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Abstract

This paper considers a number of selection schemes commonly used in
modern genetic algorithms. Specifically, proportionate reproduction, rank-
ing selection, tournament selection, and Genitor (or «steady state") selec-
tion are compared on the basis of solutions to deterministic difference or
differential equations, which are verified through computer simulations.
The analysis provides convenient approximate or exact solutions as well
as useful convergence time and growth ratio estimates. The paper rec-
ommends practical application of the analyses and suggests a number of
paths for more detailed analytical investigation of selection techniques.

Keywords: proportionate selection, ranking selection, tournament selection, Gen-
itor, takeover time, time complexity, growth ratio.

Introduction1

Many claims and counterclaims have been lodged regarding the superiority of this
or that selection scheme in genetic algorithms (GAs), but most of these are based
on limited (and uncontrolled) simulation experience; surprisingly little analysis has
been performed to understand relative expected fitness ratios, convergence times, or
the functional forms of selective convergence. This paper seeks to partially alleviate
this dearth of quantitative information by comparing the expected performance of
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70 four commonly used selection schemes:

1. proportionate reproduction;

2. ranking selection;

3. tournament selection;

4. Genitor (or "steady state") selection.

Specifically, deterministic finite difference equations are written that describe the
change in proportion of different classes of individual, assuming fixed and identical
objective function values within each class. These equations are solved explicitly
or approximated in time using integrable ordinary differential equations. These
solutions are shown to agree well with computer simulations, and linear ranking
(Baker, 1985) and binary tournament selection (Brindle, 1981) are shown to give
identical performance in expectation. Moreover, ranking and tournament selection
are shown to maintain strong growth under normal conditions, while proportionate
selection without scaling is shown to be less effective in keeping a steady pressure
toward convergence. Whitley's (1989) Genitor or "steady state" (Syswerda, 1989)
selection mechanism is also examined and found to be a simple combination of block
death and birth via ranking. Analysis of this overlapping population scheme shows
that the convergence results observed by Whitley may be most easily explained by
the unusually high growth ratio Genitor achieves as compared to other schemes on
a generational basis. The analysis also suggests that the premature convergence
caused by imposing such high growth ratios is one of the reasons Genitor requires
other fixes such as large population sizes or multiple populations.

In the remainder, the fundamental equation of population dynamics-the birth,
life, and death equation-is described, and specific equations are written, solved,
and compared to simulation results for each of the selection schemes. Different
schemes are then compared and contrasted, and the use of these analyses in practical
implementations is discussed. The paper concludes by briefly recommending more
detailed stochastic analyses and another look at what the k-armed bandit problem
can teach us about selection.

2 Selection: A Matter of Birth, Life, and Death

The derivation of Holland's (1975) schema theorem starts by calculating the ex-
pected number of copies of a schema under selection alone. The calculation is es-
sentiallya continuity or conservation of individuals' relationships, where the sources
and sinks of a particular class of individual are all accounted. Under selection alone,
indi vid uals can only do one of three things: they may be born, they may live, or they
may die. If we consider these events to be moved along synchronously, time step by
time step, the following general birth, life, and death equation may be written:

(1)mi,t+l = mi,t + mi,t,b -mi,t,d,

where m is the number of individuals, the subscript i identifies the class of indi-
vidual with common objective function value Ii, the subscript t is a time index
(individual or generational), the subscript b signifies individuals being born, the
subscript d signifies dying individuals, and the lack of a b or a d subscript signifies
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living individuals. In the usual nonoverlapping population model, the number of
individuals dying in a generation is assumed to equal the number of living indi-
viduals, mi,t,d = mi,t, and the whole matter hinges around the number of births:
mi,t+l = mi,t,b. Careful consideration of birth, life, and death will become more
important when we analyze an overlapping population model.

The analysis may also be performed by calculating the expected proportions Pi,t+l
rather than absolute numbers mi,t+l:

p'. 1 -p'. + p'. b -p. d (2)I,t+ -I,t I,t, I,t, ,

where the proportion P is obtained by dividing the class count m by the total
number of individuals in the population at that time. Here the subscripts band d
are used as before to denote birth and death respectively.

In the sections that follow, specific equations are written and solved for each of the
selection schemes mentioned above.

Proportionate Reproduction3

The name proportionate reproduction describes a group of selection schemes that
choose individuals for birth according to their objective function values f. In these
schemes, the probability of selection p of an individual from the ith class in the tth
generation is calculated as

.-Ii (3)Pl,t -,",,1: m- 1"/ -'
L.,j=l :l.t 1

where k classes exist and the total number of individuals sums to n. Various
methods have been suggested for sampling this probability distribution, includ-
ing Monte Carlo or roulette wheel selection (De Jong, 1975), stochastic remainder
selection (Booker, 1982; Brindle, 1981), and stochastic universal selection (Baker,
1987; Grefenstette & Baker, 1989). As we are uninterested here in stochastic differ-
ences, these schemes receive identical analytical treatment when we calculate their

expected performance.
If we consider a nonoverlap ping population of constant size n and assume that n
selections are made each generation according to the distribution of equation 3, it
is a straightforward matter to calculate the expected number of copies of the ith
class in the next generation:

mi,t .n .Pitt;-mi,t+l
Iimi t _I-

.t

where it = L mi,tfi/n is the average function value of the current generation. This
equation may be written in proportion form by dividing by the population size:

Ii
POt-=-I, ItPi,t+l

This equation is solved explicitly in the next section.
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Figure 1: Various differential and difference equation solutions agree well with a repre-
sentative computer simulation of proportionate reproduction using stochastic universal
selection with two alternatives (r = 11/ h = 1.5).

Solving the proportionate reproduction equation

3.1

The proportionate reproduction equation (equation 5) may be solved quite directly
after an interesting fact is noted. Imagine that a population of individuals grows
according to the uncoupled, exponential growth equations: mi,t+l = mi,t/i. If the
growth of the proportion of individuals is calculated by dividing through by the
total population size at generation t + 1, we note that the resulting equation for
the proportions is identical to that used under the assumption of a fixed population
Size:

j -m- t f -p-
tI I, I I,=

Lj fjmj,t Lj fjPj,t

f -m- t, "

Lj mj,t+l
Pi,t+l

Since the uncoupled equations may be solved directly (mi,t = ffmi,o) the implied
proportion equations can also be solved without regard for coupling. Substitut-
ing the expression for m at generation t and dividing numerator and denominator
through by the total population size at that time yields the exquisitely simple so-
lution:

If Pi,OPi,t = '"" . f ~ p. .(7)
L..-J J 1,0

The solution at some future generation goes as the computation over a single gener-
ation except that power functions of the objective function values are used instead
of the function values themselves. This solution agrees with Ankenbrandt's (1990)
solution for k = 2, but the derivation of above is more direct and applies to k

alternatives without approximation.
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In a previous paper (Goldberg, 1989b), the solution to a differential equation ap-
proximation of equation 5 was developed for the two-alternative case. That solution,
a solution of the same functional form using powers of 2 instead of e, the solution
of equation 7, and a representative computer simulation are compared in figure 1.
A population size of n = 200 and fitness ratio r = 11/10 = 1.5 are used, and the
simulation and solutions are initiated with a single copy of the better individual.
The exact difference equation solution, the approximate solution with powers of 2,
and the simulation result agree quite well; the approximate solution with powers of
e converges too quickly, although all solutions are logistic as expected.

The exact solution (equation 7) may be approximated in space by treating the
alternatives as though they existed over a one-dimensional continuum x, relating
positions in space to objective function values with a function l(x).l Thus, we may
solve for the proportion PI.t of individuals between specified x values I = {x : a ::;:
x < b} at time t as follows:

(8)

p -J: ft(x)po(x)dx
l,t -J~oo ft(x)po(x)dx'

where Po (x) is an appropriate initial density function.

Two cases: a monomial and an exponential

3.2

In general, equation 8 is difficult to integrate analytically, but several special cases
are accessible. Limiting consideration to the unit interval and restricting the density
function to be uniformly random yields po(x) = 1. Thus, if f Jt(x)dx can be inte-
grated analytically a time-varying expression for the proportion may be obtained.
We consider two cases, J(x) = XC and J(x) = eC.t:.

Consider the monomial first. Under the previous assumptions, equation 8 may be
integrated with J(x) = XC and upper and lower limits of x and x -l/n:

PI,t = xct+l -(x -l/n)ct+l. (9)

These limits parameterize individual classes on the variable x, where x = 1 is the
best individual and x = 0 is the worst, thereby permitting an approximation of
the growth of an individual with specified rank in a population of size n. This
space-continuous solution, the exact solution to the difference equation, and a rep-
resentative computer simulation are compared in figure 2 for the linear objective
function J( x) = x. The simulation and the discrete solution use n = k = 256
alternatives with one of each alternative at the start. It is interesting to note that
the solutions to the difference equation and its space-continuous approximation are
virtually identical, and both compare well to the representative simulation shown
in the figure.

This analysis may be used to calculate the takeover time for the best individual.
Setting x = 1 in equation 9, yields a space-continuous solution for the growth of

IThe ordering of the f values is unimportant in this analysis. In what follows, a
number of monotonically increasing functions are considered, and these may be viewed as
representative of many other objective functions with similar image densities. Alternatively
they may be viewed as scaling functions used on functions of relatively uniform image
density: g(f(x)) with f(x) linear.
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Figure 2: A comparison of the discrete difference equation solution, the approximate
continuous solution, and a representative simulation of SUS proportionate reproduction
for the function f(x) = x shows substantial agreement between simulation and either
model. The exact solution to the difference equation and the space-continuous solution
are virtually identical.

the best class:
ct+ln-l

n

p'

t 1--

Setting this proportion equal to !!=l., we calculate the time when the population
n

contains n -1 best individuals, the takeover time t.:

ct. + 1 = lnfY(n_1\11) ' (11)
1 -.og,n-~1

logn

As the exponent on the monomial increases, the takeover time decreases correspond-
ingly. This helps explain why a number of investigators have adopted polynomial
scaling procedures to help speed GA convergence (Goldberg, 1989a). The expres-
sion 1_10;(,,-11 may be simplified at large n. Expanding log(n -1) in a Taylor series

J. -1';",'

about the value n, keeping the first two terms, and substituting into the expression
yields 1-10:(,,-11 ~ n Inn, the approximation improving with increasing n. Using

J. -1';",'

this approximation, we obtain the takeover time approximation

1
t. = -(nlnn -1) (12)

c

Thus, the takeover time for a polynomially distributed objective function is
O(n logn). It is interesting to compare this takeover time to that for an expo-
nentially distributed (or exponentially scaled) function.
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An exponential objective function may be considered similarly. Under the previous
assumptions, equation 8 may be integrated using f(x) = eC,1; and the same limits of
integration as before:

ecz:t(l -e-ct/n)PI,t = ct 1 \.LUje -

Considering the best group (setting x = 1) and solving for the takeover time (the
time when the proportion of the best group equals ~) yields the approximate
equation as follows:

1t. = -n Inn. (14)
c

It is interesting that under the unit interval consideration, both a polynomially
distributed function and an exponentially distributed function have the same com-
putational speed of convergence.

Time complexity of proportionate reproduction3.3

The previous estimates give some indication of how long a G A will continue until
it converges substantially. Here, we consider the time complexity of the selection
algorithm itself per generation. We should caution that it is possible to place too
much emphasis on the efficiency of implementation of a set of genetic operators.
After all, in most interesting problems the time to evaluate the function is much
greater than the time to iterate the genetics, t J ~ tga, and fiddling with operator
time savings is unlikely to payoff. Nonetheless, if a more efficient operator can be
used without much bother, why not do so?

Proportionate reproduction can be implemented in a number of ways. The simplest
implementation (and one of the earliest to be used) is to simulate the spin of a
weighted roulette wheel (Goldberg, 1989a). If the search for the location of the
chosen slot is performed via linear search from the beginning of the list, each selec-
tion requires O(n) steps, because on average half the list will be searched. Overall,
roulette wheel selection performed in this method requires 0(n2) steps, because in
a generation n spins are required to fill the population. Roulette wheel selection
can be hurried somewhat, if a binary search (like the bisection method in numer-
ical methods) is used to locate the correct slot. This requires additional memory
locations and an O( n) sweep through the list to calculate cumulative slot totals,
but overall the complexity reduces to O( n log n), because binary search requires
O(log n) steps per spin and n spins.

Proportionate reproduction can also be performed by stochastic remainder selec-
tion. Here the expected number of copies of a string is calculated as mi = li, and

the integer portions of the count are assigned deterministically. The remaind~rs are
then used probabilistically, to fill the population. If done without replacement, each
remainder is used to bias the flip of a coin that determines whether the structure
receives another copy or not. If done with replacement, the remainders are used
to size the slots of a roulette wheel selection process. The algorithm without re-
placement is O(n), becau~e the deterministic assignment requires only a single pass
(after the calculation of f, which is also O( n»), and the probabilistic assignment is
likely to terminate in 0(1) steps. On the other hand, the algorithm when performed
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76 with replacement takes on the complexity of the roulette wheel, because O( n) of
the individuals are likely to have fractional parts to their m values.

Stochastic universal selection is performed by sizing the slots of a weighted roulette
wheel, placing equally spaced markers along the outside of the wheel, and spinning
the wheel once; the number of copies an individual receives is then calculated by
counting the number of markers that fall in its slot. The algorithm is O( n), because
only a single pass is needed through the list after the sum of the function values is
calculated.

4

Baker (1985) introduced the notion of ranking selection to genetic algorithm prac-
tice. The idea is straightforward. Sort the population from best to worst, assign the
number of copies that each individual should receive according to a non-increasing
assignment function, and then perform proportionate selection according to that
assignment. Some qualitative theory regarding such schemes was presented by
Grefenstette and Baker (1989), but this theory provides no help in evaluating ex-
pected performance. Here we analyze the performance of ranking selection schemes
somewhat more quantitatively. A framework for analysis is developed by defining
assignment functions and these are used to obtain difference equations for various
ranking schemes. Simulations and various difference and differential solutions are
then compared.

Assignment functions: a framework for the analysis of ranking4.1

For some ranking scheme, we assume that an assignment function a has been devised
that satisfies three conditions:

1. a(x) E R for x E [0,1].

2. a(x) ~ O.

3. f01 a( 1J)d1J = 1.

Intuitively, the product a(x )dx may be thought of as the proportion of individuals
assigned to the proportion dx of individuals who are currently ranked a fraction x
below the individual with best function value (here x = 0 will be the best and x = 1
will be the worst to connect with Baker's formulation, even though this convention
is the opposite of the practice adopted in section 3).

With this definition, the cumulative assignment function /3 may be defined as the
integral of the assignment from the best (x = 0) to a fraction x of the current

population:

P(x) = fo~ a(~)d~. (15)

Analyzing the effect of ranking selection is now straightforward. Let Pi be the
proportion of individuals who have function value better than or equal to Ii and
let Qi be the proportion of individuals who have function value worse than that
same value. By the definitions above, the proportion of individuals assigned to the
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proportion p..,t in the next generation is simply the cumulative assignment value of
the current proportion:

Pi,t+l = fJ(Pi,t).

The complementary proportion may be evaluated as well:

Qi,t+l = 1 -{3(Pi,t) = 1 -{3(1 -Qi,t). (17)

In either case, the forward proportion is only a function of the current value and has
no relation to the proportion of other population classes. This contrasts strongly
to proportionate reproduction, where the forward proportion is strongly influenced
by the current balance of proportions and the distribution of the objective func-
tion itself. This difference is one of the attractions of ranking methods in that aneven, 

controllable pressure can be maintained to push for the selection of better
individuals. Analytically, the independence of forward proportion makes it possible
to calculate the growth or decline of individuals whose objective function values
form a convex set. For example, if PI represents the proportion of individuals with
function value greater than or equal to 11 and Q2 represents the proportion of in-
dividuals with proportion less than f2, the quantity 1 -PI -Q2 is the proportion
of individuals with function value between 11 and 12-

Linear assignment and ranking

4.2

The most common form of assignment function is linear: a( x) = Co -Cl x. Requiring
a non-negative function with non-increasing values dictates that both coefficients
be greater than zero and that Co ~ Cl. Furthermore, the integral condition requires
that Cl = 2(co -1). Integrating a yields P(x) = Cox -(co -l)x2. Substituting the
cumulative assignment function into equation 16 yields the difference equation

Pi,t+l = Pi,t [co -(co -I)Pi,J. (18)

The equation is the well known logistic difference equation; however, the restrictions
on the parameters preclude any of its infamous chaotic behavior, and its solution
must stably approach the fixed point Pi = 1 as time goes on.

In general, equation 18 has no convenient analytical solution (other than that ob-
tained by iterating the equation), but in one special case a simplified solution can
be derived. When Co = Cl = 2, the complementary equation simplifies as follows:

(19)Qi,t+l = 1 -{3(1 -Qi,t) = Ql,t,

Sol ving for Q at generation t yields the following:

Since Q = 1 -P, the solution for ~ may be obtained directly as

Calculating the takeover time by substituting initial and final proportions of !i
and!!=-! respectively and simplifying yields the approximate equation t. = log n +
log(ln "n), where log is taken base 2 and In is the usual natural logarithm.
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78 Other cases of linear ranking may be evaluated by turning to the type of differen-
tial equation analysis used elsewhere (Goldberg, 1989b). Approximating the finite
difference by its derivative in one step yields the logistic differential equation

d~.a = cPi(l -Pi), 11)1)\

dt
where C = Co -1. Solving by elementary means, we obtain the solution

1
Pi t = n .

.1 + l-ri,o e-ct
p" not,

The solution overpredicts proportion early on, because of the error made by approx-
imating the difference by the derivative. This error can be corrected approximately
by using 2 in place of e in equation 23. In either approximation the takeover time
may be calculated in a straightforward manner:

2
t* = -log(n -1), (24)

c
where the logarithm should be taken base e in the case of the first approximation
and base 2 in the case of the second.

The two differential equation solutions, the exact solution to the difference equation,
and a representative simulation using stochastic universal selection are shown in
figure 3 for the case of linear ranking with Co = Cl = 2. Here a population of
size n = 256 is started with a single copy of the best individual. The difference
equation solution and the simulation are very close to one another as expected.
The differential equation approximations have the correct qualitative behavior, but
the solution using e converges too rapidly, and the solution using 2 agrees well early
on but takes too long once the best constituents become a significant proportion of
the total population.

Time complexity of ranking procedures4.3

Ranking is a two-step process. First the list of individuals must be sorted, and next
the assignment values must be used in some form of proportionate selection. The
calculation of the time complexity of ranking requires the consideration of these

separate steps.

Sorting can be performed in O( n log n) steps, using standard techniques. Thereafter,
we know from previous results that proportionate selection can be performed in
something between O(n) and O(n2). Here, we will assume that a method no worse
than O(n logn) is adopted, concluding that ranking has time complexity O(n logn).

Tournament Selection5

A form of tournament selection attributed to unpublished work by Wetzel was
studied in Brindle's (1981) dissertation, and more recent studies using tournament
schemes are found in a number of works (Goldberg, Korb, & Deb, 1989; Muhlenbein,
1990; Suh & Van Gucht, 1987). The idea is simple. Choose some number of
individuals randomly from a population (with or without replacement), select the
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Figure 3: The proportion of individuals with best objective function value grows a.s a logis-
tic function of generation under ranking selection. A representative simulation using linear
ranking and stochastic universal selection agrees well with the exact difference equation
solution (co = Cl = 2). The differential equation approximations are too rapid or too slow
depending upon whether exponentiation is performed base e or base 2.

best individual from this group for further genetic processing, and repeat as often
as desired (usually until the mating pool is filled). Tournaments are often held
between pairs of individuals (tournament size s = 2), although larger tournaments
can be used and may be analyzed. We start our analysis by considering the binary
case and later extend the analysis to general s-ary tournaments.

5.1

2Binary tournaments: s

Here we analyze the effect of a probabilistic form of binary tournament selection.2
In this variant, two individuals are chosen at random and the better of the two
individuals is selected with fixed probability p, 0.5 < p ~ 1. Using the notation of
section 4, we may calculate the proportion of individuals with function value better
than or equal to Ii, the proportion at the next generation quite simply:

Pi,t+l = p[2Pi,t(1 -Pi,t) + Pi:t] + (1 -p) Pi:t 0 (25)

Collecting terms and simplifying yields the following:

(2pPi,t+l 2pPi,t

2The probabilistic variation was brought to our attention by Donald R. Jones (personal
communication, April 20, 1990) at General Motors Research Laboratory. We analyze this
variant, because the deterministic version is a special case and because the probabilistic
version can be made to agree in expectation with ranking selection regardless of co.
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80 Letting 2p = Co and comparing to equation 18, we note that the two equations are
identical. This is quite remarkable and says that binary tournament selection and
linear ranking selection are identical in expectation. The solutions of the previous
section all carry forward to the case of binary tournament selection as long as the
coefficients are interpreted properly (2p = Co and c = 2p -1).

Simulations of tournament selection agree well with the appropriate difference and
differential equation solutions, but we do not examine these results here, because the
analytical models are identical to those used for linear ranking, and the tournament
selection simulation results are very similar to those presented for linear ranking.
Instead, we consider the effect of using larger tournaments.

5.2 Larger tournaments

To analyze the performance of tournament selection with any size tournament,
it is easier to consider the doughnut hole (the complementary proportion) rather
than the doughnut itself (the primary proportion). Considering a deterministic
tournament3 of size s and focusing on the complementary proportion Qi, a single
copy will be made of an individual in this class only when all s individuals in a
competition are selected from this same lowly group:

Qi,t+l = Qi,t, (27)

from which the solution follows directly:

Qi,t = Qi,fO' (28)

Recognizing that Pi = l-Qi, we may solve for the primary proportion of individuals
as follows:

Solving for the takeover time yields an asymptotic expression that improves with..
Increasmg n:

1t. = _1 [Inn + In(lnn)]. (30)
ns

This equation agrees with the previous calculation for takeover time in the Co = 2
solution to linear ranking selection when s = 2. Of course, binary tournament
selection and linear ranking selection (co = 2) are identical in expectation, and the
takeover time estimates should agree.

The difference equation model and a representative computer simulation are com-
pared in figure 4 for a tournament of size s = 3. As before, a solution and a
representative simulation are run with n = k = 256, starting with a single copy
of each alternative. The representative computer simulation shown in the figure
matches the difference equation solution quite well.

Figure 5 compares the growth of the best individual starting with a proportion 2k
using tournaments of sizes s = 2, 4, 8, 16. Note that as the tournament size increases,
the convergence time is cut by the ratio of the logarithms of the tournament sizes
as predicted.

3 Here we consider a deterministic competition, because the notion of a probabilistic

tournament does not generalize from binary to s-ary tournaments easily.
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Figure 4: A comparison of the difference equation solution and a representative computer
simulation with a ternary tournament (s = 3) demonstrates good agreement.

5.3

Time complexity of tournament selection

The calculation of the time complexity of tournament selection is straightforward.
Each competition in the tournament requires the random selection of a constant
number of individuals from the population. The comparison among those individu-
als can be performed in constant time, and n such competitions are required to fill
a generation. Thus, tournament selection is D( n).

We should also mention that tournament selection is particularly easy to imple-
ment in parallel. All the complexity estimates given in this paper have been for
operation on a serial machine, but all the other methods discussed in the paper
are difficult to parallelize, because they require some amount of global information.
Proportionate selection requires the sum of the function values. Ranking selection
(and Genitor, as we shall soon see) requires access to all other individuals and their
function values to achieve global ranking. On the other hand, tournament selection
can be implemented locally on parallel machines with pairwise or s-wise commu-
nication between different processors the only requirement. Muhlenbein (1989)
provides a good example of a parallel implementation of tournament selection. He
also claims to achieve niching implicitly in his implementation, but controlled ex-
periments demonstrating this claim were not presented nor were analytical results
given to support the observation. Some caution should be exercised in making such
claims, because the power of stochastic errors to cause a population to drift is quite
strong and is easy to underestimate. Nonetheless, the demonstration of an efficient
parallel implementation is useful in itself.
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Figure 5: Growth of the proportion of best individual versus generation is graphed for a
number of tournament sizes.

6 Genitor

In this section, we analyze and simulate the selection method used in Genitor (Whit-
ley, 1989). Our purpose is twofold. First, we would like to give a quantitative
explanation of the performance Whitley observed in using Genitor, thereby per-
mitting comparison of this technique to others commonly used. Second, we would
like to demonstrate the use of the analysis methods of this paper in a somewhat
involved, overlapping population model, thereby lighting a path toward the analysis
of virtually any selection scheme.

Genitor works individual by individual, choosing an offspring for birth according to
linear ranking, and choosing the currently worst individual for replacement. Because
the scheme works one by one it is difficult to compare to generational schemes, but
the comparison can and should be made.

6.1 An analysis of Genitor

We use the symbol T to denote the individual iteration number and recognize that
the generational index may be related to T as t = Tin. Under individual-wise linear
ranking the cumulative assignment function fJ is the same as before, except that
during each assignment we only allocate a proportion l/n of the population (a single
individual). For block death, the worst individual (the individual with rank between
~ and one) will lose a proportion ~ of his current total. Recognizing that the
best individual never loses until he dominates the population, it is a straightforward
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Figure 6: Comparison of the differen<;e equation solution, differential equation solution,
and computer simulations of Genitor for the function f(x) = x, n = k = 256. Linear
ranking with C.o = 2 is used, and the individual iteration number (r) has been divided
by the population size to put the computations in terms of generations. Solutions to the
difference and differential equations are so close that they appear as a single line on the
plot, and both compare well to the representative computer simulation shown.

matter to write the birth, life, and death equation for an iteration of the ith class:

PitT + {3(PitT )/n,
PitT + {3(Pi,T )/n -(PitT

if p.. <!!-=!..',T -n I

otherwise.
Pi,T+l =

-!!.=l

)n '

A simplified exact solution of this equation (other than by iteration) is nontrivial.
Therefore, we approximate the solution by subtracting the proportion at generation
T from both sides of the equation, thereafter approximating the finite difference by
a time derivative. The resulting equation is logistic in form and has the following
solution:

Pt = coPoecot. (32)
Co + (co -l)Po(ecot -1)

Note that the class index i has been dropped and that the solution is now written in
terms of the generational index t, enabling direct comparisons to other generational
schemes. The difference equation (iterated directly), the differential equation solu-
tion, and a representative computer simulation are compared in figure 6, a graph
of the proportion of the best individual (n = k = 256) versus generation. It is in-
teresting that the solution appears to follow exponential growth that is terminated
when the population is filled with the best individual. The solution is logistic, but
its fixed point is P = ~, which can be no less than 2 (1 < Co 52). Thus, by the
time any significant logistic slowing in the rate of convergence occurs, the solution
has already crashed into the barrier at P = 1.
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To compare this scheme to other methods, it is useful to calculate the free or
early growth rate. Considering only linear terms in the difference equation, we
obtain PT+l = (1 + ~ )PT. Over a generation n individual iterations are performed,
obtaining Pn = (1 + ~)n Po, which approaches ecopo for moderate to large n. Thus
we note an interesting thing. Even if no bias is introduced in the ranked birth
procedure (if Co = 1), Genitor has a free growth factor that is no less than e.
In other words, unbiased Genitor pushes harder than generation-based ranking or
tournament selection, largely a result of restricting death to the worst individual.
When biased ranking (co> 1) is used, Genitor pushes very hard indeed. For
example, with Co = 2, the selective growth factor is e2 = 1.389. Such high growth
rates can cover a host of operator losses, recalling that the net growth factor / is
the product of the growth factor obtained from selection alone 4> and the schema
survival probability obtained by subtracting operator losses from one:

/ = 4> [1 -!] , (33)
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where { = LIP {IP, the sum of the operator disruption probabilities. For exam-
ple, with Co = 2 and 4> = 7.389, Genitor can withstand an operator loss of
{ = 1 -~ = 0.865; such an allowable loss would permit the growth of building
blocks wltt8aefining lengths roughly 87% of string length. Such large permissible er-
rors, however, come at a cost of increased premature convergence, and we speculate
that it is precisely this effect that motivated Whitley to try large population sizes
and multiple populations in a number of simulations. Large sizes slow things down
enough to permit the growth and exchange of multiple building blocks. Parallel pop-
ulations allow the same thing by permitting the rapid growth of the best building
blocks within each subpopulation, with subsequent exchanges of good individuals
allowing the cross of the best bits and pieces from each subpopulation. U nfortu-
nately, neither of these fixes is general, because codings can always be imagined
that make it difficult to cut and splice the correct pieces. Thus, it would appear
that there still is no substitute for the formation and exchange of tight building

blocks.
Moreover, we find no support for the hypothesis that there is something special
about overlapping populations. This paper has demonstrated conclusively that
high growth rates are acting in Genitor; this factor alone can account for the ob-
served results, and it should be possible to duplicate Whitley's results through the
use of any selection scheme with equivalent duplicative horsepower. We have not
performed these experiments, but the results of this paper provide the analytical
tools necessary to carry out a fair comparison. Exponential scaling with propor-
tionate reproduction, larger tournaments, or nonlinear ranking should give results
similar to Genitor, if similar growth ratios are enforced and all other operators and

algorithm parameters are the same.

Genitor's takeover time and time complexity6.2
The takeover time may be approximated. Since Genitor grows exponentially until
the population is filled, the takeover time may be calculated from the equation
!!.=!. = l-ecot.. Solving for the takeover time yields the following equation:

nn

(34:1-In( 

n -1t. -
Co
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Table 1: A Comparison of Three Growth Ratio Measures

SCHEME 4>t 4>e 4>1

l!.
J

Co

2p

s

eco

Proportionate
Linear ranking
Tournament, p
Tournament, s

Genitor

-.lL-
11+12
~

2~
2

2(1 -2-6)

eO.S(co+l)

.t!-
Ic

Co -(co -l)P

2p -(2p -l)P

E~=l (i) pi-l(l -p)"-i
no closed form in t

The time complexity of Genitor may also be calculated. Once an initial ranking is
established, Genitor does not need to completely sort the population again. Each
generated individual is simply inserted in its proper place; however, the search for
the proper place requires O(logn) steps if a binary search is used. Moreover, the
selection of a single individual from the ranked list can also be done in O(log n)
steps. Since both of these steps must be performed n times to fill an equivalent
population (for comparison with the generation-based schemes), the algorithm is

clearly O(n logn).
Next, we cross-compare different schemes on the basis of early and late growth ra-
tios, takeover times, and time complexity computations for the selection algorithms

themselves.

7

Growth ratios due to selection

7.1
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86 Table 2: A Comparison of Takeover Time Values

SCHEME t.

Proportionate XC

Proportionate ecx
Linear ranking Co = 2

Linear ranking (cliff. eq.)
Tournament p
Tournament s

Genitor

~(n Inn -1)
!n In n
C

logn + log(lnn)
~ log(n -1 )co-1 '

same as linear ranking with Co = 2p_,1 [Inn + In(lnn)]
n$ 1

-In(n -1)Co

accentuation of salient features (Goldberg, 1990).

As was mentioned earlier, linear ranking and binary tournament selection agree in
expectation, both allowing early growth ratios of between one and two, depending
on the adjustment of the appropriate parameter (co or p). Both achieve late ratios
between 1 and 1.5. Tournament selection can achieve higher growth ratios with
larger tournament sizes; the same effect can be achieved in ranking selection with
nonlinear ranking functions, although we have not investigated these here. Genitor
achieves early ratios between e and e2, and it would be interesting to compare
Genitor selection with tournament selection or ranking selection with appropriate
tournament size or appropriate nonlinear assignment function.

Takeover time comparison

Table 2 shows the takeover times calculated for each of the selection schemes. Other
than the proportionate scheme, the methods compared in this paper, all converge in
something like O(log n) generations. This, of course, does not mean that real GAs
converge to global optima in that same time. In the setting of this paper, where
we are doing nothing more than choosing the best from some fixed population of
structures, we get convergence to the best. In a real GA, building blocks must
be selected and juxtaposed in order to get copies of the globally optimal structure,
and the variance of building block evaluation is a substantial barrier to convergence.
Nonetheless, the takeover time estimates are useful and will give some idea how long
a G A can be run before mutation becomes the primary mechanism of exploration.

Time complexity comparison

Table 3 gathers the time complexity calculations together. The best of the methods
are O(n), and it is difficult to imagine how fewer steps can be used since we must
select n individuals in some manner. Of the O(n) methods, tournament selection
is the easiest to make parallel, and this may be its strongest recommendation, as
GAs cry out for parallel implementation, even though most of us have had to make
do with serial versions. Whether paying the O( n log n) price of Genitor is worth its
somewhat higher later growth ratio is unclear, and the experiments recommended
earlier should be performed. Methods with similar early growth ratios and not-too-
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Table 3: A Comparison of Selection Algorithm Time Complexity

SCHEME TIME COMPLEXITY

Roulette wheel proportionate
RW proportionate w fbinary search
Stochastic remainder proportionate
Stochastic universal proportionate

Ranking
Tournament Selection

Genitor w fbinary search

O(n2)
O(n logn)

O(n)
O(n)

O( n In n)+ time of selection
O(n)

O(n logn)

different late growth ratios should perform similarly. Any such comparisons should
be made under controlled conditions where only the selection method is varied,
however.

Selection:8 What Should We Be Doing?

This paper has taken an unabashedly descriptive viewpoint in trying to shed some
analytical light on various selection methods, but the question remains: how should
we do selection in GAs? The question is a difficult one, and despite limited empirical
success in using this method or that, a general answer remains elusive.

Holland's connection (1973, 1975) of the k-armed bandit problem to the conflict
between exploration and exploitation in selection still stands as the only sensi-
ble theoretical abstraction of the general question, despite some recent criticism
(Grefenstette & Baker, 1989). Grefenstette and Baker challenge the k-armed model
by posing a partially deceptive function, thereafter criticizing the abstraction be-
cause the GA does not play the deceptive bits according to the early function value
averages. The criticism is misplaced, because it is exactly such deceptive functions
that the G A must playas a higher-order bandit (in a 3-bit deceptive subfunction,
the GA must play the bits as an eight-armed bandit) and the schema theorem says
that it will do so if the linkage is sufficiently tight. In other words, GAs will play the
bandit problems at as high a level as they can (or as high a level as is necessary),
and it is certainly this that accounts at least partially for the remarkable empirical
success that many of us have enjoyed in using simple GAs and their derivatives.

Moreover, dismissing the bandit model is a mistake for another reason, because in
so doing we lose its lessons about the effect of noise on schema sampling. Even
in easy deterministic problems-problems such as Li aiXi + b, ai, bE R, and Xi E
{O, 1}-GAs can make mistakes, because alleles with small contribution to objective
function value (alleles with small ai) get fixed, a result of early spurious associations
with other highly fit alleles or plain bad luck. These errors can occur, because the
variation of other alleles (the sampling of the *'s in schemata such as **1**) is a
source of noise as far as getting a particular allele set properly is concerned. Early
on this noise is very high (estimates have been given in Goldberg, Korb, & Deb,
1989), and only the most salient building blocks dare to become fixed. This fixation
reduces the variance for the remaining building blocks, permitting less salient alleles
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88 or allele combinations to become fixed properly. Of course, if along the way down
this salience ladder, the correct building blocks have been lost somehow (through
spurious linkage or cumulative bad luck), we must wait for mutation to restore them.
The waiting time for this restoration is quite reasonable for low-order schemata but
grows exponentially as order increases.

Thinking of the convergence process in this way suggests a number of possible ways
to balance or overcome the conflict between exploration and exploitation:

.Use slow growth ratios to prevent premature convergence.

.Use higher growth ratios followed by building block rediscovery through muta-
tion.

.Permit localized differential mutation rates to permit more rapid restoration
of building blocks.

.Preserve useful diversity temporally through dominance and diploidy.

.Preserve useful diversity spatially through niching.

.Eliminate building block evaluation noise altogether through competitive tem-
plates.

Each of these is examined in somewhat more detail in the remainder of the section.

One approach to obtaining correct convergence might be to slow down convergence
enough so that errors are rarely made. The two-armed bandit convergence graphs
presented elsewhere (Goldberg, 1989a) suggest that using convergence rates tuned
to building blocks with worst function-difference-to-noise-ratio is probably too slow
to be practical, but the idea of starting slowly and gradually increasing the growth
ratios makes some sense in that salient building blocks will be picked off with a
minimum of pressure on not-so-salient allele combinations. This is one of the fun-
damental ideas of simulated annealing, but simulated annealing suffers from its lack
of a population and its lack of interesting discovery operators such as recombination.
The connection between simulated annealing and GAs has become clearer recently
(Goldberg, 1990) through the invention of Boltzmann tournament selection. This
mechanism stably achieves a Boltzmann distribution across a population of strings,
thereby allowing a controllable and stable distribution of points to be maintained
across both space and time. More work is necessary, but the use of such a mecha-
nism together with well designed annealing schedules should be helpful in controlling
GA convergence. As was mentioned in the paper, similar mechanisms can also be
implemented under proportionate selection through the use of exponential scaling
and sharing functions.

The opposite tack of using very high growth ratios permits good convergence in
some problems by grabbing those building blocks you can get as fast as you can,
thereafter restoring the missing building blocks through mutation (this appears
to be the mechanism used in Genitor). This works fine if the problems are easy
(if simple mutation can restore those building blocks in a timely fashion), and it
also explains why Whitley has turned to large populations or multiple populations
when deceptive problems were solved (L. Darrell Whitley, personal communication,
September, 1989). The latter applications are suspect, because waiting for high-
order schemata to be rediscovered through mutation or waiting for crossover to
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splice together two intricately intertwined deceptive building blocks are both losing
propositions (they are low probability events), and the approach is unlikely to be
practical in gener~l.

It might be possible to encourage -more timely restoration of building blocks by
having mutation under localized genic control, however. The idea is similar to that
used in Bowen (1986), where a set of genes controlled a chromosome's mutation and
crossover rates, except that here a large number of mutation-control genes would
be added to give differential mutation rates across the chromosome. For example,
a set of genes dictating high (Pm ~ 0.5) or low (Pm ~ 0) mutation rate could be
added to control mutation on function-related genes (a fixed mutation rate could be
used on the mutation-control genes). Early on salient genes could achieve highest
function value by fixing the correct function-related allele and fixing the associated
mutation-control allele in the low position. At the same time, poor alleles would
be indifferent to the value of their mutation allele, and the presence of a number
of mutation-control genes set to the high allele would ensure the generation of a
significant proportion of the correct function-related alleles when those poorer alleles
become salient.

This mechanism is not unlike that achieved through the use of dominance and
diploidy as has been explored elsewhere (Goldberg & Smith, 1987; Smith, 1988).
Simply stated, dominance and diploidy permit currently out-of-favor alleles to re-
main in abeyance, sampling currently poorer alleles at lower rates, thereby permit-
ting them to be brought out of abeyance quite quickly when the environment is
favorable. Some consideration needs to be given toward recalling groups of alleles
together, rather than on the allele-by-allele basis tried thus far (the same comment
applies to the localized mutation scheme suggested in the previous paragraph), but
the notion of using the temporal recall of dominance and diploidy to handle the
nonstationarity of early building block sampling appears sound.

The idea of preserving useful diversity temporally helps recall the notion of diversity
preservation spatially (across a population) through the notion of niching (Deb,
1989; Deb & Goldberg, 1989; Goldberg & Richardson, 1987). If two strings share
some bits in common (those salient bits that have already been decided) but they
have some disagreement over the remaining positions and are relatively equal in
overall function value, wouldn't it be nice to make sure that both get relatively
equal samples in the next and future generations. The schema theorem says they
will (in ex.pectation), but small population selection schemes are subject to the
vagaries of genetic drift (Goldberg & Segrest, 1987). Simply stated, small stochastic
errors of selection can cause equally good alternatives to converge to one alternative
or another. Niching introduces a pressure to balance the subpopulation sizes in
accordanc'e with niche function value. The use of such niching methods can form an
effective pressure to maintaining useful diversity across a population, allowing that
diversity to be crossed with other building blocks, thereby permitting continued
exploration.

The first five suggestions all seek to balance the conflict between exploration and
exploitation, but the last proposal seeks to eliminate the conflict altogether. The
elimination of building block noise sounds impossible at first glance, but it is ex-
actly the approach taken in messy genetic algorithms (Goldberg, Deb, & Korb, 1990;
Goldberg & Kerzic, 1990; Goldberg, Korb, & Deb, 1990). Messy GAs (mGAs) grow



Goldberg and Deb

90 long strings from short ones, but so doing requires that missing bits in a problem
of fixed length be filled in. Specifically, partial strings of length k (possible building
blocks) are overlaid with a competitive temp/ate, a string that is locally optimal at
the level k -1 (the competitive template may be found using an mGA at the lower
level). Since the competitive template is locally optimal, any string that gets a value
in excess of the template contains a k-order building block by definition. Moreover,
this evaluation is without noise (in deterministic functions), and building blocks
can be selected deterministically without fear; simple binary tournament selection
has been used as one means of conveniently doping the population toward the best
building blocks. Some care must be taken to compare related building blocks to one
another, lest errors be made when subfunctions are scaled differently. Also, some
caution is required to prevent hitchhiking of wrong (parasitic) incorrect bits that
agree with the template but later can prevent expression of correct allele combi-
nations. Reasonable mechanisms have been devised to overcome these difficulties,
however, and in empirical tests mGAs have always converged to global optima in
a number of provably deceptive problems. Additionally, mGAs have been shown
to converge in time that grows as a polynomial function of the number of decision
variables on a serial machine and as a logarithmic function of the number of decision
variables on a parallel machine. It is believed that this convergence is correct (the
answers are global) for problems of bounded deception. More work is required here,
but the notion of strings that grow in complexity to more completely solve more
difficult problems has a nice ring to it if we think in terms of the way nature has
filled this planet with increasingly complex organisms.

In addition to trying these various approaches toward balancing or overcoming the
conflict of exploration and exploitation, we must not drop the ball of analysis.
The methods of this paper provide a simple tool to better understand the expected
behavior of selection schemes, but better probabilistic analyses using Markov chains
(Goldberg & Segrest, 1987), Markov processes, stochastic differential and difference
equations, and other techniques of the theory of stochastic processes should be tried
with an eye toward understanding the variance of selection. Additionally, increased
study of the k-armed bandit problem might suggest practical strategies for balancing
the conflicts of selection when they arise. Even though conflict can apparently be
sidestepped in deterministic problems using messy G As, eventually we must return
to problems that are inherently noisy, and the issue once again becomes germane.

Conclusions9

This.paper has compared the expected behavior of four selection schemes on the ba-
sis of their difference ~uations, solutions to those equations (or related differential
equation approximations), growth ratio estimates, and takeover time computations.
Proportionate selection is found to be significantly slower than the other three types.
Linear ranking selection and a probabilistic variant of binary tournament selection
have been shown to have identical performance in expectation, with binary tourna-
ment selection preferred because of its better time complexity. Genitor selection,
an overlapping population selection scheme, has been analyzed and compared to
the others and tends to show a higher growth ratio than linear ranking or binary
tournament selection performed on a generation-by-generation basis. On the other
hand, tournament selection with larger tournament sizes or nonlinear ranking can
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give growth ratios similar to Genitor, and such apples-to-apples comparisons have
been suggested.

Additionally, the larger issue of balancing or overcoming the conflict of exploration
and exploitation inherent in selection has been raised. Controlling growth ratios,
localized differential mutation, dominance and diploidy, nic.hing, and messy GAs
(competitive templates) have been discussed and will require further study. Ad-
ditional descriptive and prescriptive theoretical work has also been suggested to
further understanding of the foundations of selection. Selection is such a critical
piece of the G A puzzle that better understanding at its foundations can only help
advance the state of genetic algorithm art.
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