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Abstract

This chapter gives an overview of the recent advances in GUI testing. Consid-

ering the increasing popularity and fast software development cycles (e.g., desktop

and mobile applications), GUI testing gains more importance as it allows us to

verify the behavior of a system from the user’s perspective. Thus, it can quickly

uncover relevant bugs, which a user could face.

Traditional capture-replay GUI testing approaches do not meet the demands of

developers anymore. Therefore, there is an increasing research activity in model-

based GUI testing, where the user interaction behavior is simulated using a graph-

based model. In the following, we outline different graphical notations to describe

feasible user interactions, and methods to generate and execute test cases from

these models. We discuss the benefits and limitations of the state-of-the-art in GUI

testing research and give a brief outlook about new trends and possibilities to im-

prove the GUI testing automation.

Keywords: Software Testing, System Testing, GUI Testing, Black-box Test-

ing, Grey-box Testing
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1 Introduction

In software testing, an essential part of system testing is to verify a system through its

User Interface (UI) [17]. Simulating possible interactions of a user with the system is a

very cost effective way to validate the functionality of a system and to reveal bugs that

can be triggered by the user.

Over the past years, Graphical User Interfaces [32, 36] (GUIs) have become the

predominant way to interact with electronic devices. A GUI is a collection of widgets

like buttons, text boxes, etc. During the execution of the system, some widgets are

visible and accessible by the user, others might be hidden, or only be available un-

der certain preconditions (e.g., by pressing a certain button first). The user interacts

with the system by directly manipulating these widgets (e.g., pressing a button, typing

characters in a text box, etc.). Each user interaction with a widget triggers an event,

which is a message, generated by the operating system that contains information about

the widget that was used, the type of interaction (e.g., click, double click), and other

data relevant for the interaction (e.g., mouse position). Events might also be generated

elsewhere in the system, e.g., by the network adapter when data arrives which has to

be picked up the system. However, this chapter limits the overview to events that can

be directly triggered by the user.

Each of these events is processed by a particular method in the software, the so-

called event handler. The event handler polls the events it has been assigned to, and

calls other parts of the system according to the data contained in the event. Naturally,

GUI testing can only execute those parts of the system that are reachable from the event

handlers. Throughout this chapter, events are considered as the atomic unit in our GUI

testing. However, for some events, like the input to a text box, the event carries more

complex information that could affect which parts of the system will be executed when

processing the event. This chapter does not discuss ways to generate test input data

and their effect in the GUI testing; it focuses in the test case generation (construction
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of the event sequences). The event handler is executed each time that a corresponding

message is received. The way a user interacts with a GUI can be seen as a sequence of

events, or even as a sequence of calls to the corresponding event handlers.

GUI are always changing, e.g., in the recent years many devices changed from text-

or command-based user interfaces [15] (UI) to graphical user interfaces. For example,

mobile phones, which traditionally are used over a keypad, nowadays are equipped

with touch screens, and the user interacts with purely graphical elements by touching

the screen, or even with gestures.

When testing software through its user interface, GUIs represent a special chal-

lenge. As opposed to, e.g., a keypad-based user interface, where the number of avail-

able buttons limits the possible interactions with the system, the number of possible

interactions with a GUI is only limited by the widgets used in the software, and thus

might become extremely large.

Until now, the most common way to test GUIs is using capture-replay tools (see,

e.g., [11]), where a real user executes a set of predefined use cases on the running sys-

tem. While interacting with the system, all actions such as mouse movement, clicks,

or gestures, are recorded as a test case. These user interactions then can be replayed

anytime to test if the reaction of the system still corresponds to the expected outcome.

However, capture-replay tools require a large amount of human interaction. They are

vulnerable to changes of visual styles of the application, e.g., if buttons are moved to

another position on the screen for the convenience of the user experience, test cases

might have to be recorded again. Further, only sequences that have previously been

recorded can be tested. This is a very time consuming process and puts a strong limi-

tation on the number of test cases that can be performed.

To make GUI testing more feasible in practice, there has been a reasonable amount

of research on automating all aspects of GUI testing, including the generation and ex-

ecution of test cases. The most visible trend in research is model-based GUI testing,

where a graph-based model of possible user interactions with the GUI is used to gen-

erate test cases automatically.

In model-based GUI testing, a system with a GUI is seen as an instance of event-

driven software [39, 13]. The system (which sometimes is called application layer)

performs operations, and the GUI layer facilitates with operations are performed [46].

From the GUI testing perspective, any user interaction with the system is mediated by

the GUI without revealing any information about the underlying system which can be

seen as black-box testing [40], as the structure of the system is not taken into account

during testing. In general, black-box testing can be applied to all levels of software

testing like unit or integration testing [53]. However, this chapter focuses merely on

system level testing.

Model-based GUI testing uses a graph-based model of possible user interactions

with the GUI, where each node represents one particular event that can be triggered

by interaction with a widget in the GUI. Edges between nodes indicate that two events

can be executed consecutively. Hence, a GUI test case can be generated from such a

model by selecting any path which starts with an event that can be triggered without

any precondition. For each test case, an oracle is needed, which decides if this se-

quence is valid or not. Test oracles can be generated automatically (e.g., from require-

ments) or user defined. This chapter does not discuss the generation of test oracles.

3



The user needs to provide an appropriate oracle. The most common oracle, which is

also assumed throughout this chapter, is a crash oracle, which only checks whether

the execution of a given test case does not crash [31, 51]. A crash is considered as an

exception or abnormal termination, which the system cannot continue its normal exe-

cution. More complex oracles can improve the quality of testing. For example, if the

user defines properties based on the functional requirements, then GUI testing can be

used as a conformance testing, which checks if specific functions of the system meet

their requirements.

Obviously, testing all, possibly infinite, sequences of user interactions is not an

option [49, 30, 10]. That is, to efficiently test such a system, techniques that iden-

tify relevant sequences of events are needed that either cover the most relevant user

interactions, or those that lead to program errors.

With a good model, large parts of a system can be tested by exercising only a tiny

portion of the possible user interactions. However, a non-proper model might generate

lots of test cases that execute the same fragment of the system over and over again,

without ever executing other fragments. Models for testing GUIs are a vital research

area [30, 5, 23] which finds increasing applications in industry [10, 27].

In Section 2, three different graph-based models for GUI testing (e.g., [30, 54, 56])

are presented to illustrate how the usage of models in GUI testing has changed in

research in the recent years. Section 3 demonstrates the use of these models in a real

GUI testing framework using the example of the GUITAR system1. It is important to

mention that there are other GUI testing tools that provide similar features as GUITAR,

and that could be used to explain model-based GUI testing in a similar way. The

decision to use GUITAR is solely based on the background of the authors. Section 4

states several properties of GUIs which can be utilized to further improve GUI testing,

and Section 5 gives an outlook about ongoing research which utilizes these properties

to identify relevant test cases more efficiently. The chapter closes with remarks on the

presented techniques, an outlook on recent trends in research, and open problems in

model-based GUI testing.

2 Modeling Feasible User Interactions

In recent years there has been a lot of research on suitable models for automated GUI

testing. These GUI models are used to describe the user interface in terms of feasible

user interactions. Many formal notations (e.g., Petri Nets, Markov Chains, CSP, etc.)

can be used to describe GUIs. However, in current research, graph-based models based

on finite state machines are the dominant way to describe GUIs.

Graph-based GUI models are used to represent all possible sequences of interaction

of a user with the widgets presented on the screen. Even though these models differ in

their details, they all share some basic concepts: a node represents a user interaction

with a graphical element (in most cases called event), and an edge connects two user

interactions that can be taken consecutively.

Some graph-based GUI models store additional information, which can also serve

as a documentation of the proper usage of the GUI. For example in [26, 42, 41], the

1http://guitar.sourceforge.net/
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Unified Modeling Language (UML) is used to represent the GUI structure. UML pro-

vides a rich set of features to capture information about user interactions with the GUI

and also the data associated with the widgets. However, this data is not used during

the test case generation, so for automatic testing, it is sufficient to use a simple graph.

Further, the generation of UML models is time consuming and requires expert knowl-

edge. Also, some UML models can be extracted from the code of the GUI [44], some

manual steps are required as the generated models are not always precise or complete.

Throughout this chapter we focus on models which can be used within the GUITAR

system [25]. Other frameworks exist that provide similar functionality and use simi-

lar models. To avoid confusion between the different models we restrict our overview

to GUITAR models and only mention a few relevant other approaches at this point.

Belli [6, 7] uses another tool called Test Suite Designer (TSD) [3] which also uses a

graph-based model called event sequence graph [8, 4, 9] (ESG). Belli uses a terminol-

ogy related to finite-state machines. However, the semantics of ESG and the graphs

presented in this article are very similar and we refer to, e.g., [3] for a detailed compar-

ison.

There are also other variations of finite state machines used for GUI testing, like

variable finite state machines (VFSMs) [43], which define a FSM and global variables

that are monitored in order to generate test cases. In the following, we restrict our

overview to graph-based models used in the GUITAR system.

2.1 Event Flow Graph

One of the most influential models in GUI testing research is the event-flow graph [33,

34, 34, 16, 37, 45] (EFG). An event-flow graph EFG = 〈E, I, δ〉 is a directed graph.

Each node e ∈ E is an event in the GUI. Each event in I ⊆ E is the set of initial

events which can be executed directly after the application starts. An edge (e, e′) ∈ δ

between two events e, e′ ∈ E states that the event e′ can be executed immediately after

the event e. In particular, if there is no direct edge between two events e, e′, the widget

that triggers e′ is not available after e is executed. This can, for example, be the case

if the widget triggering e′ is in a different window (e.g., a modal dialog) which only

becomes visible by executing another event e′′. So, in this case we have (e, e′) 6∈ δ,

but (e, e′′) ∈ δ, and (e′′, e′) ∈ δ.

A path in the EFG is a sequence of events, which represents a feasible sequence

of user interactions with the GUI. In particular, a path that starts in an initial event

represents a sequence of user interactions that can be executed immediately after the

application is started. Such a path, together with an oracle represents one test case.

This chapter considers only crash oracles and thus, it does not mention it explicitly in

the rest of the chapter.

Definition 1. Given an event-flow graph EFG = 〈E, I, δ〉. A test case is a sequence

of events tc = e0, e1, . . . , en, such that e0 ∈ I and (ei, ei+1) ∈ δ for all 0 ≤ i < n.

The EFG can be seen as the most basic GUI model. It only captures which widgets

are available after an event has been processed. Thus, it allows us to guarantee that the

GUI can accept all sequences of events in our test cases. Later on, we illustrate, how

an EFG can be constructed automatically from an application using a GUI ripper [35].
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2.2 Event Interaction Graph

Similar to the EFG, an Event Interaction Graph [54, 52, 50] (EIG) is a directed graph

where the nodes represent events. The EIG is generated from an EFG. The purpose

of an EIG is to find a compact representation of the GUI for a more efficient test case

generation. In [52], the concept of EIG is motivated by distinguishing three different

types of events:

• Reachability events: are used to open windows or menus. For example to open

a file in the top menu of an application, the user has to click on File which

renders a sub-menu, where Open can be selected. Both File and Open emit

an event. However, only Open is relevant for testing.

• Termination events: are events that close dialogs such as Abort, and Cancel.

These events need a special treatment, since they should not appear in the middle

of a sequence of events.

• System Interaction events: are all other events, such as button clicks, text entry,

etc. System Interaction events are the actual events that should be tested.

The EIG is created from the EFG by removing all reachability events. Predeces-

sors and successors of these reachability events are connected by direct edges after

removing the reachability event. During the test case generation, sequences of events

are selected from the EIG instead of the EFG. For the selected sequences, the test case

generation asserts, that all events are system interaction events and termination events

only occur at the end of a sequence. As the EIG sequences are not executable (be-

cause the reachability events are omitted), the test case generation looks up the shortest

possible sequence in the EFG that contains all events occurring in the EIG sequence.

Omitting the reachability events results in a smaller model and reduces the number of

irrelevant test cases.

The EFG model is created considering all possible user inputs. For example, the

user can click in a menu and then select copy. In fact the action of clicking the menu

does not have any impact into the system state. However, the options in the menu, for

example, Copy, Cut and Paste can impact on the system state and reveal a bug. In this

way, the EIG is proposed [54, 52, 50]. The basic idea is that drop off events in the

EFG will not directly change the system state. The main assumption is that in most

GUIs there are several buttons in one window that are used to carry out completely

independent tasks, e.g., a toolbox usually offers Edit, Copy, Cut and Paste. However,

Edit is unlikely to have a side effect on all the other buttons. Thus, it might not be

efficient to test all combinations of Edit plus one other event.

Figure 1 shows a simple GUI with a menu and 3 options: Cut, Copy and Paste; the

corresponding EFG and EIG. In the EFG model all GUI elements are represented in

the graph, including the Edit option that does not change a system’s state but provides

access to the menu options. In the EIG the Edit option is not represented, since the

model represents only the events that can modify the system’s state.
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(a)

Cut Copy

Paste Edit

(b)

Cut Copy

Paste

(c)

Figure 1: (a) Simple GUI (b) EFG (c) EIG.

2.3 Event Semantic Interaction Graph

While the EFG and the EIG models represent (all) possible sequences of events with

a GUI, the Event Semantic Interaction Graph [56] (ESIG) is used to capture relations

between widgets that modify each other’s properties. Memon et al. [56] define a set

of predicates that represent certain user interactions between widgets over their events.

For example, there is an edge between two events e1 and e2 in the ESIG, if there is

a widget in the GUI whose properties change if the sequence e1; e2 is executed, but

not if only either e1 or e2 is executed. In total, there are 6 different predicates used

to construct edges in the ESIG. For more details on these predicates, we refer to the

related work [56]. Further, the ESIG distinguishes 3 different context. That is, for

each edge between two events e1 and e2, it is recorded, (1) if e1 and e2 are in the same

window, (2) if e1 is in a child-window of e2, or (3) if e1 and e2 are in different windows

but have a common parent window (in any other case, no edge is created).

The ESIG is created using an EIG. A run-time monitoring checks the current state

of GUI widgets after each event. For this state, the changes to the properties of the

widgets and the event leading to this state are recorded. For each two consecutive

events and their corresponding states, an Event Semantic Interaction (ESI) relationship

is defined by evaluating the before mentioned predicates. This results in a matrix that

represents the edges of the ESIG.

While the EFG and EIG are used to generate feasible test cases, the ESIG is used

to sample the test cases that can be generated from the EFG or EIG. That is, the ESIG

aims at identifying an efficient subset of all possible test cases. In that sense the ESIG

is a completely different class of model.

2.4 Discussion

Graph-based GUI models serve two main purposes, (1) Enable the automatic genera-

tion of executable test cases, and (2) support the test case generation to identify relevant

test cases. The EFG is a suitable model for the first purpose. For a given sequence of

events, which should be tested, the EFG can be used to validate if all events in that

sequence can be executed consecutively, or if some intermediate events are needed.

However, the automatic generation of an EFG for a given implementation is a chal-

lenge on GUI testing. It requires powerful tools that can traverse the GUI efficiently.

Later on, the automatic generation of an EFG in the GUITAR system is explained.
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Even though the EFG is suitable to validate the feasibility of a test case, it is not

an optimal model for test case generation. The EFG contains many events that should

not be subject of a test case. For example, when opening a file in the top menu of

an application, usually the user has to click a menu item File, which opens a sub-

menu, and then the user has to click Open. In the EFG, both, File and Open, will

be represented by a node, but testing File in isolation might not be useful. The total

number of events in an EFG might be too large to test all sequences of events with a

particular length.

Figure 2: EFG of TerpWord and Rachota.

Figure 2 presents the EFG for the applications TerpWord and Rachota. In Terp-

Word, the number of generated test cases with a sequence length of 2 is 3,307. In

Rachota, the number of generated test cases with a sequence length of 2 is 1,310. Al-

though Rachota only consists of 154 events, the number of sequences with length 5

would be 6,605,912. Assuming that executing one test case takes 10 seconds, all test

cases will be finally executed in about 764 days on a single machine. Even for appli-

cations of small size, such as TerpWord, the number of test cases generated using only

the EFG tends to become prohibitively large [12, 55]. Therefore, it is crucial to find a

model that helps to identify and generate relevant sequences of events that can serve as

test cases for the user interface of an application.

The EIG confines this problem by using a more abstract model for test case gener-

ation. It omits events that should not be tested explicitly, and thus, it results in a more

compact model. Reducing the size of the model is a very efficient way to reduce the

number of generated test cases. However, abstraction always removes information and

thus, it can happen that EIG-generated test cases are not able to cover more code than

EFG-generated test cases.

Even though the EIG helps to reduce the number of generated test cases, it does not

provide any additional information that can support the test case generation to identify-

ing more relevant test cases. Therefore, ESIG extends the EIG by collecting additional

data about how widgets influence each other. During the construction of the ESIG, the

application is monitored, and if a user interaction with one event influences a property

of another widget, this modification is recorded.
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The most important difference between the three models is that EFG and EIG are

models representing the GUI structure, while the ESIG represents particular user inter-

actions between GUI elements. That is, the first two models are used to identify (all)

possible user interactions with the GUI, while the third one is used to sample the set

of possible event sequences to identify a special class of test cases. As, even for small

programs, the number of test cases, which can be generated from an EIG (or EFG)

tends to become large, the combination of models that capture possible user interac-

tions and those that help to identify relevant sequences of user interactions (e.g., ESIG)

is extremely important. The importance of these combined models is also visibly stated

in recent research, e.g., in [57, 55, 10].

3 Model-based GUI Testing with GUITAR

As mentioned before, the benefit of using a graph-based model of the GUI structure is

that the generation and execution of GUI test cases can be automated. In the following,

the necessary steps for a fully automated GUI testing are illustrated using the GUITAR

system. GUITAR defines both an automated model-based testing process and a corre-

sponding set of tools. In contrast to capture-replay tools, GUITAR automatically builds

a model from the GUI, generates test cases from the obtained model, and replays the

generated test cases on the GUI. Figure 3 presents an overview of the GUITAR system,

which can roughly be subdivided in the following steps:

GUI

(1) GUI Ripper

(2) EFG Construction (3) Test Case Generator

(4) Replayer

AUT

Figure 3: Overview of the GUITAR system.

• Step 1: the GUI structure of the application under test (AUT) is recorded using a

GUI ripper, which represents the widgets of the GUI, such as windows, buttons,

and text boxes.

• Step 2: the recorded GUI structure serves as an input to the EFG Construction,

which automatically constructs the EFG that is used for the test case generation

later on.

• Step 3: the Test Case Generator samples paths from the EFG which will serve

as test cases in the next step.
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• Step 4: all generated test cases are executed by the Replayer. The Replayer

creates log files of the executed test cases, which can be investigated, e.g., for

potentially thrown exceptions.

Throughout the rest of this section the running example from Figure 4 is used to explain

the different steps in GUITAR. The GUI of this application consists of a main window

and a dialog. When the application starts, the main window provides the user a button,

which opens a dialog. In the dialog, the user can either click the button Do Something

or Close Dialog, which leads back to the main window.

Figure 4: The GUI of the Example Application.

3.1 GUI Ripper

The GUI ripper executes the application under test (AUT) and records the GUI struc-

ture (see Algorithm 1). A GUI structure represents widgets (e.g., windows, buttons,

text boxes) and their corresponding properties (e.g., location, height, width). The

recorded widget properties are needed to identify these widgets later during test case

execution (see step 4).

Algorithm 1: Ripping of the GUI.

Input: AUT

Output: GUI structure

begin1

run AUT2

find main window3

recordWindow(main window)4

quit AUT5

begin recordWindow(window)6

store window in GUI structure7

foreach widget in window do8

store widget in GUI structure9

trigger widget event10

if event opens new window then11

recordWindow(new window)12

endif13

endfch14

end15

end16

When executing the AUT, the GUI ripper starts to enumerate all widgets of the main

window (line 4) using reflection. For each found widget, the GUI ripper determines the
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actual type (that is, Button, Text Box, etc.) and then triggers an event associated with

this particular widget (line 10), e.g., a click on a button, or a selection of a menu item.

In practice, not every widget is relevant for GUI testing, for example, a Label which

only displays text, can also receive a mouse click, however, it is not likely that the

corresponding event handler is implemented, or will execute real code in the AUT.

Therefore, the GUI ripper in GUITAR only supports the following types of events:

• Action Event: clicking a button or selecting a check box. Note, the GUI ripper

does not simulate a mouse click, but invokes a method of the button object to

click the button.

• Editable Text Event: inserting a predefined string into an editable text box. The

GUI ripper does not perform a key stroke, but invokes a method of the text box

object to insert the string.

• Selection Event: selection of items in tables, menus, and list boxes, and also

nodes in tree views.

If a click on a button opens a new window, for example a dialog, the GUI rip-

per continues enumerating the widgets of this new window (line 12). So, the ripping

process records the GUI structure of the application recursively. It stops, if all found

windows have been explored. Note that the ripping process cannot guarantee to find

all widgets of the AUT, since the application itself might be hostile or even faulty. For

example, if the GUI opens a new window in the background, the GUI ripper will not be

able to find it. These problems tend to be of a technical nature and their severity might

differ depending on the used platform. The tester can manually improve the recorded

GUI structure according to the needed requirements of the AUT.

Beside the properties of the widgets, the GUI ripper records the type of each widget.

A widget type states, which changes the corresponding event performs on the GUI. This

information is needed, to generate an EFG from the obtained GUI structure (see step

2). During the ripping of the GUI, one of the following types is assigned to each found

widget:

• Terminal: the event closes the current window.

• Restricted Focus: the event opens a modal window.

• Unrestricted Focus: the event opens a regular window.

• System Interaction: the event does not influence the GUI.

With reflection, functions and attributes of objects can be queried without knowing

their actual class. The GUI structure, which is considered as the output of the GUI

ripper, consists of one XML document. Figure 5 shows a snippet of the GUI structure

of the example application. Each widget has a unique id (widget id) to identify it in the

further steps in the GUITAR system. Unfortunately, in the actual GUI of an application,

widgets do not have this unique widget id. Thus, the properties of a widget are used as

a heuristic, to identify the widgets during test case execution.
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1 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>

2 <GUIStructure>

3 <GUI>

4 <Window>

5 <Attributes>

6 <Property>

7 <Name>Title</Name>

8 <Value>Main Window</Value>

9 </Property>

10 <Property>

11 <Name>Modal</Name>

12 <Value>false</Value>

13 </Property>

14 <Property>

15 <Name>Rootwindow</Name>

16 <Value>true</Value>

17 </Property>

18 </Attributes>

19 </Window>

20 <Container>

21 <Contents>

22 <Container>

23 <Attributes>

24 <Property>

25 <Name>ID</Name>

26 <Value>w3719315156</Value>

27 </Property>

28 <Property>

29 <Name>Class</Name>

30 <Value>javax.swing.JFrame</Value>

31 </Property>

32 <Property>

33 <Name>Type</Name>

34 <Value>SYSTEM INTERACTION</Value>

35 </Property>

36 </Attributes>

37 </Container>

38 </Contents>

39 </Container>

40 </GUIStructure>

41 </GUI>

Figure 5: Snippet of the GUI structure in XML.

3.2 EFG Construction

The recorded GUI structure serves as an input to the EFG Construction, which auto-

matically constructs the EFG that is used for the test case generation later on. While the

GUI structure contains information about windows, widgets, and their corresponding

properties, the EFG represents a more abstract view that contains the events and their

following events. For the test case generation this abstract view is sufficient. However,

for the execution of the test cases, the GUI structure (and the containing information)

is needed in order to identify windows and widgets.

The EFG construction iterates over all windows in the GUI structure and creates a

single EFG for each window. Later, these EFGs are connected to one EFG representing

the entire application.

For each window in the GUI structure, the EFG construction creates an event for

the window itself and the containing widgets. Events are identified using a unique event
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id which is linked to the widget id in the GUI structure. Then, the EFG construction

connects events of the window based on their widget properties. For instance, if an

event e1 represents a window, and an event e2 an enabled button in this window, then

an edge from e1 to e2 is created in the EFG. Assume, that e2 is associated to a disabled

button, then no edge between e1 and e2 is created, because the event cannot be triggered

if the window appears. Note that the GUI ripper performs a dynamic analysis and

thus, the fact if a widget is enabled or disabled during the ripping strongly depends

on the environment. For example, user data stored by the application might affect the

availability of some widgets, but also the time or execution if a calendar widget is used.

The single EFGs of each window are then connected to one EFG using the widget

types described in step 1. For instance, if a widget is type of Restricted Focus, then the

EFG constructions creates an edge between the event which opens the window, and the

event which represents the opened window itself. If a widget is type of Terminal, then

the EFG construction creates an edge from the event of the opened window itself to the

event which formerly opened that window. So, the single EFGs are connected to one

EFG of the application.

While the widget id is used by the Replayer, the event id is considered to distinctly

identify an event during test case generation. This enables the support of multiple

events per widget in a future work. Figure 6 shows the EFG of the example application.

Open Dialog

Do Something

Close Dialog

Figure 6: Event-flow Graph of the Example Application.

GUITAR stores the EFG in an adjacency matrix (see Figure 7). The columns and

rows of an adjacency matrix contain the events of the application. Each cell expresses,

if there exist a relation between the pair of events (value = 1) or not (value = 0). The

EFG construction outputs the adjacency matrix to a XML document. A snippet of this

XML document is shown in Figure 8.

Open Dialog Do Something Close Dialog

Open Dialog 0 1 1

Do Something 0 1 0

Close Dialog 1 0 0

Figure 7: EFG Adjacency Matrix of the Example Application.
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1 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>

2 <EFG>

3 <Events>

4 <Event>

5 <EventId>e3719315156</EventId>

6 <WidgetId>w3719315156</WidgetId>

7 <Type>SYSTEM INTERACTION</Type>

8 <Initial>true</Initial>

9 <Action>edu.umd.cs.guitar.event.JFCActionHandler</Action>

10 </Event>

11 <Event>

12 <EventId>e3719315160</EventId>

13 <WidgetId>w3719315160</WidgetId>

14 <Type>SYSTEM INTERACTION</Type>

15 <Initial>true</Initial>

16 <Action>edu.umd.cs.guitar.event.JFCActionHandler</Action>

17 </Event>

18 <Event>

19 <EventId>e3719315164</EventId>

20 <WidgetId>w3719315164</WidgetId>

21 <Type>SYSTEM INTERACTION</Type>

22 <Initial>true</Initial>

23 <Action>edu.umd.cs.guitar.event.JFCActionHandler</Action>

24 </Event>

25 </Events>

26 <EventGraph>

27 <Row>

28 <E>1</E>

29 <E>1</E>

30 <E>1</E>

31 </Row>

32 <Row>

33 <E>1</E>

34 <E>1</E>

35 <E>1</E>

36 </Row>

37 <Row>

38 <E>1</E>

39 <E>1</E>

40 <E>1</E>

41 </Row>

42 </EventGraph>

43 </EFG>

Figure 8: Snippet of the EFG in XML.

3.3 Test Case Generator

From the EFG, a test case can be constructed by selecting an arbitrary path from an

initial event (that is, an event without predecessor) to any other event. This can be done

manually, for instance, a test engineer starts with selecting one of the initial events

in the EFG. This event forms the first event in the test case. Then, the tester follows

one outgoing edge to select the second event for the test case, etc. However, manually

selecting test cases is time consuming and GUITAR supports different automatic test

case generation algorithms. GUITAR is a flexible system, which provides interfaces to

implement several test case generators. For brevity of exposure, this section describes

only one test case generation algorithm [25] which can be applied for each of the GUI

models presented in Section 2.

The test case generator picks a fixed number n of events from the provided model.
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These events can either be selected randomly (random strategy), or, for example, by

picking one event and then all events on a path of length n − 1 starting in this event

(fixed-length strategy). Note that the sequence of selected events do not necessarily

constitute a path starting with an initial event (that is, the events do not represent an

executable test case). Therefore, a path in the EFG has to be found, which starts from

an initial event and contains all events from the selected sequence in the right ordering.

This involves adding additional events, such as, a prefix path from an initial event to the

first event in the sequence, as well as intermediate events that connect two consecutive

events in the sequence if no direct connection is available in the EFG. In particular, if

the sequence is sampled from a more abstract model, such as EIG or ESIG, the events

that are hidden by the abstraction have to be added in order to generate an executable

test case.

In Figure 9 all generated test cases of length n = 2 for the example application are

shown. Thus, each test case covers one edge in the EFG. Events in the bold font rep-

resent the actual events under test, while events in the regular font state automatically

inserted intermediate events, so-called reaching steps. Further, each test case is stored

in one XML document to be replayed later on (see Figure 10).

tc1 = Open Dialog→ Do Something

tc2 = Open Dialog→ Close Dialog

tc3 = Open Dialog→ Do Something→ Close Dialog

tc4 = Open Dialog→ Do Something→ Do Something

tc5 = Open Dialog→ Close Dialog→ Open Dialog

Figure 9: Example of a Test Case Generation of Length 2.

1 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>

2 <TestCase>

3 <Step>

4 <EventId>e3719315160</EventId>

5 <ReachingStep>false</ReachingStep>

6 </Step>

7 <Step>

8 <EventId>e3719315160</EventId>

9 <ReachingStep>false</ReachingStep>

10 </Step>

11 </TestCase>

Figure 10: Snippet of a Test Case in XML.

3.4 Replayer

All generated test cases are executed by the Replayer. The generated test cases, the

EFG and the GUI structure serve as input to the Replayer (see Algorithm 2). For each

test case, the Replayer starts the AUT (line 3) and reads the steps from the test case

(line 4). A step consists of one event to perform (represented by the event id) and a tag

stating if the event is a reaching step or not (true or false). In order to find the event to
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perform, the Replayer looks up the event in the EFG using the event id (line 6). Once

the event id is found, Replayer looks up the corresponding widget of the event in the

GUI structure using the widget id (line 7). Based on the widget properties, the Replayer

tries to find the widget in the GUI (line 8) and to trigger the event (line 10). Similar to

the identification of widgets and events in the GUI ripper, the events are triggered using

reflection. After the event is triggered, the current state of the application is reported

to the oracle (line 12). If the oracle notices an exception, or the widget is not found in

the GUI, the test case is marked as fail and the Replayer cancels the current test case

execution (line 14-15). If all events in one test case have been executed, the Replayer

forces the application to terminate and restarts it for the execution of the next test case.

Note that each test case is marked as success in the beginning. Once all steps of a test

case are executed, the Replayer quits the AUT (line 18).

Algorithm 2: Replaying of Test Cases.

Input: Test Cases, EFG, GUI structure

Output: Result of Test Cases

begin1

foreach Test Case in Test Cases do2

run AUT3

foreach Step in Test Case do4

get event from step5

look up event in EFG6

look up widget in GUI structure7

find widget in GUI8

if widget is found then9

trigger event on widget10

endif11

report state to oracle12

if oracle notices exception or widget is not found then13

mark test case as fail14

cancel test case execution15

endif16

endfch17

quit AUT18

endfch19

end20

In case the GUI is changing during the development progress, the GUI structure

and the EFG might not fit to the AUT anymore. Here, the previous steps (from 1 to 4)

have to be executed again, in order to ensure that the Replayer can find the widgets in

the AUT. Automatically adjusting the model and the test cases to these changes is still

part of ongoing research (e.g., see [22]).

3.5 Discussion

The implementation of GUI testing techniques deals with a lot of technical issues, from

the reliable identification of widgets, via the construction of a consistent model, to the
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generation of executable test cases from the model. In this discussion, a few technical

issues are summarized.

User Settings

As already outlined in the GUITAR system, today’s applications maintain user-defined

settings, e.g., the recent files opened, or the position and the size of the windows. Those

settings are stored in a file when the applications exits, and loaded and applied when

the application starts up. User-defined settings are challenging, since they tend to mod-

ify the GUI structure, which makes it hard to reliably identify widgets during replay.

For instance, the GUI ripper is supposed to record a text editor. After starting the ap-

plication, the caption of the main window is Text Editor Application which is stored

as a property in the GUI structure. Next, the GUI ripper opens an existing file, which

changes the caption of the main window to Text Editor - File.txt. Then, the GUI ripper

closes the application, since all windows have been explored. Assume that the text

editor stores the name of the recently opened file as a user-defined setting. If the appli-

cation is restarted by the Replayer, the text editor automatically opens the recent file,

which directly sets the caption of the main window to Text Editor - File.txt. Since the

property of the main window’s caption is Text Editor Application in the GUI structure,

the Replayer will not be able to identify the main windows. Thus, it is challenging to

ensure the same preconditions, both for the GUI ripper and the Replayer.

Language Localization

A large number of applications are offered in different languages. This feature is called

Language Localization and provides the user an automatic or manual selection of the

application’s input and output language, e.g., English or Arabic. For instance, language

localization defines the texts for the application’s windows and widgets, as well as their

orientation, e.g., from right-to-left instead of left-to-right. For GUI testing, language

localization is challenging in two ways:

• A tester must ensure, that the same language settings are defined for the GUI

ripper and the Replayer. Usually, the application automatically uses the lan-

guage of the operating systems. However, an application may allow changing

the language during runtime, which should be considered when recording the

GUI structure, as this might be triggered by one of the automatically generated

test cases, which in turn will cause all succeeding test cases to fail.

• A tester must ensure, that all supported languages of the application are tested.

For instance, long captions in widgets may lead to a rearranged GUI structure or

even to crashes, if the memory of the caption overflows.

Interleaving

Ensuring the same preconditions for GUI ripping and replaying is crucial. Unfortu-

nately, GUI testing is exposed to non-deterministic behavior, e.g., of the testing en-

vironment, which makes it hard to set fix preconditions. For instance, the operating
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system notifies the user about new software updates ready to download. This notifica-

tion might interleave with the GUI of the application that is currently under test. Then,

the Replayer is not be able, to identify widgets to perform certain events of the test

case. This leads to a failing test case, although the AUT is working properly.

4 Observations of GUI Events

The graph-based models presented so far focus on representing all possible sequences

of events with a GUI to allow automatic generation of possible GUI test cases. How-

ever, not every sequence might be useful and thus, the presented test case generation

algorithms can produce test cases that neither help to increase the code coverage nor

will reveal any previously undetected bugs.

This section presents four observations made while applying the presented tech-

niques to the applications TerpWord2 and Rachota3. TerpWord is described in several

studies [38, 1, 29]. This application is part of an open-source office suite (TerpOf-

fice) developed at the Department of Computer Science of the University of Maryland

by undergraduate students of the senior Software Engineering course. TerpWord is a

simple word processor written in Java. Its GUI is implemented using the Java Swing

toolkit4. Rachota is a time recording system. A user can generate a list of different

tasks that should be considered for time recording. If a user starts working on a certain

task, Rachota tracks the start time and displays the duration of this task. In the end,

the user can check how many hours were spent on each task. Both applications are

implemented using the Swing toolkit.

While testing these applications, it turned out that the ability of a generated test

case case to cover previously uncovered parts of the program is strongly related to

the dependency of the event handlers of consecutive events in that test case. In the

following, events are classified depending on their ability to cover new code and to

reveal bugs.

4.1 Shared Event

In desktop applications it is a common practice to give the user several different ways

to execute one operation. For example, in TerpWord, a user can select the event Copy

from the menu bar, from the tool bar, or by pressing a key combination. Even though

the elements in the user interface are all different, they execute the same code in the

application.

Having one event handler that processes events from different widgets is an efficient

way to avoid duplicated functionality in the source code. If at least two events share

the same handler, it is called a shared event.

An example of a shared event handler is shown in Figure 11, which shows a sim-

plified snippet of the TerpWord source code. The class constructor creates a menu item

m (line 4) and a button b (line 8). Both created objects obtain exactly the same action

2http://www.cs.umd.edu/ atif/TerpOfficeWeb/TerpOfficeV4.0/TerpWord/index.html
3http://rachota.sourceforge.net
4http://java.sun.com/javase/technologies/desktop/
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command, which is done via the method call of setActionCommand (line 5, 9), and

the same action listener (line 6, 10) using setActionListener. An action com-

mand represents an unique identifier for a certain event, an action listener is responsible

for handling the event when it occurs. Since TerpWord uses the Java Swing toolkit, all

events assigned to an action listener are handled in the actionPerformed method

(line 15). The action command is extracted from an action event object (line 17) and

then evaluated for executing the corresponding event handler (line 18, 29).

1 public class EkitCore extends JPanel implements ActionListener {

2

3 public EkitCore(){

4 JMenuItem m = new JMenuItem("Copy");

5 m.setActionCommand("textcopy");

6 m.addActionListener(this);

7

8 JButton b = new JButton("Copy");

9 b.setActionCommand("textcopy");

10 b.addActionListener(this);

11

12 // add menu item and button to panel

13 }

14

15 public void actionPerformed(ActionEvent ae){

16 // handle events

17 String command = ae.getActionCommand();

18 }

19 }

Figure 11: Example of Shared Events.

From a black-box perspective the user interaction with m and b are different events.

That is, generating GUI test cases from a model that contains both events will result

in redundant test cases as replacing m by b and vice versa results in the same test

outcome. Removing one of both events from the model might increase the efficiency

of the generated test cases.

Even though shared events seem to be a trivial phenomenon, they have a huge

impact on the efficiency of model-based GUI testing. For example, in [1] it is reported

that in TerpWord, 28% of the total of event handlers are shared event handlers. That is,

it is not only almost certain to create many redundant test cases in such a model, it is

also likely that many test cases execute the same event handler several times in a row.

For an efficient automation of GUI testing it is crucial to avoid this kind of redundancy

in the graph-based model.

4.2 Independent Event

In many desktop applications, a top menu presents the user buttons for the most com-

mon tasks, such as creating a new file, copying, or printing. These buttons are available

at the same time, and thus can be reached in the GUI models with only one step. How-

ever, their effects are more or less independent, i.e., testing arbitrary sequences of these

events will have the same effect as testing them in isolation.

In TerpWord, for example, a user can copy selected text to the clipboard via the
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event sequence 〈Edit,Copy〉. The user also can print the document via the event

sequence 〈File,Print〉 in the top menu of the application (see Figure 12). Using

the test case generator SequenceLength presented in section 3.3, an event sequence

〈Edit,Copy,File,Print〉 will be generated for a test case length n = 2. Note

that the events {File,Edit} are reachable steps and do not count regarding the test

case length.

Figure 12: Copying and Printing in TerpWord.

Most often, events such as {Copy,Print} do not have a so-called dependency,

since Copy and Print perform completely different tasks. Figure 13 shows a simpli-

fied implementation of the events Copy and Print in TerpWord. In line 11, the

selected text is copied to the clipboard by calling the method copy of the object

clipboard. Furthermore, in line 15, the current document is sent to the printer

by invoking the method print of object printer. In this code snippet, the handlers

of these two events do not influence each other, and then, do not share a dependency.

1 public class EkitCore extends JPanel implements ActionListener {

2

3 public EkitCore(){

4 //...

5 }

6

7 public void actionPerformed(ActionEvent ae){

8 String command = ae.getActionCommand();

9 if ( command.equals("textcopy") ){

10 // copy text to clipboard

11 clipboard.copy(selectedText);

12 }

13 else if ( command.equals("print") ){

14 // print document

15 printer.print(document);

16 }

17 }

18 }

Figure 13: Example of Independent Events.

Two events are independent event if they do not communicate with each other. That

is, they neither exchange data directly (e.g., by passing parameters) nor use any shared

20



global variables. From a black-box perspective the user interactions Copy and Print

it is obvious, that these two events are independent. For test case generation it would

be more efficient to discard those event sequences, which are not dependent. However

for an efficient test case generation it is crucial to avoid generation of test cases with

sequences of independent events.

4.3 Visible Event Dependencies

Previously, independent events are mentioned, which can be executed in any ordering

without affecting each other. For a more efficient test case generation, the exact oppo-

site becomes more interesting. Then dependencies between events are identified, such

that preceding one event by another executes different parts of the source code and thus

results in improved test coverage.

Events can depend on each other for various reasons. For example, one event might

only enabled if a specific event occurred before, or one event depends on the input data

of previous event. In this context, event dependency means any kind of user interactions

between a set of at least two events.

Figure 14: Enabled and Disabled Events in Rachota.

Figure 14 shows the dialog which appears, if the user wants to add a new task.

Beside of a couple of text boxes (Description, Category, Notes), the dialog contains

a set of check boxes, e.g., Notification of tasks at:. When the dialog comes up, this

check box is initially deselected. This implies, that some other widgets, i.e., Start

automatically, are disabled, since it is not allowed to automatically start the notification

before no notification time is set in the corresponding text boxes, which are initially

disabled as well. The text boxes for setting the notification time, and the check box

start automatically are enabled, if the user enables the check box Notification of tasks

at:. So, one event is able to change the properties of a set of other widgets on the GUI,

and thus, is able to enable and disable succeeding events. In this example, the check

boxes and the text boxes are dependent on a preceding event, because they can only be
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used if the notification is enabled. During the construction of the EFG, this behavior of

the GUI has to be considered, otherwise some widgets and their corresponding events

on the GUI might be discarded for testing.

This dependency between events can be detected without analyzing the source

code. Extending the GUI ripper and models to make use of these visible dependencies,

e.g., by privileging sequences with visible dependencies during test case generation,

can lead to more efficient test cases.

4.4 Invisible Event Dependencies

Events can also influence each other over shared variables. That is, an event handler

might execute different operations while handling an event depending on, e.g., the state

of a global variable. If another event handler modifies this global variable, then there

exists an invisible event dependency between the corresponding events.

For example, Figure 15 shows two screen shots of the main window of the Terp-

Word application. In TerpWord, the user can mainly interact with the application using

the menu bar, the tool bar and the main text box. One feature of TerpWord is the split

pane, which can be enabled and disabled. Once the split pane is enabled, TerpWord

shows the corresponding HTML format of the typed text. When the user calls the op-

eration to copy highlighted text to the clipboard, if the split pane is not yet enabled,

TerpWord copies the text of the upper text box into the clipboard, otherwise the text of

the lower text box is copied to the clipboard.

Figure 15: Copying in TerpWord.

This example goes beyond the previously stated example of enabled and disabled

events in Rachota. Here, the same event, i.e., copy some text into the clipboard, is

triggered, but it leads to different functionality. Thus, the event Copy has also a de-

pendency to preceding events triggered on the GUI. From a black-box perspective, it

not possible to identify the dependency of the event Copy without analyzing the data

modified by the application.
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5 Extended Model-based GUI Testing

The previous observations can be used to sample the possible sequences of events with

a GUI more efficiently. However, the observations relate to properties of the source

code, which are not available when testing the system from a black-box perspective.

That is, in addition to the previously mentioned models of possible user interactions

(EFG, EIG and ESIG), another graph-based model has to be created from the source

code of the system. This model helps to consolidate events that execute the same event

handlers (shared events), avoid the generation of sequences of independent events, and

capture data dependencies between events (visible/invisible event dependencies). Even

though this model is generated from the source code, the test case generation itself will

only consider the resulting model source code of the AUT. That is, the resulting testing

approach can be seen as a grey-box GUI testing approach.

5.1 Event-Dependency Graph

The grey-box approach utilizes two different models of the GUI during test case gen-

eration. It uses an event-flow graph (EFG) [30] to represent the possible sequences in

which events can occur, and an event-dependency graph (EDG) to represent data de-

pendencies between events (e.g., an event writes a field which is later read by another

event). Both models are directed graphs where each node corresponds to one event in

the GUI. The key idea of the EDG model is to find out dependencies between events.

An event-dependency graph EDG = 〈E,ψ〉 is a directed graph where, like in the

EFG, each node in E represents a GUI event. Note that in contrast to the EFG, an EDG

does not have initial events, since it represents data dependency and not control-flow.

An edge (e, w, e′) ∈ ψ is labeled with a weight w. The weight w ∈ N
+ indicates the

data dependency between e and e′.

The edge value is computed as follows: All fields which are written in the event

handler of e are collected in a set W . All fields that are read in the event handler of

e′ are collected in a set R. For each event handler, it follows potential method calls,

collects these fields, and places them in set W and R respectively. The edge from e to

e′ is labeled with the size of the intersection of these set |R ∩W |.
A path π = ei . . . ej in the EDG represents a sequence of events, where the ex-

ecution of one event always changes fields which are read by the succeeding event.

However, it is not necessary that two events in question can be executed consecutively

in the GUI. The benefit of these sequences is that the execution of one event might

change relevant fields for the execution of its successor and causes this one to execute

other code fragments. This can lead to a higher code coverage and further reduce the

amount of code that is tested redundantly.

Since the EDG has no initial event, and succeeding events on a path in the EDG

might not be directly executable in the GUI, one EDG path is an abstract test case

defined as:

Definition 2. Given an event-dependency graphEDG = 〈E,ψ〉. An abstract test case

is sequence of events π = ei, . . . , ej , such that (ek, ek+1) ∈ δ for all i ≤ k < j.
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Algorithm 3: Construction of the EDG.

Input: P : Program,

〈E, I, δ〉 : Event-flow graph

Output: 〈E′, ψ〉 : Event-dependency graph

begin1

E′ = E2

W = {},R = {}3

foreach (e in E) do4

W = getFieldsWritten(e, P )5

foreach (e′ in E) do6

R = getFieldsRead(e′, P )7

if ((R ∩W ) 6= ∅) then8

w = |R ∩W |9

ψ = ψ ∪ (e, w, e′)10

endif11

endfch12

endfch13

end14

Algorithm 3 shows how the EDG is constructed. The algorithm takes the pro-

gram P and the corresponding event-flow graph EFG as input, and returns an event-

dependency graph EDG. Since both EFG and EDG refer to the same set of events, E

is copied to E′ (line 2). Then, it iterates over all pairs of events e, e′ (line 4).

The method getFieldsWritten is called and returns a set W of all fields that

are written during the execution of the event handler of e (line 5). Then, the method

getFieldsRead is called that returns a set R of all fields which are read during the

execution of the event handler of e′ (line 7).

If the intersection of R and W is not empty (line 8), a new edge is added to the

EDG that is labeled with the size of the intersection (line 10). Note that the algorithm

does not create an edge between events if the intersection of R and W is empty. In this

case, there is no data dependency between both events and thus, they are not directly

connected (otherwise the EDG would be fully connected).

5.2 Test Case Generation

The test case generation is built out of two consecutive steps. First, it selects poten-

tially interesting sequences of events, called abstract test cases, from the EDG using

Algorithm 4. Second, it uses the abstract test cases to generate executable test cases

from the EFG using Algorithm 5.

Algorithm 4 takes an EDG and two parameters as input: len gives the maximum

length of the abstract test cases to be generated, and top gives the maximum number

for abstract test cases to be generated for each event. The algorithm returns a set Π of

abstract test cases. These are later used for generating executable test cases.

For each event e ∈ E a new set Π′ of abstract test cases is created, which initially is

empty (line 2). As long as the size of this set is smaller than top (line 5), further abstract
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Algorithm 4: Generating abstract test cases.

Input: 〈E,ψ〉 : Event-dependency graph,

len : max length of abstract test case,

top : max number of abstract test cases per event

Output: Π : set of abstract test cases

begin1

Sequences of events Π = {}2

foreach Event e ∈ E do3

Sequences of events Π′ = {}4

while |Π′| < top do5

Sequence of events π = e6

Event e′ = e7

while |π| < len ∧ post(e′) 6= {} do8

e′ = bestSucc(e′,Π)9

π = π • e′10

endw11

if π ∈ Π then break12

Π′ = Π′ ∪ {π}13

endw14

Π = Π ∪Π′
15

endfch16

return Π17

end18

test cases are added (line 6). Each such abstract test case π initially contains only e

(as it looks for sequences of events that start on e). While the length of π is smaller

than len (line 8), and the first element of π still has successors, the method bestSucc

is used to find the best possible successor and add it to the beginning of π (line 9).

The method bestSucc uses a minimax strategy to identify the best successor, unless

this successor will lead us on a path which is already in Π′. In this case, bestSucc

returns the second best choice. The minimax strategy is used to minimize the selection

of events with low dependencies.

The loop in line 5 terminates either, if it has collected top abstract test cases that

start with the event e or, if the algorithm detects a path twice (line 12). In that case,

bestSucc cannot find a suitable path that has not been visited so far.

For each abstract test case in Π, at least one executable test case is generated. How-

ever, the abstract test cases are not necessarily executable, as consecutive events might

have no direct connection in the EFG. Therefore, Algorithm 5 finds one EFG path for

each of these abstract test cases, which starts in an initial event of the EFG. Note that

the only case, where such a path does not exist is, if the application is terminated be-

tween two events execution. In that case, the sequence is split into two sequences that

later on are tested immediately after each other.

Algorithm 5 takes an EFG and the set Π of abstract test cases computed by Algo-

rithm 4 as input, and returns a set of paths in the EFG which start in an initial event.

For each sequence of events ei . . . ej in Π (line 3), a path tc is created (line 5). The
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Algorithm 5: Conversion from abstract test cases to executable test cases.

Input: 〈E, I, δ〉 : Event-flow graph,

Π : set of abstract test cases

Output: T : Set of executable test cases

begin1

Sequences of events T = {}2

foreach Sequence ei, . . . , ej in Π do3

pick e0 from I4

Path tc = shortestPath(e0, ei)5

for k = i to j − 1 do6

tc = tc • shortestPath(ek, ek+1)7

endfor8

T = T ∪ {tc}9

endfch10

return T11

end12

shortest path is picked from an event e0 ∈ I to ei, and then iterate over the events in

the abstract test cases and always add the shortest path between succeeding events to

tc (line 7). Then tc is added to the set T (line 9). Since paths in T start in an initial

event of the EFG, it can immediately executed as a test case.

5.3 Implementation

GUITAR was extended to support grey-box GUI testing. A bytecode analysis that

collects additional information about the data dependency between event handlers is

added. The new graph-based model (EDG) for test case generation that utilizes this in-

formation is generated, and an extended test case generation is implemented. Figure 16

presents an overview of the GUITAR system including the grey-box extensions. The

grey-highlighted steps in the overview represent the parts of the GUITAR system that

are modified or added.

GUI

Bytecode

(1) GUI Ripper

(2) EFG Construction

(2.*) EDG Construction

(3) Test Case Generator

(4) Replayer

AUT

Figure 16: The GUITAR System, including the Grey-box Extensions.

The GUI ripper is enhanced, such that, for each widget, the event handlers associ-
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ated with this widget are stored in the GUI structure. This information is needed during

the bytecode analysis, which is performed as part of the EDG construction. The byte-

code analysis records all program fields that are read or written by each event handler,

that is, the functions getFieldsRead and getFieldsWritten in Algorithm 3.

These data dependencies between the event handlers are used to construct the EDG.

Then, the test case generation utilizes the EFG obtained during the GUI ripping step

and the EDG to construct executable test cases as described in Algorithm 4.

As the main steps of the extended GUITAR system only contain minor changes

compared to the original system described in Section 2, the rest of this section focuses

on the bytecode analysis which represents the most relevant extension.

Bytecode is a platform-independent binary format and exists for many program-

ming language and runtime systems. Bytecode can be considered as the target format

of compiled Java Programs [28]. During the execution of Java programs, the Java

Virtual Machine maps platform-independent instructions of the bytecode into concrete

machine instructions of the current system. Bytecode instructions are oriented towards

the high-level programming language, from which they are compiled. Often this makes

the bytecode so similar to the program it originated from, that it might be possible to

reconstruct the complete source code from the bytecode.

Since bytecode is the executable format of Java programs, it provides both the

opportunity to run and to analyze those programs out of the box. A clear benefit of

bytecode for static program analysis is that a certain degree of validity of the bytecode

can be assumed, and many errors, such as syntax or type errors, do not have to be

considered during the analysis.

Figure 17 shows a Java class and the corresponding translation into bytecode. The

Java class consists of an instance field (or field) x, a static field y, and 4 methods

(getX , setX , increaseY , and EventHandler). Bytecode has the same flat structure

like assembly instructions, which can easily be traversed in a sequential fashion.

In bytecode, each class has a fully-qualified name which allows to distinctly iden-

tify them. This is important, for example, if the same class name is used in different

packages. That is, from the bytecode it is possible to identify the object-oriented struc-

ture of the original Java program. Thus, information about classes, methods and fields

are still available in the bytecode.

The Java Virtual Machine is a stack machine, that is, local fields no longer have

a name and are represented by slots on a stack. Therefore, all instructions read their

operands as an input from the stack and write the results of the execution back on the

stack. Some instructions receive additional non-stack operands, which supply refer-

ences to field names, method signatures or other values from a constant pool.

In the implementation the bytecode analysis framework ASM5 is used. Other

frameworks such as BCEL6 or Soot7 could be used equally well. First, the bytecode is

translated into a syntax tree. Then, the syntax tree is traversed using the visitor design

pattern [18]. Because of the flat structure of bytecode, the instructions of a method are

visited sequentially via a loop.

5http://asm.ow2.org/
6http://commons.apache.org/bcel/
7http://www.sable.mcgill.ca/soot/

27



Java: Bytecode:

1 public class Example{

2

3 int x;

4

5 static int y;

6

7 public int getX() {

8 return x;

9 }

10

11

12 public void setX(int x) {

13 this.x = x;

14 }

15

16

17

18 public int increaseY() {

19 return y++;

20 }

21

22

23

24

25

26 public void EventHandler(){

27 setX(1);

28 }

29

30

31 }

1 public class Example{

2

3 i x

4

5 static i y

6

7 public getX()i

8 aload 0

9 getfield Example.x : i

10 ireturn

11

12 public setX(i)v

13 aload 0

14 iload 1

15 putfield Example.x : i

16 return

17

18 public increaseY()i

19 getstatic Example.y : i

20 dup

21 iconst_1

22 iadd

23 putstatic Example.y : i

24 ireturn

25

26 public EventHandler()v

27 aload 0

28 iconst_1

29 invokevirtual Example.setX(i)v

30

31 }

Figure 17: Comparison of Java Source Code and Bytecode.

The bytecode analysis investigates all classes of the AUT and stores the information

in a class database (ClassDB). It is possible to restrict the set of classes that should be

considered for the bytecode analysis. Usually, only the application classes are analyzed

and third-party libraries are ignored. However, in the implementation a so-called scope

can be defined. The scope defines the classes (.class files or JAR archives) of an AUT

that are analyzed. The ClassDB models the dependencies between fields, methods

and classes of the AUT. Further, the ClassDB is used as a data container and as an

intermediate step towards the construction of the EDG.

Class 

contains 

Method 

Field 

contains 

reads 

writes 

calls 

1 

* 

1 

* 

* 

* 

* 

* * 

* 

Figure 18: Relationship between fields, methods, and classes.

In the following, an overview of the bytecode analysis is provided, which artifacts
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of the bytecode are used, and how they find their way into the EDG construction.

Figure 18 illustrates the relationships between classes, methods, and fields (and also

represents the ER-diagram of the ClassDB used in the bytecode analysis).

Classes are the starting point for the analysis, because they contain both methods

and fields. The relationship contains describes, that methods and fields are distinctly

associated with their classes.

First, the methods of each class in the AUT are analyzed. Note that it is important

to inspect all methods, and not only those which are considered as event handlers. For

instance, in method EventHandler in 17, the method setX is called, which per-

forms write access on the field x. In order to recognize this write access, the bytecode

analysis has to determine, that method EventHandler called method setX. Thus,

there exist a recursive relationship calls between methods.

Then, for each method the bytecode analysis fetches all fields that are read and

written in the method and stores them in two distinct lists. These lists also contain the

fields of the called methods. Java distinguishes between instance fields and class fields

(marked with the keyword static). While instance fields belong to objects, class fields

are not related to a particular instance of a class. For both types of fields, there exist

a read and write instruction in the bytecode (see 17): getfield gets the value of

an object field; putfield set a value of an object field; getstatic gets the value

of a static field; putstatic sets a value of a static field. Both instance fields and

class fields are treated the same way. That is, not only class fields are mapped to a

certain class in the ClassDB, but also instance fields. Moreover, instance fields are not

mapped to their objects. Further, the bytecode analysis does not distinguish between

instance and class methods and, thus, is not reliable regarding polymorphism. In order

to address these issues, a more in-depth data- and control-flow analysis is subject to

future work.

Once all classes, methods and fields are visited and stored in the ClassDB, the Al-

gorithm 3 can use this information to construct the EDG. For instance, if the algorithm

requests the getFieldsRead and getFieldsWritten for a certain event e, the

ClassDB aggregates all called method within the event handler of e. For each called

method, and for the event handler itself, the read and written fields are collected and re-

turned to the EDG construction. In this way, possible dependencies between events can

be obtained. Further, due to this shallow analysis of the bytecode, the computation time

for building the ClassDB and the EDG construction is low, even for big applications.

5.4 Discussion

Similar to the ESIG discussed in Section 2.3, the EDG is used to sample a set of possi-

ble sequences of events with the GUI given by the EFG. While the ESIG captures de-

pendencies between events based on a set of predefined predicates, the EDG captures

simple data dependencies. Since, until now, no comparable benchmarks are available,

it is not clear if predicates are too restrictive or data dependencies are too general.

Both, ESIG and EDG-based testing can be seen as grey-box testing as both require

information about the source code. However, the ESIG is generated using run-time

monitors and thus depends on the used GUI ripper, while the EDG is generated using
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static analysis. In general, an EDG could also be generated using runtime monitors and

vice versa, but at this point there are no such implementations available.

It is important to note that the grey-box approach does not explore the state space

of the AUTs [24, 2, 14], it explores the possible user interaction of an AUT. Both

approaches (state space and interaction exploration) can be used together. Moreover,

the grey-box approach uses sequences of events, which eventually bring the system

to a failure state. In this way, the information used in grey-box approach is based on

possible user interactions with the GUI instead of information about the system state

space as in software model-checkers.

There are clear benefits when more information about the AUT is available and

incorporated into the test case generation. It allows the test case generator to generate

more efficient test cases and to avoid redundant ones. However, mining information

from the source code of an application (that is, static analysis) has several limitations.

First of all, the source code has to be available in a form that supports the analysis.

Further, the information that can be mined from source code is very limited by the

complexity of the problem and always is a trade-off between precision and perfor-

mance.

The extent to which the source code of an application can be used for test case

generation is flexible. For example, symbolic execution for testing GUI based software

could be considered [20][19] to find adequate inputs for test cases. While symbolic

execution is a powerful technique to find precise input values, its applicability is limited

due to the complexity of the used algorithms. Therefore, limiting the analysis of the

source code to identify simple data dependencies without tracking the actual value of

fields is more applicable for reasonably sized applications. However, the sweet spot

between mining detailed information for more efficient test cases and an efficient and

scalable implementation remains the subject of research.

The bottleneck of any automated GUI model construction is the GUI-ripper. Com-

puting a model of the GUI structure can be understood as the problem of computing

which parts of the source code are reachable. This problem is not decidable for the

general case. Thus, any GUI-ripper might introduce some imprecision. That is, why

automated GUI testing has to be judged based on its practical use rather than on its

theoretical contribution.

6 Final Remarks

Model-based testing of GUIs offers the great opportunity to automate large parts of the

GUI testing process. Research has shown that models of possible user interaction with

a GUI can be generated automatically, and also test cases can be executed without any

manual interaction.

With the increasing automation of GUI testing, new challenges arise. The generated

models tend to become extremely large for real software, such that a full exploration

of all possible user interactions, even if restricted to a particular length, tends to be

impossible. Newer models such as the ESIG tackle this problem by representing only a

subset of all possible user interactions, which satisfy some properties that are assumed

to be interesting for testing. Other approaches such as the grey-box extension move in
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same direction. For the future development of automated GUI testing it is mandatory

to find proper models that help to sample the set of possible user interactions with the

GUI. These models will need more information about the GUI and the purpose and

dependencies between the different elements in the GUI. From the current state-of-the-

art, a combination of shallow, and scalable static analysis, together with model-based

(black-box) testing seems to be the most promising direction.

Incorporating information from the source code in the GUI testing automation can

improve many parts of the GUI testing process. The construction of the model, which

right now is done by monitoring the execution during runtime could utilize information

about the widgets defined in the source code, or data dependencies between widgets to

find a model more efficiently and probably identify parts of the model that require

particular user settings.

Future GUI models could use static analysis to identify under which preconditions

an event handler executes different source code fragments and reaches higher code

coverage. Static analysis could also help to avoid unnecessary test cases that will speed

up the entire testing process. Similar approaches already exist in unit testing [21].

During the test case execution, the source code could be analyzed to compute test

input data, which steers the application towards a particular state (for example a crash).

Generating appropriate input data for test cases is crucial to increase the code coverage

and to find bugs efficiently [48]. White-box testing, e.g., Pex focuses on the generation

of input data for unit tests using dynamic symbolic execution [47]. The technique

explores the program’s source code and uses a constraint solver to produce input data,

which achieves high code coverage. This technique could be adapted for GUI testing,

in order to select sequences of dependent events, and to generate useful input data to

the test cases.

Unfortunately, static analysis is a complex topic, and mining information from

source code can be computational expensive or even impossible. For example, for

an application which allows the user to modify data in a complex database, or which

uses services from the web, it will be impossible to identify proper input data using

static analysis as the amount of data will either be too large, or parts of the source code

will not be available. Therefore, finding the right balance between a detailed analysis

of the source code and testing will remain an important research topic.

Throughout this chapter, only sequential programs have been considered. For par-

allel programs there are several problems, which have not been considered here. For

example, in an e-mail client, any sequence of user interaction might be interleaved by

an incoming e-mail. The models presented in this chapter cannot cover this situation.

New models are required which are able to consider events, which are triggered by the

environment, and not by the user.

In conclusion, model-based GUI testing has made advances in the past years and

is already frequently applied in practice. GUI models are improving in order to create

samples from feasible user interaction models to be more efficient and effective. Prob-

ably, sampling models with specific goals can achieve better results, e.g., sampling

only regions with new requirements or only with a determined dependency between

widgets. Moreover, technical issues related to the GUI ripper and Replayer need fur-

ther research effort to minimize the testing process when GUI evolution is considered.

GUIs are evolving and different widgets, platforms and environments are emerging. In

31



this way, it is still hard to validate and extend current models and techniques due to the

lack of available benchmarks. A recent initiative, called COMET - Community Event-

based Testing [16], is moving efforts to create a free and open benchmark for GUI

testing. However, many pressing problems, such as test input, computation of oracles,

and models suitable for parallel systems still require additional research effort.
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sac Campos. The GUISurfer Tool: Towards a Language Independent Approach to

Reverse Engineering GUI Code. In 2nd ACM SIGCHI symposium on Engineer-

ing interactive computing systems, pages 181–186, New York, NY, USA, 2010.

ACM.

[45] Jaymie Strecker and Atif Memon. Relationships between Test Suites, Faults, and

Fault Detection in GUI Testing. In International Conference on Software Testing,

Verification, and Validation, pages 12–21, Washington, DC, USA, 2008. IEEE

Computer Society.

35



[46] Jaymie Strecker and Atif M. Memon. Testing graphical user interfaces. In Ency-

clopedia of Information Science and Technology, Second ed. IGI Global, 2009.

[47] Nikolai Tillmann and Jonathan De Halleux. Pex: white box test generation for

.net. In Proceedings of the 2nd international conference on Tests and proofs,

TAP’08, pages 134–153, Berlin, Heidelberg, 2008. Springer-Verlag.

[48] Willem Visser, Corina S. Pǎsǎreanu, and Sarfraz Khurshid. Test Input Generation

with Java PathFinder. SIGSOFT Softw. Eng. Notes, 29:97–107, July 2004.

[49] Lee White and Husain Almezen. Generating Test Cases for GUI Responsibilities

Using Complete Interaction Sequences. In Proceedings of the 11th International

Symposium on Software Reliability Engineering, pages 110–121, Washington,

DC, USA, 2000. IEEE Computer Society.

[50] Qing Xie and Atif M. Memon. Model-based testing of community-driven open-

source gui applications. In ICSM ’06: Proceedings of the 22nd IEEE Interna-

tional Conference on Software Maintenance, pages 145–154, Washington, DC,

USA, 2006. IEEE Computer Society.

[51] Qing Xie and Atif M. Memon. Designing and comparing automated test oracles

for gui-based software applications. ACM Transactions on Software Engineering

and Methodology, 16(1):4, 2007.

[52] Qing Xie and Atif M. Memon. Using a pilot study to derive a GUI model for

automated testing. ACM Trans. on Softw. Eng. and Method., 2008.

[53] Michal Young and Mauro Pezze. Software Testing and Analysis: Process, Prin-

ciples and Techniques. John Wiley & Sons, 2005.

[54] Xun Yuan, Myra B. Cohen, and Atif M. Memon. GUI Interaction Testing:

Incorporating Event Context. IEEE Transactions on Software Engineering,

99(PrePrints), 2010.

[55] Xun Yuan and Atif M. Memon. Using GUI Run-Time State as Feedback to Gen-

erate Test Cases. In International Conference on Software Engineering (ICSE),

pages 396–405, Washington, DC, USA, 2007. IEEE Computer Society.

[56] Xun Yuan and Atif M. Memon. Generating Event Sequence-Based Test Cases

Using GUI Runtime State Feedback. IEEE Transactions on Software Engineer-

ing, 36:81–95, 2010.

[57] Xun Yuan and Atif M. Memon. Iterative execution-feedback model-directed GUI

testing. Inf. Softw. Technol., 52(5):559–575, 2010.

36


