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Abstract

O-Plan is a command, planning and control architecture which has an open modular structure
intended to allow experimentation on or replacement of various components. The research is
seeking to isolate functionality that may be generally required in a number of applications and
across a number of di�erent planning, scheduling and control systems.

This paper describes the way in which plan constraints are represented and handled in the
O-Plan architecture. It gives details of a rational reconstruction of the constraint management
interfaces now being used as a design principle within the latest version of O-Plan.

The cooperative manipulation of constraints on plans by a user and by the capabilities pro-
vided in computer systems provides a useful and natural paradigm for e�ective planning and
scheduling support systems. The provision of powerful computer based constraint management
languages and tools could lead to a rapid expansion of the bene�ts to be gained by identifying
more standard ways in which constraints can be handled in future planning and scheduling
systems.
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1 O-Plan { the Open Planning Architecture

The O-Plan Project at the Arti�cial Intelligence Applications Institute of the University of
Edinburgh is exploring a practical computer based environment to provide for speci�cation,
generation, interaction with, and execution of activity plans. O-Plan is intended to be a
domain-independent general planning and control framework with the ability to embed de-
tailed knowledge of the domain. See [1] for background reading on planning systems. See [4]
for details of the �rst version of the O-Plan planner which introduced an agenda-based architec-
ture and the main system components. That paper also includes a chart showing how O-Plan
relates to other planning systems. The second version of the O-Plan system adopted a multi-
agent approach and situated the planner in a task requirement and plan execution setting. The
multi-agent approach taken is described in greater detail in [21].

The O-Plan system combines a number of techniques:

� A multi-agent approach to strategic task assignment, tactical planning elaboration, and
operational plan execution support.

� A control architecture within each agent in which each control cycle can post further
processing steps on an agenda which are then picked out and processed by appropriate
handlers (Knowledge Sources).

� The uniform treatment of the user (in the role of planner) and computer based planning
capabilities as Knowledge Sources.

� The notion of a \Plan State" which is the data structure containing the emerging plan,
the \issues" remaining on its agenda, and the information used in building the plan.

� A hierarchical planning system which can produce plans as partial orders on actions.

� Constraint posting and least commitment on object variables.

� Temporal and resource constraint handling using incremental algorithms which are sen-
sitively applied only when constraints alter.

� O-Plan is derived from the earlier Nonlin planner [15] from which it takes and extends
the ideas of Goal Structure, Question Answering (Truth Criterion) and typed conditions.

� We have extended Nonlin's style of domain description language { Task Formalism (tf).

O-Plan is aimed to be relevant to the following types of problems:

� project management for product introduction, systems engineering, construction, process

ow for assembly, integration and veri�cation, etc.

� planning and control of supply and distribution logistics.

� mission sequencing and control of space probes and satellites such as voyager, ers-1,
etc.
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A user speci�es a task that is to be performed through some suitable interface. We call this
process task assignment. A planner plans to perform the task speci�ed. The execution system

seeks to carry out the detailed actions speci�ed by the planner while working with a more
detailed model of the execution environment.
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Figure 1: Communication between Strategic, Tactical and Operational Agents

Figure 1 shows the communications between the 3 agents in the O-Plan architecture. The
current O-Plan system has a comprehensive planner agent and a simple execution agent [21]. A
comprehensive reactive execution agent has also been built in the O-Plan architecture [11]. The
task assignment function is provided by a separate process which has a simple menu interface
and is not currently in the form of an O-Plan agent.

The O-Plan project has sought to identify modular components within an AI command, plan-
ning and control system and to provide clearly de�ned interfaces to these components and
modules.

The main components within a single O-Plan agent are:

1. Domain Information { the information which describes an application domain and tasks
in that domain to the planner.

2. Plan State { the emerging plan to carry out identi�ed tasks.

3. Knowledge Sources { the processing capabilities of the planner (also referred to as Plan
Modi�cation Operators { pmos).

4. Constraint Managers and Support Modules { functions which support the processing
capabilities of the planner and its components.

5. Controller { the decision maker on the order in which processing is done.

The agent components as they appear within the O-Plan planner agent are shown in Figure 2.
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Figure 2: O-Plan Planner Agent Components
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O-Plan is implemented in Common Lisp on Unix Workstations with an X-Windows interface.
It is designed to be able to exploit distributed and multi-processor delivery systems in future.
An interface to Autocad has been built to show the type of User Interface we envisage (see
Figure 3). The window in the top left corner shows the Task Assignment menu and supports
the management of authority [18] to plan and execute plans for a given task. The lower window
shows a Plan View (such as showing the plan as a graph or as gantt charts), and the upper right
window shows a World View for visualisation or simulations of the state of the world at points
in the plan. The particular plan viewer and world viewer provided are declared to the system
and the interfaces between these and the planner uses a de�ned interface to which various
implementations can conform. O-Plan has been interfaced to a number of Plan and World
Viewers including process modelling tools, map-based interfaces and tools to create animation
sequences of possible plan execution. The developer interface to O-Plan is not shown to the
normal user. In �gure 3, developer window icons appear along the bottom edge of the screen.

Figure 3: Example Output of the AutoCAD-based User Interface

Recent work on O-Plan has focussed on the representation and management of constraints in
planning, particularly in order to simplify some aspects of the architecture (the subject of this
paper) and to act as a mechanism for user/system mixed initiative planning [19].
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2 Plans Represented as Constraints on Plan Elaborations

It is useful to present a simple abstraction of how a planner or scheduler operates. Figure 4
shows such an abstraction that will be useful in this paper.
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Figure 4: A Framework of Components in a Planning/Scheduling System

Many planners and schedulers work by re�ning a \current" plan (shown in �gure 4 as the
Plan State). They maintain one or more partial plans in this Plan State in which the previ-
ous decisions taken during the planning process restrict the space of plan elaborations which
can be reached from that point.1 The planner or scheduler needs to know what outstanding
processing requirements exist in the plan (shown in �gure 4 as the Agenda). These represent
the implied constraints on valid plan solutions. One (normally) of these outstanding processing
requirements is chosen to be worked upon next. This calls up processing capabilities within the
planner which can make decisions and modify the Plan State - these are sometimes called Plan

Modi�cation Operators. The modi�cations can be in terms of de�nite plan structure in the Plan
State or by noting further processing requirements (as a result of Plan State critiquing, etc).

We have found it to be useful to separate the plan entities representing the decisions already
made during planning into a high level representing the main plan entities shared across all
planning system components and known to various parts of the systems, and more detailed
plan entities which form a particular area of the representation of the plan. These lower level
more compartmentalised parts can represent specialised constraints within the plan such as
time, resource, spatial and other constraints. This separation can assist in the identi�cation of

1Plan constraint relaxation is also possible to increase the space of plan elaborations in some systems.
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modularity within planning and scheduling systems.

O-Plan has an Associated Data Structure (ads) level of representation [7] which holds the main
plan entities (such as actions). The lower level constraints, such as those on on time points
and resources in the plan, are managed separately. These lower level constraints are tied to
the higher ads level entities via associations. The tosca manufacturing scheduling system [2]
which was based on the O-Plan architecture makes use of quite a di�erent ads level based on
resource reservations, but shares the same time point constraint management code at the lower
level.

3 Bene�ts of \Standardising" Constraint Management in

Planners

Moves to provide powerful constraint management languages and tools could lead to a rapid
expansion of the bene�ts to be gained by identifying more standard components that can
be combined and re-used in planning and scheduling systems. This can allow time network
management, management of the persistence of facts across time, resource management, spatial
constraint management and other such constraints to be managed by separate components
provided by someone other than the original developer or integrator and possibly using more
e�cient algorithms.

As one example, consider support for the management of temporal relationships in a planner.
All modern planners embed some degree of time management for temporal relationships between
time points or across time intervals and may provide support for metric (de�nite) time \stamps"
on time points. Many planners also relate their time management to the management of the
persistence of facts or propositions across time. This allows planners to reason about whether
some required condition is satis�ed at a given time. The Time Map Management concepts,
clearly described in [5] and used in the forbin planner [6], are a good example of the approach.
The management of e�ect and condition (Goal Structure) tables in Nonlin [15] uses a similar
approach.

This type of packaging has led to separate study of the support for time management and
fact persistence management in planners at various research centres. O-Plan has a Time Point
Network Manager [7]. A commercial Time Map Manager (tmm) is available from Honeywell
based on the concepts described in [5]. More powerful temporal relationships are managed
by the General Electric tachyon temporal system [13]. In some cases, it has already proved
possible to replace some simpler level of time constraint management in a planner with a better
packaged and more powerful capability. One example of this has been the combining of the
sri Sipe-2 planner with the ge tachyon temporal system. Other studies have indicated that
the O-Plan Time Point Network Manager can be replaced quite straightforwardly with the
Honeywell tmm.

Studies at Edinburgh [8] relating to Resource Management have shown how progressively more
capable resource management systems can be incorporated into O-Plan to replace the simple
consumable resource handler in the system at present. These studies have developed a Resource
Criterion interface to a Resource Utilisation Manager for the O-Plan planner which has many
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similarities to the interface used for the Truth Criterion/qa algorithm used in our systems
[15]. This framework could incorporate resource handling by mechanisms as powerful as those
based on the Habographs [2] constraint management mechanism incorporated in the Edinburgh
tosca manufacturing scheduler.

Spatial constraint management, which is not currently provided inside O-Plan, has also been
explored in the same framework. We believe that clear modular interfaces can allow even such
a \foreign" type of constraint management not understood by the core system to be be added
reasonably straightforwardly to O-Plan.

4 Constraint Managers in the O-Plan Architecture

O-Plan uses a number of Constraint Managers to maintain information about a plan while it is
being generated. The information can then be used to prune search (where plans are found to be
invalid as a result of propagating the constraints managed by these managers) or to order search
alternatives according to some heuristic priority. It is intended that some of these Constraint
Managers could be replaced by more e�cient or more capable systems in future. This section
considers the interfaces between the O-Plan architecture components and Constraint Managers
to help others consider packaging and integration issues.

Our experience with earlier ai planners such as Nonlin and the early versions of O-Plan was
that a large proportion of the processing time of a planner could be spent in performing basic
tasks on the plan network (such as deciding which nodes are ordered with respect to others)
and in reasoning about how to satisfy or preserve conditions within the plan. Such functions
have been modularised and provided in later versions of O-Plan as Constraint Managers (such
as a Time Point Network Manager, an E�ect/Condition Manager and a Resource Utilisation
Manager), and Support Routines (such as a Graph Operations Processor) to allow for future
improvements and replacement by more e�cient versions.

Constraint Managers are intended to provide e�cient support to a higher level of the planner
where decisions are taken. They do not take any decision themselves. They are intended to
provide maintain all the information about the constraints they are managing and to respond to
questions being asked of them by the decision making level. Examples of Constraint Managers
in O-Plan include:

� Time Point Network Manager.

� E�ect/Condition Manager and the related Question Answerer.

� Resource Utilisation Manager.

� Object Instantiation (Plan State Variables) Manager.

A guideline for the provision of a good Constraint Manager in O-Plan is the ability to specify
the calling requirements for the module in a precise way (i.e., the sensitivity rules under which
the Constraint Manager should be called by a knowledge source or from another component of
the architecture).
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Figure 5: The Interface to Constraint Managers

The following sections explore the de�nition of an interface between the higher level decision
making part of a planning or scheduling system and a lower level constraint manager. Figure
5 shows an overview of the interface.

4.1 Constraint Manager Procedural Interface

A Constraint Manager is a part of the Database Manager component in an O-Plan agent which
looks after the Plan State and all of its alternatives (if any). A Constraint Manager may look
after a specialised aspect of the Plan State on behalf of the O-Plan Database Manager.

The O-Plan design is being rationalised so that a Constraint Manager has the following generic
procedural interface:

1. initialise Constraint Manager and name base context with a given tag2.

2. terminate Constraint Manager.

3. push context and name new context with a given tag.

4. pop context to parent of current context.

2Contexts specify alternative views of a Plan State. A tree of such contexts is manipulated by O-Plan.
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5. restore a previously created context which has the tag speci�ed.

6. open update transaction, and within this:

� allow changes to managed entities.

� queries can be made inside an open transaction. Any query re
ects the changes
made within the transaction to date.

� nested open update transactions are not allowed (in O-Plan at present).

7. commit changes made within the update transaction.

8. abort changes made within the update transaction.

Some of the above routines may be inoperative or null for speci�c managers. In particular,
context management as speci�ed above is not needed for any Constraint Manager which chooses
to make use of the O-Plan/O-Base context managed structures { since the implementation of
the Associated Data Structure layer in O-Plan guarantees that Constraint Managers will only
ever be called when the contexts being referred to are preset within the O-Plan planner.

4.2 Shared Plan Ontology between O-Plan and Constraint Managers

There are specialised update and query routines supported by each Constraint Manager. These
share a common plan entity model within the planner and its Associated Data Structure layer.
The design intention has been to keep this minimal, including only those elements that al-
low relevant communication between higher level planning decisions and lower level constraint
management. This model includes only:

� a directed acyclic graph of time points.

� ability to map a plan activity node end to an unique time point and a time point to all
associated node ends.

� time points as plan entities.

� an ordering relation on two time points { before(tp1,tp2).

� context <tag>s to represent alternative Plan States.

� An understanding of the meaning of a Plan State Variable3.

These entities allow for information about constraints and options for correcting constraint
violations to be communicated in terms of the shared model. All other more speci�c entities
may be unique to a speci�c Constraint Manager or shared only between pairs of caller and
manager.

3Currently we represent equality (variable codesignation), inequality (non-codesignation) and other restriction
(range or property) constraints on the variable.
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4.3 The New O-Plan \Standard" Interface for Constraint Managers

The aim in O-Plan is to provide a standardised interface between each Constraint Manager and
the rest of the planner. For this we are seeking to employ a very similar interface to that used
by the Nonlin or O-Plan style Condition Question Answerer (qa) or Truth Criterion [15].

A Constraint Manager cannot take any decisions and cannot change parts of the Plan State not
under its immediate management. It must return all legitimate answers for the query it is given
and must undertake reliably the task it is given. One focus of the O-Plan research has been to
build a planning ontology which describes those concepts which are shared between constraint
managers and those parts of the Plan State which are private to the relevant manager.

A Constraint Manager's primary function is to manage the current set of constraints relevant
to that manager (time, resource, spatial, objects, etc) which are part of the Plan State. It must
signal to the caller when there is an inconsistent set of such constraints.

The interface allows for a constraint entry to be tested against existing managed constraints to
see what the impact of making the entry would be, and then a commit or abort can be done
to add it or not (either the commit or the abort could be active { the caller not being able to
tell).

All Constraint Manager update routines return one of three results:

� yes { constraint is now under management (to be con�rmed later by a caller using a
commit update transaction).

� no { constraint cannot be added within the capabilities of the Constraint Manager and
its communications capability to the caller (in terms of the shared ontology of entities).

� maybe { constraint can be added if plan entities are altered as speci�ed in terms of the
shared entity model. This normally means returning a standard O-Plan \or-tree"4 of all
(for search space completeness) the legal ways in which the Plan State can be altered
(sets of Plan State Variable restrictions and ordering constraints between time points) to
maintain consistency.

The constraint is not added after this maybe response. However, from an implementation
perspective, an \actually add constraint" routine may be provided to more cheaply add
the constraint immediately following a query which returned \maybe". This would follow
action by the caller to ensure at least one of the relevant binding constraints and/or time
point orderings options were either dealt with or noted as necessary in the Plan State - thus
the caller takes responsibility for resolving inconsistencies (not the Constraint Manager).

It is hoped to be able to take the result or-trees generated by the various Constraint Managers in
O-Plan (Condition/E�ect manager, Resource Utilisation Manager, Plan State Variables Man-
ager and the Time Point Network Manager) and merge them into a consistent or-tree which
would represent an e�ciently ordered set of possibilities { thus reducing the size of the search
space.

4a data structure representing the alternative ways in which the Plan State may be altered in terms of the
shared plan ontology.
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5 The Constraint \Associator"

To improve the separation of functionality with respect to constraint management in O-Plan,
we wish to localise the interactions between changes in one type of constraint that can lead to
changes in other types of constraint. In particular, changes in constraints on time points and
changes to constraints on plan state variables can have implications for most other constraints
being managed (such as e�ects/conditions, resources, etc.). The detection and cross-relating
of such mutual constraints has been problematic in O-Plan to date. Previously, Knowledge
Sources had to be written such that any change in one constraint type that could in
uence
another was programmed in. This was a source of complexity and dependency in teh design
that we wish to avoid.

The clari�cation of the constraint manager interface for O-Plan as described in this paper has
made us realise the special requirements for the handling of time point constraints and variable
constraints in the architecture5. These form the core elements in the shared ontology in which
communication occurs between the plan entity (ads) layer and the constraint managers in O-
Plan. By recognising that there is a normal constraint management function for time points
and variable, but also an additional function of association and mutual constraints with other
constraint types, we can design better and more modular support for constraints handling in
O-Plan and simplify the writing of Knowledge Sources.

Accordingly, the O-Plan agent architecture design in future will allow for an \Associator"
component as part of the data base manager which looks after plan states. The Associator
mediates between the decisions made by Knowledge Sources and the underlying constraint
managers (see �gure 6). The function of detecting mutual constraints in which changes to time
and/or variable constraints may a�ect other constraints which themselves refer to the a�ected
time points or variables is localised in the Constraint Associator.

A number of constraint managers can be \installed" into an O-Plan agent. As a minimum, each
agent will have a time point manager and a variables manager installed into the Associator.
Any number of other constraint managers may then be added depending on the requirements.
To give the functionality of the current O-Plan planner this will include the e�ect/condition
manager, the resource utilisation manager, and an \other constraints" manager to keep anno-
tations of other requirements on a plan state (beyond those managed actively by the currently
installed managers). In other applications it may be necessary to include spatial constraint
managers, etc.

We believe that this style of interface between the higher level decision making level of the
planner and the various Constraint Managers could improve modularity in planning systems6.

5Other evidence from formal studies is also highlighting the value of separating the constraints on time
and the variable codesignation/non-codesignation constraints from other aspects of plan representation (e.g.,
in [9]). We are developing a description of plans as a set of constraints di�erentiated into Issues { Nodes
{ Orderings/Variables/Auxiliary constraint types that we refer to as the <i-n-ova> model [20] to act as a
framework for further study and comparison.

6Recent work by others (e.g., [10]) is also recognising the practical bene�ts of being able to isolate the work
done for parts of a planning problem into well de�ned managers which can use specialised algorithms. By not
relying on a general search mechanism for all aspects of planning, more realistic tasks can be handled without
combinatorial search problems becoming a problem too quickly.
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6 Summary

This paper was intended to further discussions on the identi�cation of suitable \standard"
re-usable components in planning and scheduling systems.

This paper has presented an overview of the O-Plan system under development at the Arti�cial
Intelligence Applications Institute of the University of Edinburgh. Aspects of the system con-
cerned with separation of functionality within the system, internal and external interfaces have
been addressed. The O-Plan system is starting to address the issue of what support is required
to build an evolving and 
exible architecture to support command, planning and control tasks.

One particular area highlighted has been the interface between planning systems and Constraint
Managers able to look after certain specialised aspects of parts of a plan on behalf of the overall
planning system. An interface to such Constraint Managers has been developed to show how
improved packaging can be bene�cial to re-use of components. The value of the type of interface
developed for the Condition Question Answering procedure in planners (the Truth Criterion)
to act as a general interface to a number of di�erent Constraint Managers has been explored.
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