
in the JT that contains the variable and its parents in thgent BNs based on message passing in a JT of the BN.
subnet. Each cluster in each JT is assigned with a sin@ach cluster is assigned a set of probability tables from the
potential over its set of member variables, that is the proBN. Unlike product-based inference in [5], the product of
uct of all conditional probability tables associated with théhese tables are not obtained. We refer to these tables as
cluster. Hence, we name this inference metpazuct- potentials, refer to the cluster of current focus®@yand
based. refer to the set of potentials &t by 5. When no potential

For communication with adjacent agents, an ageistassigned to a clustes, = (). Thejoint system potential
compiles its d-sepset with an adjacent agent irlinkeage of the JT over a domai@V is defined as the product of
tree. The linkage tree is derived from the agent’s locabtentials in all clusters, denoted B( V). In the follow-
JT as detailed in [11]. We outline the key properties dfig, we describe data structures and algorithms for lazy
linkage tree here as they are essential to the results of thispagation.
paper. Note that an agent has a single subnet and compileBach separato$ between two adjacent clustetsand
it into a single JT. If the agent is adjacentkagents on C’ is associated with two buffers. One buffer stores mes-
the hypertree, then it is associated withd-sepsets and sage fromC’ to C' and the other fromC to C’. For
will compile them intok linkage trees. the given clustet’ and separatof, we refer to the two

1) A linkage tree is a JT over a d-sepset, where eabHffers asn-bufferandout-buffer, respectively, relative to
cluster is a subset of the d-sepset, calldihkage, C. A cluster executes the following algorithm to compute
and each separator is calletirskage separator and send a message to an adjacent cluster, whisréhe

2) Given a JT of an agent and one of its linkage treesgt difference operator.
each cluster in the linkage tree is a subset of at leastAlgorithm 1—SendPotentialLet C be a cluster withs.
one cluster in the JT. One such cluster is designate€t adjacent clusters b€, ..., Cy,. Let 3; be the set of
as thdinkage hosbf the linkage. potentials in the in-buffer front;. When SendPotential

3) A linkage tree expresses the same graphical sepaelative toCy, is called inC, C does the following:
tion within the d-sepset as its deriving JT. Hence, (1) 3’ = 3 Uiz Gi.

a linkage tree encodes identical independence re-(2) Marginalize out variable€' \ Cj, from 5. (To
lations within the d-sepset as the correspondingarginalize out variable, multiply potentials withz in
JT. Furthermore, a d-sepset involves two adjacetiie domain and apply marginalization to the product.)
agents, the linkage tree derived by one agent is(3) Send the resultant set of potentials to the out-buffer

IV. OVERVIEW OF LAZY PROPAGATION

equivalent to that derived by the other. to Ck.
Figure 2 illustrates JTs and linkage trees obtained fromIn the following two algorithms,C' is a cluster and
the MSBN in Figure 1. cal I er is an adjacent cluster or the JT. Algorithm 2 is

Once the linkage trees are compiled, the structure of tB¥ecuted recursively by each cluster during inward mes-
MSBN has been compiled into a set of local JTs related 5g€ passing.
linkage trees. For each pair of adjacent agents, their locaAlgorithm 2—CollectPotential When CollectPotential
JTs are linked by a linkage tree. Such a runtime structufecalled in cluste”, C' does the following:
is called alinked junction forest (1) For each adjacent clustér except caller, call Col-
The last step of the compilation is belief initializationlectPotential inQ and receive potentials froi.
System wide communication is performed for agents to (2) SendPotential relative to caller if it is an adjacent
exchange prior knowledge on shared variables. Comniuster.
nication consists of one round of inward message propa-Algorithm 3 is executed recursively by each cluster dur-
gation along the hypertree and one round of outward propg outward message passing.
agation. The message sent from an agent to an adjacerlgorithm 3—DistributePotentialWhen  Distribute-
agent consists of a set of linkage potentials as detailBdtential is called ir”, for each adjacent clusté} except
in [11]. After belief initialization, each agent is able tocaller,C performs the following:
perform autonomous inference and to answer probabilis-(1) SendPotential relative Q.
tic queries exactly relative to prior knowledge of all agents (2) Call DistributePotential ir).



P(blg,h),P(g),P(h)

Fig. 2. JTs and linkage trees obtained from Figur&;1(i = 0, 1, 2) is the JT obtained from subné%. L, is the linkage tree betweeh, and
Ty and L, betweenT, andT:. Next to each cluster are the probability tables assigned to it. Each linkage host is labeled by *. Each thick link
relates a linkage to its host in a local JT.

Algorithm 4 is executed by a JT, which produces tha triangulation consisting of two rounds of fill-in propa-

exact marginal for each cluster. gation along the hypertree. We first illustrate the process
Algorithm 4—UnifyPotential: using the example MSBN in Figure 3 (a) with its hyper-
(1) Select a clustet’ arbitrarily. tree in (c) and its moral graph in (b). The agent organiza-
(2) Call CollectPotential irC. tion is isomorphic to (c), which is obtained by substituting
(3) Call DistributePotential irt'. eachG; with the agentd4;. This example will be used in
Proposition 1 summarizes the effect of UnifyPotentiagubsequent sections.

whereconst denotes a constant: The first round is the inward triangulation. We assume

Proposition 1—Proposition 3.4 in [10]:Let UnifyPo- the root agent4;. Instead of using different notations
tential be performed in a JT. For any clustewith 3 and for local DAG, moral graph and chordal graph, we de-
in-buffer messagg; from separatorz; (i = 1, ...,m),de- note all of them byG and differentiate them by context.
note the product of potentials jhas3(C) and the product Processing starts from leaf agents and Ay. To trian-
of potentials ing; as3;(R;). Theng(C) [TiZ, 3i(R;) = gulate local moral grapty's, A5 eliminates nodes outside
const Yo B(N). d-sepset with4d,, namely, nodes. andm. Suppose the
order is(n,m), which produces fill-ins{{j, k}, {7,1}}
shown in (d) as dashed links. The resultant chordal graph
is labeledGs_.5 to signify that it is used to compute

message fromds to A, during inference. Completion

_ The advantage of lazy propagation over product-basgfly_sepset( ;. &, 1} indicates that during lazy inference,
inference is the space efficiency gained by replac”?ﬂessage fromd; to A, may contain a potential over
product-based pote_ntials and messages with factorizg’jk’l}_ Elimination order(n, m) is one possible order
ones. We extend single-agent lazy propagation to My, marginalization in computing that message. To en-
tiagent MSBNSs for space efficiency and refer to the resuyre thata, have the proper data structure to process this
tant method atazy inference. Lazy propagation employ%essageAg sends the above fill-ins tal,. Similarly,
only two numerical operations on potentials: multiplica1-4O eliminates{o, p} in order (o, p). This produces fill-

tion and marginalization, while product-based inferengg {f,7) shown in (e), which4, sends tad,.

in single-agent JT and in multiagent LJF also requires di- . -
' singie-age . g . d After receiving fill-ins from A3 and Ag, Ay performs
vision. In this section, we present a runtime structure for i o . -
. S ._friangulation of G, augmented with incoming fill-ins.
lazy inference that uses only multiplication and marginaj-

ization. It is referred to aBouble-Linked Junction Forest t.elllmlnat_es nodes OUtS'd? ,d'sep.SEt wilh, ”ame.'y’
(DLJF) {i,7,k,1} in the order(l, k, 7,4). This produces fill-ins

{{h,j},{f, h}} shown in (f). Ay sends fill-in{f, h} to
A; (how A; makes use of the fill-in is discussed in Sec-
A. Cooperative Triangulation tion V-C). SinceA; is the root, inward triangulation ends.

The order in which messages, both intra-subnet andThe second round is outward triangulation starts from
inter-subnet, are produced during inference can be detds. It eliminates nodes outside the d-sepset withfrom
mined by triangulation. For agent privacy and flexibil<z; inthe order(a, b, ¢, d, €). The resultant; .2 is shown
ity in operation, a cooperative triangulation (versus ceim (g). No fill-ins are produced and none is sentAg.
tralized) is preferred. Similar to cooperative triangulatioNote that the d-sepsétf, g, h} is not complete (compare
used for product-based inference in LJF [12], we presenith G>_,1). Hence, message frody to A, never con-

V. LAzZY INFERENCE WITHDOUBLE-LINKED
JUNCTION FOREST



G 2+-1 G 2-0

Fig. 3. Cooperative triangulation. (a) An example MSBN whose hypertree is shown in (c). (b) The moral graph of the MSBN in (a). (c) The
hypertree structure of the MSBN. (d) The local graph after inward triangulatiéi; at(e) The local graph after inward triangulationGlg.

(f) The local graph after inward triangulation @. (g) The local graph after outward triangulation(@t. (h) The local graph after outward
triangulation aiG, relative toGs. (i) The local graph after outward triangulation@t relative toGy.

tains a potential over the entire d-sepset. initialize accumulato’ = ¢;

Next, A, triangulatesGy with respect toAs and Ap. fori = 1tom, doin parallel
The two operations can be paralleled. With respect to call CollectFillinin A; and receive fill-insF; on
Ag, after adding the fill-in{f, j} from A,, A, elimi- d-sepsetV; N Ny;
nates{ f, g, h, i} in the order(h, g, f, i) producing fill-ins updatef’ = F' U Fj;
g, k},{f k},{4, k}} as shown in (h). The fill-in on d- if A.is an adjacent agent, do
sepset{j, k}, is senttads. Note that the d-sepset is again eliminateNy \ N, from G}, = (Ny, Eg U F') inan
not complete. orderOy_.. and add fill-ins tal";

With respect tad, after adding fill-ins{{j, k}, {4, 1}} denoteGy_.. = (Ny, Eo U F) and sendrNonNe
from As, A, eliminates{g, h, k, [} in the order(l, h, g, k) to A,;

producing fill-ins{{g, k}, { f, k},{f,7}} as shownin (i).  CollectFillin does not restrict orde®y_... Proposi-

A, then sendsd the fill-in {f,j}. Since Ay and A; tion 2 shows that fill-ins passed between agents are in-

are leaf subnets in the hypertree, cooperative triangulatidependent of elimination order.

ends. Proposition 2: Fill-ins F‘No"Ne produced by Collect-
Next, we present general algorithms of which the abovllin is independent of orders in which eliminations are

illustration is a trace. We say that a graphover N is performed.

triangulated in orderO, if N is eliminated inO with fill-  Proof: We prove by induction. Suppos#, is a leaf

ins added ta;. Given a setF of links over a setV of on hypertree. Thdor loop is skipped and elimination

nodes, a subset’ C F is called arestriction of F' to is performed directly inGy. Consider a pair of nodes

X CNif xz,y € Nog N N, that are not directly connected 1@.
When Ny \ N, is eliminated, fill-in{z, y} will be added
E={{zyllre X,ye X, {z,y} € F}, iff there is a path between andy such that all nodes on

the path (except andy) are inNy \ N, [9] (Lemma 4).
_ X . -
and we denoté? = FX. Algorithm 5 is executed re- Hence the proposition holds.

cursively by each agent during inward triangulation. The If Agis notaleaf, assume that the proposition holds for
agent who executes is referred toAg A. denotes the Fi(i=1 m). ThenG, is independent of the order in

cal I er Wh'Cht:lS e'tgir thedsystem coordln;tor or 3” acéNhICh ellmlnatlons are performed in each subtree rooted
jacent agent ofdo. Other adjacent agents dfy are de- A;. Using the same argument above to elimination in

noted a§41, oo Am. . 4, the proposition is proven. [
Algorithm 5: [CollectFillin] Let G; = (IV;, E;) be the

local moral graph of;. When A, is called byA, to per- Algorithm 6.is execgted recursively by each agent dur-
form CollectFillin, Ay does the following: ing outward triangulation.



Algorithm 6: [DistributeFillin] Let G; = (N;, E;) be 1) @ ikl 3@ Cikl D
the local graph produced by CollectFillin at;, and7; | Ciklm > | (fo) (i) | Chigk
be fill-ins that Ay received fromA4;. When A, is called @ Ctgik O
by A. to perform DistributeFillin with fill-insF,, A, does | Cklmn > | fijp o @i
the following: Ts-2 To-2 Tom1 Ta-0

fori = 1tom, do
denotel’ = F. U F; Fig. 4. Message JFs when d-sepset is complete. (1) The JT obtained

k=1 (ki) ¥ . -
. ) . from Gs_.2 in Figure 3 (d). (2) The JT obtained frotdy—2 in Fig-
eliminateNo \ Ni frpm (NO’ EO Y F) in an order ure 3 (e). (3) The JT obtained fro6iz—.1 in Figure 3 (f). (4) The JT
Op—.; and add fill-ins toF’, obtained fromG2_.¢ in Figure 3 (i).

denoteGy_,; = (N(], EgU F),
- . - . . . . - -. lN mNZ'
Fill _caII D'Stnglge':'”m nA; W'thg” |_ns ll; O.b ’ I:_”_clique in G3_9. During inference, message froAy to
l-ins passed between agents during DistributeFillin '\ iy ne optained from clustefj, &, 1, m}. Similarly,

are also independent of the elimination orders as state JLPSToﬁz (in Figure 4 (2)), Ty (in (3)) andTy_ (in

Proposition 3. It can be proven similarly to Proposition 2. P :

" o ) 4)) are created front/y_2 (in Figure 3 (e)),G2_1 (in
Proposition 3: Fill-ins  FNo"Wi produced by Dis- ng))))andG (in () reosp2e<:(tivelyg (©)):Gz—1 (
tributeFillin is independent of the orders in which elim="} . céﬁgidegl ' in Figure 3 (g). Since the d-sepset
matlons_ are performgd. i is incomplete, message from to A, may contain poten-

Algorithm 7 combines the above algorithms for COOR (s over{f, g} or {g, h}, but not{ f, g, h}. A JF of two
eri‘fllve t_nsmg;la(t:lon of an MS?:'_\III'_ JTs is then created, shown (one at the upper right and the
gorithm 7: [CommunicateFillin] other at the lower left) in Figure 5 (1), and message will

(1) Select an agerd arbitrarily. be obtained from cluste and{a. h
(2) Call CollectFillin in A. e obtained from cluster., f, g} and{g, i}

(3) Call DistributeFillin in A with empty fill-ins. 1) @1 (3) C
The illustration presented early in this section is the Cedd>—@e> gk O
trace of CommunicateFillin wittd — A,. Any agent | (gh) Cefg > |Chgh >Cefg D S

may be selected as the root in CommunicateFillin. Will (b ORICD (ab) ik
the choice of root agent affect the outcome? Theorem 1

_ _ -2 Ggh) T (tg ) To-3
answers this guestion.

Theorem 1:Fill-ins F1N"Ni sent by each agent duringrig. 5. Message JFs when d-sepset s incomplete. (1) The JF obtained

CommunicateFillin is independent of the root agent beirftpm G1—.» in Figure 3 (g). (2) The intermediate JF used to build the
selected. JFin (1). (3) The JF obtained frotdz_,3 in Figure 3 (h).

_Proof: Dunng_CommunlcateFlllm, each agent_ sends fill- To build this JF, we create the JF shown in Figure 5
ins to each adjacent agent exactly once. Consider an agent

it an ajacen agent Denot e sub yperret ) 6T P 1 e suouepn O s shanved
rooted atAg away from Ag’ by T' and denote the sub- y PSEL, : p

.~~~ lated clusters at the bottom. Complete the d-sepset in
hypertree rooted atlg’ away fromAg by T7. If Ais in P P
. , . . GG1_,0 and create the JT shown on the top of (2). Delete
T, fill-ins sent fromAg to Ag’ are produced during Dis- )
. . AP ; cluster{f, g, h} made of the d-sepset, breaking the JT
tributeFillin. If AisinT’, fill-ins sent fromAg to Ag’ are . .
: . into subtrees. In one subtree, clus{ér h} was adja-
produced during CollectFillin, centto{f, g, h}. Since the isolated clustéy, h} satisfies
In either case, only subnets ifi are relevant. From 9 &

" {g,h} 0 {b,h} = {g,h} N {f, g,h}, we connectg, h}
Propositions 2 and 3, the result follows. O with {b, h}. For the other subtree, clustér, f, g} was

_ _ adjacent to{ f, g, h}. Since the isolated clustérf, g} is a
B. Run Time Structure for Message Computation subset ofe, f, g}, we remove{ f, g}. The resultant JF is
The chordal graphs produced above provigwmlicit in (1). Similarly, JFT»_3 (Figure 5 (3)) is created from
structures for computing messages in lazy inference. Eagh_,5 (Figure 3 (h)).
chordal graph is then organized into a set of JTs, called aBelow is the general algorithm. A subset of nodes is
junction forest (JF), for message computation. We illugliminableif they can be eliminated without fill-ins.
trate by continuing with the example. Algorithm 8: [BuildMessageJF] Letd, be an agent
ConsiderGs_,, in Figure 3 (d). Since the d-sepset ind A; an adjacent agent oveN;. Let Gy_,; be the
complete, we organize cliques 6f;_,, into a JTT5_,, chordal graph atd, over Ny such thatVy \ N; is elim-
shown in Figure 4 (1). That is, each clusteriof ., is a inable. WhenAy is called to BuildMessageJF relative to




Ay, Ag does the following:

identify setl_,; of cliques in subgraph offy_.,1
spanned byNVy N Ny;

if Ly_1 is a singleton, create a Jf_.; from cliques
of Gy—1 and halt;

completeNy N NV in Gy_,1 and denote resultant
graph byG’;

create a JT” from G';

create a JH|)_,; consisting ofl” and cliques
(disconnected) idg_.1;

remove clusteNy N Ny from 77, breakingI” into
subtrees;

Figure 6 shows the result of BuildinferencedT for the

Ced)—(de)
To

Cthij
T2 @ T3

®) (4)

Fig. 6. Inference JTs. (1) The inference JT for agant (2) The
inference JT ford,. (3) The inference JT fads. (4) The inference JT
for Ap.

@ T2 2)

A JT is a special case of JF. We refer to both message

for each subtree df” originally rooted at cluster
Ny N Ny with adjacent cluste€”’, do
find a cliqueC from Ly_,; such that
C'NnC=C"N(NyNNy);
if C c C’, removeC from Ty_,1;

else conneat’ to C*; Message passing during lazy inference, similarly to

Proposition 4 shows that a message JF can alwaysfigduct-based inference in LJF, consists of a round of
constructed by BuildMessageJF. inward propagation and a round of outward propagation

Proposition 4: Junction forestly ., from BuildMes-  gjong the hypertree. Between each pair of adjacent agents,
sageJF is well defined. one message is passed in each direction using a given mes-
Proof: Gy, is obtained from CommunicateFillin.sage JF. For example, a message is passedArota A,
Hence, it is chordal andvy \ N; is eliminable. Thus, using the message J_., and one fromds to 4; using
if Lg_1 is a singleton, a JT can be constructed aryﬂz_)l_

BuildMessageJF ends at the first half. Since a message is obtained from clusters of sending

If Lo—1 is not a singleton(zy—., with completion of 3F and absorbed into clusters of receiving JF, a channel
Ny N Ny is chordal sincep \ N, is eliminable. Hence, calledlinkage similar to that in LJF, is created between a
T" exists andVo N NV is a cluster inl”. We only have to sending cluster in a JF and a receiving cluster in another
show that for eacli” aC' can be found. JF. The two clusters are called thestsof the linkage.

C’ contains at least one node outsiigN N1. Comple-  ynjike its counterpart in LJF, a linkage here is directed.
tion of NoN N, does not affect connectivity of such nodesthat is, the sending host only has an out-buffer and the
Hence,C" is a clique inGo—.1 whereC’ N (No N N1) is  receiving host has only an in-buffer. Multiple linkages
complete. It follows that a cliqué’ C (No N N1) exists  may exist between a pair of JFs.
in Go_1 suchthal’ NC =C"N(NgNNy). O As an example, consider linkages from agdnto leaf
agentA; on the hypertree. The sending JF is message JF
T»_,1 and receiving JF is inference J,. Figure 7 (a)
shows the linkage as a dashed arrow.

Message JFs created in the last section are used to comNext, consider linkages froml; to A;. The sending
pute inter-subnet messages. For an agent to reason locdWyjs message JF, 5. SinceAs is an internal agent on
an inference JT is constructed to process messages fithm hypertree, it has 3 receiving JFsBf _.,: inference
adjacent agents, as specified in Algorithm 9. JT 15, message JFB,_,o andT,_,3. Figure 7 (b) shows

Algorithm 9: [BuildIinferenceJT] LetAy be an agent the linkages froml _,, to 75_,5. Note that no linkage is
with local moral graphGy = (N, Ep). Let adjacent connected to the clusték, [ }.
agents bed, ..., A, and F; be fill-ins that A, received  We now define linkages in general.
from A; during CommunicateFillin. When, is called to Definition 5: Let Ay be an agent oveN, and A; be an
BuildinferenceJT, it does the following: adjacent agent ove¥;. Let Gy_.1 be the chordal graph at

(1) Eliminate N, from G, = (No, Eo U™, F}). Ap resultant from CommunicateFillin. Then each clique

(2) Add fill-ins obtained ta&y,. in the subgraph of7y_,; spanned byWy N Ny isal i nk-

(3) Construct a JT from the resultant;,. age from Ag to A;.

JFs and inference JTs as JFs when difference of their roles
are unimportant to the presentation.

D. Linking Message JFs and Inference JTs

C. Run Time Structure for Local Inference
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Fig. 7. (a) The linkage from messageD¥-,1 at agentA, to inference JTI; at agent4;. (b) The linkages from message JF_., at A; to
message JF,_.3 at As.
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From BuildMessageJF, linkages fra#g to A; are cliques F. Extending Lazy Propagation over Linkages
in Lo_1. Next, we define linkage hosts.

Definition 6: LetTy_.; be a message JF frody to A4,
and7] be a message JF frody to a third agent or the

Lazy inference in DLJFs must process message over
linkages, which requires extending operations of Sec-

inference JT ofd,. For each linkagé&) from Ay to A;, a t'O_T_ IV_' il link q
clusterC in each of the above JF is selected asttbst 0 mcorporate potenyas over _|n ages,_ we exten
of Qif C D Q. SendPotential by extending the notion of adjacency: Two

clusters areadjacentif (1) they are directly connected in
fined a JT, or (2) they are hosts of the same linkage. We refer to

Proof: From BuildMessageJF, each cliqueli_.; either the extendgd SendPotential ?S SendF.’ott.éntlaI )
becomes a cluster in the message JF or is removed due e redefine CollectPotential and DistributePotential to
existence of a superset cluster. Hence, a host exists R§PCESS messages over linkages. They use extended ad-
this linkage inTp_., . jacency. In the algorithms(' is a cluster in a JT and

Next, considerI] as a message JF. It is constructeg@! | er is the local agent or an adjacent cluster not con-
from a chordal grapli”’ produced by CommunicateFillin Nectéd through a linkage.

Proposition 5: Linkage host in Definition 6 is well de-

andG’ contains all fill-ins4, sent toA,. Hence, for each  Algorithm 10—CollectPotential When Collect-
linkage from 4y to A, a host exists if}. The similar Potentiaf is called in clusteC’, C does the following:
argument holds if] is an inference JT. [ (1) For each adjacent clustéy not connected through

. ) linkage except caller, call CollectPotential () and get
Once linkages are determined, the set of message ng g P @ g

. . . . fncoming potentials frond).
and inference JTs formsa@ouble-linked junction forest gp . n@ e .
(2) SendPotentialrelative to caller if it is an adjacent
wheredoublerefers to the two message JFs between eaglh

) : uster.
pair of adjacent agents. . .
Note that CollectPotential only receives messages

from linkage in-buffers and does not send to linkage
out-buffers because calling CollectPotertiatross link-

At each agent, for each cluster in its inference JT,ayes is disallowed. Under the multiagent paradigm,
set of probability tables from its subnet is assigned withollectPotential is a local operation of an agent, while
no multiplication performed. Each table in the subnet §ending messages across linkages involves a remote
assigned to exactly one cluster that contains its domagyent. CollectPotentialcan be executed autonomously
Such belief assignment is also performed for each mes-answer local queries, while message passing across

E. Belief Assignment

sage JF at the agent. linkages requires coordination and incurs communica-
Thejoint system beliebf the DLJF is defined as tion cost. Next, we redefine DistributePotential as
DistributePotential below. We can then redefine Algo-
BWN) = H H Hﬁm’v’f’ rithm 4, using CollectPotentialand DistributePotentié)|
i j ok

which we refer to as UnifyPotential

where i indexes inference JTsj indexes clusters in a Algorithm 11—DistributePotential When Distribute-
given JT,3;; denotes the set of potentials (tables) a&otentiat is called in cluste”, for each adjacent cluster
signed tojth cluster inith JT, and3; ; x is thekth poten-  not connected through a linkage except caliérloes
tial in the set. B(\) is identical to the jpd of the MSBN. the following:

Note that if the inference JT at a given agent is replaced(1) C performs SendPotentiatelative toQ.

by a message JF at the ageBt,\') remains unchanged. (2) C calls DistributePotentialin Q.



G. Lazy Inference in DLJF A;. Algorithm 13 performs outward lazy communication
on the hypertree.
Algorithm 13—DistributeBeliefLDLIFWhenA.. calls
Ay to DistributeBeliefLDLJF, for each adjacent agehit

' exceptA,, Ay performs the following:

(1) Call CollectPotentidlin each linkage host dfy_;,

@ followed by executing SendPotentialong the linkage.
A, | s (Ao |- -[ A (2) Call DistributeBeliefLDLJF inA;.
Algorithm 14 combines CollectBeliefLDLJF and Dis-

tributeBeliefLDLJF for lazy communication. It is exe-

) T, . cuted by the system coordinator.
Fig. 8. Lazy communication initiated by agedAt. The inward mes- . . . .
sage passing is shown by solid arrows using the message JFs assodla-‘lgomhm 14_C0mmur_1|cat[eBel|EfLDL‘]F'
ated with the arrows. The outward message passing is shown by dotted1) Select an agem arbitrarily.
arrows using a different set of message JFs. (2) Call CollectBeliefLDLJF inA.

_ _ _ _ (3) Call DistributeBeliefLDLJF inA.
Lazy inference with DLJF consists of lazy communi- Thegrem 2 establishes that CommunicateBeliefLDLIF

cation among agents using message JFs followed by {9uy4ct.
cal lazy propagation at each agent using its inference JTqhaorem 2:For each agent; over N;, after Commu-

Figure 8 illustrates lazy communication initiated by agenficateBeliefLDLJF, its inference JT; satisfies the fol-
A;. The first round of inward message passing is ShO‘WNing wherej indexes inference JTs:
by solid arrows using the message JFs associated with the

arrows. The second round of outward message passing is Br,(N;) = Z [H Br, (N;)]

shown by dotted arrows using a different set of message NN J

JFs. Algorithm 12 is used recursively by agents for inwairoof: The hypertree of MSBN is isomorphic to a IT

lazy communication. over \V, where each cluster is the subdomaip Let®;
Algorithm 12—CollectBeliefLDLIJFWhen A. calls denote the set of potentials assigned to inferencdJT

Ap to CollectBeliefLDLJF,A, does the following: We associate each clustaf; of Y with ©,. Hence we
(1) For each adjacent ageAt exceptA.., Ag calls Col- have

lectBeliefLDLJF in A; and gets message frod;. H 0 = Br,(N;),
(2) If A.is an adjacent agent calls CollectPotentidl 0€®;

in each linkage host dfj_.., followed by SendPotential

along the linkage. where Br, (N;) denotes the assigned belief of ageht

Due to equivalent belief assignment to inference JT and
message JFs, the equation also holds for each message
JF Br,_;(N;) wherej indexes an adjacent agent df.
Hence, the joint system belief &f is identical to that of

the DLJF.

Suppose lazy propagation is performedfinLet©,_,
denote the message that clusbér sends to an adjacent
clusterN;. Potentials ir©;_.; are dependent on the order
in which marginalization is performed during lazy prop-
agation. However, any instance 6f_.; is equivalent to
any other, as the product of its potentials is identical.

Now it suffices to show that there exists a marginaliza-
tion order such that the resulta@f_.; is identical to the
Fig. 9. Inward lazy communication CollectBeliefLDLJF initiated byset of potentials sent from’i*j to Aj during Communi-

Aj;. The three message JFs involved are shown. Beside each clustéateBeliefLDLJF. In other words, the union of potentials
the set of potedngf;:haezsgrrlsx Stosirtl-0 ;?E?e?ggévselnﬂzztseain;rsa-s,\ljlerer all linkages froni;_.; to 4; is identical to the mes-
?uetzz?r?ge?r(?r:Tgﬂl goes toA;. B() denotes a newly prod%ce.d po-%sggs@i_’j during lazy propagatlon I
tential. The message fronl;_; to A; is generated through
a sequence of marginalizations guided by the message
Figure 9 illustrates CollectBeliefLDLJF initiated byJF. LetO be the order used. Becau$g.; is created
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from chordal graph obtained in cooperative triangulation, The above result can be compared with that of product-
O must be consistent with a node elimination order théased inference with LJF. Local inference in each agent
can lead to construction &f;_.;. Due to the parallel be- has time complexity ofD(2¢ 29). Two rounds of such
tween node elimination and marginalization, the same dnference is needed during agent communication, hence
der can be applied to marginalization during lazy prop#he time complexity ofO(2n ¢ 29). To store a total of
gation inY. The resultan®,_.; will be identical to the JTs and2(n — 1) linkage trees, the space complexity is
set of potentials sent ¥j;_.; to A; during Communicate- O(n (¢ + 2 r) 2¢). Both time and space complexity of
BeliefLDLJF. O product-based inference with LIJF are much higher than
Note that after CommunicateBeliefLDLJF terminateshe lower bound result of lazy inference with DLJF.
an agent can call UnifyPotentfaln a cluster in its in-
ference JT. Then, exact marginal probability distribution VI. LAzY INFERENCE WITHLINKED JUNCTION

over each cluster will be be available at the cluster. FOREST
Lazy inference with DLJF is more efficient than
H. Complexity Analysis product-based inference with LJF as shown by the above
We use the following parameters: analysis. However, agents maintain a totaRof — 1)
« n: the total number of agents. message JFs (each over a subdomain), while agents with
« c: the maximum number of clusters in an inferendeJF maintair2(n — 1) linkage trees (each over a d-sepset,
JT or message JF. which is generally much smaller than the subdomain). We
« r: the maximum number of linkages between a paitresent an alternative method for lazy inference with LIF
of message JFs. that explores this opportunity for further space savings.
« q: the cardinality of the largest cluster. It uses the same runtime structure as product-based infer-
« f: the cardinality of the largest family. ence, except that potentials assigned to each cluster are
- m: the total number of variables. not multiplied. It turns out although lazy inference with

First, consider the time complexity of UnifyPotential DLJF uses only marginalization and multiplication of po-
Each cluster sends a message to and receives a mest&y#ls. as lazy propagation does, the alternative method
from each adjacent cluster. Hence, the complexity is lifiSO requires division as defined below:
ear in c. In the simplest case, the message is empty anégorithm 15—Lazy DivisionLet o andy be two sets
its computation is trivial. In the most complex case, thf potentials. The azy di vi si on of o by 7, denoted
potential over the cluster needs to be obtained by proddbt. 7 iS performed as follows:
which is then marginalized into the potential over the sep- 1) If a potential appears in bothand~, delete it from

arator. Therefore, the time complexity of UnifyPotential both.

is between O(2c) an@(2¢ 29). 2) For each potentiaf in v, deletef from ~, multiply
Next, consider the time complexity of lazy communi-  the setd of potentials ino: whose domains overlap

cation: A total of2(n — 1) inter-subnet messages are sent ~ With that of f, divide the product by, and replace

during CommunicateBeliefLLJF with two along each hy- ¢ in a by the result of the division.

perlink. Each message requires a round of inward lazyFor example, letv = {P(a), P(bla), P(c|b), P(d|c)}
propagation in a message JF of the complexity betwe8Rd v = {P(a), P(b)}. Thena/, v = {P(bla) *
O(c) andO(c 29). After CommunicateBeliefLLIF, eachP(c|b)/P(b), P(d|c)}. Note that the product of poten-
agent needs to execute UnifyPotentigd obtain cluster tials ina/, v is identical to the product of potentials in
marginals. Hence, time complexity is betwe@rin ¢) divided by the product of potentials i
andO(4n c 29).

For space complexity, each agent maintains an infét- Lazy Communicationin LIF
ence JT and as many message JFs as the number of adj@ommunication also consists of an inward round and
cent agents. A total o JTs and®2(n — 1) message JFsan outward round of message passing on the hypertree.
are maintained. In the simplest case, one copy of cdrgure 10 illustrates inward propagation in the LJF of Fig-
ditional probability tables is maintained and no new paire 2, initiated by agent.
tential is generated during inference, which results in the First, UnifyPotential is performed by4; andA,. Con-
space complexity of)(m 27). In the most complex case,siderA;. At linkage host{b, ¢, f}, potentials over linkage
cluster potentials are multiplied in each cluster of each JB, ¢} is computed from local potentials plus potentials
during inference, which yields the overall space complekom cluster{b, ¢, h}. The resultant isB(b, ¢). At link-
ity of O(3n ¢ 27 +m 21). age host{a, b, e}, potentialsP(a) and B(b) over linkage
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{a, b} are computed. As a result, both linkagesIifn; liefLLIF defines inward communication.

pass information on: a duplication. To remove the du- Algorithm 17—CollectBeliefLLJFWhen CollectBe-
plication, A; examines potentials at linkagg:, b} and liefLLJF is called in agen#, A does the following:
identifies B(b) as duplicated information. AfteB(b) is (1) If caller is not the only adjacent agent, call Collect-
deleted, potentials froni, ; to 7, becomeB(b, ¢) over BeliefLLJF in each adjacent agent except caller. After all
linkage{b, c} andP(a) over linkage{a, b}. After a simi- calls are completed, receive linkage potentials from each
lar operation atd,, inward communication ends. adjacent agent except caller.

Outward communication follows, during which (2) If caller is an adjacent agent, do UnifyPoteritial
sends messages #; and A;. To obtain message tousing linkage potentials from each adjacent agent except
A1, Ap performs UnifyPotentiglusing linkage potentials caller, followed by SendLinkageMsg relative to caller.
from A, but not those from4;. To compute message to DistributeBeliefLLJF defines outward lazy communi-
Ay, Ap performs another UnifyPotentialsing linkage cation.
potentials fromA; but not those fromd,. Again, dupli-  Algorithm 18—DistributeBeliefLLIFWhen Dis-
cated information on variableneeds removed. This endsributeBeliefLLJF is called ind, for each adjacent agent
lazy communication. A’ except callerA does the following:

During communication, potentials are sent from one (1) A does UnifyPotentidl using linkage potentials
agent with JTT" to an adjacent agent with JI” through from each adjacent agent exceft
the linkage tree. The potentials are obtained from linkage(2) A does SendLinkageMsg relative 1.
hosts inI". To ensure that each linkage host has the neces{(3) A calls DistributeBeliefLLJF in4’.

sary information, UnifyPotentialmust be performed be- communicateBeliefLLJF combines the above algo-

fore these potentials are computed. This rend&iecally  rithms for lazy inference with LJF and is executed by the
consistent. As a result, for every two linkages adjacent §ystem coordinator.

linkage tree, same information on their shared variablesa|gorithm 19—CommunicateBeliefLLJIF:

are sent by their hosts. If such potentials are directly (1) Select an agent arbitrarily.

passed td”, the new belief inT” will be incorrect due  (2) call CollectBeliefLLJIF inA.

to duplication. We present below in general how to use (3) call DistributeBeliefLLIF inA.

lazy division to compute cross-linkage potentials without ap, agentA calls UnifyPotential before sending mes-

duplication. sages to each adjacent agentAlhask adjacent agents,
First, the linkage tred. from 7" to 7" is directed. For then gne call is made during CollectBeliefLLJF- 1 calls

each linkageR in L, the following message buffers aré;re made during DistributeBeliefLLJF. Hence, a totakof

created. rounds of local lazy propagations are needed during Com-
« in-buffer;: in-buffer from host cluster ifd". municateBeliefLLJF.
« in-buffer,: in-buffer from parent linkage id.. If Q
has no parent linkage, its in-buffeis null.

« out-buffer: out-buffer to host cluster ifi”. B. Soundness

« out-buffer, out-buffeg, ... : out-buffersto childlink-  We useconst to denote a positive constant. Proposi-
ages inL. tion 6 shows that message sent over a linkage tree defines
Potentials from to 7" are computed as follows: marginal potential over d-sepset.

Algorithm 16—SendLinkageMsgFor each linkage), Proposition 6: Let T over N be a local JT]” be a local
Q requests its linkage host to fill in-bufferby JT adjacenttd’, I be their d-sepset, andbe the linkage

SendPotentidl relative to Q. After both in-buffers are tree overl. Let UnifyPotentiaf be performed iril" fol-

filled, @ does the following: lowed by SendLinkageMsg relative 6. Let B(N) be
(1) For each child linkag€)’, marginalize out variablesthe potentialB(N) = [[cer A(C) [gg, B(Q"), where

Q \ Q' from potentials in in-buffer, and send resultant3(C) is the product of potentials assigned to a clugter

potentials to the out-buffer tQ’. B(Q") is the product of potentials received from a linkage
(2) Divide the set: of potentials in in-buffer by the set @', and only linkages other than those finare included.

~ of potentials in in-buffer with lazy division and send For each linkage) € L, let o(Q) be the product of po-

o/, v to out-buffe. tentials that) sends tdl” by SendLinkageMsg. Then
Note that sending to out-bufferinvolves inter-agent
message passing. Using SendLinkageMsg, algorithms [T a(@) = const Y~ B(N).

below perform lazy communication in LJF. CollectBe- QeL N\I
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Fig. 10. Inward communication in the LJF of Figure 2, initiated by agént

Proof: First, we consider effect of UnifyPotentialis-
ing Proposition 1. To do so, for each clustér in
T, we define equivalent cluster potentia (C)
B(C) Tlg—c B(Q'), whereQ' — C indexes linkage)’
that feeds message @. We can then ignore suaf)’ in
the remaining proof and Proposition 1 is applicable.

Next, for any linkage) € L, consider its hosK. From
Proposition 1, after UnifyPotentiglthe set of potentials
(including those from its in-buffers) associated wikhde-
fines the marginal oB(N) onto X. This set, marginal-
ized onto(Q, is sent to in-bufferof (). Denote the product
of potentials in in-buffer by o/(Q) and the product of po-
tentials in in-buffes by ¢'(Z), whereZ is the separator
between() and its parent linkage. Since a linkage tree
aJT,

[T @)/ ] ¢ (2) = const Y~ B(N).

Q€L Q€L N\I

The proposition follows because the message@hsgénds
to out-buffey is obtained by lazy division, which is equiv-
alenttoa(Q) = o/(Q)/0'(2). O

Theorem 3 shows that local potentials of an agent a

wardsA has animpact o®B(/N). These messages are sent

in semi-parallel order from leaves to root. We analyze the
impact of these messages by making agents send one by
one starting from any leaf agent.

Since A’ (over subdomainV’) is a leaf, it is adjacent
to one agenid” (over subdomaiiV”). By Proposition 6,
messaged’ sent toA” defines marginal of3(N’) onto
their d-sepset. Since the message is the only impact that
A" hasonB(NV) and itis received byl”, agent4’ is effec-
tively removed from the system. The new joint system po-
tential defined by the local potentials in remaining agents
and messaged” received isconst 3 yn yv Br(N).

By applying the above argument recursively to each
leaf agent, eventually, all other agents ihwill be re-
moved exceptd. The result follows[]

Corollary 1 states that local potentials of a cluster and
its in-buffer potentials define marginal of joint system po-
tential. Here, in-buffers include those from adjacent clus-
ters in the same JT and those from linkages.

Corollary 1: Let F' over N/ be LJF of an MSBN with
joint system potentiaB(A\) and let CommunicateBe-
liefLLJF be performed inf’. Let A be any agent that
pdrforms UnifyPotentigl after termination of Communi-

linkage tree messages it receives define the marginalcateBeliefLLJF, using linkage potentials from its adjacent

joint system potential:

Theorem 3:Let F' over NV be LJF of an MSBN
with joint system potentiaBr(N') and CommunicateBe-
liefLLJF be performed inF. LetT be any local JT over

N andB(N) denote potentidl . 3(C) [1g_r B(Q),

agents. Let be any cluster in the local JT egfand B(C')
be the potential

B(C)=p©) [ s ] 8@,

R—-C Q—C

where 3(C) is product of potentials assigned to cluswhere3(C) is product of potentials assigned €t 3(R)

ter C, 3(Q) is product of potentials received from link-

age( into T (denoted byQ — T). Then, B(N)
const 3z y Br(N).

Proof: LetA denote the agent associated with Direct
the hypertree of” with A as the root. During Commu-

is product of potentials received from in-buffer associated
with a separatoR?, and/3(Q) is product of potentials re-
ceived from a linkage).

Then,B(C) = const 3\ o Br(N).
Proof: It follows from Theorem 3 and Proposition 1. The-

nicateBeliefLLJF, only inter-subnet messages directed torem 3 ensures the marginal 8 (A\) onto the subdo-
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TABLE |
PERFORMANCECOMPARISON

Digital System MSBN (a)  Simulated MSBN (b) Simulated MSBN (c)
PLJF LDLJF LLJF PLJF LDLJF LLIJF PLIF LDLIJF LLJIF

Comm. Time (S) 1.6 2.0 15 4.0 2.55 20 1284 16.9 127.0
Mem. Usage (kb) 1150 1213 1160 1352 1320 1272 7693 3553 2698
Data/Code Mem. (kb) 190 253 200 392 360 310 6733 2593 1738

main of the local JT and Proposition 1 ensures further )
marginalization ontd’. [J Ao, 9 1
15 51 19
() 11
C. Complexity Analysis A
0

First, consider the time complexity: During Communi 40

cateBeliefLLJF, a total o2(n — 1) SendLinkageMsg is | ® %

38 A2 45 QA?’ 65

86 28 69

performed twice along each hyperlink. Before each per- (2
A A1 A3 141 A

0 24 22

cateBeliefLLJF, UnifyPotentidimay be executed by each (©) 22 259 252 17

)| sl2)] s

formance, UnifyPotentidlis executed. After Communi-

agent. Since communication is dominated by the compu-
Fig. 11. Profiles of MSBNs: (a) digital system,(b) simulated and (c)

tation of UnifyPotential, the time complexity is betweensimulated. Beside each agent is the number of variables contained in

O(4n c) andO(4n ¢ 27). It is comparable with that of i s bdomain. Each hyperlink is labeled with the size of the d-sepset.
lazy inference with DLJF.
For space complexity, each agent maintains an infer-

ence JT and as many linkage trees as the number of a(%fg_rkstation with 2.4GHz Pentium-4 processor, and one

cent agents. A total of JTs anc(n — 1) linkage trees are ACe-Travel-Mate-630 Laptop with 1.4GHz Pentium-4
maintained. In the simplest case, one copy of conditiorf§Pile CPU.
probability tables is maintained and no new potential is FOr €ach inference method, we record down the total
generated during inference, which results in the spag@mmunication time of the multiagent system and mem-
complexity ofO(m 27). In the most complex case, clustePTY usage of the agent with the largest subdomain. Ta-
potentials are multiplied during inference, which producd¥€ | shows the experimental data, where PLJF refers to
the overall space complexit(n (c + 2r) 29 + m 2f)_ product-basgd inference with LJF, LDLJF refe.rs to lazy
The space complexity is lower than that of lazy inferendBférence with DLJF, and LLJF refers to lazy inference
with DLJF. with LJF. All memory usage includes roughly about 960
kb Java virtual machine (JVM) and GUI related classes.
As an example, for the digital system agent with the
largest subdomain, its subnet data and additional code
As the complexity analysis for each Iazy_ infer_encge;dke 1150 - 960 = 190 kb under PLJF.
method (Sections V-H and VI-C) can only provide widely o gigital system MSBN, LDLJF takes longer time
separated complexity bounds, itis informative to COmpagg,q yses more memory than PLJF. LLJF is slightly faster
their performance experimentally. _ than PLJF and also uses more memory than PLJF. This
All three inference methods are implemented in Webggyit seems surprising. Our analysis is the following:
Weavr [3] in Java. We report the experimental resulisy| jr and LLJF take more code memory than PLIF due
using three MSBNs. The first (a) is the digital systeqy, more sophisticated control in lazy inferentéhan in
MSBN in [13] with a domain size of 91 variables, the Se':Eroduct-based inference. LDLJF needs more data mem-
ond (b) is a simulated MSBN [15] with a domain size Ofy than |LJF as a message JF (over subdomain) takes
201, and the third (c) is also simulated with a domain size

of 998. Figure 11 shows the subdomain profiles of the'inlazy inference, itis necessary to determine whether marginaliza-
three MSBNSs. tion relative to a variable can be performed by a trivial deletion of a

. ential or by multiplication plus marginalization. To allow such de-
The five agents are run on 4 computers Conne(_:t%%{lons to be made effectively, the head and tail of a potential needs

through a local network: one Sun-Blade-1000 statiag pe maintained. The control to make such decisions is not needed in
with 750MHz Ultra-SPARC-3 processor, two HP-X210@roduct-based inference.

VIl. EXPERIMENTAL COMPARISON
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more memory than a linkage tree (over d-sepset). TheBoth new methods use more sophisticated control than
advantage of factorization in general should reduce dateoduct-based inference and hence take more memory
memory in lazy inference. However, the advantage is ngpace for code. If the domain is not sufficiently large
sufficiently high in the digital system MSBN since the doand the dependence structure is not sufficiently dense, the
main is small and sparse (the largest cluster of LJF has satvantage of new methods over product-based method is
6). This analysis also explains the comparison in commiimited. However, when the domain is large and especially
nication time. dependence structures are reasonably dense, new methods

The comparison changes in the simulated MSBN (kggain efficiency in both space and time. Hence, the new
where LDLJF and LLJF are faster than PLJF and use lggethods allow multiagent uncertain reasoning to be per-
memory. LDLJF uses 25% less time and LLJF uses 50krmed in much larger domains given the computational
less time than PLJF. Without counting the memory uséesource.
by JVM and GUI, LDLJF uses 8% less memory and LLJF
uses 21% less memory than PLJF. This is because the sim- ACKNOWLEDGEMENT
ulated MSBN has a much larger domain and is less sparse.. . .
(the largest cluster has size 9). The advantage of fact r(_?:lpan0|al support from NSERC, Canada to the first au-
ization in lazy inference has overridden the negative effetcchor is acknowledged.
of extra code.

Experiment with the simulated MSBN (c) confirms the REFERENCES
same pattern but with more significant performance diffl] E. Castillo, J. Gutierrez, and A. HadExpert Systems and Prob-
ference. LDLJF uses 39% of memory compared to PLJF_ abilistic Network Models Springer, 1997. _
and LLIF uses only 26%. Time-wise, LLJF and PLIF pert”) 5 Sovel AP bauid SL Lawizen anaD Spigetater
formed at the same level. However, LDLJF used only 13%g] p. Haddawy. An overview of some recent developments in
of the time used by PLJF: 7.6 times faster. We attribute Bayesian problem-solving techniqueAl Magazine 20(2):11—
the significant speed up to the direction-dependent trian- 19, 1999. _ N _
gulation with LDLJF which can produce more sparse run£4] F.V. JensenBayesian Networks and Decision Grapl&pringer-
? Verlag, New York, 2001.
time structure than that of LLJF. The results demonstratg) rv. jensen, S.L. Lauritzen, and K.G. Olesen. Bayesian updating
that as the domain size further increases and dependencein causal probabilistic networks by local computatio@mpu-
structure becomes denser, more significant computational tational Statistics Quarterly(4):269-282, 1990.

savings can be expected for LDLJF and LLJF. [6] A.L. Madsen and F.V. Jensen. Lazy propagation in junction
trees. InProc. 14th Conf. on Uncertainty in Artificial Intelli-

gence 1998.
[7] R.E. Neapolitan. Probabilistic Reasoning in Expert Systems
VIIl. CONCLUSION John Wiley and Sons, 1990.
. . . [8] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Net-
We extend lazy propagation for single-agent inference  works of Plausible InferenceMorgan Kaufmann, 1988.
in BNs to lazy inference in multiagent MSBNs. We pre-[9] D.J. Rose, R.E. Tarjan, and G.S. Lueker. Algorithmic aspects of

sented two methods, one based on runtime DLJF and an- vertex elimination on graphsSIAM J. Computing5:266-283,

. . 976.
other on LJF. Lazy inference with DLJF employs messa%] G. Shafer. Probabilistic Expert SystemsSociety for Industrial

direction dependent triangulation. It produces sparser tri- - ang Applied Mathematics, Philadelphia, 1996.
angulation and uses only multiplication and marginalizgt1] Y. Xiang. Belief updating in multiply sectioned Bayesian net-
tion in inference. However, each agent needs to main- Works withoutrepeated local propagatiofisier. J. Approximate

. . . Reasoning23:1-21, 2000.
tain a message JF for each adjacent agent. Lazy mfereﬂ%? Y. Xiang. Cooperative triangulation in MSBNs without revealing

with LJF_uses di_rection independent triangulatio_n._ _Les_s subnet structures\etworks 37(1):53-65, 2001.
sparse triangulation may be produced and lazy division[iS] Y. Xiang. Probabilistic Reasoning in Multi-Agent Systems: A
needed during inference. However, each agent needs only Graphical Models ApproachCambridge University Press, 2002.

to maintain a linkage tree for each adjacent agent. Théé@ Y. Xiang. Comparison of multiagent inference methods in multi-
ply sectioned Bayesian networkmter. J. on Approximate Rea-

methods, like product-based method with LJF, are éxact soning 33(3):235-254, 2003.

When the domain structure is sparse, they are efficient.[15] Y. Xiang, X. An, and N. Cercone. Simulation of graphical models
for multiagent probabilistic inferenc&imulation: Trans. Society
20ur analysis of soundness only considered communication of prior  for Modeling and Simulation79(10):545-567, 2003.
belief. Since effect of an observation on variablés equivalent to [16] Y. Xiang and X. Chen. Inference in multiply sectioned Bayesian
multiplying potentialP (z|7(x)) by an observation functiofi(x), our networks with lazy propagation and linked jounction forests. In
analysis can be extended to posterior in a straightforward way. To keep Procs. 2nd European Workshop on Probabilistic Graphical Mod-
the paper concise, we have chosen not to elaborate. els, pages 217-224, 2004.



[17]

(18]

[19]

[20]

Y. Xiang and F.V. Jensen. Inference in multiply sectioned
Bayesian networks with extended Shafer-Shenoy and lazy prop-
agation. In Proc. 15th Conf. on Uncertainty in Artificial Intelli-
gence pages 680-687, Stockholm, 1999.

Y. Xiang and V. Lesser. On the role of multiply sectioned
Bayesian networks to cooperative multiagent systemiEEE
Trans. Systems, Man, and Cybernetics-Part3&(4):489-501,
2003.

Y. Xiang, B. Pant, A. Eisen, M. P. Beddoes, and D. Poole. Mul-
tiply sectioned Bayesian networks for neuromuscular diagnosis.
Artificial Intelligence in Medicine5:293-314, 1993.

Y. Xiang, D. Poole, and M. P. Beddoes. Multiply sectioned
Bayesian networks and junction forests for large knowledge
based system€omputational Intelligenced(2):171-220, 1993.

15



