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0. Introduction

For the classification, recognition, or analysis of an image, it is generally required to transform
it into another image (or even a collection of images) which is better suited for this goal. For
this reason there has been (and still is) a great deal of interest in image transformations or, as
we shall call them, image operators. Among the image processing techniques which have been
developed during the past three decades, mathematical morphology, after a period of relative
obscureness, receives a fast increasing amount of attention. The reason for this is twofold.
First of all, mathematical morphology, whose main strength lies in the quantitative description
of geometrical structure and shape, has proved extremely useful in many image processing
tasks. But secondly, it is a theory which also appeals to theoreticians since it allows a rigorous
mathematical description and derives its tools from several mathematical disciplines such as
algebra, topology, probability, and integral geometry, just to name a few.

As far as the algebraic features are concerned, this double aspect of mathematical morphol-
ogy may be put together with its evolution. Initially designed by Matheron [14] and Serra [21] to
formalize Euclidean set transformations (or operators as we will call them), in particular those
which are translation-invariant, the method was progressively extended to numerical functions
[16, 26,27], to planar graphs [10], and to context dependent cases such as geodesics [11]. The
initial framework turned out too restrictive and was later replaced by Matheron and Serra by
a more general one, namely the framework of complete lattices. An extensive account of this
more general approach, along with a number of results on morphological filtering, is given in
[22]. For a number of related results see [8,19].

This paper stems from the following reflections. One can sometimes obtain powerful morphologi-
cal algorithms by iterating a certain operator until stability is reached. We mention the following
examples: extraction of the connected components which contain a given marker, middle ele-
ment, ultimate erosion, skeleton, watersheds, etc. (in this list the first two examples pertain to
morphological filtering). However, iterative techniques do not always work, since they may give
rise to oscillations. For example, repeated application of the median to the square chessboard
pattern leads to period-two oscillations. However, as soon as the the operator i reduces or
expands the object under study, we must necessarily have in practice (that is, in the case that
the underlying support is finite)
= g

for finite n. But here, convergence is due to the fact that we work on a finite grid. Figure 3
below exhibits an example (first reported in [5]) based on a very simple operator acting on the
space of all subsets of Z. Under iteration this operator shows the following behaviour:

P* # Pop™.

Here 1> denotes the operator obtained after (countably) infinitely many iterations of ¥ (a
precise definition of ¥°° will be given below). In the continuous case similar situations may be
encountered [22, p.113].

A remedy against the occurence of such anomalies is to restrict oneselves to finite spaces.
But this excludes the use of translation invariant operators which presuppose the underlying
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space to be infinite, and which are of great importance to the practicioner of mathematical
morphology. Instead, we propose to look for conditions on the operator 9, rather than on the
underlying support space, which guarantee convergence of ™ under iteration. Again we adopt
the general framework of complete lattices.

In Section 1 we will briefly recall some of the necessary terminology. In Section 2 we
introduce the “lim sup” and “liminf” for sequences of lattice elements. It is worth noting that
no topological requirement about the lattices under consideration is assumed. In Section 3,
sequential order convergence is used to define 1- and |-continuity of an operator. In Section 4
we briefly state some known results about Matheron’s hit-or-miss topology [14], and compare
the resulting topological notion of convergence with its algebraic counterpart. We specialize to
the Boolean lattice P(E), where E = IR? or Z in Sections 5 and 6. In this particular case
the two notions of convergence coincide. In Section 5 we investigate the continuity properties
of morphological operators on P(E) and in Section 6 we show that many of these operators are
nothing but particular examples of so-called finite operators. There we also show that every
finite operator is continuous. In Section 7, we deal with morphological filters, i.e., increasing
morphological operators which are idempotent. In particular we show that continuity properties
of operators can be exploited to construct filters by iteration. Finally, in Section 8 we illustrate
some of the theoretical results by considering a particular class of mappings on the lattice of
numerical functions on R®.

1. Some basic notions

In this section we briefly recall some basic vocabulary and some results that we shall use later
on; for more details consult [14,21,22] and also [8,19]. One of the basic features of mathematical
morphology is that the underlying space is a complete lattice; we shall denote this lattice by L.
This means that there is a partial order < on £, and that every subset H of £ has a supremum
and infimum respectively denoted by \/ H and A\ H. The greatest and least element of L are
denoted by O and T respectively. As important examples we mention P(Z?) and P(RR?), the
space of all subsets of Z% resp. IR?, F(IR?), the space of all closed subsets of IR?, the space
of all (closed) convex subsets of IR%, and spaces of numerical functions on IR? (see Section 8).
By an operator we shall mean a mapping of the lattice into itself. The identity operator which
maps any element of £ onto itself is denoted by id. We say that the operator % is

— increasing if X <Y implies that ¢(X) < ¥(Y);
a dilation if 1 distributes over suprema, i.e., P(VierXi) = Vier¥(Xi);
an erosion if 9 distibutes over infima, i.e.,{)(Aier Xi) = Aier¥(Xi);
(anti-)extensive if P(X) > X (P(X) < X);
idempotent if 9% = v;

an opening if v is anti-extensive and idempotent;

a closing if v is extensive and idempotent;
- a (morphological) filter if 9 is increasing and idempotent.
Note that e.g. extensivity of ¥ is also expressed by the inequality ¥ > id.



We denote by O(L) and O4 (L) the set of all operators respectively all increasing operators
on L. It is easily seen that both sets become a complete lattice under the ordering

<P <= $(X) < P(X)for any X € L.

A useful principle for complete lattices and mappings on complete lattices is the so-called
duality principle. This principle states that to any concept or statement concerning (mappings
between) complete lattices there always corresponds an opposite concept or statement which is
obtained by reversing the order of the lattices involved. For example, the opposite of a dilation
is an erosion, and hence to every statement concerning dilations there corresponds the opposite
statement concerning erosions. As a second illustration of the duality principle we mention
the following example: the opposite of the statement “a dilation followed by an erosion yields
a closing” is the statement “an erosion followed by a dilation yields an opening” (see below).
Opposite statements are obtained by interchanging < and >, infima and suprema, dilations and
erosions, openings and closings, extensivity and anti-extensivity, etc.

An important relation between dilations and erosions is given by adjunctions: let € and
be two operators on £. We call (¢,6) an adjunction if for every X,Y € £, we have

(X)<Y <= X<egY)

Adjunctions constitute a bijection between dilations and erosions, in other words:

- if (¢,0) is an adjunction, then ¢ is an erosion and ¢ a dilation;

— for every dilation 4, there is a unique erosion ¢ such that (¢,6) is an adjunction;

— for every erosion ¢, there is a unique dilation é such that (¢,6) is an adjunction.
Adjunctions offer a key to access openingé and closings. Namely, if (¢,6) is an adjunction, then

ebe = ¢ and bebd =4,

and
ed >id and e <id.

In particular, this means that é¢ is an opening and €6 is a closing,

The interest in these four basic mappings stems from the fact hat they generate a compre-
hensive class of useful operators by considering suprema, infima, compositions, and ... iterations.

If £ is a Boolean lattice, e.g. the space P(E) consisting of all subsets of some space E,
then every element of £ has a unique complement which we denote by X°. For such lattices one
can introduce another duality concept, namely duality with respect to complementation. The
dual operator of 9 is given by ¥*(X) = (¥(X°))°. It is clear that ¥* is increasing if and only if
P is.

Throughout the remainder of this section we consider translation-invariant operators. Let
E = R? or Z¢ and take £ to be the complete lattice P(E).We define the translate of the set
X along the vector h € E by X, = {x + h | z € X}. The operator % is said to be translation-
invariant if ¥(Xn) = (¥(X))s, for every X and h. Every translation-invariant dilation d is a
Minkowski addition with some fixed set A, called the structuring element. That is

§(X)=XoA= ] X.. (1.1)
a€A



The adjoint erosion € is the Minkowski subtraction with the same set, that is,

eX)=Xo0A= () X_a (1.2)
a€A

Now the operators X — X4 and X — X4, where

Xa=(X04)04 (1.3)
XA=(X@A)o6A (1.4)

define an opening respectively a closing.
The importance of erosions and dilations is best illustrated by Proposition 1.1. which is
due to Matheron [14]. If 9 is an operator on P(E), then we define its kernel V(9) by

V(y) ={A€P(E)|0€ p(A)}. (1.5)
For a subset A of E the reflected set A is defined as
A={-a|ac A} (1.6)

Proposition 1.1.  Let ¥ be an increasing translation-invariant operator on P(E). Then %
can be decomposed as a union of erosions, and, likewise as an intersection of dilations. More
precisely

vX)= |J Xed= [] Xa4 (1.7)

AeV(y) AeV(y~)

In discrete morphology, a large class of operators (skeleton, skiz, pseudo-convex hull, etc.,
see [21]) derive from the hit-or-miss operator which is defined as

X®(A,B)={h€ E| A, C X and By, C X}

= (X6 A)N (X6 B). (1.8)
Here A, B are structuring elements. The thickening operator is defined as
X©(A,B)=XU[X® (A, B), (1.9)
and the thinning operator is defined as
Xo0(A,B)=X\ [X® (A,B)] (1.10)

=X n[X® (4,B)]".

Recently Banon and Barrera [1] have extended Matheron’s result for operators which are not
necessarily increasing. Before we formulate their result we need some further definitions. For
A, B C E we define the operator

Xo(A,B)={he€ E| A, C X C B;}. (1.11)
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Obviously, X@®(A4,B) = 0 if A ¢ B. Furthermore, there exists the following relation with the
hit-or-miss operator
Xo(A,B) = X& (A, B°). (1.12)

For A, B C E we define the “interval” [A, B] as
[A,B]:={X e P(E)|AC X C B}.
Finally, we define the bi-kernel W(%) of the operator ¥ as
W(¥) = {(4,B) € P(E) x P(E) | [4, B] € V(¥)}-
Proposition 1.2.  Let ¢ be an arbitrary translation-invariant operator on P(E). Then

pX)=  |J Xo(4,B) (1.13)

(A,B)eW(¥)

PRroOOF.
“37: Let h € X®(A, B) for some (A, B) € W(). Then Ap C X C By, hence X_r€e[AB]C
V(®). Therefore 0 € (X _4), and by the translation-invariance of ¥, h € ¥(X).
“c”: Let b € ¥(X), that is, 0 € ¥(X_p). Then (X_r,X_n) € W(#). It is obvious that
h € X®(X_h,X-1), and thus b € U4 Byew(w) Xo(A,B).

|
Note that if the operator % is increasing and A € V(¢) then (4, E) € W(#) and since Xo(A,B)
is decreasing with respect to B, and X@(4,E) = X © A, formula (1.13) reduces to P(X) =
Usevy) X © A. So Proposition 1.2 indeed generalizes Proposition 1.1.

2. Order convergence on complete lattices
Throughout this section we assume that £ is a complete lattice.

Definition 2.1. For a sequence X, in £ we define

liminf X, = \/ /\ Xn

N>1n2>N
limsup X» = /\ V Xn.
N>1n>N
Obviously, for any sequence X,
liminf X, <limsup X,. (2.1)

We say that X, — X if liminf X, = limsup X, = X.



7

We point out that thrbughout this paper we restrict to sequential order convergence: c.f. [9,
Chapter IV]. In [2], Birkhoff more generally defines the liminf and limsup for an arbitrary
net X4 in £, and says that X, “order-converges” to X if limsup X, = liminf X, = X. This
notion of convergence defines an intrinsic topology on £ (i.e., a topology which is preserved
under isomorphisms), called the order topology and coincides with our definition if one restricts
to sequences. Notice however that as a drawback of our restriction the underlying topological
space is not completely specified unless it has a countable base. Another interesting intrinsic
topology on the complete lattice £ is the so-called interval topology, defined by taking the closed
intervals [A, B], where A, B € L, as a subbasis of closed sets. In the complete atomic Boolean
lattice P(Z?) the order and interval topology are equivalent ([2, p.252]). A topological lattice
is a lattice with a specified convergence topology where Xo — X and Y3 — Y imply

(i) XaAYg—=XAY

(i) XaVYg—>XVY.

In [4], Gierz et al thoroughly investigate so-called continuous lattices. These are lattices
with certain properties on which one can define different topologies. One of them is the so-
called Lawson topology. It turns out that F(IR?) with the opposite ordering (that is, X < Y
if and only if Y C X) is a continuous lattice, and that the Lawson topology coincides with the
hit-or-miss topology.

In a recent and more synthetic study Matheron [15] classifies the various topologies for
complete lattices and focusses on compactness questions.

It is clear that

limsup(X, AY,) <limsup X, AlimsupY, (2.2)
limsup(X, VY;) > limsup X, Vlimsup Yy, (2.3)

and the same relations hold for liminf. We point out that these relations more generally hold
for an arbitrary collection of sequences.

Let £ be a complete lattice. We say that the infinite distributivity laws hold if for any
collection A € £, X; € L (¢ € I) we have

AN\ Xi=\(Ar X)) (2.4)
i€l iel

Av A\ Xi= \(AV X)) (2.5)
iel i€l

In particular these relations hold in any complete Boolean lattice as well as for lattices of
numerical functions.

Proposition 2.2. Let £ be a complete lattice for which the infinite distributivity laws hold.
Then for any two sequence X,, Y, in £ we have

limsup(X, VY3) =limsup X, VlimsupY;, (2.6)
liminf(X, AYy) =liminf X, Aliminf Y. (2.7)
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PRrOOF. Define Xy = VnZN X,and Yy = VnZN Y.. It is obvious that for every N > 1,

/\ (-)_(-M V?M) = lim sup(X, V Yz).
M>N

Therefore, since X ,Y n are decreasing in N,

lim sup(X, VYy) /\ /\ (XmVYu)< /\ /\ (XnVYwy)

N>1M>N N>1 M>N

= /\ /\(-)_(.NVYM)z /\(YNV /\?M)
N>1M>1 N21 M>1

=( /\ Xn)V( /\ Y m) =limsup X,, Vlimsup Yy,.
N>1 M>1

Here we have used (2.5) twice. The reverse inequality is given in (2.3).

A sequence X, in L is said to be decreasing if ... < Xp41 < Xpn < Xp—1 < ... . We write
X, | X if X, is a decreasing sequence and X = A 5, Xr. Analogously, we write X,, T X if X,
is an increasing sequence and X =\/,_ 5, X,. The following result is trivial.

Proposition 2.3. In any complete lattice
(a) Xn | X implies that X, — X.
(b) X» 1 X implies that X, — X.

Examples 2.4.

(a) On the lattice IR with the usual ordering order convergence is equivalent with Euclidean
convergence as long as one restricts to finite limits.

(b) Let £ = P(IR), and let X, = [0,1] if n is odd, and X, = [-1,0] if n is even. Then
liminf X, = {0}, and limsup X, = [—1,1]. If furthermore Y, = [0,1] if n is even and
Y, =[-1,0]if n is odd then X, AY, = {0} hence lim sup(X,AY;) = {0}, but limsup X, A
limsup Y, = [-1,1]. This example shows that in general the inequality in (2.2) is strict.

(c) Let £ be the complete lattice of all closed convex subsets, and X, = {(-1)"}. Then
liminf X,, = @ and limsup X, = [-1,1].

3. Order continuity of lattice operators

Definition 3.1. Let £y, L2 be complete lattices and let ¢ : £; — L2 be an arbitrary operator.
We say that 9 is |-continuous if X, — X implies that limsup ¥(X,) < ¥(X), and that ¥ is
1-continuous if X, — X implies that ¥(X) < liminf ¥(X,). If ¥ is both {- and |-continuous,
that is, X, — X implies that (X,) — ¥(X), then we say that ¥ is (order) continuous.

The following result follows immediately from the relations (2.2)-(2.3) and Proposition 2.2.



Proposition 3.2.  The operations \/, A\ : L X L — L given by
(X,Y)—> X VY
(X,Y)» X AY
are 1-continuous respectively |-continuous.
If L satisfies the infinite distributivity laws (2.4)-(2.5) then both operations are continuous.

In fact this proposition is a somewhat weaker version of Theorem X.19 in [2] which says that
any complete distributive lattice for which the infinite distributivity laws hold is a topological
lattice: cf. Section 2.

From now on we shall exclusively deal with operators mapping £ into £. Most of the
results however, immediately carry over to the situation where the operators act between two
different complete lattices.

Obviously, there exist a duality relation between {-continuous and |-continuous operators
in the following way: if ¢ is an {-continuous operator on the lattice (£,<), then % is a |-
continuous operator on the complete lattice (£,>) with the opposite ordering. Therefore we
may restrict in the sequel to |-continuous operators. For the special but important subclass of
increasing operators we have the following characterizations.

Proposition 3.3.  The increasing operator v is |-continuous if and only if X,, | X implies
that $(Xn) | $(X).

PROOF. “only if”: assume that ¢ is |-continuous, and that X, | X. Then, by Proposition 2.3,
X, — X, hence limsup ¥(X,) < ¥(X). This implies that

A\ vxn)= AV #(Xn) < $(X).

N21 N>1n2N
But the reverse inequality holds trivially, which proves that ¥(X,) | ¥(X).
“f”: assume that X, — X. We must show that limsup ¥(X,) < ¥(X). Define Yn := Vo> N Xn.
Then Yn | X, hence ¥(Yn) | ¥(X). But Xy < Yn, hence limsup %(Xn) < limsup ¥(Yn) =
P(X).

|
Proposition 3.4. Let ¢ be an increasing operator on L. Then % is |-continuous if and only
if
lim sup ¥(X,) < Y(limsup X,,)

for any sequence X, in L.

ProoF. The “if” part is trivial.
“only if”: let the operator ¢ be |-continuous and let X, be an arbitrary sequence in £. Define
Yy := Vi>n Xy, then Yy, | limsup X, This implies that

Plimsup Xo) = A ¥(¥a) = A\ o\ X&)

n21 n2>1 k>n
> A\ V %(X¢) = limsup %(Xn).
n21k>n

This proves the result.
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Corollary 3.5.
(a) Any erosion is |-continuous.
(b) Any dilation is 1-continuous.
(c) Any automorphism is continuous.

Proposition 3.6.  The infimum of any collection of |-continuous operators is |-continuous.

PROOF. Let, for every i in the index set I, the operator 9; be |-continuous. Define ¥ = A;¢; ¥i.
Let X, — X, we must show that lim sup ¥(X,) < ¥(X). For every ¢ € I we have

N\ V #i(Xn) < $i(X),

N>1a>N

AV A #i(Xa) < wi(X),

N21n>Niel
and hence that lim sup ¥(X,) < ¥(X).

which yields that for every 7

One can easily construct examples which show that a similar result for suprema does not hold
in general.

Definition 3.7. An element X in the complete lattice £ is called a co-prime (see [4]) if
X <Xi1VX;V...V X, for some X1,Xs,...,X, € £ implies that X < X} for some k between
1 and p.

Every atom of L is also a co-prime, but not conversely. (Recall that a nonzero element X € £
is an atom if Y < X implies that Y = Q or Y = X.)

Proposition 3.8. Let £ bea complete lattice possessing a sup-generating family of co-primes
(i.e., every element of L can be written as a supremum of co-primes). Then any finite supremum
of | -continuous operators is |-continuous.

PROOF. Let, for i = 1,...,p the operator 1; be |-continuous. We show that ¢ = \/I_; ¢; is
]-continuous. Let X,, — X, we must show that

AV #(Xa) < w(X).

N>1n>N

It is sufficient to prove that for any co-prime Y which satisfies Y < An51 Vasn ¥(Xn) one also
gets that Y < ¥(X). The first inequality implies that

y<\ Vexa) =V V (Xa),

n>Ni=1 i=1n>N

for every N > 1. Since Y is a co-prime we may conclude that for every N > 1 there exists an
iy between 1 and p such that

Y <\ #in(Xa)

n2>N
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Then at least one ¢ must occur infinitely often among the ix, N = 1,2,.... This implies that
for this value of i,

Y <\ wilXn),

n>N
for all N > 1. By the |-continuity of ¥; we get that

Y <limsup 9;(Xy) < ¥:i(X) < ¥(X),

and the result is proved.

, |
As an example of a complete lattice which has a sup-generating family of co-primes (besides the
atomic lattice P(F)) we mention the lattice of functions from some space E to the extended

real line: here the co-primes are the pulse functions f;; which take the value ¢ at the point z
and which are —oo elsewhere.

One can easily show that the latter proposition more generally holds for the case where £
is a complete sublattice of some complete lattice Lo which possesses a sup-generating family of
co-primes.

In general, composition of two |-continuous operators does not yield a |-continuous oper-
ator as we show in Example 3.12 below. But one can establish the following result.

Proposition 3.9.  Let 91,%; be arbitrary operators. Under either of the following assump-
tions the composition 2%, is |-continuous:

(a) %1 is continuous and s is |-continuous.

(b) 41 is |-continuous and v, is increasing .and |-continuous.

Proor.

(a): trivial.

(b): let X, — X. Thenlim sup ;(X,) < ¥1(X). Using the increasingness of 1), and Proposition
3.4 we get that

limsup ¥291(Xn) < Yo2(limsup ¥1(Xn)) < Y2t1(X).

Finally we state some easy results which hold in the case that the underlying lattice £ is Boolean.
Note that in this case we have '

limsup X}, = (liminf X,,)*
liminf X, = (limsup X,,)*.

Suppose that £ is a complete lattice which is a sublattice of a Boolean lattice £o. Let the
complement of an element X € £ be given by X*. We define

L*={X"|X €L}
Then L£* becomes a complete lattice under the order <* given by
X<y iff X>Y,

with supremum V* and infimum A* given by Vi ; X} = (A;¢; Xi)* and Aj; X7 = (Vier Xi)*
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Proposition 3.10.  Let Lo be a complete Boolean lattice, let L be a complete sublattice, and
let £* be as above. Furthermore, let K be any other complete lattice. If the operator ¢ : K — L
is 1-continuous, then the operator ¢' form K into L* given by ¥'(X) = (¥(X))* is |-continuous
(and vice versa).

The proof is straightforward.

Corollary 3.11. Let £ be a complete Boolean lattice.
(a) The operator X — X* is continuous.
(b) If the operator % is |-continuous then the dual operator ¥* is {-continuous and vice versa.
(c) If ¢ is |-continuous then the operator X — (¥%(X))* is 1-continuous and vice versa.

Example 3.12.

(2) Let £ be the Boolean lattice P(E), where E is IR? or Z¢. We first show that the operator
given by the Minkowski addition with an infinite structuring element is not |-continuous
(since it is a dilation it is {-continuous). Let A C E with |A| = co: here |A| denotes the
number of elements in A. Let a,, € A all be different, and define X,, = {—an,—@n+1,...}.
Then X, | 0, hence X,, — 0. But 0 € X, ® A for all n, hence 0 € limsup(X, @ A). This
proves that the operator X — X @ A is not |-continuous: see also Figure 1.

FiGure 1. Dilation with an infinite structuring element is not |-continuous. Let
X, consist of two rectangles at distance 1 — e, where e, | 0 asn — oo. Assume that
the position of the utmost left and right border of X, are independent of n. Then
X, | X, where X consists of two squares at distance 1. If the structuring element A
is the open square with sides 1, then (),5, Xr @ A is the rectangle with width 3 and
height 1, whereas X @ A is the smaller set obtained by deleting the vertical edge in
the middle.
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(b) Using the previous example it is easy to find a |-continuous operator %, and a |-continuous
operator 1, such that their composition %%, is not |-continuous.
Let A be an infinite structuring element in E. From Proposition 3.9(a) it follows that the
non-increasing operator ¥; : X — X° 0 A (where X¢ is the complement of X, and A
is the reflected structuring element) is |-continuous. By Corollary 3.11(a), the operator
g : X — X¢ is continuous. Using the identity

(X°0Ar=X0A

we get that 129;(X) = X @ A, which, by the above example, does not define a |-continuous
operator.

Example 3.13. In this example we take £ = F(IR?), the closed subsets of IR?. Here the
translation-invariant dilations and erosions are given by (c.f. [19, Subsection 4.2]):

XTA=XpA= UX,,

XBA=Xo0A= ﬂX_,,.
a€A

From Corollary 3.5 we know that dilation (resp. erosion) defines a {-continuous (resp. |-
continuous) operator. Furthermore, if A is compact, then X +— X @ A is also |-continuous, and
hence continuous. Namely, let X,, | X, we must show that X, ® A | X @ A. Here we have used
that X @ A = X @ A if A is compact. We are done if we can prove that ()5, Xn® A C X & A.
Let y € N,>1 Xn ® A. So for every n > 1 thereis a z, € X,anda,€ A such that Y=2y,+an,.
Since A is compact, {a} has a convergent subsequence {an,}. Let a,, — a as k — co. Then
Ty, — Y — a. Since for every p, z,, € X,, for k large enough and since X, is closed we get that
y—a € X, and hence that y—a € X. Theny = (y—a)+a € X ® A. This proves the assertion.

On the other hand it is easy to find compact structuring elements A such that the erosion
X — X © Ais not ]-continuous.

From Proposition 3.9 we now conclude that the closing X — X 4 and the opening X — X4
are also |-continuous if A is compact.

4. Relations with the hit-or-miss topology

In this section we shall be concerned with convergence and continuity on the complete lattice
L = F(E), the closed subsets of E. Here E is a topological space which is Hausdorff, locally
compact, and admits a countable base. On this space one can define a topology, named the hit-
or-miss topology by Matheron in [14]. This topology is Hausdorff, compact, and has a countable
base. The latter means that this topology is completely determined by specifying convergence of
sequences. It turns out that convergence and (semi-) continuity with respect to the hit-or-miss
topology is closely related to our notions of order convergence and continuity, though they are
not completely equivalent: see in particular Propositions 4.2 and 4.7.
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In this section we shall write  — lim sup (resp. F — liminf) for thelim sup and liminf in
the lattice F(IR?) to emphasize the dependence on the underlying lattice F (E). Thus we have

F —limsup Xn = [ (|J X=)
: N>1 n>N

F—liminf X, = | J ([ Xn)-
N21 n2N

We first recall the definition and some properties of the hit-or-miss topology.

Throughout this section we assume that E is a topological space which is Hausdorff, locally
compact, and admits a countable base. We denote by F(E),G(E), and K(E) respectively the
space of all closed, open, and compact subsets of E. The family of subsets of F(E) given by

F& o, ={FEF(E)|FNK =0and FNG; #£0,i=1,...p}

defines a base for a topology on F(E), called the hit-or-miss topology: see [14]. In the literature
this topology is also known as the Fell topology: see [18]. The hit-or-miss topology on the
space F(FE) is compact, Hausdorff, and has a countable base. So in order to study continuity
properties of operators on F(E) we may restrict ourselves to convergence of sequences. If a
sequence X, in F(E) converges to X with respect to the hit-or-miss topology the we write
Xn —T>_ X to distinguish it from the order convergence denoted by X, — X.

It follows immediately that X, = X if and only if

(A) foreveryopensetG, XNG#0 = X,NG #0, for n large enough
(B) for every compact set K, XN K =0 = X,NK =0, for n large enough.

Following Matheron [14] we define lim X, as the largest closed set satisfying (A), and lim X,
as the smallest closed set satisfying (B). The following results have been obtained by Matheron
(14].

Proposition 4.1.  Let X, be a sequence in F(E).
(a) lim X, C lim X,
(b) X 5 X if and only iflim X, =Tim X, = X.

(c) lim X, = nNzl UnZN X
(d) z € lim X, if and only if there is a sequence z, € X, such that z, — z.

(e) = € lim X, if and only if there is a subsequence T, € Xn, such that z,, — .

There is a close relation between Matheron’s concepts lim and lim and our definition of F —
limsup and F — liminf, which is expressed by the following result.

Proposition 4.2.  Let X, be an arbitrary sequence in F(E). Then
F —limsup X, =lim X, (4.1)

F —liminf X,, Clim X,. : (4.2)
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PROOF. The first relation is a reformulation of Proposition 4.1(c). To prove the second we show
that F — liminf X, satisfies (A). Then from the definition of lim X, being the largest closed
set satisfying (A), we may conclude that (4.2) holds. Let G be open and assume that

F -liminf X, NG # 0,

that is,

U (N x=)NG#0.

N>1 n>N

But then also

U (N x=) NG #9,

N>1 n>N

or equivalently,

U N (X.nG)#0.

N2>21n2N

So there is an N > 1 such that X, NG # 0, for all » > N. This concludes the proof.

The following is a straightforward consequence of relations (4.1) and (4.2).

Corollary 4.3. If X, — X then X, —> X.

Example 4.4. Let £ = F(R?) and take X, to be the circle with center (0,0) and radius
1- %, and X the circle with radius 1. Then F — limsup X, = lim X,, = X, lim X, = X and
F —liminf X, = @: see also Figure 2. In particular, X, - X whereas X, does not converge
relative to the order topology. This example shows that the inclusion in (42) may be strict and
that the converse of Corollary 4.3 needs not hold.

FIGURE 2. For an explanation see Example 4.4.
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In Remark 4.8 below we consider the case that the topology on E is trivial, that is, every
subset of E is open. In this case the inclusion in (4.2) also becomes an equality, and hence the
topological and algebraic notion of convergence coincide.

Definition 4.5.  An operator 9 : F(E) — F(E) is called upper-semi-continuous (u.s.c.) if
X, 5 X implies that Tim ¥(X,) C ¥(X). It is called lower-semi-continuous (1.s.c.) if X S X
implies that ¢¥(X) C lim ¥(X5).

This definition as well as the following result is due to Matheron [14].

Proposition 4.6.  An increasing operator ¥ on F(E) is u.s.c. if and only if X, | X implies
that P(X,) | P(X).

Proposition 4.7.  Let ¢ be an arbitrary operator on F(E).
(a) If ¢ is u.s.c. then ¢ is |-continuous.
(b) If ¢ is increasing and |-continuous then ¥ is u.s.c.

(c) If ¢ is increasing and l.s.c. then ¥ is T-continuous.

Proor.

(a): follows easily with Corollary 4.3 and relation (4.1).

(b): use Proposition 3.3 and Proposition 4.6.

(c): we use the analogue of Proposition 3.3 for 1-continuous operators. Assume X, T X, we
must show that 9(X,) T ¥(X). Since the sequence 9¥(Xy) is increasing we get that

n>1

From the fact that X, — X we may conclude that

$(X) Clim $(Xn) = | J ¥(Xa).

n>1

Since X, C X and % is increasing also the reverse inequality holds, and therefore

(X)) = | 9(Xa).
n>1
This yields that ¥(Xy) 1 $(X).
1

Remark 4.8. We can specialize the results of this section to the case where E is an arbitrary
countable space and has the trivial topology, that is, every subset of E is open, and hence
closed. Obviously, K(E) now consists of all finite subsets of E. Furthermore, for any sequence
z, in E we have z, — z if and only if £, = z eventually. We show that under the given
assumptions, the topological notions lim and lim respectively coincide with their algebraic
counterparts F — limsup and F — liminf. This means in particular that X, — X if and only if
X, 5 X, for any sequence X, in P(E). From Proposition 4.2 it is clear that we have only to
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show that lim X,, C liminf Xn. Let z € lim X,,. From Proposition 4.1(d) we know that there
is a sequence z,, € X, such that z, — =, that is, z, = z eventually. This implies that z € X,
eventually. But then z € A,y Xn for N large enough, whence it follows that z € liminf X,.
This proves the assertion. - ‘

Note also that finite intersection which turns out to be continuous for the sequential or-
der convergence, at least if the conditions of Proposition 3.8 are fulfilled, is only upper-semi-
continuous on F(E) supplied with the hit-or-miss topology.

5. Convergence and continuity on the Boolean lattice P(E)

Let E be an arbitrary set and consider the complete Boolean atomic lattice P(E). Note that
the only co-primes are the atoms (singletons of the form {z}) and that the assumption of
Proposition 3.8 is satisfied. This means that every finite supremum of |-continuous operators is
|-continuous, and dually, that every finite infimum of {-continuous operators is {-continuous.

We have the following expressions for lim sup X, and liminf X,,. We point out that in [9]
one can find similar expressions.

limsup X, = {z € E | z € X,, for some subsequence ny — o0} (5.1)
liminf X, = {z € E | 2 € X, eventually}. (5.2)

Throughout the remainder of this section .we shall restrict to the case where E = R¢ or Z°.
We are particularly interested in continuity properties of the basic operations of mathematical
morphology on the space P(E). We have already seen in Corollary 3.5 that every dilation is
1-continuous, and that every erosion is |-continuous. For finite structuring elements we can
prove a lot more.

Proposition 5.1. Let A be a finite structuring element. Then the dilation X — X @ A, the
erosion X — X © A, the closing X — X*, and the opening X — X 4 are all continuous.

PROOF. Since every translation operator X +— X, on P(E) is obviously an automorphism, and
therefore continuous, we may conclude from Proposition 3.8 that any dilation and erosion with
a finite structuring element is |-continuous respectively {-continuous. The results for the closing
and the opening follow now immediately from Proposition 3.9.

Let ¥ : P(E) — P(E) be an arbitrary operator. For h € E we define the kernel of 9 at
h by Vi(¥) = {A € P(E) | h € ¥(A)}. Obviously, p(X) ={h € E| X € Vu(¥)}. U ¢ is
translation-invariant (e.g. E = R* or Z%) then V4(%) = (Vo(%))r. We have the following result
(compare [14, Proposition 8-2-1]).

Proposition 5.2. Let ¥ be an arbitrary operator. Then 1 is |-continuous if and only if for
every h € E the kernel V,(%) is closed under limsup (i.e., if X, € Vp(%¥) for all n > 1, then
lim sup X, € Vi(%)).
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PRrOOF.
“only if”: easy.
“f”: let X, — X. We must show that limsup ¢(X,) C ¥(X). Let h € limsup ¥(X»), hence
h € 9(Xyn,) for some subsequence nj going to infinity. So X,, € Vn(¥), and since Vp(¥) is
closed under lim sup we get that X = limsup X,, € Vi(%) which is equivalent to h € $(X).

1

Example 5.3. In Example 3.12(a) we have seen that the condition that A is finite is necessary
for the dilation X — X @ A to be continuous. It is easy to build examples which show that
the finiteness of A is required to prove {-continuity of the opening X — X 4. It turned out
less trivial to find an example (with A infinite) such that this opening is not |-continuous. For
completeness we present such an example. Let

n-1

A=1{0,1,3,7,15,..} = {D_2* | n 2 0},
k=0

and let for n > 0 the set X, be given by
X, ={..,-2,-1,0,2",2.2",3.2",...}.
It is easy to check that 0 € (X,,)4 for every n > 0. Therefore 0 € limsup X,. However
Xpn—X={...,-2,-1,0},
ana X4 = 0. Thus the opening X — X4 is not |-continuous.

Proposition 5.4. Let A,B C E.
(a) The hit-or-miss operator X — X@ (A, B) is |-continuous. If both A and B are finite then
it is continuous.
(b) The thickening operator X — X @ (A, B) is |-continuous. If both A and B are finite then
it is continuous.
(c) The thinning operator X ~ X O (A, B) is {-continuous. If both A and B are finite then
it is continuous.

Proor.
(a): since X +— X © A is an erosion it is |-continuous. From Example 3.12(b) we know that
X — X°6 B is |-continuous as well, and from Proposition 3.6 we conclude that

X — X®(A,B)= (X0 A4)n(X°6 B)

is |-continuous. The continuity for finite A, B can be proved similarly if one uses Proposition 5.1.
(b): is now trivial.
(c): use (a) and (b) above together with Corollary 3.11.

|

From this result and relation (1.12) it follows that X@(A, B) is |-continuous; it is continuous if
both A and B¢ are finite.
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6. Finite operators

Like in the previous section, we shall deal exclusively with operators on the Boolean lattice
P(E), where E = R*? or Z°.

Definition 6.1.  Let M : E — P(E). We say that the operator ¢ : P(E) — P(F) is finite
with mask M if for every h € E there exists a finite subset M (k) C E such that for every
X € P(E) and for every N D M(h) we have

hey(X) & heyp(XNnN).

It should be remarked that for increasing operators this definition coincides with the definition
given in [19]. If the operator ¢ is translation invariant then one may assume that M (k) = My,
i.e., the translate of some fixed mask M C E.

The result to be given next can be considered the main result of this section.
Proposition 6.2.  Every finite operator on P(E) is continuous.
The proof of this result requires the following lemma.

Lemma 6.3. Let C be a subset of E. Then X, — X implies that X,NC — X n C' If,
furthermore, C is finite, then X, NC = X N C eventually.

PRrOOF. Let X, be a sequence in P(E). Then

limsup(X»,NC)= (] |J (XanC)= ﬂ(U X,)nC

N>1n2>N N>1 a>N
= (limsup X,)NC,

and the same argument applies to liminf. This proves the first assertion.
The second assertion follows easily if one uses expressions (5.1) and (5.2). This completes
the proof.

PROOF OF PROPOSITION 6.2: let 9 be finite. We prove that only that ¥ is l-continuous: the

proof of the f-continuity follows similarly.

Let X, — X: we show that lim sup ¥(X,,) < ¥(X). Let h € Ans1 Vasn ¥(Xn). We show that

h € ¢¥(X). We first observe that A € ¥(X,, ) for some subsequence ng tending to co. But % is

finite which means that A € ¥(X,, N M(k)). By the previous lemma, X,, N M(h) = X N M(h)

eventually, which yields that A € ¥(XNM(h)). Then, since % is finite, it follows that h € P(X).
|

The remainder of this section will be mainly concerned with an investigation of properties
of finite operators.

Proposition 6.4.  The operator % is finite if and only if its dual operator ¥* is finite.
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PrOOF. Let 9 be finite with mask M. We show that %* is finite also with mask M. Let
X € P(E) and N D M(h). We must show that

he¢*(X) & heyp*(XNN).
We know that
hePp(X) & heyp(XNN).
From this, it follows easily that
h € P*(X) & ¢ 9(X°)
& hgPp(X°NN)
& h g P(XUN))
& heyp(XUN°).

From the fact that X U N® = (X N N)U N°¢ and the previous relation we find that
heyv*(X) & heydp*((XNN)UN®) & hey*(XNN).

This completes the proof.

The following result is easy and therefore stated without proof.

Proposition 6.5.  Let for every i in the index set I, the operator ¥; be finite with mask M;.
If M(h) := U;e; Mi(h) is finite for every h € E, then (\;cy¥i and U, ¥i are finite, both with
mask M.

An immediate consequence of this result is that finite unions and intersections of finite
operators are finite. The next result states that a similar remark applies to finite compositions.

Proposition 6.6.  Let 11,9, be finite operators with respective masks My and Mz. Then
291 is a finite operator with mask M given by M(h) = Ukenry(ny M1(K).

PROOF. Let M be as defined, take h € E and assume that M(h) C N. We first show that for
every set X, ,
¢1(X)ﬂ]”2(h) = ¢1(XnN)ﬂM2(h) (*)

Namely, take k € My(h). Then, since M(h) C N, it follows that M;(k) C N. Therefore
k € ¥1(X)iff k € ¥1(X N N), or equivalently, ¢;(X) N {k} = ¥1(X N N) N {k}. Taking on both
sides the union over all k € M2(h), we find (*). To complete the proof, observe that

h € Y2 (¥1(X)) & h € P2(1(X) N M2 (h))
& h e P(¥1(X N N)N My(h))
& hev(vi(XNN)).
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Remark 6.7. Our definition of finite operator much resembles Serra’s-so-called local knowl-
edge principle: see [21, Section I.B.3, p.11]. This becomes even more apparent if we use the
following equivalent characterization of a finite operator. The operator % is finite if and only if
for every finite subset U of E there is finite subset My such that for all N D My we have

H(X)NU = (XN N)NT,

for every X € P(E). It is clear that every operator with this property is finite: just choose
U = {h}. To prove the converse, consider a finite operator ¥ and let U be finite. Define
My := ey M(h). Then one can easily show that the property mentioned above is satisfied

Obviously, erosions and dilations with finite structuring elements are finite operators. Therefore
Proposition 6.2 provides an alternative proof of Proposition 5.1 and the statements of Proposi-
tion 5.4 concerning finite structuring elements. We conclude this section by mentioning an easy
but useful result stated in [5].

Proposition 6.8.  Every increasing, translation-invariant, finite operator can be written as a
finite union of finite erosions, or, alternatively, as a finite intersection of finite dilations.

Proor. We only prove the first statement. Let 9 be an increasing, translation-invariant, finite
operator, and let M be the mask belonging to 1. Since % is translation-invariant we may assume
that M(h) = M), with M finite. Let V be the kernel of 3 and define Vo := {ANM | A € V}.
Since 0 € ¥(A) iff 0 € Y(A N M), we get that Vo C V. It is obvious that

v(X)=|JXe4= |J Xo4.
A€V Ao€Vo
Since M is finite, every Ag € Vp is also finite, and the proof is completed.

In the terminology of Maragos this result says that any increasing, translation-invariant,
finite operator has a finite basis: see [12].

7. Iteration and morphological filtering

Throughout this section we let £ be an arbitrary complete lattice. Recall that O (L) denotes
the complete lattice of all increasing operators on L.

Definition 7.1. Let % be an increasing operator on £. We say that 1 is
(a) a (morphological) filter if ¢* = ¢
(b) an underfilter if ¥ < ¢
(c) an overfilter if ¥ > ¢
(d) an inf-overfilter if ¥ = ¢(id A 9)
(e) a sup-underfilter if ¥ = ¥(id V ¥)
(f) a strong filter if 9 is both an inf-overfilter and a sup-underfilter.



22

For an extensive account on the theory of morphological filtering we refer to [22], in particular
Chapter 6 written by G. Matheron: see also [24]. Note that every inf-overfilter (sup-underfilter)
is an overfilter (underfilter). Important examples of strong filters are the openings and closings.
The class of underfilters as well as that of sup-underfilters is closed under infima. On the other
hand, both the class of overfilters and that of inf-overfilters is closed under suprema. All four
classes are closed under selfcomposition, that is, if 1 belongs to one of those classes then so does
P™ for n > 2. We define 12) to be the smallest closing > 1. Note that 1/; is uniquely determined
by its domain of invariance

Inv($) = Inv(id v $) = {X | $(X) < X}
which is inf-closed (i.e., closed under arbitrary infima). It follows that
| b <. (1.1)
Similarly we define 9 as the largest opening < %. Then
Inv($) = Inv(id A $) = {X | $(X) > X},

and
P > 9. (7.2)

The mappings given by ¥ — ¥ and 3 — 9 define a closing resp. an opening on the complete
lattice O4(L). We recall some facts from [22, Chapter 6]. The lattice £ is modular if for any
AB,X €L, _

A<B = BA(AVX)=AV(BAX).

Any distributive lattice is modular, but the converse is not true in general.

Proposition 7.2.  Let ¥ be an increasing operator on L.

(a) 1,51[) is an underfilter. It is the smallest underfilter > .

(b) Y is an overfilter. It is the largest overfilter < 1.

(c) If ¥ is an overfilter then P is a filter.

(d) If+ is an underfilter then Yo is a filter.

(e) 2/)1/3 is a sup-underfilter. It is the smallest sup-underfilter > .

(1) ¥ is an inf-overfilter. It is the largest inf-overfilter < .
Assume furthermore that £ is modular.

(g) If ¢ is an inf-overfilter then v is a strong filter.

(h) If ¢ is a sup-underfilter then 93 is a strong filter.

Proor. We prove (a),(c), (), (g) The other results follow by duality.

(a): from (7.1) we get that PpPp < 29 = P, so Py is an underfilter. Let ¢ be an underfilter
> 1. Then ¢? < &, hence ¢(X) € Inv(¢) = {X | #(X)< X},forany X € L. So ¢ = b > .
(c): If ¥ is an overfilter then Dy > Pyp? > Pip. Combining this with (a) the result follows.
(e): From (7.1) we get that

PP(id v ¥h) < Pi(id v §) = pi? = ¥,
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hence 94 is a sup-underfilter. Let ¢ be any sup-underfilter. Then (idv¢)(idVv @) = id Vv ¢, hence
id V ¢ is a closing, the smallest closing > ¢. Therefore ¢ = id V ¢, and ¢¢ = #(id v @) = ¢. If,
in addition, ¢ > ¢ then ¢ = ¢ > z/nﬁ, hence ¥ is the smallest sup-underfilter > .
(g): we first show that ¢ = 6(id A 0) is a sup-underfilter if 6 is a sup-underfilter. Thereto we use
the modularity of £. We must show that ¢(id V ¢) < ¢. Note first that, since ¢ < 8,

6 <6(idV ) < 0(id V)=,
hence 8 = 6(id V ¢). Then

$(id v ¢) = 6(id A 8)(id v ¢) = 8[id v $ A 6(id V ¢)]
=0[(idv ¢)A 8] = 0[(id A 6) v 4]
=0[(id A8) v O(id A 8)] = 6(id v 8)(id A 6)
=0(idA0) = ¢.

Suppose that % is an inf-overfilter, then
¥ = P(id A ) < Pi(id A P) < ¥,

From (e) we know already that ¥4 is a sup-underfilter, and using the result above we find that
Wﬁ(id A 1/)1/3) is a sup-underfilter. Since it majorates ¢ we derive from (e) that

Pip(id A ) > P

whence it follows that ) is an inf-overfilter and hence a strong filter.

We can restate (a) as follows: the mapping % — ¥ on O4(L) is a closing with domain of
invariance the (inf-closed) set of all underfilters. A similar reformulation holds for (b), (e) and
(f).

Animportant consequence of this result is that the set of all filters on £ (under the ordering
of 04 (L)) defines a complete lattice. Namely, let ¢; (i € I) be an arbitrary collection of filters,
and define

A= /\ ¥; and p:= V ¥;. (7.3)

i€l i€l

Then A is an underfilter and 4 is an overfilter. From the proposition we deduce that jiy is a
filter, the smallest filter which majorates all ¥;, and therefore the supremum of ¥; (¢ € I) in the
lattice of all filters. Similarly, AX is the infimum of ¥; (¢ € I) within this lattice. Analogously
it follows that the set of all strong filters forms a complete lattice if the underlying lattice £
is modular. Using the same notation as in (7.3), uji is the supremum of the 9; and AX the
infimum. "

The considerations above indicate that it is important to develop tools for the explicit
computation of % and 3. Below we show that under appropriate continuity assumptions such
an explicit computation can be made by iteration of id A 9 respectively id V .
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Assume now that 9 is increasing and ¥ < id (if the latter condition does not hold we replace
with id A 9). Then
LYt gt <Pt L <9 <id

Does 9 := A5, %™ define an opening? Or in other words, is P = 9?7 It is easily seen that
this is indeed the case if and only if

PP = 9.
Below we shall see that the answer is affirmative under the assumption that % is |-continuous.

In [5] we have constructed a counterexample which shows that the |-continuity is essential: see
also [19]. This example will be reproduced here for convenience.

Example 7.3.  Let the increasing, translation-invariant operator ¥ : P(Z) — P(Z) be
given by ¥(X) = (X ®.A)N X, where A = {...,-5,-3,-1,2}. Evidently, ¢ is anti-extensive. If
X = {0,1,3,5,...} then, by a straightforward calculation, ¥™(X) = {0,2n+1,2n+3,2n+5,...},
and so %*°(X) = {0}. But then ¥p9®(X) = ¥({0}) = 0 # p*(X).

6 54 324 0 1 2 3 4 5 6 7 8 9
+——t+—o—t———+——+—+—+—+—t+—+—+ A

FIGURE 3. Iteration of an anti-extensive operator does not always yield an idempo-
tent operator. In this case p>°(X) # ¥>°+1(X).

For an arbitrary operator ¥ on on £ we define

P*(X) = limsup ¥™(X)
Yoo(X) = liminf $"(X).

If oo = ¥ then we write ¥ — 9. In particular, if $? < ¢ (resp. ¥? > ) then 9o = P™ =
/\nZl Y™ (resp. Yoo =P = VnZl P").
Proposition 7.4.  Let ¥ be an arbitrary operator on the complete lattice L.

(a) If ¢ is |-continuous and ¢™ — ¢ then P> < PPp™.

(b) If ¢ is 1-continuous and Y™ — ¢*° then P*° > Ppy™.

(c) If ¢ is continuous and Y™ — %> then > = P> and ¥ is idempotent.
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Proor. We only prover (a); then (b) follows by duality and (c) is an immediate consequence of
(a) and (b).
If ™ — > and 9 is |-continuous then, for X € L,

$°°(X) = lim sup (" (X)) < $($>(X)).

Corollary 7.5. Let 9 be an arbitrary operator on L.
(a) If ¢ < id and |-continuous then 9™ = /\n21 3™ is idempotent.
(b) If ¢ > id and 1-continuous then %> = V,121 ™ is idempotent.

PRrROOF. We only prove (a). If ¢ <id, then ¢ — 9> = /\n21 %", and from Proposition 7.4(a)
we find that ¥ < %9*°. On the other hand, ¥*° > %>, and so 91> = > whence the result
follows.

In [23, Theorem 4] has proven a similar result for operators on the lattice of closed subsets of
some topological space, provided with the hit-or-miss convergence.
From this point on we shall deal exclusively with increasing operators.

Proposition 7.6.  If ¢ is an underfilter (resp. overfilter, sup-underfilter, inf-overfilter) then
¥ is an underfilter (resp. overfilter, sup-underfilter, inf-overfilter).

Proor. We only prove the statement for underfilters and sup-underfilters. If ¥ is an (sup-
) underfilter then %™ is an (sup-) underfilter. Now the statement follows from the fact that
P = A,>1 %" and the inf-closedness of the set of (sup-) underfilters.

|

Proposition 7.7.  Let % be a |- continuous underfilter (resp. 1- continuous overfilter). Then
Y9 = > and ¥ is a |- continuous (resp. 1- continuous) filter.

Proor. If ¥ is an underfilter then ™ | 9> and from Proposition 3.3 we conclude that ™ |
¥1>°. But on the other hand ¢y = ¢p™*! | 4, hence ¥3p>® = . In particular this yields
that ¥ is a filter. The |-continuity of ¥ follows from Proposition 3.6 together with the
observation that any iterate " is |- continuous.

Corollary 7.8. Let % be an increasing operator.
(a) If ¢ is 1-continuous then ¥ = (id V 9).
(b) If ¢ is |-continuous then ¥ = (id A 1)*°.

ProOF. We only prove (a). From the previous result we know that (id v 1)* is a filter which is
> id. So (idV ¢)* is a closing. Since id V 9 < ¥ we get that (id V )™ < 9™ = 9, and therefore
(id v ¢)>® < 121 Since zﬁ is defined as the smallest closing majorating ¥ we may conclude that
B = (id v ).
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Filters

We have seen that the class of all filters forms a complete lattice. Let 9; (¢ € I) be filters and let
A= Ajer¥i and p:= V;;¥i. Then A\ and fip are the infimum respectively supremum of %;
within this lattice. Now suppose that every %; is |-continuous. Then X is an underfilter which,
by Proposition 3.6, is |-continuous. We conclude from Proposition 7.7 that A*° = A 5, A" is a
filter. Moreover, if A* is a filter which minorates A, then A* < A™ for all =, and A* < 2. Hence

A% = A\
Note that it follows from Corollary 7.8 that
A= (id A D).
Analogously, if every ; is {-continuous, then p is an -continuous overfilter and we get that

pu=p==\/ ",
n>1

where i = (id V p)>.

Openings

The set of all openings on £ is a complete lattice with the supremum of ¥; (¢ € I) given by
and infimum A. If every opening ; is |-continuous then A is |-continuous and we conclude from
Corollary 7.8 that A = A%, Moreover, Inv(A®) = Nier Inv(¢:): see also [19, Example 5.1].

Strong filters

We have seen that the strong filters form a complete lattice in case that the underlying lattice £
is modular. The supremum and infimum of the family of strong filters ; (i € I) are respectively
given by pji and AX. We show that the modularity assumption can be replaced with a continuity
assumption on the operators ;.

Proposition 7.9.  Let ¢; be |-continuous strong filters, and let A := Nier ¥i- Then the
infimum of v; in the lattice of strong filters is given by

M=x2= A,
n>1

which is a |-continuous operator.
Analogously, if any ; is T-continuous and p := \/;c; ¥; then the supremum is given by

pi=pe =\ g,
n>1

which is 1-continuous.
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Proor. We only prove the first assertion. Since every %; is a sup-underfilter and since the class
of sup-underfilters is inf-closed we get that A is sup-underfilter. Furthermore, A is |-continuous,
and we deduce from Proposition 7.7 that A*® = A, 5, A" is both a filter and a sup-underfilter. In
addition A% is |-continuous. It remains to show that A% is an inf-overfilter, or more precisely,
that

A%®(id A A®) > A,

First we note that
AmGAdAA™) > A" A X) = APTIAGd A ) = A"
Therefore, A" is an inf-overfilter. Now
A%®(id A A®) = A*®(id A /\ A™) = A%( /\ (id A A™)
n>1 n>1
= A A®@(dAAY) = A A®A™(G{d A XY
n2>1 n2>1
N\ AAm = a.
n>1

Here we have used that A® as an infimum of |- continuous operators is |-continuous and that
AR = A®A",

Centre and middle element

According to a known result in morphological filtering due to Matheron [22, Theorem 6.16],
given a sup-underfilter £ and an inf-overfilter 7, both acting on a modular lattice £, with £ > 7,
there exists a strong filter u, called middle element between £ and 7, such that

p=E=nf p=¢§ p=in
and
n<n <pLEELE.

On the other hand, the notion of the morphological center 8 of a family {t;} of operators on £
defined as

B = [id A (V)] V (A:),
gives, when it is applied to the two element family {£,n}:
B=(dAgVn=(>dVnAE
see [22, Chapter 8]. By introducing order continuity conditions, we get the following result.

Proposition 7.10.  Let £ be a |-continuous sup-underfilter and 0 a T-continuous inf-overfilter
on a modular lattice £ with £ > 1. Then the morphological center § = (id V 1) A £ between &
and 1 converges under iteration towards their middle element, i.e.,

fr — B> = p = €f = AE.
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PRrOOF. From £ < £(id vV ) < £(id v €) = € we deduce that
B=(dvn)AE=(>dVn) A&idVn) = (idA§)(id V),
and similarly that 8 = (id V n)(id A £). Consequently, we have for all n < oo,
A" = (id A (id v )" = (id v )" (id A §)".

Therefore,
Boo =liminf g™ > \/ N\ (idvn)"é=\/(idvn)"E =i = p,
N>1n2N n>1
In the same way we derive that limsup 8" < , and so g < liminf 8" < limsup 8™ < p, whence
the result follows.
|

Owing to the order convergence, Proposition 7.10 extends a result established in [22, p.174] for
finite lattices to the infinite case. One should notice that, unlike £ or 7, 8 itself may be neither
7-continuous nor |-continuous. However, it can easily be shown that

idAB™ = (idAE" and idV g™ = (idV )"

see [22, Proposition 8.11]. These two relations enlighten the behaviour of 8™ in the lattice of
numerical functions f : E — IR. They indicate the following pointwise monotonicity: at any
given point z € E, the numerical values (3™ f)(z) can only decrease or increase, as n increases,
but not oscillate under iteration. This property indicates an essential difference between the
morphological centers and the median filters used in image processing: see also [7]

Finally, by applying Corollary 7.8, we see that 8™(f) tends towards #(f) at the points
where this sequence increases, and towards E( f) at the points where it decreases. Such a double
sense convergence may also be interpreted as {-continuity by introducing the so-called activity
order on the space of operators [22, Section 8.2].

8. Application to numerical functions

In this last section which is intended to illustrate the previous ones, we develop a Euclidean
model for the increasing operators on the space of grey-level images. In other words, we want
to exhibit a class of functions from IR? into IR, and a class of operators acting on it, which
(i) are realistic enough to model the actual situations met in practice, and which (i) satisfy
good theoretical properties. From a physical viewpoint, the continuous functions appear to be a
good choice (Shannon’s theorem), but unfortunately, the continuous functions do not generate
a lattice, and so our theory does not apply to them, at least not directly. On the other hand,
another challenge stems from the theory itself. It transpires from what we have seen up to now,
namely that the order semi-continuity is an essential requirement. Among others, it governs
the behaviour of the operators under iteration. However, when we want it to be brought into
play, we are faced with the following alternative. Either we take the largest possible function
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lattice, i.e., that of all numerical functions f : IR — TR, and then the class of semi-continuous
operators on it is very poor (mainly using finite structuring elements). Alternatively, we may
require operators to be 1- or |-continuous, thus restricting the possible functions to those which
are upper or lower semi-continuous (see below). The regular model which we present below
combines the two alternatives by considering at the same time three different function lattices.

(a) The class Fun(IR?) of the functions mapping IR? into R is a complete lattice with the usual
pointwise supremum and infimum [6,8,22,24].

(b) The class Fun,(IR?) of the upper semi-continuous (us.c.) functions from R into IR. A
function f is said to be u.s.c. if for every z € R® and every ¢ > f(z) there exist a
neighbourhood V' of z such that ¢t > f(y) for all y € V. Geometrically, this means that the
points in IR? x IR on or below the graph of f form a closed set: see Figure 4.

(¢) The class Fun;(IR%) of lower semi-continuous (l.s.c.) functions. A function f is called l.s.c.
if for every z € IR* and every t < f(z) there exist a neighbourhood V of z such that
t < f(y)forall y € V. A function f is l.s.c. if the points in IR% x IR on or below the graph
of f form an open set: see Figure 4.

}?/" \E\/\\ A /J ‘\:5\/\\

& v/

¢

FIGURE 4. From left to right: u.s.c. function, l.s.c. function, and a function which
is neither u.s.c. nor ls.c.

It is obvious that upper semi-continuity and lower semi-continuity are dual notions: if f is
u.s.c. then —f is l.s.c. and vice versa. For functions, upper and lower semi-continuity play the
same role as closedness respectively openness for sets. For example, analogous to the fact that
intersections of closed sets yield closed sets we have that pointwise infima of u.s.c. functions
yield u.s.c. functions. Analogous to the closure and interior of a subset of IR? one can define the
upper respectively lower envelope of a function in Fun(le). The supremum with respect to the
lattice Fun,(IR?) of a collection of u.s.c. functions f; is the upper envelope of their pointwise
supremum. In this way one can easily show that both Fun,(IR?%) and Fun;(IR?) form complete
lattices. For more details concerning u.s.c and l.s.c. functions we refer to [3] and [21, p.426].

Now we are ready to introduce the class of regular operators.

Definition 8.1.  An increasing operator ¥ on Fun(IR?) is said to be regular if the following
conditions are astisfied:

(i) Fun,(R?) and Fun;(IR?) are invariant under ¢;

(ii) % is |-continuous on Fun,(IR?) and {-continuous on Fun;(IR%).
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So a regular operator is defined on the overall function lattice Fun(IR?), but meantime, we
restrict our demands concerning its 1- or |-continuity to some particular subclasses of functions.
In fact, the class of regular operators extends the class of compact operators introduced and
studied by Matheron in the set framework in [14, p.158].

We will now show that the class of regular operators is quite large. It includes the min-max
operators which appeared in the field of mathematical morphology in the seventies [20,16,25].
The first consistent theory due to Serra [21, Chapter XII] focusses on the semi-continuous
functions. Recently, Heijmans [6] developped an approach which does not use the semi-continuity
requirement.

In the sequel \/ and /\ denote supremum respectively infimum in the function lattice
Fun(IR?) unless otherwise stated. For the case of sets Matheron [14] has shown that dilation
by a compact set A maps any closed (open) set onto a closed (open) set. Furthermore, in
Example 3.13 we have seen that such a dilation is order continuous on the closed subsets of R
One can also show that it is ]-continuous on the complete lattice of open subsets of R%. Defining
the dilation of a function f by aset A as f® A = \/,c4 fn (and erosion by f6 A = Anea F-n)s
these tesults easily carry over to the lattices of u.s.c. and l.s.c. functions described above, thus
showing the following proposition.

Proposition 8.2.  Let A be a compact structuring element in IR®. Then the dilation f — f®A
and the erosion f — f © A are regular operators. Moreover this dilation and erosion are order
continuous on Fun,(IR?) respectively Fun,(IR?).

In fact, it suffices to prove this result for dilations, since then the result for erosions follows
by duality; see also the next result. If ¥ is an operator on Fun(IRd), then we define the dual
operator ¥* by ;

V™ (f) = —¥(-f).

One easily derives the following result.

Proposition 8.3.  Let 1 be an increasing operator on Fun(IR?). Then % is regular if and
only if ¢* is regular.

Proposition 8.4.
(a) A finite composition of regular operators is again regular.

(b) A finite supremum and infimum of regular operators on Fun(IR%) is regular.

The first statement of this last proposition follows from Proposition 3.9, and the second from
Propositions 3.6 and 3.8 and their opposites. The Propositions 8.2-8.4 cover most examples
of increasing translation invariant operators based on flat structuring elements that are met in
practice. In particular, it includes the morphological openings, their finite supremum, say 7, the
corresponding closing, say ¢, and also the filters y¢, ¢, v¢7, #79, etc., see [17,22,24].

It remains to analyze the behaviour of compact increasing operators under iteration. The
most interesting result is obtained on the space of continuous functions. Note that this space is
precisely the intersection of the spaces Fun,(IR?) and Fun;(R?).
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Proposition 8.5. Let f be a continuous function mapping IR? into IR, and let ¥ be a regular
increasing operator. Then

3 = VGdVer() and 9(f)= \GdABr().

n>1 n>1

ProoF. The statement is an immediate consequence of Corollary 7.8 and the observation that
f is both u.s.c. and l.s.c., and that the usual sup (resp. inf) coincides with the sup (resp. inf)
of the l.s.c. (resp. u.s.c.) functions.

We conclude this section with a specialization of Proposition 7.10 to continuous functions.

Corollary 8.8. Let £ be a sup-underfilter and 7 an inf-overfilter on the lattice Fun(IRd) with
¢ > n, and assume that both operators are regular. Then, if f is a continuous function, the
middle element p(f) = €7(f) is obtained by the iterative formula

u(f) = [(id v n) A €]"(f)-

Proov. First we note that the lattice Fun(IR?) is modular, and, just as in the proof of Propo-
sition 7.10, we obtain that 8™ = (id A £)*(id V 7)™, where S is the centre 8 = (id A ) V7. Then
liminf 8 >\, 5, £(id V 7). Now, if f is continuous, then the functions (id v n)™(f) are Ls.c.
for all n. Since £ is {-continuous on Funj(IR?) we get that liminf 87(f) > (V1 (id V 0)*(f)),
and from Corollary 7.8 we obtain that liminf S™(f) > E'ﬁ(f) = pu(f). -

Similarly, we obtain that limsup "(f) < p(f) from which the result follows.
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