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The development of techniques for interpreting the structure of 
three-dimensional images, f(x,y,z), is useful in many applica- 
tions. A key initial stage in the signal to symbol conversion pro- 
cess, essential for the interpretation of the data, is three-dimen- 
sional image segmentation involving the processes of partitioning 
and identification. Most segmentation and grouping research in 
computer vision has addressed partitioning of 2D images, f(x,y). 
In this paper, we present a parallel 3D image segmentation algo- 
rithm which, through the use of a-partitioning and volumejilter- 
ing, segments 3D images such that the greylevel variation within 
each volume can be described by a regression model. Experimental 
results demonstrate the effectiveness of this algorithm on several 
real-world 3D images. o tw Academic P~CSS. h. 

1. INTRODUCTION 

The development of techniques for interpreting the 
structure of three-dimensional images has attracted re- 
searchers in the area of medicine for many years [l-5]. 
One of the most widely known techniques is computed 
tomography (CT), a technique which allows physicians to 
diagnose clinical abnormalities from the display of three- 
dimensional reconstructed organ images. In computer vi- 
sion, dynamic scene analysis has attracted researchers 
interested in transforming a sequence of noisy two-di- 
mensional inputs into a description of a scene in terms of 
objects, their three-dimensional shape, and their motion 
through space. Even though many techniques have been 
developed for this purpose, most techniques use just two 
or three frames of a sequence. Only recently has the so- 
called spatio-temporal approach [6-l l] started using 
longer sequences. This approach pictures time-varying 
stimuli as occupying a three-dimensional space, in which 
x and y are two spatial dimensions and t is the temporal 
dimension. The collected sequence of images is usually 
referred to as a spatio-temporal image solid. In many 
applications of mobile robot and other autonomous 
agents, the information about different properties in 
space must be acquired combining information from dis- 

parate sensors obtained from multiple viewpoints at dif- 
ferent time instants. This task is facilitated by keeping 
hierarchical models of the environment. In such a model, 
the most detailed level will contain properties at every 
voxel [ 121. These property values should be grouped to 
form higher level concepts. 

A three-dimensional image forms an image solid which 
is represented as a three-dimensional matrix of guey- 
feuels, f(ij,k). Each greylevel represents certain rele- 
vant property associated with the location (i,j,k) in the 
modeled three-dimensional world. For CT images, the 
greylevel represents an estimate ofthe average of a phys- 
ical parameter (attenuation coefficient) at the point (ij) 
in the kth cross section image. For dynamic scenes, the 
greylevel is proportional to the radiant energy received in 
the electromagnetic band to which the sensor is sensitive 
in a small area around (ij) in the kth frame of a sequence. 
In the environment model it represents one or more prop- 
erty values at point (i,j,k) in space. 

Due to the potential for essentially unbounded com- 
plexity of three-dimensional image data, it is often neces- 
sary to abstract the sensor-derived signals into a 
relatively clear-cut three-dimensional description of 
properties in the modeled three-dimensional world. A 
key initial stage in this abstraction process is three- 
dimensional image segmentation which can be viewed as 
involving the two closely tied activities of partitioning 
and identijication (Fig. la). The partitioning process hy- 
pothesizes a partition of 3D images into volumes. To jus- 
tify whether or not such a hypothesized partition is valid, 
the identification process matches the underlying grey- 
level distribution of the partition subsets to a given set of 
volume models. Most segmentation and grouping re- 
search in computer vision has addressed the problem for 
two-dimensional images f(i,j) and very little work has 
been done for the three-dimensional case. In this paper, 
we shall present an algorithm which can segment 3D im- 
ages into coherent volumes and, upon complete segmen- 
tation, model each of them by individual description (in 
terms of a volume model). 

237 
1049~Y660/91 $3.00 

Copyright 0 1991 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 



238 LIOU AND JAIN 

/ 1 Partitioning1 

b 

a- Partitioning 

. . . 

Volume Filtering (Identificationl 

. . . 
H Illlear 

quadratic 

l 

t-i 

l 
l 

Predefined 
Probability Distribution 

Functions 

Predefined 
Family of Smooth 

Functions 

Predefined 
Family of Smooth 

Functions 

FIG. 1. (a) Approaching the 3D segmentation problem by extending conventional iterative region growing methods to three-dimensional space. 
(b) Using a-partitioning and volume-filtering to break the iterative structure in the parallel 3D image segmentation approach. 

These descriptions are very important for a variety of 
applications. They can be used for identifying the objects 
of interest and indexing into a knowledge base to provide 
a basis for three-dimensional object recognition. In medi- 
cal applications, they can be used to reconstruct three- 
dimensional organs and the display of such reconstructed 
organs can convey useful information to the physician in 
diagnosing clinical abnormalities. For interpreting dy- 
namic scenes, the functional descriptions (i.e., volume 
descriptions) for the spatio-temporal 3-surface may be 
very useful for identifying moving objects in the scene. 

The most widely used technique in attempts to address 
this 3D segmentation problem has been 3D edge detec- 
tion [3,4,7, 131. Similar to 2-dimensional edge detectors, 
the 3-dimensional edge detection method tries to locate 
edgels along the boundaries of volumes in the image 
solid. These edgels are then linked to form groups of edge 
segments, which are in turn 2-dimensional surfaces. Such 
surfaces are not guaranteed to form closed volume 
boundaries in many cases; therefore, the edge detection 
technique does not offer the level of abstraction desirable 
for the analysis of 3D images. 

To achieve the objective of 3D image segmentation, 
the most straightforward way may be to extend the con- 
ventional region growing techniques for image segmenta- 
tion to volume growing techniques for segmenting 3D 
images. Volume growing is a global hypothesis testing 
technique. Given initially poor or incorrect seed vol- 

umes, such techniques usually do not provide any mech- 
anisms for detecting and rejecting local gross errors in 
situations such as when an initial seed volume spans two 
separate hypersurfaces. Therefore, the generation and fil- 
tering of good seed volumes of high confidence will be 
essential. The selected seeds also tend to be small in most 
real 3D images and merely correspond to subsets of the 
actual surfaces’ pixels in the 3D image. The iterative pro- 
cess of volume growing must then be applied in order to 
recover the hypersurfaces of interest. When a hypothesis 
is matched to a given model during identification, the 
result is then sent back to the partitioning process for 
growing volumes at the next iteration. The process termi- 
nates whenever there are no more pixels to be identified 
as belonging to a volume model. 

Conventionally, volume models have been represented 
using the probabilistic approach where a 3D image is 
modeled as a three-dimensional random field. Thefunc- 
tional approach [14-181, which tires to capture the un- 
derlying greylevel distribution of an image using a family 
of smooth functions, has been used only for the segmen- 
tation of 2D images. Our 3D image segmentation algo- 
rithm is the 3D version of our earlier algorithm [ 191 and is 
based on a unified framework for modeling 3D images. 
Under this new framework, the probabilistic nature of the 
image formation process can be captured by assigning a 
functional description to each volume, effectively unify- 
ing the above probabilistic and functional approaches. 
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Similar to the earlier algorithm [19] which does not 
have any apparent disadvantage of conventional region 
growing techniques, this 3D image segmentation algo- 
rithm breaks the iterative structure of conventional vol- 
ume growing through the use of a-partitioning and uof- 
umejiltering (Fig. lb). The mechanism of a-partitioning 
generates volume hypotheses, while volume filtering de- 
tects and rejects gross errors. By using gradient informa- 
tion, a-partitioning removes the need for volume growing 
so that our algorithm can be implemented on a parallel 
architecture. The proposed 3D image segmentation tech- 
niques segment 3D images such that the greylevel varia- 
tion within each volume cluster can be described by a 
regression model. 

This paper is organized as follows. The key ideas be- 
hind the 3D image segmentation algorithm are first de- 
scribed: the regression model (Section 2) and the tech- 
niques for breaking the iterative structure (Section 3). 
The implementation details are given next (Section 4) and 
experimental results show the algorithm’s performance 
on three 3D images (Sections 5). It concludes with com- 
ments on future improvements (Section 6). 

2. A REGRESSION MODEL FOR IMAGE SOLID 

The modeling of the underlying greylevel variation in 
an image solid is essential in the 3D image segmentation 
process. What is an effective image solid model? Con- 
sider the sampling process in which an image solid has 
been obtained over a short period of time. Even in such a 
simple environment, if we repeat the process several 
times with the same sensor, the observational image 
solids will not be identical. Such a phenomenon can be 
attributed to the inherent measurement errors in the 
imaging process and the occurrences of certain unavoid- 
able random events in this dynamic, though controlled, 
environment. In general, the stochastic nature of the 
imaging process cannot be modeled deterministically. An 
image solid has therefore to be treated as a three-dimen- 
sional discrete random field, a collection of random vari- 
ables where values of each denotes the greylevel of the 
pixel in the image solid. 

Every random variable which isfinite and has compact 
support [20] can be uniquely determined by its complete 
set of moments {pn}. For example, ~1 and ~2 determine 
the mean and standard deviation, respectively. In the 
general case, an image solid can then be treated as a 
realization of a vector random process W described by a 
set of moments Gn. Therefore, by specifying all finite mo- 
ments of this vector random process, we can always ob- 
tain an unique model for the underlying greylevel varia- 
tion. In the special case where this random process has a 
Gaussian distribution, only the mean vector E[W] (the 
first moment vector) and the covariance matrix Rw (the 

second moment about the mean) are necessary for de- 
scribing W. The multivariate Gaussian 

p(G) = K exp(-&(i; - E[W])TR@‘(iG - E[W])) (1) 

has the property of being able to embody the correlation 
between the components of the vector iit 

i+ = (w,,, W&) . . . ) wi,,) 

directly into the probability distribution function (pdf) in 
a compact and mathematically tractable fashion. (wi, is 
the ith vector random process sample associated with the 
pixel rj = (Xi,yi,z;).) Thus, for most practical purposes, it 
is the only pdf to be used as a model for multivariate 
vector data [21]. 

2. I. The Nonstationary Mean and Stationary 
Autocovariance Assumption 

A wide-sense stationary assumption is usually adopted 
for the Gaussian pdf in modeling regular 2D images [22]. 
This assumption can be stated simply as 

E[W] = ,C, = (M, M, . . . , M) 

and the autocovariance R(&,7J of W defined by 

Rww(C,j2) = am, - plmw,z - Pm)1 

= 6i,,j CT’, 

where 6i.j is the Kronecker delta function and c2 is a 
constant. 

Hunt [23] demonstrates how greatly this conventional 
assumption of stationary mean can be violated by real- 
world images. However, by weakening the above station- 
ary assumptions, Hunt and Cannon [21,23] show that the 
Gaussian pdf of most statistical models can be derived on 
an experimental basis. They also claim that a digital im- 
agef(i,j) can be modeled as consisting of intensity fluctu- 
ations about a non-stationary mean of a context-depen- 
dent ensemble 

f(iJ = f(iJ) + ski), (2) 

wheref(i,j) is the low-frequency (or blurred) component 
and s(i$) is the high-frequency component. The nonsta- 
tionary meanf(i,j) can be considered as the deterministic 
component off(i,j) and is estimated by blurring the indi- 
vidual ensemble sample member with a low-pass spatial 
filter. The random component s(ij) is shown to have 
approximately Gaussian behavior. Our regression model 
is based on an extension of this nonstationary mean and 
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stationary autocovariance assumption to the three- 
dimensional space. 

2.2. The Multiple Distribution Functions Assumption 

The assumption of Section 2.1 provides the basis for 
treating an image solid as a realization of a single vector 
random process with a nonstationary mean and station- 
ary autocovariance. However, we believe that the model- 
ing of an entire image solid with one distribution function 
defeats the purpose of the 3D image segmentation pro- 
cess. Instead, we consider an image solid I as the union 
of N volumes V,, each of which is modeled by an inde- 
pendent Gaussian pdf fv (1). An m x n x 1 real image 
solid I can be represented as a continuous function of 
three variablesf(x,y,z). A digital image solidf(i,j,k) is a 
matrix of samples of this function, f(iAx,jAy,kAz), with 
sampling intervals Ax, Ay, and AZ, for 0 5 i 5 m, 0 5 
j 5 12, and 0 I k 5 1. We denotef(i,j,k) as an unregistered 
sample matrixf(xi, y;,zi) orf(?i) wheref(?i) is considered 
as the ith sample from a vector random process. The 
multiple distribution functions assumption asserts 

f(Xi,Yj,Zk) -fv, v k,y;,z;) E v/ md I = ULV,. (3) 

The objective of the 3D image segmentation process is 
then to recover not a single image solid model, but the 
individual volume modelsf”, for image solid 1. During the 
recovery of a volume model, its associated nonstationary 
mean and stationary autocovariance have to be esti- 
mated. 

2.3 Modeling Nonstationary Means with 
Approximating Functions 

One way of estimating the nonstationary mean f in (2) 
is by blurring the 3D image with a low-pass three-dimen- 
sional filter.’ In such case, the representation off can be 
considered as an mnl vector for a m x n x 1 image solid. 
Theoretically, f can also be modeled by a single polyno- 
mial functional description that best fits the greylevel val- 
ues in the entire image solid. In practice, the best-fitting 
models can only be obtained through 3D image segmenta- 
tion on a per volume model basis as suggested in [ 141. We 
view the use of approximating functions in volume grow- 
ing as a regression technique that uses a trivariate poly- 
nomial functionf,, as a nonstationary mean model forf”,. 

From the functional approximation point of view, the 
digital image solid fv,(xi,yi,;;) within a volume V, is ap- 
proximated by a function fr,(x,y,z) with the addition of 
measurement errors r)“,(x,y,z), 

n 
f”,(X,Y,Z) = f”,(X,YJJ + W,,,.,,;,~ (4) 

’ An extension of the ,method suggested by Hunt and Cannon [21]. 

= hY,Z) (3 

under the assumption that the errors are uncorrelated 
within each volume such that qv, - N(O,Iq2,), for all 
(x,y,z) associated with VI. (We shall drop the subscript VI 
in the rest of our discussion on volume models.) 

Obviously, E[{(x,y,z)] = f(x,y,z). Since r) is zero 
mean independent identically distributed (i.i.d.), E[q] = 
0 and R,,(?;,?j) = 6;,ju*. It follows that 

w-(x,Y,z)l = Jmx,Y~z)l + mG,Y,Z)l 

and 

= R&x; ,Yi ,Zi ;xj ,Yj ,Zj 1 

= tii,jm', (6) 

where 6;,,j is the Kronecker delta function and cr is the 
measurement variance. Therefore, we have shown that 
the functional approximation approach basically adopts 
the same nonstationary mean (from Eq. 5) and stationary 
autocovariance (from Eq. 6) assumptions that we have 
presented in Section 2.1. The functional and probabilistic 
approaches in volume modeling are thus unified under a 
single framework. 

2.4. Modeling Nonstationary Means with Fixed-Order 
Polynomial Functions 

In the simplest case, the nonstationary mean f can be 
modeled by a linear function 

E[f(x,y,z)l = ax + by + cz + d, (7) 

where a, b, c, and d are four free coefficients needed to 
be estimated. Unfortunately, this usually does not cap- 
ture the inherent complexity in 3D images of the real 
world. 

Besl and Jain in the conclusion of [14] suggest using 
different orders of trivariate polynomial functions to em- 
body the knowledge about various levels of smoothness 
in an image solid. We view this suggestion as modeling 
the nonstationary mean of the image solid with a vocabu- 
lary of variable-order functional descriptions from the 
perspective of our unified regression framework. Fur- 
thermore, we shall argue that it is actually unnecessary to 
find the most appropriate order of the polynomial func- 
tion for representing this mean. To explain the concept, 
let us first define the functional space formed by the mod- 
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eling functions as the P-order space. The P-order space 
contains polynomial functions of degree 0, 1, . . . , P, 
where P is defined as the maximum variation order 
(MVO). This set of approximating functions can be writ- 
ten in the form of a single equation 

1 
f(MV0, &;X,y,Z) = C Ui,j~.X’yjZ’. 

i+j+kMVO 

For example, when MVO = 4, this set of functions in- 
cludes linear, triquadratic, tricubic, and triquartic poly- 
nomials. 

There are three properties associated with this P-order 
space. First, the order P constrains the minimum level of 
smoothness hypothesized to occur in real image solids. 
In other words, P is the hypothesized maximum com- 
plexity of the underlying smoothness variation within 
each volume. Second, the experimental results included 
in this paper (Section 5) show that MVO = 4 (triquartic 
polynomials) is reasonable for a large class of image 
solids, i.e., 

1 
f(4,6;x,y,z) = c a;&jzk 

itjiQi4 

= Qoo + ~Ioo~ + UOIOY + UOOlZ + UlloxY 

+ uojlyz + UlOlXZ + u200x2 + Uo*oY’ 

+ uoo2z2 + u2lox2y + a12oxy2 + ao*,y2z 

+ uo,2yz2 + U2OlX2Z + u,ozxz2 

+ alllqz + &00X3 + Qo3oY’ 

+ a00323 + a3lox’y + u*?(,x2y2 

+ ul3()xy3 + clj()lX3Z + u202x’z’ 

+ U103XZ3 + U031Y3Z + ao22y2z2 

+ uo,jyz3 + u211x2yz + a,21xy2z 

+ u,,2xyz2 + u400x4 + Uo40Y4 

+ uoo4z4. 

Third, a MVO-order polynomial function is sufficient for 
representing a volume since it is an unbiased estimate of 
any underlying volume models of order less than MVO. 
The last two properties lead us to conclude, contrary to 
the conventional viewpoint, that 4th order functions are 
sufficient for modeling nonstationary means of real image 
solids. 

Previously, when MVO 2 1 has been selected, tech- 
niques such as the extension of the variable order sur- 
face-fitting algorithm [14] to three dimensions can be 
used to recover the so called best descriptive model for a 
volume VI. Since not all the volumes have exactly MVO 
order of smoothness variation, overfitting may occur 

when a MVO-order polynomial functionfv, is fitted to a 
V, that can be best described by one of a lower order. 
This very common model reduction problem also exists 
in regression analysis. In general regression analysis, the 
functional relationships between variables are unknown 
and many tests have been developed to find this relation- 
ship [24]. In computer vision applications, the set of inde- 
pendent variables is fixed and the functional relationship 
between variables is modeled by a set of polynomial func- 
tions. The task is then to find a particular polynomial 
order and set of coefficients for specifying the functional 
relationship. 

This task becomes unnecessary given the fixed MVO- 
order property of the P-order space based on regression 
theory [24]. In general, an estimate p^ is an unbiased esti- 
mate of the parameter p being estimated if 

ml = P 

A$tted model is a hypothesis used to explain the obser- 
vational data generated by a true model. A full model is 
the largest regression containing all terms; in our case, all 
the coefficients of the MVO-order polynomial function. 
Suppose that the greylevels Y in volume V, are approxi- 
mated by a MVO-order full model 

E[Y] = x0 

with regression matrix X, n data points Y, and p regres- 
sion coefficient 0 in the least squares sense (see Appen- 
dix A). (For example, when MVO = 4, p = 35 unknowns 
for triquartic polynomials.) Let us assume our underlying 
(true) model of a lower order, with k unknowns, is 

E[Y] = Xl@,, 

where X1 consists of the first k < p columns of X sothat 
X = (X,, XT). Since the least squares estimate 0 = 
(XTX))iXTY (by Eq. 11 in Appendix A), 

E[8] = E[(XTX)-IXTY] 

= (XTX)-IXTE[Y] 

= (XTX)-‘XTXIOI 

= (XX-‘XX (:I) 

= @I 

t 1 0 . 

We have 6 = (61~62) and 61 consisting of the first k rows 
is, therefore, an unbiased estimate of 0,. The least 
squares estimate then allows us to obtain the recon- 
structed (or predicted) values Y from the full model using 
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P( V,) = TRUE Ql 

It follows that 

E[P] = E[X6 

in other words, 

] = x (“01) = X@j 3 

E[%q = E[Y]; 

and so the MVO-order full model for VI is an unbiased 
estimate of the underlying true model. This is the same as 
stating the following property. Assume that p regression 
coefficients {A,, AZ, - * - , AD} denoting a vector random 
process 0, are estimated at m different time instances. 
This set of estimates, obtained from fitting m MVO-order 
full models to m separate observations of VI, has the 
prow-b 

E[Ak+J = E[Ak+J = . . . = E[A,] = 0 

since E[&] = 0. 
In summary, we have shown that: 

l A stochastic 3D image model is necessary for the 
3D image segmentation process and the multivariate 
Gaussian model is selected for an 3D image. 

l The nonstationary mean and stationary autocova- 
riance assumption is reasonable for real-world 3D im- 
ages. 

l Due to the complexity of this modeling process, a 
reasonable 3D image model is the one that assumes dif- 
ferent distribution functions (volume models) for differ- 
ent volumes in the image solid. 

l The use of approximating functions as volume 
models in 3D image segmentation is the same as estimat- 
ing the nonstationary mean of the 3D image through 
polynomial functional approximation. 

l It is unnecessary to use variable-order polynomial 
functions for modeling the nonstationary mean, only 
polynomial function of order MVO = 4 is needed. 

3. PARTITIONING AND IDENTIFICATION 

A commonly used definition [14, 251 states that if I is 
the set of all pixels, a segmentation of I is a partition- 
ing set of connected subsets, or image volumes, {V,, V,, 
. . .) V,> such that 

UEiV,=Z, where V,fl V,,,=S Ql#m, 

where a uniformity predicate P(O) is defined on groups of 
connected pixels such that 

P(Vi U V,,,) = FALSE Q VI adjacent to V,. 

A partition is defined to be correct when every volume 
hypothesis Zf, for V, satisfies the smoothness predicate 
P(O) and contains no gross error. A partition is complete 
when every H, contains exactly all pixels p;,j,k E VI. 
These two definitions also apply on a per volume basis 
and are illustrated in Fig. 2. The final partition from the 
3D image segmentation process should have the image 
solid Z segmented into the set {VI, V2, . . . , VN} where 
each V, is represented by a correct volume model fv,. 

Similar to our formulation for the 2D image case in 
[19], a 3D image segmentation algorithm can also be 
viewed as the implementation of an uniformity predicate 
for the generation and verification of volume hypotheses 
and which upon completion yields an abstract represen- 
tation of a 3D image in terms of volume models. Our 3D 
image segmentation algorithm stems from the regression 
model for 3D images (Section 2). In particular, its multi- 
ple functions assumption (by Eq. 3) is consistent with the 
above definition of segmentation. l$VO-order polyno- 
mial functions are used to estimatef”, of the underlying 
volume models fv, that have zero mean i.i.d. Gaussian 
noise (Section 2). The uniformity predicate implemented 
is viewed as a smoothness predicate satisfying the fol- 
lowing criteria: 

l The smoothness variation of the pixel data in V, is 
correctly and completely modeled by anf”,. 

l Discontinuities between V, and V,,, where P(V, U 
V,) = FALSE, are preserved to guarantee a correct final 
partition. 

FIG. 2. Types of partitions: (upper left) Shaded area is correct but 
incomplete for VA. (upper right) Shaded area is correct and complete for 
V,,. (lower left) Shaded area is incorrect and incomplete for VA and V,. 
(lower right) Shaded area is incorrect but complete for V, and V,. Note 
that we encounter gross errors where a volume hypothesis incorrectly 
spans two actual volumes. 
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The two techniques embedded in our implementation 
of the smoothness predicate are a-partitioning and uol- 
ume Jiltering. a-partitioning generates volume hypothe- 
ses by taking advantage of the locations of discontinuities 
in the image solid. It preserves the discontinuities in the 
final correct partition and guarantees complete partition- 
ing with accurate detection of such locations. Volume 
filtering verifies the smoothness variation of volume hy- 
potheses and rejects gross errors by using the fitting vari- 
ance S2. S2 is an unbiased estimate of the measurement 
error cr2 when the model fits the data. The conventional 
iterative structure is not inherent in the 3D image seg- 
mentation algorithm because these two methods enable 
the algorithm to handle volume hypotheses in parallel 
and to combine the verified results efficiently through a 
very simple image solid operation (Image-Solid-OR) at 
the end. 

3.1. c-u-partitioning for Generating Volume 
Hypotheses 

Similarly to our 2D algorithm [ 191, volume hypotheses 
are generated simultaneously by using information about 
the location of discontinuities. These often lie on surfaces 
that separate volumes of different smoothness variation 
in an image solid. The area surrounded by each closed 
boundary surface can then serve as a volume hypothesis. 
It is natural to use the gradient magnitude of a 3D image 
to locate the surrounding boundaries of volumes. How- 
ever, various thresholds for edge strength may be re- 
quired for different boundary surfaces in an image solid. 
Since the threshold value(s) for each surface is unknown 
a priori, we treat the segmentation problem as one of 
jinding the minimal set of edge strength thresholds, CXMIN- 
set, through which a. 3D image can be segmented into 
volumes according to the smoothness predicate. 

To derive the aMIN-set, we need sufficiently good esti- 
mates or we can find all of the edge strengths by search- 
ing over a window around these initial values in the mea- 
surement space. These a priori estimates can be obtained 
either from the vision system’s prior experience or from 
the output of a high-level vision module in a goal-directed 
manner. In cases where such information may not be 
readily available to the segmentation module, it must be 
derived from the 3D image content instead. 

This algorithm considers the latter case. The solution 
space is first reduced by scaling down, or normalizing, all 
gradient magnitudes. A greylevel ai-imagesolid is pro- 
duced after the removal of edgels thresholded at an edge 
strength o+ from the image solid. The 3D connected com- 
ponents in the ai-image-solid, if any, constitute the cor- 
responding set of volume hypotheses. This process of 
obtaining independent sets of volume hypotheses from 
the various a-image-solids is called a-partitioning. We 
then apply volumefiltering on each hypothesis and a sim- 

El 

FIG. 3. Examples of pseudo a-image-solids. (upper left) u,- 
image-solid, (upper right) uz-image-solid, (lower left) cY,-image-solid, 
and (lower right) ol,-image-solid; where LY, > cyz > LY? > CQ. Black pixels 
are edgels that have been removed. 

ple Image-Solid-OR operation at the end, to verify the 
correctness of each hypothesis and to derive the (YMIN- 
set, respectively. For clarity of illustration, we introduce 
the pseudo a-image-solid that contains pattern(gray)- 
coded pixels instead of the actual greylevel values in a 
true cy-image-solid. Examples of the pseudo a-image- 
solids are shown in Fig. 3. 

3.2. Volume Filtering for Detecting and Rejecting 
Gross Errors 

Not all volume hypotheses generated by the a-parti- 
tioning process are correct. The final partition can be 
obtained if we know how to determine the correctness of 
a hypothesized model for the given set of data. As a 
direct extension of our region filtering techniques in [ 191, 
the technique of volume jiltering is used to verify the 
correctness of hypothesized models in an c-u-image-solid. 
Incorrect volume hypotheses are filtered out to produce a 
binary filtered a-image-solid. Each such image-solid is 
guaranteed to have a correct partition, even though the 
partition may be incomplete. Two example applications 
of a volume filter are shown in Fig. 4. The volume filter 
adopts the lack-of-$t test [26] to each volume hypothesis 
independently: 

S’ I u2. 

S* is the unbiased estimate of the true measurement vari- 
ance u2 when there is no lack of fit. The lack-of-fit test is 
commonly used in applied regression with the assump- 
tion of a correct model [26] and is defined as 

(8) 
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FIG. 5. Examples illustrating the relationships between (Y values 
and filtered o-image-solids. (a) 4,, (b) guz (cl 4,,,, where (Y, > a2 > 03. 
In these filtered o-image-solids, correct volume hypotheses are labeled 
with different patterns while edgels and incorrect hypotheses are black. 
Note that there are two volumes in (a), four volumes in (b) and (cl. 

erated a correct and complete segmentation of the image 
solid I. 

FIG. 4. Two examples illustrating the application of a volume filter. 
On the left are two pseudo cYimage_solids. Edgels are labeled black, 
while the three volume hypotheses in the first example and four in the 3.4. Achieving Parallelism in Searching the a-Space 

second example are patterncoded. On the right are two filtered cy- 
image-solids where the incorrect volume hypothesis (shown in black) is 
eliminated. 

where S(h) is the sum of squares for residuals, n the 
number of data points, and p the number of polynomial 
coefficients (see Appendix A). 

In practice, the true measurement error is usually not 
directly available a priori in computer vision and we fre- 
quently deal with only a single image solid. Furthermore, 
o* is unknown for volume V, since the correctness of the 
fitted volume model fv, is supposed to be tested. So the 
maximum lack-of-fit error & is estimated instead from 
the image solid noise variance estimate ujrnK and the gen- 
eral lack-of-fit regression test has essentially become the 
so-called RMS fit error test [14]: 

In our 3D image segmentation algorithm, the aMiNset 
is derived by performing a search in the a-space (or edge- 
ness measurement space). The a-set is either derived 
from the 3D image content (in our case) or supplied a 
priori somehow. Given this initial set, the algorithm then 
generates and prunes a search tree, according to the 
smoothness predicate, in the derivation of the aMrN-set 
(Fig. 6). In the a-partitioning process, each set element (Y; 
generates a hypothesized partition of the 3D image into 
volumes enclosed by discontinuities, such as {ZZ,,,,, Ha,,2, 
. . . H,,,,} in Fig. 6. Each volume hypothesis H,,,j in the 
cy,image-solid is fitted with a MVO-order polynomial 
function fHa,,,. During volume filtering, any hypothesis 

s* 5 CT&, = OUjrnR. 

3.3. An Efficient Technique for Resolving 
Descriptions 

(9) 

Multiple filtered a-image-solids are obtained after vol- 
ume filtering, each of which is associated with one cor- 
rect but possibly incomplete partition. In order to obtain 
the final segmented image solid, the cu-image-solids can 
be resolved to produce the final aMiNset by simply apply- 
ing an Image-Solid-OR operation to the various descrip- 
tions. This arises naturally from the processes of a-parti- 
tioning and volume filtering. We have shown the 
mathematics for the 2D image case in [19]. It can be 
shown similarly to the 2D case that an Image-Solid- 
Inclusive-OR operation on all filtered cw-image-solids s,, 
will produce a set of volumes V,, each of which satisfies 
the smoothness predicate and is associated with a partic- 
ular ai (see Fig. 5). Therefore, the 3D image segmentation 

FIG. 6. Searching a-space for cuMin-set. A box node represents a 

algorithm has effectively computed the aMiN-set and gen- 
volume hypothesis and a circle node a set of volume hypotheses. Note 
that deleted nodes are marked with crosses. 
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that fails the lack-of-fit test is removed and the Ha,,i node 2. desired accuracy of the solution, and 
deleted (e.g. Ha,,, and Hm2,,). It is conceivable that all 3. input 3D image content, which determines the 
hypotheses for a particular CY; are invalidated by the number of possible volume hypotheses. 
smoothness predicate and its associated subtree is thus 
pruned from the search (e.g. (Y,). On the other hand, cor- 
rect hypotheses in the filtered a-image-solids form the 
leaves of our search tree (e.g. H,&. These are combined 
to produce the cYMIN-set. 

Similarly to what we have shown for our 2D algorithm 
[19], the complexity of our 3D algorithm is also deter- 
mined by the volume filtering where a least squares fit has 
to be applied to each volume. If a processor is assigned to 
the volume filter for each a-image-solid, it is of O(k n’) 
(based on standard Gaussian elimination), where n is the 
average number of data points in the fit and k the number 
of volume hypotheses. Since k + M, we have O(n7). The 
actual time and storage complexity of this implementa- 
tion thus depends on 

4. IMPLEMENTATION ISSUES 

The formulation described in the previous sections 
results in our new approach to the 3D image segmenta- 
tion problem (Fig. 7). The 3D image segmentation algo- 
rithm allows us to partition an 3D image into correct 
volumes satisfying the smoothness predicate. We use the 

techniques of cw-partitioning and volume$ltering to pose- 
and-test various hypothesized edge strengths of bound- 
ary surfaces in parallel. Associated with every hypothe- 
sized edge strength (Y~, we obtain an ai-image-solid that is 
sent to a volume filter to remove volume hypotheses 
within which the smoothness variation is beyond the 
specified complexity. At the end of these parallel opera 

1. number of parallel processors utilized, tions, all filtered a-image-solids are combined to obtain 

Image Solid Gradients 

a-partitioning a-Partitlonlng 

..a a Image-Solld 

I I 

Resolving 

Descriptions 
I 

FIG. 7. The control diagram of the parallel 3D image segmentation algorithm. 



246 LIOU AND JAIN 

the minimal set of edge strength thresholds aMIN-set 
which is used to segment the 3D image. 

4.1 cx-Partitioning 

The 3D Sobel edge detector was first applied in 3 x 3 X 

3 window neighborhoods to compute the gradient magni- 
tudes on the n x n x 6 image solid. The embedding angle 
formula [lo] is used to scale the gradient magnitudes Mijk, 

The scaled gradient magnitudes 0 I Mijk I 90 are stored 
into a three-dimensional array. The values above a given 
(Y; are subtracted from the original image solid to produce 
the corresponding greylevel c+image-solid. 

In our current implementation, the range where the (Y- 
set is searched for is chosen to be (90, 89, * . . , 61). The 
(Y’S below 61 were experimentally determined to be not 
significantly meaningful for sampling the edgeness mea- 
surement space. 

4.2. Volume Filtering 

The volume filter determines all connected volumes in 
the given Kimage-solid. Since the maximum complexity 
of a volume modelf,, is defined by the unbiased estimate 
of the nonstationary mean fv, a MVO-order polynomial 
function, it suggests the following simple least squares 
regression procedure (see [19] for details). The greylevels 
Y in each volume V, of the original image are then ap- 
proximated by a 4th-order polynomial function X with 
regression coefficients 0 so that the sum of squares of the 
errors Y is minimized. The resulting linear model can be 
written as 

Y = x0 + Y. (10) 

The volume filter than applies the lack-of-fit test [ 191 to 
examine whether or not this 4th-order polynomial fits the 
image data. The image noise level is estimated and com- 
pared with the estimated measurement error obtained 
from each volume fitting using the RMS fit error test [ 141. 
If its lack-of-fit error is too large, the volume will fail this 
test and its corresponding area in the given a-image-so- 
lid is filtered out. This regression procedure and test are 
applied to all connected volumes in parallel, producing 
the binary filtered &image-solid. 

4.3. Resolving Descriptions 

Thirty filtered a-image-solids (at (Y = 90, 89, . . . , 61) 
will be sent back and these binary image solids are then 
Inclusive-ORed [19] to produce the final segmented im- 
age solid. 

5. EXPERIMENTAL RESULTS 

Our algorithm has been applied successfully to a wide 
variety of 3D image data. Its performance on one medi- 
cal 3D tomographic data set and two intensity image se- 
quences is discussed in this section. The following set of 
figures is displayed for each input 3D image data: 

l Original Gray Scale 3D Image of Six Frames 
l Original Gray Scale 3D Image: 3D Solid (left) and 

3D Sliced Solid (right) 
l Gradient Magnitude 3D Image: 3D Solid (left) and 

3D Sliced Solid (right) 
l Gradient Magnitude 3D Image: 3D Solid 

Thresholded at Three Different Levels, Where White 
Pixels Are Those Above the Selected Threshold 

* Segmented 3D Image Solid, Where Different Vol- 
umes Are Shown Separately 

The segmented 3D image solids display the results pro- 
duced by the 3D image segmentation algorithm. Each 
volume is an isolated set of connected pixels whose grey- 
level variation can be represented well by a triquartic 
polynomial function. 

The following 3D image data have been used to test our 
proposed algorithm. 

1. LIVER CT Image (UM Medical Center) 
This 3D data contained six 128 x 128 16-bit recon- 
structed cross section CT images obtained from 
our medical research center. We stack this se- 
quence of cross sections into a 128 X 128 X 6 
array. Our algorithm was able to delineate the 
liver, but failed to catch the areas surrounding the 
liver and these areas are shown black in the seg- 
mented image solid, (Figs. 8-12). 

2. ROAD Intensity Image Sequence (Martin Ma- 
rietta) 

FIG. 8. Original grayscale 3D LIVER CT image of six frames. 
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FIG. 9. Original grayscale 3D LIVER CT image: 3D solid (left) and 
3D sliced solid (right). 

This sequence was obtained from Martin Marietta 
and contained six 128 x 128 g-bit intensity images. 
In this sequence, the camera was mounted on a 
slowly moving vehicle. There are two moving cars 
in the scene. One car is on the far front of the 
camera and the other is passing by from the left. 
Since the camera is moving slowly, the motion be- 
tween it and the background is not significant. The 
edge of the road and the edge of a passing car are 
all clearly. delineated. The algorithm has trouble 
catching some of the highly textured background, 
which are also labeled black in the segmented im- 
age solid, (Figs. 13-17). 

3. LAB Intensity Image Sequence (UM AI Labora- 
tory) 
This sequence was taken by a camera moving to- 
ward the center of the image and contained six 
128 x 128 g-bit intensity images. In this sequence, 
the background is mostly empty and homogeneous 
and two blocks in the center are stationary and the 
one on the right is moving left. The toy dog on the 
left of the image is moving right. They are all on a 

FIG. 10. Gradient magnitude 30 LIVER CT image: 3D solid (left) 
and 3D sliced solid (right). 

FIG. 11. Gradient magnitude 3D LIVER CT image: 3D solid 
thresholded at three different levels, where white pixels are those above 
the selected threshold. 

table. They toy dog, three blocks, and the back- 
ground are all clearly delineated. The algorithm 
has trouble catching some areas of the toy dog 
which are highly textured. These areas are labeled 
black in the segmented image solid (Figs. 18-22). 

6. CONCLUSIONS AND FUTURE RESEARCH 

Three observations are evident from the experimental 
results. First, we have presented a very powerful seg- 
mentation scheme not only for 2D images [ 191 but also for 
3D images as shown in this paper. The use of cz-partition- 
ing and volume filters enabled our 3D image segmenta- 
tion algorithm to produces good segmentation results 
with tremendous savings in computation time. Further 
improvements might still be obtained by using surface 
refinement techniques 1141 and developing more sophisti- 
cated 3D edge detectors as extensions of current 2D edge 
detectors [27-291. 

Second, our segmentation algorithm depends heavily 
on how successful the 3D edge detector locates various 
volume hypotheses. When there is an abrupt change be- 
tween neighboring frames, the 3D edge detector will usu- 
ally locate a very thick discontinuity contour surface and 
thus result in a very small volume. The medical CT 3D 
image we experimented with causes such effects. How to 
reduce these effects is the central issue for our future 
research. 

Finally, although our results show that confining the 
smoothness predicate to the 4th-order space (MVO = 4) 
is reasonable for real 3D images, there is a need to formu- 
late a representation for highly textured volumes, other 
than increasing our complexity constraint to higher order 
arbitrarily. Based on our experience with several real 3D 
images, we believe that our regression model can be ex- 
tended for textured images by relaxing the stationary 
autocovariance assumption and by using models to con- 
strain the maximum complexity a covariance matrix can 
have. It would then be possible to develop a general 3D 
image segmentation algorithm that deals effectively with 
both regular and textured 3D images. 
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FIG. 12. Segmented 3D LIVER CT image solid, where different volumes are shown separately. 

FIG. 13. Original grayscale spatio-temporal ROAD intensity image 
of six frames. 

FIG. 14. Original grayscale spatio-temporal ROAD intensity image: 
3D solid (left) and 3D sliced solid (right). 
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FIG. 15. Gradient magnitude spatio-temporal ROAD intensity im- 
age: 3D solid (left) and 3D sliced solid (right). 

APPENDIX A. LINEAR LEAST SQUARES 

REGRESSION TECHNIQUES 

In mathematical analysis of observational results, it is 
often necessary to extract the best or most plausible in- 

FIG. 16. Gradient magnitude spatio-temporal ROAD intensity im- 
age: three 3D solids thresholded at different levels, where white pixels 
are those above the selected threshold. 

terpretation from the available data. This problem can be 
reduced to a formulation as follows. Given the observed 
(known) quantities Y, and Xl”, X2,, . . . , X,,, for u = 1, 2, 
. . . 12, it is required to find values for the set of unknown 
quantities Or, d2, . . . , 0, in such a way that the set of 
appropriate equations 

FIG. 17. Segmented spatio-temporal ROAD intensity image solid, where different volumes are shown separately. 
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FIG. 18. Original grayscale spatio-temporal LAB intensity image of 
six frames. 

YI - 0,x,, + 02x2, + . . . + 0,x,, 

y2 - 8,X,2 + 02x22 + . . . + e,x,, 
. . . 

Ytl - 8,X,, + t&x,, + . . . + e/J,, 

are satisfied as nearly as possible, when the number n of 
equations is greater than the number p of unknowns. 

By saying that the equations are to be satisfied as 
neurly as possible, we mean that the quantities 

El = Y1 - (0,X,, + (92x2, + . . . + e,x/J 

E2 = Y2 - (8,X,2 + 0*X2* + . . . + e,x,2, 

. . . 

&, = Y, - (0,X,, + 02x2, + . . . + epxp,> 

are to be as small as possible. 

FIG. 20. Gradient magnitude spatio-temporal LAB intensity image: 
3D solid (left) and 3D sliced solid (right). 

Legendre [30] was the first to give a solution of this 
problem in terms of his principle of least squares. Of all 
possible sets of values of 8,, 13~, . * * , $,, the most satis- 
factory solution is that which makes the sum of squares 
of the errors a minimum; that is, 

Y = E: + E: + * - . + F; 

is desired to be a minimum. The resulting coefficients &, 
02, * * . , 0, are called the regression coej’kients. 

Assuming the principle of least squares, we now want 
to find the set of regression coefficients which can mini- 
mize the sum of squared errors given by 

S(0) = 
i=l 

= (Y - XO)T(Y - X0) 

= YTY - 20TXTY + OTXTXO. 

By differentiating this expression with respect to 0 and 
setting the result equal to 0, we obtain the normal equa- 
tions 

XTX6 = XTY. 

FIG. 19. Original grayscale spatio-temporal LAB intensity image: 
3D solid (left) and 3D sliced solid (right). 

FIG. 21. Gradient magnitude spatio-temporal LAB intensity image: 
three 3D solids thresholded at different levels, where white pixels are 
those above the selected threshold. 
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FIG. 22. Segmented spatio-temporal LAB intensity image solid, 
where different volumes are shown separately. 

If XTX is nonsingular, the least squares regression co- 
efficients can be obtained as 

6 = (XTX)-‘XTY. (II) 

The sum of squares for residuals is then 

S(6) = (Y - X&Y - X6). 

The method of least squares then gives the optimal 
estimates in the sense of being unbiased and having the 
smallest variance among all unbiased linear estimates. 
When the E, are independently and identically distributed 
as N(0,m2), that is Y - N(O,Ia*), the estimates of the 
regression coefficients are the same as would be obtained 
from maximum likelihood method. 

In summary, if the errors F, are independent and each 
follows the distribution N(O,(T*); that is, if Y - N(O,I(r’), 
then it can be shown that, if the model is correct, the 
following results are true [24]: 

l 6 - lv[o,(XTX)-‘d] 

l S(6) - CT”&, 

- S(0) - S(F) - &&A 

l S(0) - S(0) and S(0) are distributed independently 
so that the ratio follows an F-distribution 

. 
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