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Abstract

A fundamental problem in computer science is, stated informally: Given a problem,
how hard is it?. We measure hardness by looking at the following question: Given a
set A whats is the fastest algorithm to determine if “x € A?” We measure the speed
of an algorithm by how long it takes to run on inputs of length n, as a function of n.
For example, sorting a list of length n can be done in roughly nlogn steps.

Obtaining a fast algorithm is only half of the problem. Can you prove that there
is no better algorithm? This is notoriously difficult; however, we can classify problems
into complexity classes where those in the same class are of roughly the same complexity.

In this chapter we define many complexity classes and describe natural problems
that are in them. Our classes go all the way from regular languages to various shades
of undecidable. We then summarize all that is known about these classes.

1 Introduction

A fundamental problem in computer science is, stated informally:
Given a problem, how hard is it?

For a rather concrete problem the answer might be ut will take 2 hours of computing time
on a supercomputer or this will take a team of 10 programmers 2 years to write the program.
For a class of problems of the same type (e.g., sort a list) the complexity usually depends on
the input size. These are the kinds of problems we will consider. Our concern will usually
be how much time or space the problem takes to finish as a function of the input size. Our
problems will be static: usually set membership: Given a string x, is z € A?

Example 1.1 Given a string « € {0,1}" we want to know if it is in 0* (a string of all 0’s).
An algorithm for this problem is to scan the string and keep track of just one thing: have
you seen a 1 or not? As soon as you do, stop and output NO. If you finish the scan and have
not seen a 1 then output YES. Note that this take O(n) steps and O(1) space, and scanned
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the input once. Languages like this are called regular or DSPACE(O(1)) (we will define this
later).

Example 1.2 Given a string z € {0, 1}" we want to know if the number of 0’s equals the
number of 1’s. An algorithm for this problem is to scan the string and keep track of just two
things: the number of 0’s and the number of 1’s. At the end of the scan see if they are the
same. If so then output YES else output NO. This again takes O(n) steps. How much space
does it take? We have to store 2 numbers that are between 0 and n so this takes O(logn)
space. Languages like this are called DSPACE(O(logn)) (we will define this later). This
particular language is also called context free; however we will not be discussing that class
in this chapter.

Most of the sections of this chapter define a complexity class and gives some natural
problems in it. In all cases we are talking about worst case. For example, if we say that
a problem requires n? steps we mean that for any algorithm there is an input of length n
where it takes n? steps. As such some of the problems discussed may not be as complex in
real life if the inputs are not the bad ones. We won’t discuss this further except to say that
a problem might not be quite as bad as it appears here.

We then have additional sections: (1) alook at other complexity measures, (2) a summary
of what we’ve done, (3) a literal discussion what is a natural problem,

The natural problems we consider are mainly from graph theory, games, formal langauge
theory, and logic. A good reference for some of the problems in logic (with proofs) is a book
by Ferrante and Rackoff [22]. There are many natural problems in other areas (e.g., model
checking, artificial intelligence, Economics, Physics); however, to even define these problems
is beyond the scope of this chapter.

There are many complexity classes that we do not discuss in this chapter. How many
complexity classes are there? Literally hundreds. The website Complexity Zoo [2] currently
lists around 500.

2 Time and Space Classes

The material in this chapter is due to Hartmanis and Stearns [29].

We want to classify problems by how much time or space they take to solve as a function
of the length of the input. Say the input is of size n. If the algorithm takes n steps or
n/2 steps or 10n steps we do not want to care about those differences. While the difference
between n and 100n matters in the real world, as a first cut at the complexity it does not.
We need a way to say we don’t care about constants.

Def 2.1 Let f be a monotone increasing function from N to N.

1. O(f) is the class of all functions g such that there exists a constants ng, ¢ such that

(Y > no)lg(n) < cf(n)].



2. Q(f) is the class of all functions g such that there exists a constants ng, ¢ such that

(Vn > no)lg(n) = cf (n)].

When we define problems we code everything into strings over an alphabet. We are
concerned with the complexity of a set of strings.

Notation 2.2 Let A and B be sets.
1. AB={xy|x € AAND y € B}.
2. Atis A--- A (i times). If i = 0 then A is the empty string.
3. Ax=A"uvAtu AU

Notation 2.3 Let X be a finite alphabet (often {a, b} or {0,1}). A problem is a set A C ¥*.
The problem is to, given z, determine if x € A.

Convention 2.4 We will use the term Program informally. To formalize it we would define
a Turing Machine.

Def 2.5 Let T' be a monotone increasing function from N to N. DTIME(T'(n)) is the set of
all sets A C ¥* such that there exists a program M such that

1. If z € A then M(z) =YES.
2. If x ¢ A then M(z) = NO.
3. For all z, M(x) takes time < O(T'(|z])).

Def 2.6 Let S be a monotone increasing function from N to N. DSPACE(S(n)) is the set
of all sets A C ¥* such that there exists a program M such that

1. If z € A then M(z) =YES.
2. If v ¢ Athen M(x) = NO.
3. For all z, M (x) uses space < O(S(|z])).

Def 2.7 One can define a function being in DTIME(7'(n)) or DSPACE(S(n)) similarly.

The program referred to in Definition 2.5 is deterministic. On input x there is only one
way for a computation to go. We now define nondeterministic programs. We consider them
mathematical devices. We do not consider them to be real. However, they will be useful for
classifying problems.



Def 2.8 A Nondeterministic Program is a program where, in any state, there is a choice of
actions to take. For example, a line might read

r=x+10Ry:=y+14

If M is a nondeterminism program then what does it mean to run M (z)? We do not
define this. However, we do say what it means for M (x) to accept.

Def 2.9 Let M be a nondeterministic program. M (x) accepts if there is some choice of
instructions so that it accepts. M (z) rejects if there is no choice of instructions that makes
it accept.

Def 2.10 Let T' be a monotone increasing function from N to N. NTIME(T'(n)) is the set
of all sets A C ¥* such that there exists a program M such that

1. If x € A then M (x) accepts.
2. If x ¢ A then M (z) rejects.

3. For all x any computation path of M (z) takes time < O(T(|z|)).

Def 2.11 Let S be a monotone increasing function from N to N. NSPACE(S(n)) is the set
of all sets A C ¥* such that there exists a nondeterministic program M such that

1. If x € A then M(x) =YES.
2. If © ¢ A then M(z) = NO.

3. For all z any computation path of M (z) uses space < O(S(|z|)).

Note 2.12 There is no really useful way to define a nondeterministic device computing a
function.

Notation 2.13 The class DTIME(n°W) is | J7°, DTIME(n?). We may use O(1) inside other
time or space classes. The meaning will be clear from context.

We will be interested in seeing which time or space class a problem is in. Within a class
there may be harder and easier problems. There will be problems that are (informally)
the hardest in that class. We do not define completeness rigorously; however we state the
following property of it;

Fact 2.14 Let X and Y be complexity classes such that X C'Y (proper containment). If a
problem A is Y -complete then A ¢ X .



3 Relations Between Classes

Throughout this section think of 7'(n) and S(n) as increasing.
The following theorem is trivial.

Theorem 3.1 Let T'(n) and S(n) be computable functions.
1. DTIME(T (n)) € NTIME(T (n)).
2. DSPACE(S(n)) € NSPACE(S(n)).
3. DTIME(T'(n)) C
4. NTIME(T (n))
The following theorem is easy but not trivial.

Theorem 3.2 Let T'(n) and S(n) be computable functions.
1. NTIME(T (n)) € DTIME(2°T™)). (Just simulate all possible paths.)

2. NTIME(T'(n)) € DSPACE(O(T'(n))). (Just simulate all possible paths— keep a counter

for which path you are simulating.)
The following theorems have somewhat clever proofs.

Theorem 3.3 Let S(n) be a computable functions.

1. NSPACE(S(n)) € DSPACE(O(S(n)?)). This was proven by Savitch [62] and is in any
textbooks on complexity theory.

2. NSPACE(S(n)) € DTIME(O(25™). This seems to be folklore.

The following are by diagonalization. Hence the sets produced are not natural. Even so,
the existence of such sets will allow us to later show natural sets that are in one complexity
class and not in a lower one.

Theorem 3.4 For all T'(n) there is a set A € DTIME(T(n)logT(n))) — DTIME(T'(n)).
(The T'(n)logT(n) comes from some overhead in simulating a k-tape Turing Machine with
a 2-tape Turing Machine.) This is The Time Hierarchy Theorem and is due to Hartmanis
and Stearns [29].

Theorem 3.5 Let S; and Sy be computable functions. Assume lim,,_ . g;gz; = 00. Then

there exists a set A € DSPACE(S;(n)) — DSPACE(Sy(n)). Hence DSPACE(Sy(n)) C
DSPACE(S)(n)). This is The Space Hierarchy Theorem and seems to be folklore.




4 DSPACE(1)=Regular Languages

There are many different definitions of regular languages that are all equivalent to each other.
We present them in the next definition Recall that DSPACE(1) allows for a constant amount
of time, not just 1 step.

Def 4.1 A language A is regular (Henceforth REG) if it satisfies any of the equivalent
conditions below.

1. A € DSPACE(1).
2. A € NSPACE(1).

3. A is in DSPACE(1)) by a program that, on every computation path, only scans the
input once. (This is equivalent to being recognized by a deterministic finite automata,

abbreviated DFA.)

4. Aisin NSPACE(1) by a program that, on every computation path, only scans the input
once. (This is equivalent to being recognized by a nondeterministic finite automata,
abbreviated NDFA. When you convert an NDFA to a DFA you may get an exponential
blowup in the number of states.)

5. A is generated by a regular expression (we define this later).

The equivalence of DSPACE(1)-scan-once and NSPACE(1)-scan-once is due to Rabin and
Scott [56] and is usually stated as DFA=NDFA. It is in all textbooks on formal language

theory. The equivalence of DSPACE(1) and DSPACE(1)-scan once is folklore but has its
origins in the Rabin-Scott paper.
We define regular expressions « and the language they generate L(«).

Def 4.2 Let X be a finite alphabet.
1. 0 (the empty set) is a regular expression. L((})) = (.
2. e (the empty string) is a regular expression. L(e) = {e}.
3. For all o € 3, 0 is a regular expression. L(o) = {o}.
4. If a and [ are regular expressions then:

(a) (aU ) is a regular expression. L(aU ) = L(a) UL(B).

(b) ap is a regular expression. L(af) = L(a)L(B). (Recall that if A is a set and B
is a set then AB = {xy |z € A AND y € B}.)

(c) o is a regular expression. L(a*) = L(«a)*. (Recall that if A is a set then A* =
A"UAUAAU AAA---.



We give examples or regular sets after the next bit of notation.
Def 4.3 Let X be a finite set. Let w € ¥*. Let 0 € ¥. Then #,(w) is the number of ¢’s in
w.

Def 4.4 Let z,y,z € N. Then x =y (mod z) means that z divides x — y.

Example 4.5 The following sets are regular.

{w € {a,b} | #4(w) = #4(w) + 10  (mod 21)}

You can replace 10 and 21 with any constants.

{w € {a,b}" | abab is a prefix of w}
{w € {a,b}" | abab is a suffix of w}

{w € {a,b}" | abab is a substring of w}

You can replace abab with any finite string.
If Ay, Ay are regular languages then so are A; N Ay, A; U Ay and A;. Hence any Boolean
combination of the above is also a regular language. For example

{w € {a,b}" | abab is a substring of w AND #,(w) # #,(w) +10 (mod 21)}.

Example 4.6 Throughout this example w = d,d,,_1---dy € {0,1,2,3,4,5,6,7,8,9}* is
thought of as a number in base 10.
Is it easy to tell if w =0 (mod 2)7 Yes: w =0 (mod 2) iff dy =0 (mod 2). Hence
{w|w=0 (mod 2)} is regular.
Is it easy to tell if w =0 (mod 3)? Yes: w =0 (mod 3) iff dy+di+---+d, =0 (mod 3).
By keeping a running total mod 3 one can show that
{w|w=0 (mod 3)} is regular.
There are also well known divisibility tricks for divisibility by 4,5,6,8,9,10,11. What about

7?7 There are two questions to ask here

o Is there a trick for divisibility by 77 (This question is not rigorous.)
e Is the set DIV7 ={w |w =0 (mod 7)} regular?
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One can interpret the second question as a rigorous restatement of the first. When you
see the answer you may want to reconsider that interpretation.
We show that {w | w =0 (mod 7)} is regular. Note that

10° =1 (mod 7)
10! =3 (mod 7)
10> =2 (mod 7)
10> =6 (mod 7)
10 =4 (mod 7)
10° =5 (mod 7)
10° =1 (mod 7)

o

Hence d,d,_1d,_5 - - - dqy is equivalent mod 7 to the following:

dy + 3dy + 2dy + 6d3 + 4dy + 5ds +
ds + 3d; + 2dg + 6dy + 4diy + 5du +
- - +

3dis + 2dys 6dis + 4dig + ddir
+ 4+ o+ 4+ s+ s+

We can use this to show that the set DIV'7 is regular. To determine if w € DIV7, when
scanning w, one only needs to keep track of (1) the weighted sum mod 7, and (2) the index

mod 6 of 7. This would lead to a 42-state finite automata. Whether you want to consider
this a trick for divisibility by 7 or not is a matter of taste.

Example 4.7 We want to look at sets like

{(b,c,A)|be AAND c+1 ¢ A}.

Are such sets regular? We first need to have a way to represent such sets. We represent
a number x by a string of x 0’s and then a 1 and then we do not care what comes next.
So for example 000100 represents 3 and so does 000110. we will denote this by saying that
0001 = * represents 3 (we may have more *’s). We represent finite sets by a bit vector. For
example 11101 represents the set {0,1,2,4}

How do we represent a triple? We use the alphabet {0,1}3. We give an example. The
triple (3,4,{0,1,2,4,7}) is represented by the following (The top line and the b, ¢, A are not
there. They are, as we say in the Ed biz, visual aids.)

01112(3[4|5|6|T7
bl1O[0O10]|1]0]=*]=*]|x
clO{0O[O[0|1]x*|x]=x
Al1|1[1]0[{1]|0|0]1

With this representation the set
{(b,c,A) | be AAND c+1¢ A}

8



is regular.

Much more can be said. We define a class of formulas ¢(Z, X), such that the set of (@, A)

-

that make them true is regular. We will use this again in Section 18.
We will only use the following symbols.

1.

2.

The logical symbols A, =, (3).

Variables x1, z9, x3, ... that range over N. (We use z,y, z when there are less than 4
variables.)

. Variables Xj, X3, X3,... that range over finite subsets of N. (We use X,Y,Z when

there are less than 4 variables.)
Symbols: =, <, €, S (meaning S(z) =z + 1).
Constants: 0,1,2,3,.. ..

Convention: We write  + ¢ instead of S(S(---S(x))---). Note that + is not in our
language.

We call this WS1S: Weak Second order Theory of One Successor. Weak Second order means
quantify over finite sets. What Does One Successor Mean? Our basic objects are numbers.
We could view numbers as strings in unary. In that case S(z) = z1. If our basic objects
were strings in {0, 1}* then we could have two successors Sy(z) = 0 and S;(z) = x1. The
theory of those strings is WS2S.

Def 4.8 An Atomic Formulas is:

1

[\

=~

(@38

For any ¢ € N, x = y + ¢ is an Atomic Formula.
For any ¢ € N, x < y + ¢ is an Atomic Formula.
For any ¢,d € N, z = y + ¢ (mod d) is an Atomic Formula.
For any ¢ € N, z + ¢ € X is an Atomic Formula.

For any c € N, X =Y + ¢ is an Atomic Formula.

Def 4.9 A WS1S Formula is:

1.

2.

Any atomic formula is a WS1S formula.

If ¢1, ¢po are WS1S formulas then so are

(a) ¢1 A ¢27
(b) ¢1V @



(c) —¢n
3. If ¢(z1,..., 20, X1,...,Xp) is @ WSIS-Formula then so are

(a) (Fx)[p(x1, .. 20, X1, .o, X))
(b) (3Xi)[o(x1,. .., 20, X1, ..., X0n)]

—

For any WS1S formula ¢(Z, X) the following set is regular:

—, —,

{(@, A) | (@, A) is true }.

The proof uses the closure of regular languages under union (for V), intersection (for A),
complementation (for —), and projection (for (3)). The closure under projection involves
taking an NDFA and converting it to a DFA. This results in an exponential blowup in the
number of states. Hence the DFA’s one obtains can be quite large.

5 L = DSPACE(logn)

For this section we let L = DSPACE(logn). It is known that REG C L. We give examples
of sets in L — REG.

Example 5.1 Intuitively, any set where you need to keep track of the number of a’s or
any unbounded quantity is not regular. Formally you would prove the following non-regular
using the pumping lemma (perhaps together with closure properties). We do not state or
use this lemma. The following sets are in L — REG.

{a"V" | n € N}
{a"b™ | n,m € N AND n < m}

{w | #a(w) = #p(w)}
All of these are in L since you need only keep track of the number of a’s and b’s which
will take O(logn) space.

Example 5.2 Consider the following problem. The input is an undirected graph together
with two nodes.

CONN = {(G, s,t)| thereis a path in G from s to ¢ }.

CONN is in NSPACE(logn): start with a pointer to s and guess a neighbor z; to goto.
Then guess a neighbor x5 of x1 to goto. Keep doing this. If you ever get to ¢ then stop and
accept.
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Is CONN in L? This problem was open for a long time. There were reasons to thing that
CONN is in L, namely that CONN is in a randomized version of L. Omer Reingold [59]
proved CONN € L in 2008. The proof is very difficult.

What if the graph is directed? This problem is thought to be harder and will be discussed
in the next section.

Example 5.3 The following problems are in L — REG:
1. Given a graph, is it planar? (See [6].)

2. Given two trees are they isomorphic? (See [39].)

3. Given two planar graphs, are they isomorphic? (See [17].)

W

. Given n permutations py, ..., p,, is their product the identity. (See [68].)

6 NL = NSPACE(logn)

For this section we let NL. = NSPACE(logn). Clearly L. C NL. It is not known if this
inclusion is proper; however, most theorists think L # NL.

Example 6.1 Consider the problem

DCONN = {(G,s,t) | there is a path in G from s to ¢ }.

(The graph G is directed. This is important.)

This problem may look similar to CON N; however, it is not. Thought experiment: let
A € NSPACE(logn). Let x € ¥". View the space that the program uses while computing
on z to be on a tape of length O(logn), which we call the worktape. Since the worktape is
of length O(logn) there are only a polynomial number of possibilities for it. One can form
a directed graph by taking the vertices to be the possible worktapes, and put an edge from
u to v if it is possible to go (recall that the machine is nondeterministic), in one step of M,
from u to v This directed graph has a path from the start state to an accept state iff M(z)
accepts. Hence we can reduce any problem in NSPACE(logn) to the problem DCONN.
Formally DCON N is NL-complete.

If DCONN € L then L = NL. Hence most theorists think DCONN ¢ L.

7 P = DTIME(n®W)

Let P = DTIME(n®W), also called Polynomial Time. NL C P by Theorem 3.3.2. It is not
known if this inclusion is proper; however, most theorists think NL # P.
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P is considered by theorists to be the very definition of feasible (though see the next
section on randomized polynomial time). Why is polynomial time so revered?

Polynomial time is usually contrasted with brute force search. Lets say you want to,
given a Boolean formula ¢(zq,...,z,), determine if there is some truth assignment that
makes it true. The naive approach is to look at all 2" possibilities. Lets say you could use
symmetries to cut it down to 2771, You are still doing brute force search, with a few tricks.
But if you got an algorithm in n'% steps then you are most definitely not doing brute force
search. Even though the exponent is large it is likely that the cleverness used to avoid brute
force search can be further exploited to obtain a practical algorithm.

We present several natural problems in P. Some are expressed as functions rather than
sets as that is more natural for them. They are not believed to be in NL.

Example 7.1 If G = (V, E) is a graph then U C V' is a vertex cover if every edge in E has
some vertex of U as an endpoint. Let

VCi7 = {G | G has a vertex cover of size 17 }.

VCi7 € P by the following simple algorithm: look at all subsets of 17 vertices and for
each one check if it’s a vertex cover. This take O(n'") time. Can we do better? We'll
consider this in Section 9.

Example 7.2 Given a weighted graph G = (V, E) (no negative weights) and a source node
s, find, for each node t, the shortest path from s to ¢t. The weights are in binary and have
maximum length L. Hence the input is of size O(|V|*L). All of the arithmetic operations the
algorithm does take time O(L). Dijkstra’s algorithm [20] takes O(|V|?) arithmetic operations,
hence time O(|V|>L) which is polynomial in the length of the input. A later implementation
using a Fibonacci heap takes O(|E| 4 |V|log(]V|) arithmetic operations, so time O((|E| +
|V log(|V'|)L) which is an improvement if the graph is sparse (|E| = O(|V])).

Example 7.3 Given a weighted graphs G = (V, E) find, for all pairs of vertices {s,t} the
shortest path between s and ¢. The weights are in binary and have maximum length L.
Hence the input is of size O(|]V|?L). All of the arithmetic operations the algorithm does
take time O(L). The Floyd-Warshall algorithm solves this problem in O(|V|?) arithmetic
operations so time O(|V|3L) which is polynomial in the length of the input. The algorithm
was discovered independently by Floyd [24], Warshall [74], and Roy [61] (it is in many
algorithms textbooks).

Example 7.4 Given a weighted graph G = (V, E) find a min weight spanning tree. The
weights are in binary and have maximum length L. Hence the input is of size O(|V[*L).
All of the arithmetic operations the algorithms do take time O(L). There are basically two
algorithms for this, one due to J. Kruskal [35] and one due to Prim [53] (both are in many
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algorithms textbooks). We omit the time bound obtained by multiplying the number of
arithmetic operations by O(L). Kruskal’s algorithm originally took O(Elog V') arithmetic
operations. Prim’s algorithm originally took O(|V|?); however, a later implementation using
a Fibonacci heap and adjacency lists takes O(|E| + |V |log|V]). The best known algorithm
for this problem is due to Chazelle [14] and runs in time O(na(m,n)) where a(m,n) is the
inverse of the Ackermann function (see Section 19). Note that this is very close to linear. If
this is also a lower bound then the result would be optimal and Ackermann’s function would
have popped up in a natural place. Alas, Chazelle thinks this is unlikely.

Example 7.5 Linear programming: Given a matrix A and a two vectors b and ¢ find the
vector of x that maximizes ¢ - x while satisfying the constraint Az < b.

Linear programming is particularly interesting. This problem is extremely practical.
The Simplex method, developed by Dantzig in 1947, solves it quickly in most cases but is
not polynomial time. It is widely used and in all operations research textbooks and some
algorithms textbooks. In 1979 Khachiyan [33] showed it is in polynomial time using the
ellipsoid method. This algorithm is important theoretically in that the problem is now in
P; however, it is slow in practice. In 1984 Karmarkar [32] produced a method that is fast in
both theory and practice.

8 Randomized Polynomial Time: R

Def 8.1 A problem A is in Randomized Polynomial Time (henceforth R) if there is a
program that flips coins such that the following happens:

1. On all inputs of length n, the program halts in time polynomial in n.
2. If © € A then the program will ACCEPT with probability > 2/3.
3. If x ¢ A then the program will REJECT.

Note 8.2 The 2/3 can be replaced by any ¢ > 0 and even by 2% where n is the length of
the input.

Clearly P C R. Before 1988 the theory community did not have a strong opinion on if
P = R, however the opinion would have been a tendency towards P # R. Michael Sipser [65]
was an exception in that he believed P = R. In 1988 Nisan and Wigderson [50] showed that,
given certain quite reasonable unproven hypothesis from complexity theory, P = R. Since
then the consensus has been that P = R. This remains unproven.

At one time the quintessential natural problem in R that was not known to be in P
was primality. Solovay and Strassen [67] and Rabin [57] showed primality is in R. Their
algorithms are practical and used. Rabin has pointed out that if the error is (say) 1/2'% then
that is less than the probability that a cosmic ray will hit a computer and flip a bit to make
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it incorrect. The algorithm by Rabin is sometimes called the Miller-Rabin primality test
since Miller had a similar deterministic algorithm that depended on the extended Riemann
hypothesis, an unproven conjectures in Number Theory.

In 2002, Agrawal-Kayal-Saxena [5] proven that primality is in P. Their algorithm is slow
and not in use. However, it is very interesting to see that primality really is in P.

There is still one natural problem that is in R that is not yet known to be in P:

Example 8.3 Given a polynomial q(x1,...,x,) and a prime p, is the polynomial identically
0 over mod p?

Here is the randomized algorithm: Pick a random by,...,b, € {0,...,p — 1}. Evaluate
q(b1,...,b,) (mod p). If it is not zero then we KNOW that ¢(z1,...,x,) is not identically
zero. If it is zero then we are not sure. So we plug in another random by, ...,b,. Do this n
times. If you ever get a nonzero value then you know ¢(x1, ..., x,) is not identically zero. If
you always get a zero then you know with high probability that g(x1,...,z,) is identically
Zero.

The following randomized class has also been defined; however, there are no natural
problems in it that are not also in R.

Def 8.4 A problem A is in Bounded Probabilistic Polynomial Time (henceforth BPP) if
there is a program that flips coins such that the following happens:

1. On all inputs of length n, the program halts in time polynomial in n.
2. If x € A then the program will ACCEPT with probability > 2/3.
3. If z € A then the program will REJECTS with probability > 2/3.

1

Note 8.5 The 2/3 can be replaced by any € > 0 and even by 5

the input.

where n is the length of

Clearly R C BPP. Everything above about “P = R?” also applies to “P = BPP?”. In
particular theorists currently think P = BPP but this remains unproven. We will have a bit
more to say about BPP in Section 10.

9 NP = NTIME(n°W)

Let NP = NTIME(n°W), also called Nondeterministic Polynomial Time. Clearly P C
R C NP. It is not known if these inclusions are proper; however, most theorists think
P =R C NP. We will discuss their thoughts on P vs NP in more depth later.

What about BPP? It is not known if BPP C NP. Since most theorists think P = BPP
and P # NP, most theorists think BPP C NP. But it’s not even known that BPP C NP. In
Section 10 we will state an upper bound for BPP.
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NP is the most important class in computer science. It contains natural problems that
we want to solve but currently seem hard to solve. Alas, there are reasons to think they will
always be hard to to solve. But there are ways around that. Maybe.

We give two equivalent definitions of NP.

Def 9.1 Let A be a set.
1. A€ NP if A € NTIME(n®W).
2. A € NP if there exists a polynomial p and a set B € P such that
A=A{z|(3y)llz| < p(lz|) AND (z,y) € B]}.

The intuition here is that y is a short easily verifiable proof that x € A. We often call
y the witness.

Note that if A € NP then it is quite possible that A ¢ NP. Most theorists think that NP
is not closed under complementation. Hence we need a name for the complement of NP.

Def 9.2 A set A is in co-NP if A is in NP.
Most theorists think NP # co-NP.

Example 9.3 A Boolean Formula ¢(Z) is satisfiable if there exists b such that ¢(b) = TRUE.
Let SAT be the set of all satisfiable formulas. S AT € NP. The intuition is that the satisfying
assignment b is the witness for ¢ € SAT. Formally p(¢(x1,...,x,)) = n and

- -

B ={(6,5) | ¢(3) = TRUE}.
Note that while finding the assignment b such that gb(l;) = T RUFE may be hard, verifying

that gb(l;) = TRUE is easy. The easy verification is not good news for SAT, this is not a
first step to showing that SAT is easy or in P. But it does indicate why this problem may
be hard: finding the right b is hard.

You might think that SAT requires a long time to solve since you seem to need to go
through all 2" possible assignments. And this may be true. But we do not know it to be
true. What haunts many complexity theorists is that someone will find a very clever way
to avoid the brute force search. What comforts many complexity theorists is that SAT is

NP-complete. Hence it is unlikely to be in P.

Example 9.4 A graph G is Eulerian if there is a path that hits every edge at exactly once.
Let EULER be the set of all Eulerian graphs. FULFER € NP. The cycle that hits every
edge at least once is the witness that G is Eulerian.

You might think that EULFER requires a long time to solve since you seem to need to
go through all possible cycles. And this may be true. But we do not know it to be true.
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What haunts many complexity theorists is that someone will be find a very clever way to
avoid the brute force search.

If you believed the last paragraph then YOU”VE BEEN PUNKED! EULER can be
solved quickly! It turns out that a graph is in EULFER iff every vertex has even degree.
Hence EULER € P. Euler, who was quite clever, figured this out in 1736. (though he did
not use the terminology of polynomial time). This is just the kind of thing I warned about
when talking about SAT. There could just some clever idea out there we haven’t thought of
yet!

Example 9.5 A graph G is Hamiltonian if there is a path that hits every verter exactly
once. Let HAM be the set of all Hamiltonian graphs. HAM &€ NP. The cycle that hits
every vertex at least once is the witness that GG is Hamiltonian.

You might think that HAM requires a long time to solve since you seem to need to go
through all possible cycles. You may also be thinking, given that I fooled you with FEULER,
that you and The Who don’t get fooled again[76]. However this time, for better or worse,
HAM does really seem unlikely to be in P. In particular HAM is NP-complete and hence
unlikely to be in P.

Example 9.6 If G = (V, E) is a graph then U C V is a vertez cover if every edge in E has
some vertex of U as an endpoint. Let

VC ={(G,k) | G has a vertex cover of size k }.

VC' € NP. The vertex cover itself is the witness. V' is NP-complete and hence unlikely
to be in P.

Example 9.7 The Set Cover Problem) is as follows: Given Si,...,S,, € {1,...,n} and a
number L, is there a set I C {1,...,m} of size L such that J,.,; S; = U, Si.

The L subsets together is the witness. Set Cover is NP-complete and hence unlikely to
be in P.

SAT, HAM, VC, SC are all NP-complete. So are thousands of natural problems from
many different fields. Actually this means that, from the viewpoint of polynomial time, They
are all the same problem! Are these problems not in P? Does P = NP? This is still not
known.
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9.1 Reasons to Think P # NP and some Intelligent Objections

Scott Aaronson [3] gives very good reasons to think that P # NP. William Gasarch [27] gives
a simplified version of Scott’s reasons. Richard Lipton [41] gives some intelligent objections.
We summarize some of their thoughts, and others, below.

1) For P # NP

Many of the problems that are NP-complete have been worked on for many years, even
before these terms were formally defined. Mathematicians knew that graphs had an Euler
cycle iff every vertex had even degree and were looking for a similar characterization for
HAM graphs. If P = NP then we would have found the algorithm by now.

2) For P = NP
We keep getting better and better algorithms in surprising ways. We give an example.
Recall from Section 7:

Viz = {G | G has a vertex cover of size 17 }.

As noted in Section 7 VCj7 can be solved in time O(n!'"). It would seem that one cannot
do better. AH- but one can! We give two ways to do better to illustrate how surprising
algorithms are.

Using the Graph Minor Theorem: Robertson and Seymore proved The Graph Minor Theorem
in a series of 25 papers titled Graph Minors I, Graph Minors II, etc. Suffice it to say that
this theorem is difficult. We do not state the theorem; however, we state a definition and a
corollary.

Def 9.8 If GG is a graph then H is a minor of G if one can obtain H by performing the
following operations on G in some order (1) remove a vertex and all the adjacent vertices,
(2) remove an edge, (3) contract an edge— that is, remove it but then merge the two
endpoints into one vertex.

Def 9.9 Let G be a set of graphs. G is closed under minors if, for all G € G if H is a minor
of G then H € G. Examples: (1) planar graphs, (2) graphs that can be drawn in the plane
with at most 100 crossings, (3) V7.

Def 9.10 Let G be a set of graphs. G has a finite obstruction set (FOS) if there exists a
finite set of graphs H,, Hs, ..., H,, such that G € G iff none of the H; are a minor of G.
Intuitively, if G ¢ G then there must be a solid reason for it. It was known (before the Graph
Minor Theorem) that the set of planar graphs has FOS { K5, K33}.

Fact 9.11 Fiz H. There is an O(n?) algorithm to tell if H is a minor of G. (This was also
proven by Robertson and Seymour).
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We now state the important corollary of the Graph Minor Theorem:

Corollary 9.12 If G is a set of graphs that is closed under minors then it has a finite
obstruction set. Using the fact above, any set of graphs closed under minors is in time

O(n?).

In particular, VCy7 is in DTIME(n?). Note that we got a problem into better-time-
bound-than-we-thought class using an incredibly hard theorem in math. Could the same
happen with SAT?

Before the Graph Minor Theorem most algorithms were very clever but didn’t use that
much math and certainly not that much hard math (algorithms in number theory may be an
exception). Hence it was plausible to say if P = NP then we would have found the algorithm
by now. After the Graph Minor Theorem this is a hollow argument. It has been said:

The class P lost its innocence with the Graph Minor Theorem.

We note that the algorithm given above is insane. The constant is ginormous and the
algorithm itself is nonconstructive. It can be made constructive but only be making the
constant even bigger.

Using Bounded Tree Search: There is a clever way to solve V(7 in a bound far better than
O(n'") that does not use hard math. We form a binary tree. At the root put the graph and
the empty set. Take an edge (a,b) of G. One of {a,b} must be in the vertex cover. Make
the left subchild of the root the graph without a and the set {a}. Make the right subchild
of the root the graph without b and the set {b}. Repeat this process. Every node will have
a graph and a set. Do this for 17 levels. If any of them lead to the empty graph then you
are done and the set is the vertex cover of size < 17. This takes O(n) but note the constant
is roughly 2'7.

This algorithm is clever but was not known for a long time. I would like to tell you
that the Graph-Minor-Theorem-algorithm came first, and once it was known to be in far
less than O(n'") people were inspired and thus found the clever algorithm. However, the
actually history is murkier than that. Oh well.

The best known algorithm for V' Cj, is due to Chen, Kanj, and Jia [15] and runs in time
O(1.2738% + kn).

3) For P # NP
Let us step back and ponder how one makes conjectures that are reasonable.

Do Popperian experiments. Karl Popper [52] proposed that scientists should set up experi-
ments that could disprove their theories. That is, experiments that can actually fail. Their
failure to fail gives you more evidence in your conjecture. I do not know how one can do
this for P vs NP. This would be an interesting approach to P vs NP; however, it is not clear
how you would set up such experiments.

Paradigms. Thomas Kuhn [36] proposed that scientists operate within a paradigm and try
to fit everything into that paradigm. Great science happens when you have enough evidence
for the paradigm to shift. However, most of the time the paradigm is fine. If a theory fits
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well into a paradigm, that cannot be ignored. (I do realize that if you take this too seriously
you may end up with group-think). With regard to P vs NP we do know what theorists
believe in a more precise way than usual. There have been two polls taken. In 2002 around
60% of all theorists believed P # NP [25] and in 2012 around 80% of all theorists believed
P # NP [26]. Whether or not you see that as evidence is a matter of taste. We will mention
this poll later in Section 9.2.
3) Explanatory power. If a theory explains much data then perhaps the theory is true. This
is how evolution is verified. It would be hard to do experiments; however, given Fossil and
DNA evidence, evolution seems to explain it pretty well. (I know that it’s not as simple as
that.) Are there a set of random facts that P % NP would help explain? Yes.

The obvious one: P # NP explains why we have not been able to solve all of those
NP-complete problems any faster!

More recent results add to this:

1. Chvatal [16] in 1979 showed that there is an algorithm for Set Cover that returns a
cover of size (Inn) x OPT where OPT is the best one could do.

2. Moshkovitz [48] in 2013 proved that, assuming P # NP, this approximation cannot be
improved.

Why can’t we do better than Inn? Perhaps because P # NP. If this was the only example
it would not be compelling. But there are many such pairs where assuming P # NP would
explain why we have approached these limits.

4) For P = NP:

Fool me once, shame on you, fool me twice, shame on me. There have been surprises
in mathematics and computer science before. And there will be more in the future. We
mention one: NSPACE(S(n)) closed under complementation. While this is not really an
argument for P = NP it is an argument for keeping an open mind.

An intriguing Question: Most people in the theory community think (a) P # NP, (b) we
are very far from being able to prove this, (c¢) if P = NP then this might be by an algorithm
we can figure out today. I offer the following thought experiment and my answer. You are
told that P vs NP has been solved but you are not told in what direction! Do you believe:

e Surely P # NP has been shown since of course P # NP.

e Surely P = NP has been shown since we are nowhere near being able to show anything
remotely like P £ NP. (See Section 9.4 for more on this.)

Personally I would think P = NP was shown.
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9.2 NP Intermediary Problems

Are there any natural problems in NP — P that are not NP-complete? Such sets are called
intermediary. If we knew such sets existed then we would have P # NP. Are there any
candidates for intermediary sets?

Ladner [37] showed in 1975 that if P # NP then there is an intermediary set. While this
is good to know, the set is not natural.

We now give natural problems that may be intermediary.

Example 9.13 Factoring Consider the set
FACT = {(n,m) | (3a < m)[m divides n|}.

1. FACT is clearly in NP. There is no known polynomial time algorithm for FACT.
There is no proof that FFACT is NP-complete. If FACT is in P then this could
probably be used to crack many crypto systems, notably RSA. Hence the lack of a
polytime algorithm is not from lack of trying.

2. Using the unique factorization theorem one can show that FFACT is in co-NP. Hence
it FACT is NP-complete then NP = co-NP. Hence most theorists think F"”ACT is not
NP-complete.

3. The best known algorithm for factoring n is the Number Field Sieve due to Pollard
(see [51] for the history) and runs in time O(exp(c(logn)'/?(loglogn)??)) where ¢ =
(%)1/3 = 1.922999. ... Note that the length of the input is logn so this algorithm runs
in time roughly 20(L"*) where L is the length of the input. This is still exponential
but still better than 205,

4. Peter Shor [63] proved that FACT is in Quantum-P. Some people think this is evidence
that FACT is easier than we thought, perhaps in P. Others think that its evidence
that quantum computers can do things that are not in P.

5. In the poll [26] about P vs NP, respondents were also asked to comment on other
problems. Of the 21 who commented on factoring 8 thought it is in P and 13 thought
it is not in P.

6. Gary Miller and others have said: Number theorists think factoring is in P, whereas
cryptographers hope factoring is not in P.

Example 9.14 The Discrete Log Problem Let p be a prime. Let g be such that, calcu-
lating mod p,

{907917927"'7gp_2}:{]‘72737"‘7p_1}
(This is a set inequality. We are not saying that ¢° =1, g' = 2, etc.)
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Given a number x € {1,...,p — 1} we want to know the unique z such that ¢* = x
(mod p). Note that p, g,z are given in binary so their lengths are bounded by log, p. Hence
we want to find z in time poly in log, p.

Consider the set

DL ={(p,g,7,y) | 3z <y)lg° == (mod p)]}.

1. DL is in NP. (There is one non-obvious part of this: verifying that g is a generator.)
There is no known polynomial time algorithm for DL. There is no proof that DL is
NP-complete. If DL is in P then this could probably be used to crack many crypto
systems, notably Diffie-Helman. Hence the lack of a polytime algorithm is not from
lack of trying.

2. DL is in co-NP. Hence if DL is NP-complete then NP = co-NP which is unlikely.
Hence most theorists think DL is not NP-complete.

3. There are several algorithms for finding the discrete log that take time O(,/p). See the
Wikipedia Entry on Discrete Log for a good overview.

4. Peter Shor [63] proved that DL is in Quantum-P.

5. I have not heard much talk about this problem. In particular, nobody commented on
it for the poll.

Note 9.15 (This note is purely speculative. I am invoking the definition of an intellectual:
One who is an expert in one area and pontificates in another.) Since factoring and discrete
log are important for national security I used to say things like factoring is not known to
be in Polynomial time, or maybe that’s just what the NSA wants us to think!. However, one
thing I glean from reading about the Snowden leaks is that the NSA seems more interested
in bugging your computer before you you encrypt a message, and convincing you to use keys
that aren’t long enough to be secure, than it is in hard number theory.

The sociology of research in crypto has changed enormously in the last 50 years. At one
time only the NSA worked on it, so they could be way ahead of academia and the private
sector. Now many academics, private labs, and businesses work on it. Hence the NSA cannot
be too far ahead. They can read the papers that academics write so they can keep pace.
But they cannot talk to people outside of NSA (and perhaps not even to people inside NSA)
about what they do, which may be a hindrance.

Hence I no longer say anything hinting that the NSA may have solved these problems.
Nor do I think they have a quantum computer in their basement.

Note again that this is all speculative.
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Example 9.16 Graph Isomorphism

GI = {(G1,G3) | G1 and G5 are isomorphic }.

1. GI is clearly in NP. There is no known polynomial time algorithm for it. There is no
proof that it is NP-complete.

2. Even though it has no immediate application there has been much work on it. The
following special cases are known to be in P: (1) if there is a bound on the degree,
(2) if there is a bound on the genus, (3) if there is a bound on the multiplicity of the
eigenvalues for the matrix that represents the graph. There have been connections to
group theory as well.

3. There is an algorithm, due to Luks [43], that runs in time 20(Vnlogn),
4. There is an algorithm, due to Babai [8], runs in time 2(ca™ ",

5. If GI is NP-complete then 38 = IIY (see Section 10 for the definition). Hence most
theorists think G is not NP-complete.

6. In the poll [26] about P vs NP respondents were also asked to comment on other
problems. Of the 21 who commented on Graph Isomorphism (they were not the same
21 who commented on factoring) 14 thought it was in P and 8 thought it was not in
P.

7. 1 give my opinion: Someone will prove P # NP between 200 and 400 years from now;
however, we will still not know if GI is in P. I pick this opinion not because it’s the
most likely but because its the most bizarre.

Example 9.17 Group isomorphism You are given representations of elements ¢1,..., g,
and hq, ..., h, you are also given two n x n tables, one that tells you, for all ¢, 7 what g; * g,
is and one that tells you, for all ¢, 7, what h; * h; is. First check if both tables are for groups
(there is an identity element, every element has an inverse, and x is associative). This can
be done in polynomial time. The real question is then: Are the two groups isomorphic? We
call this problem GPI.

1. GPI is clearly in NP. There is no known polynomial time algorithm for it. There is
no proof that it is NP-complete.

2. A long time ago Lipton, Tarjan, and Zalcstein observed that this problem is in time
nl°827+O00) (they never published it but see [40]). Hence if GPI is NP-complete then
everything in NP would be in time n®1°8™) This seems unlikely though not as devas-
tating as P = NP. Rosenbaum [60] in 2013 obtained a better algorithm for GPI that
runs in time n%%1°827+0M) This was rather difficult. Lipton is quite impressed with it
(see the citation above).
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Example 9.18 Grid Coloring: Imagine coloring every point in the 5 x 5 grid (formally
all points (7, ) where 1 <i,j <5). A monochromatic rectangle (henceforth mono-rect) are
four points that form a rectangle (e.g., (2,2), (2,5), (4,2), (4,5)) that are all the same color.
The following is known [21]: For all ¢ there exists n such that for all c-colorings of the n x n
grid there exists a mono-rect. How big does n have to be? We call a grid c-colorable if you
can color it with ¢ colors and not get any mono-rects.

Consider the following set

GRID = {(n,c) | The n x n grid is c-colorable }.

This set seems to be in NP. But it is not. The input (n,c) is of size logn + log ¢ since
they are written in binary. The witness is a c-coloring of n x n which is of size roughly cn?.
This witness is of size exponential in the input size.

We get around this problem by writing n, ¢ in unary.

GRIDUNARY = {(1",1°) | The n x n grid is c-colorable }.
This problem is in NP. Is it NP-complete? This is unlikely since the set is sparse (see

definition below).

Def 9.19 A set S C ¥* is sparse if there exists a polynomial p such that (Vn)[|S N X" <
p(n)]. Note that this is a good notion of a skinny set since S N X" could be as large as 2".

Mahaney in 1982 [44] proved that if a sparse set is NP-complete then P = NP. Hence it
is unlikely that GRIDUN ARY is NP-complete. Even so, GRIDUN ARY is believed to be
hard.

Consider the following non-sparse variant of the problem: GRIDEXT is the set of all
(1™, 1¢, p) such that

e p is a partial c-coloring of the n x n grid.
e p can be extended to a c-coloring of the entire grid.

GRIDEXT was shown to be NP-complete by Apon, Gasarch, and Lawler [7].

GRIDUNARY and GRIDEXT are examples of problems in Ramsey theory. Most of
them have this same property: they seem to be hard, the natural version is sparse (hence
unlikely to be NP-complete), but the version where you have a partial coloring is NP-
complete.

9.3 Have We Made Any Progress on P vs NP7
No.
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9.4 Seriously, Can you give a more enlightening answer to Have
We Made Any Progress on P vs NP ?

1. There have been strong (sometimes matching) lower bounds on very weak models of
computation. Yao [81] showed (and later Hastad [31, 30] had an alternative proof)
that PARITY of n bits cannot be computed with an AND-OR-NOT circuit that has a
polynomial number of gates and constant depth. Smolensky [66] extended this (with
an entirely different proof) to include Mod m gates where m is a power of an odd prime
[66].

2. Let ACC be the class of functions that can be computed with a polynomial number
of gates and constant depth where we allow AND, OR, NOT and MOD m gates
(they return 0 if the sum of the inputs is = 0 (mod m) and 1 otherwise). In 2014
Williams [79] showed that ACC does not contain NTIME(2"”"). This is an impressive
achievement. This makes one pause to think how much we have to do to get P # NP.

3. There have been some weak lower bounds on space-bounded models of computation.
Ryan Williams [77, 78], proved that (essentially) if your machine has very little space
to work with then SAT requires n'891977 where the exponent approaches 2 cos(27/7)
as the space goes down. Buss and Williams [13] later proved that the techniques used
could not yield a better lower bound.

4. There are proofs that certain techniques will not suffice. These include techniques
from computability theory [9], current methods with circuits [58], and a hybrid of the
two [4].

5. Ketan Mulmuley has devised a research program called Geometric Complexity Theory
which, to it credit, recognizes the obstacles to proving P # NP and seems to have the
potential to get around them. Ketan himself says the program will take a long time-
not within his lifetime. For an overview see [49] and other papers on his website.

9.5 So You Think You’ve Settled P versus NP

The following is Lance Fortnow’s blog post from January 14, 2009, see
blog.computationalcomplexity.org/2009/01/so-you-think-you-settled-p-vs-np.html
which is titled
So You Think You’ve Settled P versus NP

1. You are wrong. Figure it out. Sometimes you can still salvage something interesting
out of your flawed proof.

2. You believe your proof is correct. Your belief is incorrect. Go back to step 1.
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3. Are you making any assumptions or shortcuts, even seemingly small and obvious ones?
Are you using words like ”clearly”, ”obviously”, ”easy to see”, ”"should”, "must”, or
"probably”? You are claiming to settle perhaps the more important question in all of
mathematics. You don’t get to make assumptions. Go back to step 1.

4. Do you really understand the P versus NP problem? To show P # NP you need to
find a language L in NP such that for every k and every machine M running in time
n* (n = input length), M fails to properly compute L. L is a set of strings. Nothing

else. L cannot depend on M or k. M can be any program that processes strings of

bits. M may act differently than one would expect from the way you defined L. Go

back to step 1.

5. You submit your paper to an on-line archive. Maybe some people tell you what is
missing or wrong in your paper. This should cause you to to to step 1. But instead
you make a few meaningless changes to your paper and repost.

6. Eventually people ignore your paper. You wonder why you aren’t getting fame and
fortune.

7. You submit your paper to a journal.

8. The paper is rejected. If you are smart you would go back to step 1. But if you were
smart you would never have gotten to step 7.

9. You complain to the editor that either the editor doesn’t understand the proof of that
it is easily fixed. You are shocked a respectable editor would treat your paper this way.

10. You are convinced "the establishment” is purposely suppressing your paper because
our field would get far less interesting if we settle P versus NP so we have to keep it
open at all costs.

11. If I tell you otherwise would you believe me?

9.6 Eight Signs a Claimed P # NP Proof is Wrong

In 2010 Vinay Deolalikar claimed to have a proof that P £ NP. After much discussion, some
of it in blogs, the proof is now thought to be incorrect and not even close to a real proof. See
the first chapter of Lipton and Reagan’s book [42] for a full account. The incident inspired
Scott Aaronson to post a blog on
Eight Signs a Claimed P # NP Proof is Wrong

which can be found here:
www.scottaaronson.com/blog/?p=458

Below are the eight signs, followed by some comments from me on the signs. Note that
they are written in Scott’s voice. So if it reads every attempt ['ve ever seen ... it means
every attempt Scott has ever seen.
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. The author can’t immediately explain why the proof fails for 2SAT, XOR-SAT, or
other slight variants of NP-complete problems that are known to be in P. Historically,
this has probably been the single most important “sanity check” for claimed proofs
that P # NP: in fact, I'm pretty sure that every attempt I've ever seen has been
refuted by it.

. The proof doesn’t “know bout” all known techniques for polynomial time algorithms,
including dynamic programming, linear and semidefinite programming, and holographic
algorithms. This is related to sign 1, but is much more stringent. Mulmuley’s GCT
(Geometric Complexity Theory) program is the only approach to P vs. NP I've seen
that even has serious aspirations to “know about” lots of nontrivial techniques for
solving problems in P (at the least, matching and linear programming). For me, that’s
probably the single strongest argument in GCT’s favor.

. The paper doesn’t prove any weaker results along the way: for example P £ PSPACE,
NEXP ¢ P/poly, NP ¢ TC’, permanent not equivalent to determinant by linear
projection, SAT requires superlinear time . ... P vs. NP is a staggeringly hard problem,
which one should think of as being dozens” of steps beyond anything that we know
how to prove today. So then the question arises: forget steps 30 and 40, what about
steps 1,2, and 37

. Related to the previous sign, the proof doesn’t encompass the known lower bound re-
sults as special cases. For example: where, inside the proof, are the known lower bounds
against constant-depth circuits? where’s Razborov’s lower bound against monotone cir-
cuits? Where’s Raz’s lower bound against multilinear formulas? All these things (at
least the uniform version of them) are implied by P # NP, so any proof of P # NP
should imply them as well. Can we see more-or-less explicitly why it does so?

. The paper lacks the traditional lemma-theorem-proof structure. This sign was pointed
out (in the context of Deolalikar’s paper) by Impagliazzo. Say what you like about the
lemma-theorem-proof structures, there are excellent reasons why it’s used— among
them that, exactly like modular programming, it enormously speeds up the process of
finding bugs.

. The paper lacks a coherent overview, clearly explaining how and why it overcomes the
barriers that foiled previous attempts. Unlike most P £ NP papers, Deolalikar’s does
have an informal overview (and he recently released a separate synopsis). But reading
the overview felt like reading Joseph Conrad’s Heart of Darkness: I've reread the same
paragraph over and over because the words would evaporate before they could stick
to my brain. Of course, maybe that just means I was too dense to understand the
argument, but the fact that I couldn’t form a mental image of how the proof was
supposed to work wasn’t a promising sign.

. The proof hinges on subtle issues in descriptive complexity. Before you reach for your
axes: descriptive complexity is a beautiful part of TCS, full of juicy results and open
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problems, and I hope that someday it might even prove useful for attacking the great
separation questions. Experience has shown, however, that descriptive complexity
is also a powerful tool for fooling yourself into thinking you’ve proven things you
haven’t. The reason for this seems to be that subtle differences in encoding schemes—
for example whether you do or don’t have an order relation- can correspond to huge
differences complexity. As soon as I saw how heavily Deolalikar’s proof relied on
descriptive complexity, I guessed that he probably made a mistake in applying the
results from that field that characterize complexity classes like P in terms of first-order
logic. I'm almost embarrassed to relate this guess, given how little actual understanding
went into it. Intellectual honesty does, however, compel me to point out that it was
correct.

8. Already in the first draft the author waxes philosophically about meaning of his ac-
complishments, profusely thanks those who made it possible, etc. He says things like
“confirmations have already started coming in.” To me, this sort of overconfidence
suggests a would-be P # NP prover who hasn’t grasped the sheer number of mangled
skeletons and severed heads that line his path.

I agree with all of Scott’s signs. Sign 1 I have used to debunk a paper that claimed to
show that P £ NP. The paper claimed to show that the HAM is not in P; however, the
techniques would also show that EULFER is not in P. Since EULFER actually IS in P, the
proof could not be correct. Not that I thought it had any chance of being correct anyway.
Lance Fortnow has an easier sign: any proof that claims to resolve P vs NP is just wrong.

Scott uses the male pronoun He. This could be because there is no genderless pronoun

in English; however, I also note that I have never known a female to claim to have a proof
of P # NP. Perhaps they know better.

9.7 How to Deal with Proofs that P = NP

Alleged proofs that P = NP are usually code or an algorithm that the author claims works
most of the time. If its a program for SAT then the following class of formulas will likely
take it a long time and thus disprove the authors claim.

First some preparation. The following seems obvious and indeed is obvious: If you try
to put n + 1 items into n boxes then one of the boxes will have 2 items. It is often referred
to as the Pigeon Hole Principle for n, or PHP,,.

We write the negation of PHP, as a Boolean formula. The items are {1,2,...,n + 1}.
The boxes are {1,2,...,n}. The Boolean variable z;; is TRUE if we put it item ¢ into box
j. Consider the formula that is the AND of the following:

1. Foreach1 <i<n+1x;VaxsV- -V, This says that each item is in some box.

2. Foreach 1 < i3 <ip <nm+1and 1< j<n —(x;,; Az;,;) This says that no box has
two items.
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The Boolean formula =P N P, is not satisfiable. How would one show that? One way is to
list out the truth table. This is of course quite long. It is know that in some logical systems
this is the best you can do. While these systems are weak, it is likely that the P = NP guy
is essentially using one of those systems. So challenge him to run his system on say PH Ps.
That will shut him up and get him out of your hair.

9.8 A Third Category

I have also gotten papers that claim to resolve P vs. NP but from what they write you cannot
tell in what direction. Some hint that its the wrong problem or that its model dependent
or that its independent of Set Theory; however, even ascribing those aspirations is being
generous in that such papers are incoherent.

10 PH: The Polynomial Hierarchy

We want to generalize the definition of NP. We first need a better notation.
Def 10.1
1. (FPy)[B(x,y)] means that there exists a polynomial p such that (Jy, |y| = p(|z|)[B(x,y)].
2. (YPy)[B(z,y)] means that there exists a polynomial p such that (Vy, |y| = p(|z|)[B(z,y)].
With this notation we define NP again.
Def 10.2 A € NP if there exists a set B € P such that
A=Az | (F)(z,y) € Bl}.
Why stop with one quantifier?
Def 10.3
1. A € XV if there exists a set B € P such that
A= {z| @Fy)la.y) € Bl}.
This is just NP.
2. Acll}if A€ X} This is just co-NP.
3. A € X if there exists a set B € P such that

A={z | (FY)(V2)(z,y,2) € B}.
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4. Aellhif AeXb.
5. A € X if there exists a set B € P such that
A= {z | (Fy)(v2)(Vw)l(z,y, 2,w) € Bl}.
6. Aell}if Ae b,
7. One can define 37, I}, X2 TI%, . . ..

8. These sets form what is called the Polynomial Hierarchy. We define PH = |J;=, ¥ =

Uiz, 117
Clearly
YW CybC E§ e
and
Hll’ C Hg C H§ -
and

(Vi)[II} € X7y, and X7 CII7 ).

These containments are not known to be proper. If there is an 7 such that X7 = II} then
(Vj >4)[2% = X7]. In this case we say PH collapses. Most theorists think that PH does not
collapse.

Clearly NP C PH and R € PH. What about BPP? Since most theorists think P =R =
BPP, most theorists think BPP C PH. But is it not even clear that BPP C PH. However,
Sipser [64] obtained BPP C Y5NIIY by developing a new theory of time-bounded Kolmogorov
complexity, and shortly thereafter, Lautemann [38] proved the same containment with a very
clever trick. One might think Oh, so a problem can be open for a long time and then all
of a sudden it’s solved. Maybe P vs NP will go that way. However, I am skeptical of this
notion. For clever algorithms and clever collapses of classes that has happened, but never
for a separation of classes.

The following are examples of natural problems that are in these various levels of PH.

Example 10.4 This will just be a rewriting of the SAT problem. QQBF stands for Quan-
tified Boolean Formula. ¢(Z) will be a Boolean Formula.

-

QBF, = {¢(Z) | (3b)[¢(b) = TRUE]}.

(Q)BF) is X}-complete and hence unlikely to be in IT}. This is just a fancy way of saying
that SAT is NP-complete and hence unlikely to be in co-NP.
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Example 10.5 ¢(Z, ) means there are two sets of variables that are distinguished.

QBF, = {¢(7,9) | ()(VA[6(5, &) = TRUE]}.
QBF; is X5-complete and hence unlikely to be in IT5.

Example 10.6 One can define QBF;. QBF; is XP-complete and hence unlikely to be in I1.

Example 10.7 Boolean Formula Minimization. Given a Boolean Formula ¢, is there a
shorter equivalent Boolean Formula? Let

-,

MIN = {§(@) | (V(@), [¢()] < |6()])(30)[¢(b) # ¥ (b)]}-

Clearly MIN € II}. It is believed to not be IT5-complete but to also not be in X} or II}.
See the paper of Buchfuhrer and Umas [19] for more information.

11 4P
Leslie Valiant defined #P and proved most of the results in this section [72, 73].

Def 11.1 A function f is in #P if there is a nondeterministic program M that runs in
polynomial time such that f(x) is the number of accepting paths in the M (x) computation.
A set A is in P#? if membership of 2 € A can be determined by a program in poly time that
can ask questions to a #P function.

When #P was first defined it was not clear if it was powerful. Clearly NP C P#" but it
was not clear if ¥5 C P#P. However, Toda [71] proved the somewhat surprising result that
PH C P#P. It is not know if this containments is proper. If PH = P#? then PH collapses,
hence most theorists think PH c P#F.

We give examples of natural problems in #P.

Example 11.2 Let f(¢) be the number of satisfying assignments of ¢. This problem is
clearly in #P. Of more importance is that its #P-complete and hence unlikely to be com-
putable in PH.

Example 11.3 For most NP-complete problems the function that returns the number of
solutions (e.g., the number of Hamiltonian cycles) is #P-complete.

Example 11.4 There are some problems in Polynomial time where finding the number of
solutions is #P-complete. In particular (1) finding the number of matchings in a graph, and
(2) finding the number of Eulerian cycles in a directed graph, are #P-complete. Strangely
enough, finding the number of Eulerian cycles in an undirected graph can be done in poly-
nomial time.
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Example 11.5 The Permanent of a matrix is just like the determinant but without the
negative signs. Valiant’s motivation was as follows: computing the determinant is easy
(polynomial time), but computing the permanent seemed hard. Valiant showed that com-
puting the permanent is #P-complete and hence likely quite hard.

12 PSPACE

Def 12.1 PSPACE is the set of problems that can be solved using space bounded by a poly-
nomial in the length of the input. Formally PSPACE = DSPACE(n®"). By Theorem 3.3.1
PSPACE = NSPACE(n°®.

Clearly P#P C PSPACE. It is not known if this inclusion is proper; however, if P#¥ =
PSPACE then PH collapses. Hence most theorists think P#* # PSPACE.

The following problems are PSPACE-complete. Hence the are in PSPACE and unlikely
to be in P#P.

Example 12.2 Given two regular expressions, are they equivalent? Formally

REGEXPEQUIV = {(a, B) | L(e) = L(B)}.

(ov and ( are regular expressions.)

Example 12.3 HEX is a simple two-player game. Given a position, determining if the
player whose move it is wins. Note that we allow any sized board.

Example 12.4 GO is a popular game in Japan and China. There are several versions.
Given a position (on an n x n board) determine if the player whose move it is wins the
ko-free version. (The version with ko-rules is EXPTIME complete.)

13 EXPTIME

Def 13.1 EXPTIME = DTIME(2""").
The following problems are in EXPTIME-complete and hence not in P.

Example 13.2 Generalized Chess. Given an n x n chess board with pieces on it, does the
player whose move it is win?

Example 13.3 Generalized Checkers. Given an n x n checker board with pieces on it, does
the player whose move it is win?

Example 13.4 Generalized Go (with Japanese Ko rules). Given an n x n Go board with
pieces on it, does the player whose move it is win, playing Japanese Ko rules?
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14 EXPSPACE = NEXPSPACE
Def 14.1 EXPSPACE = DSPACE(2"”"). By Theorem 3.3.1 EXPSPACE = NSPACE(2""").

Clearly EXPTIME C EXPSPACE. It is not known if this inclusion is proper; however,
most theorists think EXPTIME # EXPSPACE. By Theorem 3.5 PSPACE C EXPSPACE.

We present a natural problem that is NEXPSPACE-complete and hence not in PSPACE.
The statement is due to Meyer and Stockmeyer [47].

In textbooks one often sees expressions like a®b?. These are not formally regular expres-
sions; however, there meaning is clear and they can be rewritten as such: aaaaabb. The
difference in representation matters. If we allow exponents then Regular Expressions can be
represented far more compactly. Note that a™ is written in O(logn) space, where as aaa - - - a
(n times) takes O(n) space.

Def 14.2 Let X be a finite alphabet. A Textbook Regular Expression (henceforth t-Reg Exp)
is defined as follows.

e For all 0 € ¥, 0 is a t-reg exp.

e () is a t-reg exp

e If o and (8 are t-reg exps then so is a U 3, aff and o*
o If o is a t-reg exp and n € N then o" is a t-reg exp.

If a is a t-reg exp then L(a) is the set of strings that a generates.
Here is the question which we call t-reg expression equivalence

TRE ={(a,p) | a, B are t-reg expressions and L(a) = L(f)}.

Note 14.3 In the original paper this is called Regular expression with squaring. They orig-
inally had a formulation like mine but since people thought maybe they were coding things
into bits (they weren’t) they changed the name. Frankly I think the formulation of t-reg exp
is more natural.

Meyer and Stockmeyer showed that TRE is NEXPSPACE-complete and hence not in
PSPACE. Note that it is also not in P. Is it natural? See Section 25 for a discussion of that
issue.
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15 DTIME(TOW;(n))

Def 15.1
1. TOWy(n) =n
2. For i > 1 let TOW;(n) = 2T0Wi-1(n),

By Theorem 3.4 we have that, for all i, DTIME(TOW;(n°M)) € DTIME(TOW;,(n°M)).

We give a natural problem that is in DTIME(TOWS3(n) and requires at least 22 time
for some constant c. Its exact complexity is known but is somewhat technical.

The problem will be given a set of sentences in a certain restricted mathematical langauge,
determine if it’s true. We need to define the language.

We will only use the following symbols.

1. The logical symbols A, =, (3).

2. Variables x,y, z, ... that range over N.
3. Symbols: =, <, +

4. Constants: 0,1,2,3,. ...

We call this Presburger Arithmetic in honor of the man who proved it was decidable.

Def 15.2 A term is:
1. If ¢ is a variable or a constant then ¢ is a term.

2. If t; and ty are terms then ¢; + ¢ is a term.

Def 15.3 An Atomic Formulas is:
1. If t1, t5 are terms then t; = 5 is an Atomic Formula.

2. If t1,ty are terms then ¢; < ty is an Atomic Formula.

Def 15.4 A Presburger Formula is defined similar to how a WSI1S formula was defined,
given that we have defined Atomic formulas.

Is © < y + z true? This is a stupid question since we don’t know what z,y, z are. But if
we quantify over all of the variables then a truth value exists. For example

(Fz)(3y)(32) [z < y + 2] is true
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(F2) (Fy)(V2) [ < y + 2] is true
(3x) (Vy)(32) [ < y + 2] is true
(F) (V) (V2) [z < y + 2] is false
(V) (Fy)(32) [ < y + 2] is true
(Vo) (3y)(V2) [ < y + 2] is true
(Vo) (V) (32) [z < y + 2] is true

(V) (Vy)(Vz)[x < y + 2] is false

A sentence is a formula where all of the variables are quantified over. We can now
(finally!) define our problem: Given a sentence ¢ in Presburger arithmetic is it true?

e Presburger proved that this problem is decidable. His proof did not yield time bounds.

e Later a proof was found that involved quantifier elimination. Given a sentence we can
find an equivalent one with one less quantifier. This algorithm puts this problem in
DTIME(TOW3(n)).

e Fisher and Rabin showed that there exists a constant ¢ such that this problem requires
time at least 22°".

16 DSPACE(TOW;(n®W))

By Theorem 3.5 we have that, for all i, DSPACE(TOW,;(n®M)) C DSPACE(TOW;,;(n°W)).
For each i we give an example that is arguably natural. It is a variant of the problem T'RE
from Section 14.

Def 16.1 Let X be a finite alphabet. Let ¢ € N. An i-Textbook Regular Expression (hence-
forth i-t-Reg Exp) is defined as follows.

e For all 0 € X, ¢ is an i-t-reg exp.
e () is a i-t-reg exp

e If o and (8 are i-t-reg exps then so is a U 8, af and o*
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TOW;(

o If o is an i-t-reg exp and n, k € N then « "") is an i-t-reg exp.

Here is the question which we call i-t-reg expression equivalence

TRE = {(a,p) | a, 5 are i-t-reg expressions and L(«) = L(5)}.

This problem can be proven to be in DSPACE(TOW;(n°M)) —~DSPACE(TOW;_,(n®W))
similar to the proof of Meyer and Stockmeyer that TRE is not in PSPACE. I believe this is
the first time this fact was noted.

17 Elementary

Def 17.1 The complexity class EL (for Elementary) is defined by
EL = | DTIME(TOW;(n)).
i=0

It is known that, for all i, DSPACE(T'OW;(n)) C EL.

Virtually everything one would ever want to compute is Elementary. In the next section
we give an example of a problem which is computable (in fact, primitive recursive) but not
elementary.

18 Primitive Recursive
We will define the primitive recursive functions in stages.
Def 18.1 Let PRy be the following functions:
1. Let n,c € N. Then the function f(z,...,x,) = cis in PRy.
2. Let n € Nand 1 < i <n. Then the function f(xi,...,x,) = z; is in PRy.

3. Let n € Nand 1 <i <mn. Then the function f(zi,...,z,) = x; + 1 is in PRy.

Def 18.2 For ¢ > 1 the following functions are in PR;.
1. All h € PR,_;.

2. Let k,n € N. Let f € PR;,_; where f : N* — N. Let g1,...,9, € PR;,_; where
gi : N¥ — N. Then h(zy,...,7:) = flgi(x1,. .., 2%), -, gn(21,...,73)) is in PR,.
(This is just composition.)

3. Let n € N. Let f,g € PR;_; where f : N® - Nand g : N**2 & N. Let h: N**! & N
be defined by
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(a) h(x1,...,2,,0) = f(x1,...,2)
(b) h(z1,...,zp,x+1)=g(z1,..., 20,2, h(x1,T2,...,2,,))

(This is just recursion.)

Def 18.3 A function is Primitive Recursive if it is in [ J;-, PR;. We denote the set of sets
in DTIME(f) where f is primitive recursive by PRIMREC.

One can show that addition is in PRy, multiplication is in PRy, Exponentiation is in
PR3, TOW,(2) is in PRy. More to the point, virtually any function encountered in normal
mathematics is primitive recursive.

Clearly EL. € PRIMREC. In fact EL € PRIMREC. We give a example of a natural
problem that is in PRIMREC but not EL.

Example 18.4 The problem will be given a sentences in a certain restricted mathematical
langauge, determine if it’s true. We need to define the language.

Recall that in Section 4 we defined WS1S formulas.

A sentence is a formula where all of the variables are quantified over. As noted in the
discussion of Presburger arithmetic, formulas do not have a truth value but sentences do.
We can now define our problem: Given a sentence ¢ in WS1S is it true?

e Buchi [11] showed that this problem is decidable using finite automata. This involves
using the fact that formulas give rise to regular sets (see Section 4). Using this method,
every time there is an alternation of quantifiers you need to do an NDFA to DFA
transformation. Hence this procedure takes roughly TOW,,(2) steps where n is the
number of alternations of quantifiers. Therefore the algorithm is primitive recursive;
however, since the subscript depends on the input, the function TOW,,(2) is not in EL.

e Meyer [46] showed that the algorithm sketched above is optimal. Hence the problem
is not in EL.

e One can define S15 which allows quantification of infinite sets. Buchi [12] showed that
this theory is decidable. The proof uses w-automata which run on infinite strings. In
the algorithm for deciding W 515 DFA’s are manipulated and tested but never actually
ran. So the fact that an w-automata takes an infinite string as input is not a problem.
The proof that S1S is decidable is rather difficult.

e WV S1S and S1S both involve having one successor function. What does it mean to have
two successors? Our basic objects are numbers. We could view numbers as strings in
unary. In that case S(x) = x1. If our basic objects were strings in {0, 1}* then we could
have two successors Sy(z) = 20 and S;(z) = x1. This yields two theories: W.S2S and
S2S. Rabin [55] proved that both are decidable. The proofs for S2S used transfinite
induction and is likely the hardest proof of a theory being decidable. Easier proofs
were later found by Gurevich and Harrington [28, 10].
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e How expressive is WS1S (and S1S, WS2S, S25)7 Is having them decidable useful?
There are two answers to this.

— WS1S and WS2S have been coded up and used [1]. Even though these theories
are not in EL the coding is very clever and the problems they input to it are
not that large. The proof that these theories are difficult produce instances that
are hard. These instances are somewhat contrived and do not come up. The
application has been to search patters, temporal properties or reactive systems,
parse tree constraints. It has not been applied to solving open mathematical
conjecture. This us unlikely to happen as W .S1S seems unable to express anything
of interest mathematically.

— The decidability of S15 and S2S has been use to prove other theories decidable.
We do not know of an implementation of either. It is possible to state interesting
theorems in S2S (See [55]). Great! So perhaps we can input to an S2S decider
an open question in Mathematics and get the answer! There are two problems
with this (1) Coding up 525 would be extremely difficult, and getting it to run
quickly might be impossible. (2) Be careful what you wish for— you might just
get it: Lets say we really did have such a decider and its fast. Lets say we input
statements of The Goldbach Conjecture, the Riemann Hypothesis, and P vs NP.
Lets say it outputs YES, YES, YES. Then we would know that these are all true.
Oh. We already sort of know that. It is not the purpose of math to just establish
whats true, but also why its true. The hope is that the proof of (say) P # NP
will give great insight into computation. Just the one bit YES would not.

e According to the last item, even if a theory was decidable this would not be that useful.
So why do we want prove a theory is decidable? (1) Hilbert wanted to (in today’s
terminology) show that mathematics is decidable to give it a rigorous foundation.
Even though mathematics is undecidable it is of intellectual interest to see how big a
fragment of math is decidable. (2) As the work on WS1S has shown there may be
fragments of those fragments that are decidable in good time and can be used elsewhere
(though unlikely used for mathematics itself).

We give another example, again a logical theory. We need to define the language.
We will only use the following symbols.

1. The logical symbols A, =, (3).
2. Variables x,y, z, ... that range over R.
3. Symbols: =, <, +

We call this Theory of the Reals.

Def 18.5 A term is:
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1. If ¢ is a variable ¢ is a term.

2. If t; and ty are terms then ¢; + ¢35 and ¢;¢, are terms.

Def 18.6 An Atomic Formulas is:
1. If t1, t9 are terms then t; = ¢y is an Atomic Formula.

2. If t1,ty are terms then ¢; < t5 is an Atomic Formula.

Def 18.7 A Formula is:
1. Any atomic formula is a Presburger formula.

2. If ¢1, ¢o are Presburger formulas then so are

(a) @1 A o,
(b)
(c) =1
(d) If ¢(z1,...,x,) is a formula then so is (Iz;)[d(x1, . .., z,)]

A sentence is a formula where all of the variables are quantified over. We can now
(finally!) define our problem: Given a sentence ¢ in the theory of the Reals is it true?

e Tarski [70] showed that this problem is decidable. His proof gave no time bounds.

e There were several different proofs that gave time bounds. Some of the people involved
are Seidenberg, Cohen, Collins, Renegar, Heintz, Roy, and Solerno. The papers of
Renegar and Heintz-Roy-Solerno both obtain the best known results: time TOW5(n)
where n is the number of quantifier alternations. See [75] for history and details.

e Fisher and Rabin [23] showed that the problem requires time 2.

19 Ackermann’s Function

We define a somewhat natural computable function that is not primitive recursive.

Note that any primitive recursive function uses the recursion rule some fixed finite number
of times. Ackermann’s function (below) intentionally uses recursion a non-constant number
of times. We note that this is the intuition behind why Ackermann’s function is not primitive
recursive; however, it is not a proof. The proof involves showing that Ackermann’s function
grows faster than any primitive recursive function.
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Def 19.1 Ackermann’s function is defined as follows

n+1 itm=20
A(m,n) =< A(m —1,1) ifm>1andn=0 (1)
Alm—1,A(m,n—1)) ifm>1landn>1

Ackermann’s function is an example of a function that is computable but not primitive
recursive. We have not been able to find a more natural example. This raises the question:
How natural is Ackermann’s function.

Ackermann’s function was originally defined for the sole purpose of obtaining a com-
putable function that was not primitive recursive. Hence it can be considered unnatural.
However, over time they have shown up in natural places. We gave an example of this, the
minimial spanning tree problem, in Section 7. We give another one here.

Example 19.2 Data Structures for Union Find

A Union-Find Data Structure is a data structure which supports a set of sets. The
basic operations are (1) FIND which will, given an item = will determine if it is in the data
structure, and if so which set it’s in, and (2) UNION given two sets replace them with the
union of the two. One could ask how many steps a FIND costs and how many steps a UNION
costs. This is not the right question. One anticipates doing many FINDs and UNIONs. So
here is the right question: how much time does it take to do n operations? Note that it
could be that one of them takes a long time but then many take very little time.

Tarjan and Van Leeuwen [69] showed that this problem (1) can be done in time O(na(n)),and
(2) requires time (na(n)), where a(n) is the inverse of the Ackerman function. This means
the problem cannot be done in O(n) time but it can be done in just barely more than that.
Of interest to us is that Ackermann’s function appears in the matching upper and lower
bounds of this natural problem!

Def 19.3 Let ACK = DTIME(A(n)).

20 The Goodstein Function

We do not define a complexity class in this section. We define a somewhat natural computable
function that grows much faster than Ackermann’s function.

We first define a function that doesn’t grow that fast but contains many of the ideas.
We do this by example. Say the input is 213. We write this as (213);0 to indicate that the
number is in base 10. Keep subtracting 1 from the number but increasing the base by 1 to
obtain (212)11, (211)12, (210)13. Now what? Note that if you subtract 1 from 210 in base 13
you get (20(12) where the (12) is a digit. Hence our next number is (20(12)14. Keep doing
this until you get to (200)g6. This number is quite large. In base 10 it is 1352, much larger
than the 213 we started with. Perhaps this sequence goes to infinity. No, it does not. In
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fact, note that the next number is (1(25)(26))q7. After many many iteration the leading 1
becomes a 0. Eventually this process leads to 0. f(213) is the number of iterations of this
process you need to get down to 0. This function grows fast but is still primitive recursive.

We now define the Goodstein function. First off, we will begin in base 2 (this is not
important but lets us give a real example). We’ll again take the input 213. First write it in
base 2:

213 =27 + 20+ 2" 4 2% 4+ 2°,
We now write the exponents in base 2:
913 — 92*+21+2° + 922 +2! + 92? + 92" 4+ 20,

We can stop here since all of the exponents are 0,1, or 2. If they were bigger we would
again write them in base 2.

We again subtract 1 but then rather than increase the base we increase all of the bases.
So in the next iteration we have

332+31+30 + 332+31 + 332 + 331.

This process will initially increase but eventually decrease to 0. f(213) is the number of
iterations before 0 is reached. This function grows much faster than Ackermann’s function.

Is the Goodstein function natural? Goodstein used them to investigate various phenom-
ena in logic. Later Paris and Kirby [34] showed that the statement that the Goodstein
function always exists (that is, the process always terminates) cannot be proven in Peano
Arithmetic. Hence the Goodstein function is natural to logicians! However, since I can
explain the function easily, and show it exists easily, and it’s fun, I call that natural.

Def 20.1 Let GOOD be DTIME(G(n)) where G(n) is the function defined above.

21 Decidable, Undecidable and Beyond

Def 21.1 A set A is Decidable (henceforth DEC) if there exists a program M such that
1. If z € A then M(z) outputs YES.
2. If ¢ A then M(z) outputs NO.

Note that there are no time or space bounds.

Clearly all the classes defined so far in this chapter are subsets of DEC.
Are there any problems that are undecidable? That is, are there any problems that no
computer can solve. We give two natural ones.
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Example 21.2 The Halting Problem: Given a program M and an input z, does M (z)
terminate? We write it as a set:

HALT = {(M,x) | (3s)[ If you run M (x) for s steps then it will halt ]}.

One attempt to solve HALT is to run M (z); however, if M (z) does not halt you will
never know. This failed attempt is not a proof that HALT ¢ DEC. However it is true:
HALT ¢ DEC. The proof is in most textbooks on Formal Language theory or computability
theory. Alternatively, there is a proof in the style of Dr. Seuss [54].

HALT is natural but it refers to programs. Is there a natural problem that is not in
DEC that does not refer to programs? Yes!

Example 21.3 Diophantine Polynomials: Given a polynomial p(x1,...,z,) with integer
coefficients, does there exist by ...,b, € N such that p(by,...,b,) = 0. This problem turns
out to be undecidable.

In 1900 David Hilbert, a very prominent mathematician, proposed 23 problems for math-
ematicians to work on for the next 100 year. Some of the problems were not quite well defined
(e.g., Problem 6: Make Physics Rigorous) so it’s hard to say how many have been solved,;
however, experts say that about 90% have been solved. See [80] for more information.

Hilbert’s tenth problem was the following: given a polynomial p(xy, ..., z,) with integer
coefficients, determine if there exist by ...,b, € N such that p(by,...,b,) = 0. To express
this as a set

H10 ={p(z1,...,2,) | (3b1,...,b,8)[p(b1,...,b,) =0]}.

Hilbert thought this problem was a solvable problem in Number Theory. He was incorrect.
Two papers together, one by Davis, Putnam, and Robinson [18] and one by Matijasevic [45]
showed that H10 ¢ DEC. They essentially showed that if this could be solved then the
Halting problem could be solved.

How do these problems compare to each other? Can there be even harder problems?
What does harder mean in this context? For problems of this type we cannot talk about
time or space bounds. But we can talk about how easy it is to express them. We can write
the halting problems as membership in the following set:

We rewrite HALT'. Let

B ={((M,x),s) | If yourun M(z) for s steps then it will halt }.
Note that B is decidable and

HALT = {(M, ) | (35)[(M,z),s) € B]}.

We can write HALT as a there exists quantifier followed by something decidable. This
is analogous to writing SAT as a poly-bounded quantifier followed by something in P. As
such we can define analogies of PH from Section 10. While this is true mathematically this
is false historically. The hierarchy we are about to define came first.
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Def 21.4
1. A € X if there exists a set B € DEC such that
A= {x| (3y)l(x.y) € B}.

This class is often called compatibly enumerable (c.e.) or recursively enumerable (r.e.).
Both HALT and H10 are ¥;-complete. Hence they are really the same problem.

2. Aell if Ae ¥,
3. A € 35 if there exists a set B € DEC such that
A= {z | (Fy)(v2)[(z,y, 2) € B}.
4. Aell,if AeX,.
5. A € X3 if there exists a set B € DEC such that
A= {z | Fy)(v2)(Vw)l(z,y, z,w) € Bl}.

6. Aell;if Ae ;.

7. One can define X4, Iy, X5, 15, . . ..

8. These sets form what is called the Arithmetic Hierarchy. We define AH = |J;2, ¥; =

U?; 1L;.
Clearly
Y, C ¥y C Yy
and
IT, CII, C Il
and

(VZ)[HZ g Ei+1 and El g HiJrl].

In contrast to PH these containments are known to be proper.

The following are examples of problems that are in these classes. Throughout the ex-
amples poly means polynomial with integer coefficients. The quantifiers are over the natural
numbers.
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Example 21.5 This will just be a rewriting of the H10 problem. QP stands for Quantified
Poly . ¢(Z) will be a poly.

-,

QP = {¢(7) | (3b)[6(b)

QP is Yi-complete and hence not in II;.

0]}.

Example 21.6 ¢(Z, 1) means there are two sets of variables that are distinguished.

QP = {o(7,7) | (3b)(¥d)[6(b,&) = 0]}

QP, is ¥;-complete and hence not in II;.

Example 21.7 One can define QFP;. QPF; is Y;-complete and hence not in II;.

For the next few examples let My, My, M3, ... be the list of all programs in some reason-
able programming langauge. From the index ¢ we should be able to recover the code for the
program.

Example 21.8 As noted earlier
HALT = {(M,x) | (3s)[ If you run M (z) for s steps then it will halt |}

is X1-complete and hence not in II;.

Example 21.9 Let T'OT be the set of program that halt on every input. Formally
TOT = {M | (Vx)(3s)[ If you run M (x) for s steps then it will halt |}.

TOT is Il,-complete and hence not in 5. Note that we have not proven this, but it is
true.
Example 21.10 Let COF be the set of program that halt on all but a finite set of inputs.
Formally

COF ={M | 3y)(Vz > y)(3s)[ If you run M (x) for s steps then it will halt ]}.

COF is ¥3-complete and hence not in Il3. Note that we have not proven this, but it is
true.

Are there any natural problems that are not in AH? We give one.
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Example 21.11 The problem will be given a set of sentences in a certain restricted math-
ematical langauge, determine if it’s true. We need to define the language.
We will only use the following symbols.

1. The logical symbols A, =, (3).

2. Variables x,y, z, ... that range over N.

3. Symbols: +, x.

4. Constants: ...,—3,—-2,—-1,0,1,2,3,....
We call this Arithmetic.

Def 21.12 A term is:
1. If ¢ is a variable or a constant then ¢ is a term.

2. If t; and ty are terms then ¢; + ¢5 is a term and t; X ¢ is a term.
Def 21.13 An Atomic Formulas is: If t,ty are terms then t; = t5 is an Atomic Formula.

Def 21.14 A Formula is defined the exact same way as for Presburger arithmetic except
that the atomic formulas are different.

A sentence is a formula where all of the variables are quantified over. We can now define
our problem: Given a sentence ¢ in arithmetic is it true?

e This problem is not in AH.

e There are theories even harder that involved quantification over sets.

22 Summary of Relations Between Classes

Known Inclusions

REGCCLCNLCPCRCNP
NP =P C ¥ C¥PC...CPHCP# C PSPACE
(Vi[5 C 7y, AT © X7

BPP C S5 N 11

44



PSPACE C DTIME(TOW, (n)) € DTIME(TOW,(n)) C --- C EL
PSPACE C DSPACE(TOW, (n)) € DSPACE(TOW,(n)) C --- C EL
(Vi) [DTIME(TOW;(n)) € DSPACE(TOW;(n)) C DTIME(TOW;.1(n))]
EL C PRIMREC C ACK C GOOD C DEC

DECCY, €Y, C Y3 C---P*P C AH

Known Proper Inclusions

REG C L ¢ PSPACE C DSPACE(TOW; (n)) C DSPACE(TOW,(n)) C --- C EL

NPDTIME(TOWs(n)) € DTIME(TOW;(n)) C --- C EL
(Vi) [DTIME(TOW;(n)) € DSPACE(TOWi,1(n)) € DTIME(TOW,.2(n))]
EL ¢ PRIMREC c ACK ¢ GOOD c DEC
DECC Y, cYCc Y cC---P* c AH

(Vi)[; # 11
What Most Theorists Think

LCNLCP=R=BPPCNPCZX)cC3fC---CPSPACE

NP cII C II§ C --- C PSPACE
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23

Other Complexity Measures

This chapter has focused on worst case analysis where we are interested in time or space.
There are other ways to measure complexity which may be more realistic.

1.

24

Average case analysis: There has been some work on formalizing average case analysis.
Rather than see how an algorithm works in the worst case, one looks at how it works
relative to a distribution. But what distribution is realistic? This is very hard to
determine.

. Approximation Algorithms: For many NP-complete problems there are approximation

algorithms that are fast and give an answer that is close to the optimal (e.g., within
twice). Ther are also lower bounds as well. Some of these algorithms are useable in
the real world.

Heuristic algorithms: There are some rules-of-thumb that seem to work on particular
problems. Such approaches tend to work well in the real world but are very hard to
analyze.

Fized Parameter Tractable: In Section 9 we looked at the Vertex Cover problem. For
general k it is NP-complete. For fixed k it is not O(n*) but instead just O(1.2738%+kn).
Many NP-complete problems are Fized Parameter Tractable meaning that if you fix a
parameter they can be solved quite fast.

Streaming Algorithms: The input is a sequence of n numbers where n is quite large. So
large that you cannot store n in main memory. We model this by saying we can only
pass over the sequence p times and only use f(n) space where f(n) is much less than n.
If we want to find the most common element, can we do that with 2 passes and O(logn)
space? Algorithms for these kinds of problems are randomized and approximate. They
are called Streaming Algorithms

Summary

In this chapter we defined many complexity classes. The classes spanned a rather large swath
of complexities from O(1) space to various shades of undecidability. For each class we gave
examples of natural problems that are in them but likely (or surely) not in lower classes.
Hence we have been able to determine how hard many natural problems are.

This classification is a good first cut at getting to the real issue of how hard these problems
are. But they are not the entire story since once a problem is discovered to be hard it still
needs to be solved. What do you do? W.C. Fields said

If at first you don’t succeed, give up. No use making a damn fool of yourself.

We respectfully disagree and counter with what Piet Hein said

Problems worthy of attack prove their worthy by hitting back.
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If a problem is hard all that means is that finding an exact solution quickly is hard
in the worst case. It could well be that the problem you really want to solve, perhaps a
subcase, perhaps an approximation, may still be doable. This is not a pipe dream— many
NP-complete problems can be approximated quite well. Section 23 discusses this and other
possible ways around hardness results.

We speculate that theory and practice will come closer together as theorists define more
realistic classes, and practitioners discover that the size of problems they are working is large
enough so that asymptotic results really are useful.

25 What is Natural?

Darling: Bill, since we still don’t know that P # NP, are there any problems that are
provably not in P?

Bill: Yes there are such problems! (Thinking of using a diagonalization proof to create one
that exists for the sole purpose of not being in P.)

Darling: Great! Unless it’s one of those dumb-ass sets that you construct for the sole
purpose of not being in P.

Bill: Oh. You nailed it. Okay, so you want a natural problem that’s not in P. How about
HALT.

Darling: Nice try Bill. I want a decidable natural problem that is known to not be in P.

Bill: Do you consider fragments of arithmetic, like Presburger Arithmetic or WS1S, to be
natural?

Darling: If it requires a page of definitions then not.

Bill: Oh. OH, I have it! I know a problem that is natural, decidable, easy to describe, and
known to not be in P.

Darling: Do tell!

Bill: Add to regular expressions the ability to use exponents like a'?’ instead of writing
a---a (100 times). We'll call these t-reg exps. Given two t-reg exp do they generate the
same set? This problem is EXPSPACE-complete hence not in PSPACE, hence not in P.

Darling: Why is that problem natural?

Bill: Good question. On the one hand, I didn’t construct the problem for the sole purpose
of not being in P. So it’s not a dumb ass problem. Does it then raise to the level of being
natural?
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Darling: Perhaps it’s intermediary between dumb ass and natural. An intermediary prob-
lem. Like graph isomorphism is likely not in P nor NP-complete.

Bill: Okay, I'll take that. Now here is one that might be more natural: Given an n x n
chess board with pieces— (interrupted)

Darling: Unless n = 8 this isn’t really chess.

Bill: I find both t-reg exps and generalized chess natural because people could have worked
on those problems. The fact that people didn’t is not the point. They both use notions
people did study.

Darling: You'll call them natural, I'll call them (0.5)natural, and we can agree to disagree.

Bill: Yeah!
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