

Hierarchical Automatic Function Definition in

Genetic Programming

John R. Koza
Computer Science Department

Stanford University
Stanford, CA 94305 USA

E-MAIL: Koza@Sunburn.Stanford.Edu
PHONE: 415-941-0336 FAX: 415-941-9430

Abstract
A key goal in machine learning and artificial intelligence is to automatically and
dynamically decompose problems into simpler problems in order to facilitate
their solution. This paper describes two extensions to genetic programming,
called "automatic" function definition and "hierarchical automatic" function
definition, wherein functions that might be useful in solving a problem are
automatically and dynamically defined during a run in terms of dummy
variables. The defined functions are then repeatedly called from the
automatically discovered "main" result-producing part of the program with
different instantiations of the dummy variables. In the "hierarchical" version of
automatic function definition, automatically defined functions may call other
automatically defined functions, thus creating a hierarchy of dependencies
among the automatically defined functions. The even-11-parity problem was
solved using using hierarchical automatic function definition.

1 INTRODUCTION AND OVERVIEW

A key goal in machine learning and artificial intelligence is to automatically and
dynamically decompose problems into simpler subproblems in order to facilitate their
solution.
When a human programmer writes a computer program to solve a problem, he often
creates a sub-routine defined in terms of dummy variables (formal parameters) enabling a
common calculation to be performed for different instantiations of the dummy variables.
For example, suppose a programmer needed the value of the exponential of X, Y and 3Z2
at different points in a main program. In the LISP programming language, the
programmer might write a function definition such as

(defun our-exp (dv)
 (+ 1.0 dv (* 0.5 dv dv) (* 0.1667 dv dv dv)).

This function definition (defun) assigns a name (our-exp) to the function being
defined; it identifies the list (dv) containing the single dummy variable (formal
parameter) dv as the argument list to the function; and it contains a body which performs
the work (which here happens to be an approximation to the exponential function
consisting of the first four terms of the Taylor series). This particular example of a
function definition (and all those in this paper) returns a single numerical value, does not
refer to any of the actual variables of the overall problem (i.e., contains only a dummy
variable), and has no side effects; however, in general, functions may return multiple
values, refer to the actual variables of the overall problem, and perform side effects.
Once the function our-exp is defined, it can then be called an arbitrary number of
times with different instantiations of its dummy variable dv.
Function definitions exploit the underlying regularities and symmetries of a problem by
obviating the need to tediously rewrite lines of essentially similar code. The process of
defining and calling a function, in effect, decomposes the problem into a hierarchy of
subproblems.
Genetic programming (Koza 1991, 1992) provides a way to genetically breed a
population of computer programs in order to solve a problem. The new processes of
"automatic" function definition and "hierarchical automatic" function definition
described in this paper provide a way to automatically define and call potentially useful
functions on-the-fly during a run of genetic programming.
In section 2 of this paper, we review how the even-parity function of increasing numbers
of arguments can be solved with genetic programming. In section 3, we describe the new
process of "automatic" function definition and show how it is helpful in facilitating the
solution of the Boolean even-parity problem. In section 4, we describe the new process
of "hierarchical automatic" function definition and show how it is helpful in facilitating
the solution of the even-parity function. Specifically, we use hierarchical automatic
function definition to solve the even-parity function for up to eleven arguments. In
section 5, we indicate that the technique of hierarchical automatic function definition can
be successfully applied to other Boolean functions.

2 LEARNING THE EVEN-PARITY-FUNCTION WITH
GENETIC PROGRAMMING

The Boolean even-parity function of k Boolean arguments returns T (True) if an even
number of its arguments are T, and otherwise returns NIL (False).
In applying genetic programming to the even-parity function of k arguments, the terminal
set T consists of the k Boolean arguments D0, D1, D2, ... involved in the problem, so that

T = {D0, D1, D2, ...}.

The function set F for all the examples herein consists of the following computationally
complete set of four two-argument primitive Boolean functions:

F = {AND, OR, NAND, NOR}.

Compositions of functions from the function set F and terminals from the terminal set T
are called symbolic expressions (S-expressions) in the LISP programming language. An
S-expression can be represented as a rooted, point-labeled tree with ordered branches in
which the root and other internal points of the tree are labeled with functions and in
which the external points of the tree are labeled with terminals. These trees correspond
to the parse trees found in other programming languages.
The Boolean even-parity functions appear to be the most difficult Boolean functions to
find via a blind random generative search of S-expressions using the above function set F
and the terminal set T. For example, even though there are only 256 different Boolean
functions with three arguments and one output, the Boolean even-3-parity function is so
difficult to find via a blind random generative search that we did not encounter it at all
after randomly generating 10,000,000 S-expressions using this function set F and
terminal set T. In addition, the even-parity function appears to be the most difficult to
learn using genetic programming using this function set F and terminal set T (Koza
1992).
In applying genetic programming to the problem of learning the Boolean even-parity
function of k arguments, the 2k combinations of the k Boolean arguments constitute an
exhaustive set of fitness cases for learning this function. The standardized fitness of an
S-expression is the sum, over these 2k fitness cases, of the Hamming distance (error)
between the value returned by the S-expression and the correct value of the Boolean
function. Standardized fitness ranges between 0 and 2k; a value closer to zero is better.
The raw fitness is equal to the number of fitness cases for which the S-expression is
correct (i.e., 2k minus standardized fitness); a higher value is better.
To establish a baseline for demonstrating the effectiveness of the new processes of
automatic function definition and hierarchical automatic function definition, we first
consider how genetic programming would solve the problems of learning the even-3-
parity function (three-argument Boolean rule 105), the even-4-parity function (four-
argument Boolean rule 38,505), and the even-5-parity function (five-argument Boolean
rule 1,771,476,585).
Throughout this paper, we employ a numbering scheme for identifying a k-argument
Boolean function wherein the value of the function for the 2k combinations of its k

Boolean arguments are concatenated into a 2k-bit binary number and then converted to
the equivalent decimal number. For example, the 23 = 8 values of the even-3-parity
function are 0, 1, 1, 0, 1, 0, 0, and 1 (going from the fitness case consisting of three true
arguments to the fitness case consisting of three false arguments). Since 011010012 =
10510, the even-3-parity function is referred to as three-argument Boolean rule 105.

The terminal set T for the even-3-parity problem consists of

T = {D0, D1, D2}.

In one run of genetic programming using a population size of 4,000 (the value of M used
consistently herein, except as otherwise noted), genetic programming discovered the
following S-expression containing 45 points (i.e., 22 functions and 23 terminals) with a
perfect value of raw fitness of 8 (out of a possible value of 23 = 8) in generation 5:

(AND (OR (OR D0 (NOR D2 D1)) D2) (AND (NAND (NOR (NOR D0 D2)
(AND (AND D1 D1) D1)) (NAND (OR (AND D0 D1) D2) D0)) (OR (NAND
(AND D0 D2) (OR (NOR D0 (OR D2 D0)) D1)) (NAND (NAND D1 (NAND
D0 D1)) D2)))).

We then considered the even-4-parity function. In one run, genetic programming
discovered the following S-expression containing 149 points with a perfect value of raw
fitness of 16 (out of 24 = 16) in generation 24:

(AND (OR (OR (OR (NOR D0 (NOR D2 D1)) (NAND (OR (NOR (AND D3
D0) D2) (NAND D0 (NOR D2 (AND D1 (OR D3 D2))))) D3)) (AND (AND
D1 D2) D0)) (NAND (NAND (NAND D3 (OR (NOR D0 (NOR (OR D3 D2)
D2)) (NAND (AND (AND (AND D3 D2) D3) D2) D3))) (NAND (OR (NAND
(OR D0 (OR D0 D1)) (NAND D0 D1)) D3) (NAND D1 D3))) D3)) (OR
(OR (NOR (NOR (AND (OR (NOR D3 D0) (NOR (NOR D3 (NAND (OR (NAND
D2 D2) D2) D2)) (AND D3 D2))) D1) (AND D3 D0)) (NOR D3 (OR D0
D2))) (NOR D1 (AND (OR (NOR (AND D3 D3) D2) (NAND D0 (NOR D2
(AND D1 D0)))) (OR (OR D0 D3) (NOR D0 (NAND (OR (NAND D2 D2)
D2) D2)))))) (AND (AND D2 (NAND D1 (NAND (AND D3 (NAND D1 D3))
(AND D1 D1)))) (OR D3 (OR D0 (OR D0 D1)))))).

Figure 1 presents two curves, called the performance curves, relating to the even-3-parity
function over a series of runs. The curves are based on 66 runs with a population size M
of 4,000 and a maximum number of generations to be run G of 51 (the value of G used
consistently herein).

The rising curve in figure 1 shows, by generation, the experimentally observed
cumulative probability of success, P(M,i), of solving the problem by generation i (i.e.,
finding at least one S-expression in the population which produces the correct value for
all 23 = 8 fitness cases). As can be seen, the experimentally observed value of the
cumulative probability of success, P(M,i), is 91% by generation 9 and 100% by
generation 21 over the 66 runs.

9 80,000

0 25 50
0

50

100

0

600,000

1,200,000

P(M,i)
I(M, i, z)

Even-3-Parity — M=4000

Generation

Pr
ob

ab
ili

ty
 o

f S
uc

ce
ss

 (%
)

In
di

vi
du

al
s t

o
be

 P
ro

ce
ss

ed

Figure 1 Performance curves for even-3-parity function showing that it is sufficient to
process 80,000 individuals to yield a solution with 99% probability with genetic

programming.

28 1,276,000

0 25 50
0

25

50

0

10,000,000

20,000,000

P(M,i)
I(M, i, z)

Even-4-Parity — M=4000

Generation

Pr
ob

ab
ili

ty
 o

f S
uc

ce
ss

 (%
)

In
di

vi
du

al
s t

o
be

 P
ro

ce
ss

ed

Figure 2 Performance curves for even-4-parity function showing that it is sufficient to
process 1,276,000 individuals to yield a solution with 99% probability with genetic

programming.

The second curve in figure 1 shows, by generation, the number of individuals that must
be processed, I(M,i,z), to yield, with probability z, a solution to the problem by

generation i. I(M,i,z) is derived from the experimentally observed values of P(M,i).
Specifically, I(M,i,z) is the product of the population size M, the generation number i,
and the number of independent runs R(z) necessary to yield a solution to the problem
with probability z by generation i. In turn, the number of runs R(z) is given by

R(z) = 



 log(1–z)

log(1–P(M,i)) ,

where the square brackets indicates the ceiling function for rounding up to the next
highest integer. Throughout this paper, the probability z will be 99%.
As can be seen, the I(M,i,z) curve reaches a minimum value at generation 9 (highlighted
by the light dotted vertical line). For a value of P(M,i) of 91%, the number of
independent runs R(z) necessary to yield a solution to the problem with a 99% probability
by generation i is 2. The two summary numbers (i.e., 9 and 80,000) in the oval indicate
that if this problem is run through to generation 9 (the initial random generation being
counted as generation 0), processing a total of 80,000 individuals (i.e., 4,000 ∞ 10
generations ∞ 2 runs) is sufficient to yield a solution to this problem with 99%
probability. This number 80,000 is a measure of the computational effort necessary to
yield a solution to this problem with 99% probability.
Figure 2 shows similar performance curves for the even-4-parity function based on 60
runs. The experimentally observed cumulative probability of success, P(M,i), is 35% by
generation 28 and 45% by generation 50. The I(M,i,z) curve reaches a minimum value at
generation 28. For a value of P(M,i) of 35%, the number of runs R(z) is 11. The two
numbers in the oval indicate that if this problem is run through to generation 28,
processing a total of 1,276,000 (i.e., 4,000 ∞ 29 generations ∞ 11 runs) individuals is
sufficient to yield a solution to this problem with 99% probability.
Thus, according to this measure of computational effort, the even-4-parity problem is
about 16 times harder to solve than the even-3-parity problem.
We are unable to directly extend this comparison of the computational effort necessary to
solve the even-parity problem with increasing numbers of arguments with our chosen
population size of 4,000. When the even-5-parity function was run with a population
size of 4,000 and each run arbitrarily stopped at our chosen maximum number G = 51 of
generations to be run, no solution was found after 20 runs. Even after increasing the
population size to 8,000 (with G = 51), we did not get a solution until our eighth run.
This solution contained 347 points.
Notice that the structural complexity (i.e., the total number of function points and
terminal points in the S-expression) of the solutions dramatically increased with an
increasing number of arguments (i.e. structural complexity was 45 and 149, respectively,
above for the 3- and 4-parity functions).
The population size of 4,000 is undoubtedly not optimal for any particular parity problem
and is certainly not optimal for all sizes of parity problems. Nonetheless, it is clear that
learning the even-parity functions with increasing numbers of arguments requires
dramatically increasing computational effort and that the structural complexity of the
solutions become increasingly large.

3 AUTOMATIC FUNCTION DEFINITION

The inevitable increase in computational effort and structural complexity for solving
parity problems of order greater than four could be controlled if we could discover the
underlying regularities and symmetries of this problem and then hierarchically
decompose the problem into more tractable sub-problems. Specifically, we need to
discover a function parameterized by dummy variables that would be helpful in
decomposing and solving the problem.
If a human programmer were writing code for the even-3-parity or even-4-parity
functions, he would probably choose to call upon either the odd-2-parity function (also
known as the exclusive-or function XOR, the inequality function, and two-argument
Boolean rule 6) or the even-2-parity function (also known as the equivalence function
EQV, the not-exclusive-or function, and two-argument Boolean rule 9). If a human
programmer were writing code for the even-5-parity function and parity functions with
additional arguments, he would probably also want to call upon either the even-3-parity
(three-argument Boolean rule 105) or the odd-3-parity (three-argument Boolean rule
150). These lower-order parity functions would greatly facilitate writing code for the
higher-order parity functions. None of these low-order parity functions are, of course, in
the original set F of available primitive Boolean functions.
The potentially helpful role of dynamically evolving useful building blocks in genetic
programming has been recognized for some time [Koza 1990]. When we talk about
"function definition" in this paper, we are not contemplating merely defining a function
in terms of a sub-expression composed of particular fixed terminals (i.e., actual
variables) of the problem. Instead, we are contemplating defining functions
parameterized by dummy variables (formal parameters). Specifically, if the exclusive-or
function XOR were to be dynamically defined during a run, it would be a version of XOR
parameterized by two dummy variables (called ARG0 and ARG1), not a mere call to XOR
with particular fixed terminals (e.g., D0 and D1). When this parameterized version of the
XOR function is called, its two dummy variables ARG0 and ARG1 would be instantiated
with two specific values, which would either be the values of two terminals (i.e., actual
variables of the problem) or the values of two expressions (each composed ultimately of
terminals). For example, the exclusive-or function XOR might be called via (XOR D0
D1) on one occasion and via (XOR D2 D3) on another occasion. On yet another
occasion, XOR might be called via

(XOR (AND D1 D2) (OR D0 D2)),

where the two arguments to XOR are the values returned by the expressions (AND D1
D2) and (OR D0 D2), respectively. Each of these expressions is ultimately composed
of the actual variables (i.e., terminals) of the problem.
Moreover, when we talk about "automatic" and "dynamic" function definition, the goal is
to dynamically evolve a dual structure containing both function-defining branches and
result-producing (i.e., value-returning) branches by means of natural selection and
genetic operations. We expect that genetic programming will dynamically evolve
potentially useful function definitions during the run and also dynamically evolve an
appropriate result-producing "main" program that calls these automatically defined
functions.

Note that many existing paradigms for machine learning and artificial intelligence
automatically and dynamically define functional subunits during runs (the specific
terminology, of course, being specific to the particular paradigm). For example, when a
set of weights are discovered enabling a particular neuron in a neural network to perform
some subtask, that learning process can be viewed as a process of defining a function
(i.e., a function taking the values of the specific inputs to that neuron as arguments and
returning an output signal, perhaps a zero or one). Note, however, that the function thus
defined is called only once from within the neural network. It is called only in the
specific part of the neural net (i.e., the neuron) where it was created and it is called only
with the original, fixed set of inputs to that specific neuron. Note also that existing
paradigms for neural networks do not provide a way to re-use the set of weights
discovered in that part of the network in other parts of the network where a similar
subtask must be performed on a different set of inputs. The recent work of Gruau [1992]
on recursive solutions to Boolean functions is a notable exception.

3.1 EVEN-4-PARITY FUNCTION

Automatic function definition can be implemented within the context of genetic
programming by establishing a constrained syntactic structure [Koza 1992, Chapter 19]
for the individual S-expressions in the population in which each individual contains one
or more function-defining branches and one or more "main" result-producing branches
which may call the defined functions.
The number of result-producing branches is determined by the nature of the problem.
Since Boolean parity functions return only a single Boolean value, there would be only
one "main" result-producing branch to the S-expression in the constrained syntactic
structure required.
We usually do not know a priori the optimal number of functions that will be useful for a
given problem or the optimal number of arguments for each such function; however,
considerations of computer resources (time, virtual memory usage, CONSing, garbage
collection, and memory fragmentation) necessitate that choices be made. Additional
computer resources are required for each additional function definition. There is a
considerable increase in the computer resources required to support the ever-larger S-
expressions associated with each larger number of arguments. There will usually be no
advantage to having defined functions that take more arguments than there are terminals
in the problem. When Boolean functions are involved, there is no advantage to evolving
one-argument function definitions (since there are only four rather impotent one-
argument Boolean functions).
Thus, for the Boolean even-4-parity problem, it would seem reasonable to permit one
two-argument function definition and one three-argument function definition within each
S-expression. Thus, each individual S-expression in the population would have three
branches. The first (leftmost) branch permits a two-argument function definition
(defining a function called ADF0); the second (middle) branch permits a three-argument
function definition (defining a function called ADF1); and the third (rightmost) branch is
the result-producing branch. The first two branches are function-defining branches
which may or may not be called upon by the result-producing branch.
Figure 3 shows an abstraction of the overall structure of an S-expression with two
function-defining branches and one result-producing branch. There are 11 "types" (as

defined in Koza 1992, Chapter 19) of points in each individual S-expression in the
population for this problem. The first eight types are an invariant part of each individual
S-expression. The 11 types are as follows: (1) the root (which will always be the place-
holding PROGN function), (2) the top point DEFUN of the function-defining branch for
ADF0, (3) the name ADF0 of the function defined by this first function-defining branch,
(4) the argument list (ARG0 ARG1) of ADF0, (5) the top point DEFUN of the function-
defining branch for ADF1, (6) the name ADF1 of the function defined by this second
function-defining branch, (7) the argument list (ARG0 ARG1 ARG2) of ADF1, (8) the
top point VALUES of the result-producing branch for the individual S-expression as a
whole, (9) the body of ADF0, (10) the body of ADF1, and (11) the body of the "main"
result-producing branch.
Three syntactic rules of construction govern points of types 9, 10, and 11.

PROGN

Body of ADF0
Function Definition

DEFUN

ADF0 (ARG0 ARG1)

Body of ADF1
Function Definition

DEFUN

ADF1 (ARG0 ARG1 ARG2)

VALUES

Result-Producing
Branch

Figure 3 Abstraction of the overall structure of an S-expression with two function-
defining branches and the one result-producing branch.

First, the body of ADF0 (i.e., the points of type 9) is a composition of functions from the
given function set F and terminals from the terminal set A2 of two dummy variables,
namely A2 = {ARG0, ARG1}.

Second, the body of ADF1 (i.e., the points of type 10) is a composition of functions from
the given function set F and terminals from the set A3 of three dummy variables, namely
A3 = {ARG0, ARG1, ARG2}.

Third, the body of the result-producing branch (i.e., the points of type 11) is a
composition of terminals (i.e., actual variables of the problem) from the terminal set T,
namely T = {D0, D1, D2, D3}, as well as functions from the set F3. F3 contains the four
original functions from the function set F as well as the two-argument function ADF0
defined by the first branch and the three-argument function ADF1 defined by the second
branch. That is, the function set F3 is

F3 = {AND, OR, NAND, NOR, ADF0, ADF1},

taking two, two, two, two, two, and three arguments, respectively. Thus, the result-
producing branch is capable of calling the two defined functions ADF0 and ADF1.

When the overall S-expression is evaluated, the PROGN evaluates each branch; however,
the value(s) returned by the PROGN consists only of the value(s) returned by the VALUES
function in the final result-producing branch.
Note that one might consider including the terminals from the terminal set T (i.e., the
actual variables of the problem) in the function-defining branches; however, we do not
do so here.
Figure 4 shows an expansion of figure 3 representing a hypothetical program for the
even-4-parity function containing two defined functions, ADF0 and ADF1. The first
branch of the illustrative program in figure 4 contains a function definition for the two-
argument defined function ADF0. This function is expressed in terms of the two dummy
variables ARG0 and ARG1 and happens to be the even-2-parity function (i.e., the
equivalence function EQV).

AND

ARG0 AND

ARG1 ARG2

VALUES

OR

AND AND

NOT NOTARG0

ARG0

ARG1

ARG1

PROGN

DEFUN

(ARG0 ARG1 ARG2)ADF1

DEFUN

(ARG0 ARG1)ADF0

D0 D1 D2 D3

ADF0 ADF0

ADF0

Figure 4 Illustrative program for the even-4-parity function containing two function
definitions.

The second branch contains a function definition for the three-argument defined function
ADF1. This function is expressed in terms of the three dummy variables ARG0, ARG1,
and ARG2 and happens to be the ordinary three-argument conjunction function. The
result-producing branch contains the actual variables of the problem (i.e., terminals) D0,
D1, D2, and D3 and three calls to the defined function ADF0 (i.e., the equivalence
function EQV) and no calls to the defined function ADF1. The result-producing branch
computes

(EQV (EQV D0 D1) (EQV D2 D3)).

When the entire program is evaluated, the value returned is the value of the even-4-parity
function.
In what follows, genetic programming will be allowed to evolve two function definitions
in the function-defining branches of each S-expression and then, at its discretion, to call
one, two, or none of these defined functions in the result-producing branch. We do not

specify what functions will be defined in the two function-defining branches. We do not
specify whether the defined functions will actually be used (it being, of course, possible
to solve this problem without any function definition by evolving the correct program in
the result-producing branch). We do not favor one function-defining branch over the
other. We do not require that a function-defining branch use all of its available dummy
variables. The structure of all three branches is determined by the combined effect, over
many generations, by the selective pressure exerted by the fitness measure and by the
effects of the operations of Darwinian fitness proportionate reproduction and crossover.
Since a constrained syntactic structure is involved, we must create the initial random
generation so that every individual S-expression in the population has the syntactic
structure specified by the syntactic rules of construction presented above. Specifically,
every individual S-expression must have the invariant structure represented by the eight
points of types 1 through 8.

9 80,000

0 25 50
0

50

100

0

500,000

1,000,000

P(M,i)
I(M, i, z)

Even-4-Parity using Defined Functions — M=4,000

Generation

Pr
ob

ab
ili

ty
 o

f S
uc

ce
ss

 (%
)

In
di

vi
du

al
s t

o
be

 P
ro

ce
ss

ed

Figure 5 Performance curves for the even-4-parity problem showing that it is sufficient
to process 80,000 individuals to yield a solution with automatic function definition.

In addition, the bodies of ADF0 (type 9), ADF1 (type 10), and the result-producing
branch (type 11) must be composed of the functions and terminals specified by the above
syntactic rules of construction.
Moreover, since a constrained syntactic structure is involved, we must perform structure-
preserving crossover [Koza 1992, Chapter 19] so as to ensure the syntactic validity of all
offspring as the run proceeds from generation to generation. Structure-preserving
crossover is implemented by first allowing the selection of the crossover point in the first
parent to be any point from the body of ADF0 (type 9), ADF1 (type 10), or the result-
producing branch (type 11). However, once the crossover point in the first parent has
been selected, the crossover point of the second parent must be of the same type (i.e.,
types 9, 10, or 11). This restriction on the selection of the crossover point of the second
parent assures syntactic validity of the offspring. For example, if the crossover point of

the first parent comes from the body of ADF0 (type 9), a crossover fragment from the
body of ADF1 (type 10) might contain the dummy variable ARG2, which is not an
allowable point in the body of ADF0.

In one run of the even-4-parity problem, the best-of-generation individual from the initial
random generation (i.e., generation 0) contained 23 points and had a raw fitness of 10
(out of a possible 16). As one would expect, generation 0 contains individuals with
useless function definitions and equally useless result-producing branches. For example,
ADF0 in the above best-of-generation individual was defined as the ordinary two-
argument disjunction function (which is already in the original function set F).
Each new generation of the population is created from the preceding generation by
applying the fitness proportionate reproduction operation to 10% of the population and
by applying the crossover operation to 90% of the population (with both parents selected
with a probability proportionate to fitness). In selecting crossover points, 90% were
internal (function) points of the tree and 10% were external (terminal) points of the tree.
For practical reasons of computer implementation, the depth of initial random programs
was limited to 6 and the depth of programs created by crossover was limited to 17. The
selection of values of the other parameters for this problem are the default values used on
most of the other problems cited in Koza [1992].
In generation 12, the following S-expression appeared containing 74 points and attaining
a perfect value of 16 for raw fitness:
(PROGN (DEFUN ADF0 (ARG0 ARG1)

(NAND (OR (AND (NOR ARG0 ARG1) (NOR (AND ARG1 ARG1) ARG1))
(NOR (NAND ARG0 ARG0) (NAND ARG1 ARG1))) (NAND (NOR (NOR
ARG1 ARG1) (AND (OR (NAND ARG0 ARG0) (NOR ARG1 ARG0))
ARG0)) (AND (OR ARG0 ARG0) (NOR (OR (AND (NOR ARG0 ARG1)
(NAND ARG1 ARG1)) (NOR (NAND ARG0 ARG0) (NAND ARG1 ARG1)))
ARG1)))))

 (DEFUN ADF1 (ARG0 ARG1 ARG2)
(OR (AND ARG2 (NAND ARG0 ARG2)) (NOR ARG1 ARG1))

 (VALUES
(ADF0 (ADF0 D0 D2) (NAND (OR D3 D1) (NAND D1 D3)))).

The first branch of this best-of-run S-expression is a function definition for the two-
argument defined function ADF0, which, when simplified, is equivalent to the exclusive-
or (XOR) function (i.e. the odd-2-parity function).
The second branch defines the three-argument defined function ADF1, but this defined
function is not called by the result-producing branch.
The result-producing branch of this best-of-run individual contains two references to
ADF0. Upon substitution of XOR for ADF0, it becomes

(XOR (XOR D0 D2) (NAND (OR D3 D1) (NAND D1 D3))),

which, when simplified, is equivalent to
(XOR (XOR D0 D2) (EQV D3 D1)),

which is a correct solution to the even-4-parity problem.
Note that we did not specify that the exclusive-or function would be defined in ADF0, as
opposed to, say, the equivalence function, the if-then function, or some other function.
We did not specify that the exclusive-or function would be defined in the first branch as

opposed to the second branch. We did not specify that the second branch would be
ignored. Genetic programming created the two-argument defined function ADF0 on its
own in the first branch to help solve this problem. Having done this, genetic
programming then used ADF0 in an appropriate way in the result-producing branch to
solve the problem. Notice that the 41 points above are considerably fewer than the 149
points contained in the S-expression cited earlier for the even-4-parity problem.
Figure 5 presents the performance curves based on 168 runs for the even-4-parity
function with automatic function definition. The cumulative probability of success
P(M,i) was 93% by generation 9 and was 99% by generation 50. The two numbers in the
oval indicate that if this problem is run through to generation 9, processing a total of
80,000 individuals (i.e., 4,000 ∞ 10 generations ∞ 2 runs) is sufficient to yield a solution
to this problem with 99% probability.
The 80,000 individuals that had to be processed for the even-4-parity problem using
automatic function definition is one sixteenth of the 1,276,000 individuals needed when
automatic function definition was not used (as shown in figure 2).

3.2 EVEN-5-PARITY FUNCTION

If automatic function definition is used, solutions to the even-5-parity and other higher
order parity functions are readily found with a population size of 4,000.
For the even-5-parity problem, each S-expression has four branches with automatic
function definition. The first three branches permit creation of function definitions with
two, three, and four dummy variables. The result-producing (i.e., fourth) branch is an S-
expression incorporating the four Boolean functions from the function set F; the three
defined functions ADF0, ADF1, and ADF2; and the five terminals D0, D1, D2, D3, and
D4.
In one run of the even-5-parity problem, genetic programming created a function
definition for the even-3-parity function and created the necessary combination of
operations in its result-producing branch to perform the behavior of the odd-2-parity
function XOR.
Figure 6 graphically depicts the result-producing branch of this best-of-run individual.

D2D4

D0

XOR

D3

D1

Even-3-Parity

XOR NOT

Figure 6 Result-producing branch of the best-of-run individual for the even-5-parity
problem with automatic function definition.

Figure 7 shows the performance curves based on 7 runs for the even-5-parity function
with automatic function definition. The cumulative probability of success P(M,i) is
100% by generation 37. The two numbers in the oval indicate that if this problem is run
through to generation 37, processing a total of 152,000 individuals (i.e., 4,000 ∞ 38
generations ∞ 1 run) is sufficient to yield a solution to this problem with 99%
probability.
The 152,000 individuals that must be processed for the even-5-parity problem using
automatic function definition is less than an eighth of the 1,276,000 individuals shown in
figure 2 for the even-parity function of only four arguments.

37 152,000

0 25 50
0

50

100

0

1,000,000

2,000,000
P(M,i)
I(M, i, z)

Even-5-Parity using Defined Functions — M=4,000

Generation

Pr
ob

ab
ili

ty
 o

f S
uc

ce
ss

 (%
)

In
di

vi
du

al
s t

o
be

 P
ro

ce
ss

ed

Figure 7 Performance curves for the even-5-parity problem show that it is sufficient to
process 152,000 individuals to yield a solution with automatic function definition.

3.3 EVEN-6-PARITY FUNCTION

Similarly, the even-6-parity problem can be solved using automatic function definition.
Processing a total of 812,000 individuals is sufficient to yield a solution to this problem
with 99% probability. This 812,000 is less than the 1,276,000 individuals shown in
figure 2 for the even-parity function of only four arguments.
In summary, automatic function definition considerably improved performance for the 4-
, 5-, and 6-parity problems.

4 HIERARCHICAL AUTOMATIC FUNCTION DEFINITION

In the previous section on automatic function definition, the definition of a particular
defined function never included a call to another defined function. However, it is
common in ordinary programming to define one function in terms of other already-
defined functions.
In the hierarchical form of automatic function definition, any function definition can call
upon any other already-defined function. That is, there is a hierarchy (lattice) of function
definitions wherein any function can be defined in terms of any combination of already-
defined functions.
The number of function-defining branches and the number of dummy variables to appear
in each function-defining branch is a matter of computer resources. We decided to use
two function-defining branches and one result-producing branch. We also decided that,
if the problem involves n terminals, then all function-defining branches will have n – 1
dummy variables; however, after the even-6-parity function, we reverted to four dummy

variables to reduce the bushiness of the S-expression and thereby save computer
resources.

4.1 EVEN-4-PARITY FUNCTION

Each S-expression in the population for solving the even-4-parity function has one result-
producing branch and two function-defining branches, each permitting the definition of
one function of three dummy variables.
In one run of the even-4-parity function, the following 100%-correct solution containing
45 points with a perfect value of 16 for raw fitness appeared on generation 4:
(PROGN (DEFUN ADF0 (ARG0 ARG1 ARG2)

(NOR (NOR ARG2 ARG0) (AND ARG0 ARG2)))
 (DEFUN ADF1 (ARG0 ARG1 ARG2)

(NAND (ADF0 ARG2 ARG2 ARG0)
 (NAND (ADF0 ARG2 ARG1 ARG2)
 (ADF0 (OR ARG2 ARG1)
 (NOR ARG0 ARG1)
 (ADF0 ARG1 ARG0 ARG2)))))

 (VALUES
(ADF0 (ADF1 D1 D3 D0)
 (NOR (OR D2 D3) (AND D3 D3))
 (ADF0 D3 D3 D2)))).

The first branch of this best-of-run S-expression is a function definition establishing the
defined function ADF0 as the two-argument exclusive-or (XOR) function. The definition
of ADF0 ignores one of the available dummy variables, namely ARG1.

The second branch of the above S-expression calls upon the defined function ADF0 (i.e.,
XOR) to define ADF1. This second branch appears to use all three available dummy
variables; however, it reduces to the two-argument equivalence function EQV.
The result-producing (i.e., third) branch of this S-expression uses all four terminals and
both ADF0 and ADF1 to solve the even-4-parity problem. This branch reduces to

(ADF0 (ADF1 D1 D0) (ADF0 D3 D2)).

Then, this result-producing branch is equivalent to
(XOR (EQV D1 D0) (XOR D3 D2)).

That is, genetic programming decomposed the even-4-parity problem into two different
parity problems of lower order (i.e., XOR and EQV).
Figure 8 shows the hierarchy (lattice) of function definitions used in this solution to the
even-4-parity problem. Note also that the second of the two functions in this
decomposition (i.e., EQV) was defined in terms of the first (i.e., XOR).

Even-4-Parity

ADF0

ADF1

Figure 8 Hierarchy (lattice) of function definitions.

10 88,000

0 25 50
0

50

100

0

500,000

1,000,000

P(M,i)
I(M, i, z)

Even-4-Parity — M=4,000

Generation

Pr
ob

ab
ili

ty
 o

f S
uc

ce
ss

 (%
)

In
di

vi
du

al
s t

o
be

 P
ro

ce
ss

ed

Figure 9 Performance curves for the even-4-parity problem show that it is sufficient to
process 88,000 individuals to yield a solution with hierarchical automatic function

definition.
Figure 9 presents the performance curves based on 23 runs for the even-4-parity with
hierarchical automatic function definition. The cumulative probability of success P(M,i)
is 91% by generation 10 and 100% by generation 50. The two numbers in the oval
indicate that if this problem is run through to generation 10, processing a total of 88,000
individuals (i.e., 4,000 ∞ 11 generations ∞ 2 runs) is sufficient to yield a solution to this
problem with 99% probability.

4.2 EVEN-5-PARITY FUNCTION

In one run of the even-5-parity problem, the following 100%-correct solution containing
160 points with a perfect value of raw fitness of 64 emerged on generation 12:

(PROGN (DEFUN ADF0 (ARG0 ARG1 ARG2 ARG3)
(OR (OR (NOR (NOR ARG3 ARG1) (OR ARG1 ARG3)) (AND (NAND
ARG1 ARG3) (NOR ARG1 ARG2))) (NAND (AND (OR ARG1 ARG2)
(NAND ARG1 ARG2)) (NAND ARG1 (AND (NOR ARG3 ARG1)
ARG0)))))

 (DEFUN ADF1 (ARG0 ARG1 ARG2 ARG3)
(NAND (NAND (AND (NAND ARG1 ARG2) (ADF0 ARG0 ARG3 ARG0
ARG2)) (NOR (NAND ARG3 ARG1) (AND ARG1 ARG1))) (AND (ADF0
ARG0 (NAND ARG1 ARG2) (ADF0 ARG3 ARG0 ARG3 ARG0) (AND ARG1
ARG1)) (ADF0 (ADF0 ARG3 ARG2 ARG3 ARG0) (ADF0 ARG0 ARG2
ARG2 ARG1) (ADF0 ARG3 ARG3 ARG3 ARG0) (NOR ARG3 ARG0)))))

 (VALUES
(OR (OR (NOR (ADF0 D3 D1 D1 D3) (OR D0 D1)) (NOR (NAND D1
D2) (OR (OR D3 D2) (NOR D4 D4)))) (ADF1 (ADF1 D4 D0 D4 D1)
(OR (OR (NOR (OR (NAND D1 D0) (ADF1 D1 D2 D3 D1)) (AND D4
D0)) D2) (NOR (OR (NAND D1 D0) (ADF1 D1 D2 D3 D1)) (AND D4
D0))) (NAND (ADF1 D1 D0 D0 D1) (NAND D0 D2)) (NAND (ADF1
D3 D4 D0 D0) (ADF0 D3 D1 D1 D3)))))).

The first branch is equivalent to the four-argument Boolean rule 50,115, which is
(EQV ARG2 ARG1),

and which is an even-2-parity function that ignores two of the four available dummy
variables.
The second branch is equivalent to the four-argument Boolean rule 38,250, which is

(OR (AND (NOT ARG2) (XOR ARG3 ARG0))
 (AND ARG2 (XOR ARG3 (XOR ARG1 ARG0)))).

Notice that this rule is not a parity function of any kind.
The result-producing (i.e., third) branch calls on defined functions ADF0 and ADF1 and
solves the problem.
Figure 10 presents the performance curves based on 11 runs for the even-5-parity
function with hierarchical automatic function definition. The cumulative probability of
success P(M,i) is 100% by generation 35. The two numbers in the oval indicate that if
this problem is run through to generation 35, processing a total of 144,000 individuals
(i.e., 4,000 ∞ 36 generations ∞ 1 run) is sufficient to yield a solution to this problem with
99% probability.
The number of individuals that must be processed to solve this problem with hierarchical
automatic function definition (i.e., 144,000) is smaller than the 152,000 shown in figure
7, where only the non-hierarchical version of automatic function definition was
employed.

4.3 EVEN 6-, 7-, 8-, 9-, AND 10-PARITY FUNCTIONS

The even 6- and 7-parity problems can be similarly solved using hierarchical automatic
function definition. Processing a total of 864,000 individuals is sufficient to yield a
solution to the even-6-parity problem with 99% probability. 1,440,000 individuals is
sufficient to yield a solution to the even-7-parity problem with 99% probability.

The 8-, 9-, and 10-parity problems can be similarly solved using hierarchical automatic
function definition. Each problem was solved within the first four runs.
For example, in one run of the even-8-parity function, the best-of-generation individual
containing 186 points and attaining a perfect value of raw fitness of 256 appeared in
generation 24. The first branch of this S-expression defined a four-argument defined
function ADF0 (four-argument Boolean rule 10,280). The second branch of this S-
expression defined a four-argument defined function ADF1 (four-argument Boolean rule
26,214) which ignored two of its four arguments and is equivalent to

(XOR D0 D1).

In one run of the even-9-parity function, the best-of-generation individual containing 224
points and attaining a perfect value of raw fitness of 512 appeared in generation 40. The
first branch of this S-expression defined a four-argument defined function ADF0 (four-
argument Boolean rule 1,872). The second branch of this S-expression defined a four-
argument defined function ADF1 (four-argument Boolean rule 27,030) which is
equivalent to the odd-4-parity function.
In one run of the even-10-parity function, the best-of-generation individual containing
200 points and attaining a perfect value of raw fitness of 1,024 appeared in generation
40. The first branch of this S-expression defined a four-argument defined function ADF0
(four-argument Boolean rule 38,791). The second branch of this S-expression defined a
four-argument defined function ADF1 (four-argument Boolean rule 23,205) which
ignored one of its four arguments. This rule is equivalent to

0 25 50
0

50

100

0

1,500,000

3,000,000
P(M,i)
I(M, i, z)

Even-5-Parity — M=4,000

Generation

Pr
ob

ab
ili

ty
 o

f S
uc

ce
ss

 (%
)

In
di

vi
du

al
s t

o
be

 P
ro

ce
ss

ed

35 144,000

Figure 10 Performance curves for the even-5-parity problem using hierarchical
automatic function definition show that it is sufficient to process 144,000

individuals.

(EVEN-3-PARITY D3 D2 D0).

4.4 EVEN-11-PARITY FUNCTION

In one run of the even-11-parity function, the following best-of-generation individual
containing 220 points and attaining a perfect value of raw fitness of 2,048 appeared in
generation 21:
(PROGN (DEFUN ADF0 (ARG0 ARG1 ARG2 ARG3)

(NAND (NOR (NAND (OR ARG2 ARG1) (NAND ARG1 ARG2)) (NOR (OR
ARG1 ARG0) (NAND ARG3 ARG1))) (NAND (NAND (NAND (NAND ARG1
ARG2) ARG1) (OR ARG3 ARG2)) (NOR (NAND ARG2 ARG3) (OR ARG1
ARG3)))))

 (DEFUN ADF1 (ARG0 ARG1 ARG2 ARG3)
(ADF0 (NAND (OR ARG3 (OR ARG0 ARG0)) (AND (NOR ARG1 ARG1)
(ADF0 ARG1 ARG1 ARG3 ARG3))) (NAND (NAND (ADF0 ARG2 ARG1
ARG0 ARG3) (ADF0 ARG2 ARG3 ARG3 ARG2)) (ADF0 (NAND ARG3
ARG0) (NOR ARG0 ARG1) (AND ARG3 ARG3) (NAND ARG3 ARG0)))
(ADF0 (NAND (OR ARG0 ARG0) (ADF0 ARG3 ARG1 ARG2 ARG0))
(ADF0 (NOR ARG0 ARG0) (NAND ARG0 ARG3) (OR ARG3 ARG2)
(ADF0 ARG1 ARG3 ARG0 ARG0)) (NOR (ADF0 ARG2 ARG1 ARG2
ARG0) (NAND ARG3 ARG3)) (AND (AND ARG2 ARG1) (NOR ARG1
ARG2))) (AND (NAND (OR ARG3 ARG2) (NAND ARG3 ARG3)) (OR
(NAND ARG3 ARG3) (AND ARG0 ARG0)))))

 (VALUES
(OR (ADF1 D1 D0 (ADF0 (ADF1 (OR (NAND D1 D7) D1) (ADF0 D1
D6 D2 D6) (ADF1 D6 D6 D4 D7) (NAND D6 D4)) (ADF1 (ADF0 D9
D3 D2 D6) (OR D10 D1) (ADF1 D3 D4 D6 D7) (ADF0 D10 D8 D9
D5)) (ADF0 (NOR D6 D9) (NAND D1 D10) (ADF0 D10 D5 D3 D5)
(NOR D8 D2)) (OR D6 (NOR D1 D6))) D1) (NOR (NAND D1 D10)
(ADF0 (OR (ADF0 D6 D2 D8 D4) (OR D4 D7)) (NOR D10 D6) (NOR
D1 D2) (ADF1 D3 D7 D7 D6)))))).

NOR

D1 D2

NOR

D10 D6

EVEN-2
-PARITYNAND

D1 D10

NOR

EVEN-2
-PARITY

D5 D3

NAND

D1 D10

EVEN-2
-PARITY

EVEN-2
-PARITY

D8 D9

EVEN-4
-PARITY

D3 D4 D6 D7

OR

D10 D1

EVEN-2
-PARITY

D3 D2

EVEN-4
-PARITY

EVEN-2
-PARITY D1D0D1

EVEN-4
-PARITY

OR

Figure 11 The best-of-run individual from generation 21 of one run of the even-11-
parity problem is a composition of even-2-parity and even-4-parity functions.

The first branch of this S-expression defined the four-argument defined function ADF0
(four-argument Boolean rule 50,115) which ignored two of its four arguments. ADF0 is
equivalent to the even-2-parity function, namely

(EQV ARG1 ARG2).

The second branch defined a four-argument defined function ADF1 which is equivalent
to the even-4-parity function.
Substituting the definitions of the defined functions ADF0 and ADF1, the result-
producing (i.e., third) branch becomes the program shown below.

(OR (EVEN-4-PARITY
 D1
 D0
 (EVEN-2-PARITY (EVEN-4-PARITY
 (EVEN-2-PARITY D3 D2)
 (OR D10 D1)
 (EVEN-4-PARITY D3 D4 D6 D7)
 (EVEN-2-PARITY D8 D9))
 (EVEN-2-PARITY (NAND D1 D10)
 (EVEN-2-PARITY D5 D3)))
 D1)
 (NOR (NAND D1 D10)
 (EVEN-2-PARITY (NOR D10 D6) (NOR D1 D2))))

which is equivalent to the target even-11-parity function. Note that the even-2-parity
function (ADF0) appears six times in this solution and that the even-4-parity function
(ADF1) appears three times. Note that this entire solution contains only 220 points
(compared to 347 points for the solution to the even-5-parity using genetic programming
without any function definitions).
Figure 11 shows the simplified version of the result-producing branch of this best-of-run
individual for the even-11-parity problem. As can be seen, the even-11-parity problem
was decomposed into a composition of even-2-parity functions and even-4-parity
functions.
We found the above solution to the even-11-parity problem on our first completed run.
The search space of 11-argument Boolean functions returning one value is of size

22,048 ˜ 10616.
A videotape visualization of the solution to the even-11-parity problem (and other
problems involving genetic programming) can be found in Koza and Rice [1992].
In other words, the even-11-parity problem was solved by decomposing into parity
functions of lower orders.

5 BOOLEAN 11-MULTIPLEXER

We can similarly learn other Boolean functions, such as the Boolean 11-multiplexer
function (described in Koza 1991). For example, in one run with hierarchical automatic
function definition, the program shown below appeared in generation 18.

(PROGN (DEFUN ADF0 (ARG0 ARG1 ARG2 ARG3)
 (NOR (OR ARG1 (NOR (NOR ARG2 ARG2)
 (NAND (NAND ARG3 ARG3) (OR ARG0 ARG2))))
 (AND ARG3 ARG0)))
 (DEFUN ADF1 (ARG0 ARG1 ARG2 ARG3)
 (NOR (AND ARG0 ARG3)
 (AND (OR ARG1 ARG2) (NAND ARG1 ARG3))))
 (VALUES
 (ADF0 (ADF1 D2 D0 A0 A1)
 (AND D3 A2)
 (NAND (OR (NOR (AND D3 A2) A1) D3) (OR D1 A1))
 (ADF1 D2 A0 (AND D3 A2) A2)))).

The first branch of this 56-point best-of-run individual defines the four-argument defined
function ADF0 which is equivalent to Boolean 4-argument rule 4,355. The second
branch defines function ADF1 which is equivalent to 4-argument Boolean rule 17,667.
The third branch calls on ADF0 once and calls ADF1 twice in order to create the Boolean
11-multiplexer.

6 CONCLUSIONS

The first conclusion of this paper is that the problems of learning the even-parity
functions and the Boolean multiplexer function can be solved with the newly developed
technique of hierarchical automatic function definition in the context of genetic
programming.
The second conclusion is that the technique of hierarchical automatic function definition
facilitates the solution of these problems. That is, when problems are decomposed into a
hierarchy of function definitions and calls, many fewer individuals must be processed in
order to yield a solution to the problem. Moreover, the solutions discovered are
comparatively smaller. As can be seen in table 1, automatic function definition and
hierarchical automatic function definition are helpful in solving the even-parity
problems.

Table 1 Number of individuals I(M,i,z) required to be processed to yield a
solution to various even-parity problems with 99% probability.

Even-parity
function

Genetic
Programming

Genetic
Programming with
automatic function

definition

Genetic
Programming with

hierarchical
automatic function

definition

3 80,000

4 1,276,000 80,000 88,000

5 152,000 144,000

6 812,000 864,000

7 1,440,000

6.1 Acknowledgments
James P. Rice of the Knowledge Systems Laboratory at Stanford University made
numerous contributions in connection with the computer programming of the above.

6.1.1 References
Gruau, Frederic. Genetic synthesis of Boolean neural networks with a cell rewriting

developmental process. In Schaffer, J. D. and Whitley, Darrell (editors).

Proceedings of the Workshop on Combinations of Genetic Algorithms and Neural
Networks 1992. The IEEE Computer Society Press. 1992.

Koza, John R. Genetic Programming: A Paradigm for Genetically Breeding Populations
of Computer Programs to Solve Problems. Stanford University Computer Science
Department technical report STAN-CS-90-1314. June 1990.

Koza, John R. A hierarchical approach to learning the Boolean multiplexer function. In
Rawlins, Gregory (editor). Foundations of Genetic Algorithms. San Mateo, CA:
Morgan Kaufmann Publishers Inc. 1991. Pages 171-192.

Koza, John R. Genetic Programming: On the Programming of Computers by Means of
Natural Selection and Genetics. Cambridge, MA: The MIT Press 1992.

Koza, John R. and Rice, James P. Genetic Programming: The Movie. Cambridge, MA:
The MIT Press 1992.

--

In another run of the even-4-parity problem, both the first and the second branches were
function definitions for the exclusive-or (XOR) function and the result-producing branch
used both ADF0 and ADF1 in solving the problem. The three-argument defined function
ADF1 in the second branch was degenerate in that it ignored one of the three available
dummy variables. In another run, the ordinary AND function was defined in one of the
function-defining branches and then used (along with the original primitive AND function
from the function set F) in the result-producing branch. Although a human programmer
would not usually write two equivalent function definitions for XOR or redefine an
already-available primitive function, these genetically produced solutions are as good as
the first solution above from the point of view of the fitness measure that drives the
evolutionary process.

--

6.2 EVEN-6-PARITY FUNCTION

For the even-6-parity function, figure --- presents the performance curves based on 20
runs with automatic function definition. The cumulative probability of success P(M,i) is
50% by generation 28 and 55% by generation 50. The two numbers in the oval indicate
that if this problem is run through to generation 28, processing a total of 812,000 (i.e.,
4,000 ∞ 29 generations ∞ 7 runs) individuals is sufficient to yield a solution to this
problem with 99% probability.

0 25 50
0

50

100

0

1,000,000

2,000,000

P(M,i)
I(M, i, z)

Even-6-Parity using Defined Functions — M=4,000

Generation

Pr
ob

ab
ili

ty
 o

f S
uc

ce
ss

 (%
)

In
di

vi
du

al
s t

o
be

 P
ro

ce
ss

ed

54 812,000

Figure --- Performance curves for the even-6-parity problem show that it is sufficient to
process 812,000 individuals to yield a solution with automatic function definition.

The 812,000 individuals that must be processed for the even-6-parity problem using
automatic function definition is less than the 1,276,000 individuals shown in figure 2 for
the even-parity function of only four arguments.

--

In one run of the even-6-parity function (six-argument Boolean rule
10,838,310,072,981,296,745), the following best-of-generation individual containing 106
points and attaining a perfect value of raw fitness of 64 appeared in generation 7:
(PROGN (DEFUN ADF0 (ARG0 ARG1 ARG2 ARG3 ARG4)

(OR (AND (AND ARG1 ARG2) (NAND ARG0 ARG4)) (NAND (NAND
(AND ARG0 ARG1) ARG2) (OR ARG2 ARG1))))

 (DEFUN ADF0 (ARG0 ARG1 ARG2 ARG3 ARG4)
(OR (ADF0 ARG4 ARG4 ARG3 ARG4 ARG3) (NOR ARG1 (OR ARG3
ARG4))))

 (VALUES
(ADF0 (AND D4 D0) (ADF0 (AND D4 D5) (NAND D0 D2) (ADF1 D3
D5 D5 D3 D1) (OR D2 D0) (ADF0 D0 D0 D5 D4 D0)) (ADF1 (AND
D1 D3) (AND D2 D0) (NAND D5 D5) (ADF0 D4 (NOR D5 D5) D4 D2
D2) (OR D2 D0)) (OR (AND D4 D1) (NAND D3 D5)) (ADF0 (NOR
D1 D3) (NAND D0 D5) (ADF0 D1 D5 D0 D0 D1) (ADF1 D3 D0 D3
D2 D1) (AND D5 D1))))).

The first branch of this S-expression defined a five-argument defined function ADF0
(five-argument Boolean rule 328,386,755) which ignored three of its five arguments and
is equivalent to

(EQV ARG1 ARG2).

The second branch defined a five-argument defined function ADF1 (five-argument
Boolean rule 4,278,190,335) which also ignored three of its five arguments and is
equivalent to

(XOR ARG3 ARG4).

Figure 11 presents the performance curves based on 37 runs for the even-6-parity
function for hierarchical automatic function definition. The cumulative probability of
success P(M,i) is 41% by generation 23, and 51% by generation 44. The two numbers in
the oval indicate that if this problem is run through to generation 23, processing a total of
864,000 (i.e., 4,000 ∞ 24 generations ∞ 9 runs) individuals is sufficient to yield a
solution to this problem with 99% probability.

Even-6-Parity — M=4,000

0 25 50
0

50

100

0

4,000,000

8,000,000

P(M,i)
I(M, i, z)

Generation

In
di

vi
du

al
s t

o
be

 P
ro

ce
ss

ed

23 864,000

Pr
ob

ab
ili

ty
 o

f S
uc

ce
ss

 (%
)

Figure 11 Performance curves for the even-6-parity problem using hierarchical
automatic function definition show that it is sufficient to process 864,000 individuals to

yield a solution.

--

In one run of the even-7-parity function, the best-of-generation individual containing 92
points and attaining a perfect value of raw fitness of 128 appeared in generation 14. The
first branch of this S-expression defined a four-argument defined function ADF0 (four-
argument Boolean rule 42,245). The second branch of this S-expression defined a four-
argument defined function ADF1 (four-argument Boolean rule 49,980) which ignored
one of its four arguments. ADF1 is equivalent to

(ODD-3-PARITY D3 D2 D1).

Figure 12 presents the performance curves based on 29 runs for the even-7-parity
function for hierarchical automatic function definition. The cumulative probability of

success P(M,i) is 20.7% by generation 17, and 34.5% by generation 50. The two
numbers in the oval indicate that if this problem is run through to generation 17,
processing a total of 1,440,000 (i.e., 4,000 ∞ 18 generations ∞ 20 runs) individuals is
sufficient to yield a solution to this problem with 99% probability.

0 25 50
0

50

100

0

4,000,000

8,000,000

P(M,i)
I(M, i, z)

Even-7-Parity — M=4,000

Generation

In
di

vi
du

al
s t

o
be

 P
ro

ce
ss

ed

17 1,440,000

Pr
ob

ab
ili

ty
 o

f S
uc

ce
ss

 (%
)

Figure 12 Performance curves for the even-7-parity problem using hierarchical
automatic function definition show that it is sufficient to process 1,440,000 individuals to

yield a solution.

--

