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Introduction

Biostatistics is a branch of applied statistics with applications in many areas of biology including epidemiology, medical sciences,
health sciences, educational research and environmental sciences. The principles and methods of statistics, which is the science
that deals with the collection, classification, analysis, and interpretation of numerical data for the purpose of data description
and decision making, are applied to the biological areas. The first application of statistics appeared during the seventeenth century
in political science to describe the various aspects of the affairs of a government or state (hence the term “statistics”). At the
same time, the development of probability theory, thanks to the contribution of many mathematicians, such as Blaise Pascal
(1623–1662), Pier Fermat (1601–1665), Jacques Bernoulli (1654–1705) and others, has provided the basis for the modern
statistics. However, the first scientist to introduce biostatistics concepts was the astronomer and mathematician Adolphe
Quetelet (1796–1874), who in his work combined the theory and practical methods of statistics in biological, medical and
sociological applications. Later, Francis Galton (1822–1911) tried to solve the problem of heredity on the basis of Darwin’s
genetic theories with the statistics. In particular, Galton’s contribution to biology was the application of statistics to the analysis
of biological variation, using correlation and regression techniques. For this reason, he has been defined as the father of bio-
statistics and his methodology has become the basis for the use of statistics in biology. Karl Person (1860–1906) continued in
the tradition of Galton’s theory contributing significantly to the field of biometrics, meteorology, theories of social Darwinism
and eugenics. The dominant figure in biostatistics during the twentieth century was Ronald Fischer (1890–1962), who used
mathematics to combine Mendelian genetics and natural selection. In particular, he developed the analysis of variance (ANOVA)
to analyze large amount of biological data. Today, statistics is an active field whose applications touch many aspects of biology and
medicine. In particular, we can distinguish two types of statistical approaches, which aim to provide precise conclusions and
significant information from a set of data collected during a biological experiment. The first approach is called descriptive statistics
and it is used to analyze a collection of data without assuming any underlying structure for such data (Spriestersbach et al., 2009),
while the second one, called inferential statistics, works on the basis of a given structure for the observed data and involves
hypothesis testing to draw conclusions about a population when only a part of the data is observed (Altman and Krzywinski,
2017; Gardner and Altman, 1986). In fact, when a biologist conducts an experiment, he must make sure that the possible
conclusions are statistically significant. In addition, the necessity to perform long and laborious arithmetic computations, as part
of the statistical analysis of data with the use of computers, has contributed to improve the quality of the data and the inter-
pretation of the results. In fact, the large amount of available statistical software programs, such as the R Project for Statistical
Computing, SAS, SPSS and others, have further revolutionized statistical computing in the field of bioinformatics and compu-
tational biology.

The aim of this work is to provide statistical concepts that help biologists to correctly prepare experiments, verify conclusions
and properly interpret results. We first introduce several descriptive statistical techniques for organizing and summarizing data, and
then we discuss some procedures to infer the population parameters using the data contained in a sample that has been drawn
from that population. Finally, an illustrative example is analyzed to give a general understanding of the nature and relevance of
biostatistics in clinical research.

Statistical Analysis

The descriptive analysis is the starting point in any applied research providing a numerical summary of the collected data
(Spriestersbach et al., 2009). The main steps of a scientific investigation are: collection of data, organization and visualization of
data, calculation of descriptive statistics, and interpretation of statistics (see Fig. 1). Such data are usually available from one or
more sources, such as routinely kept records (hospital medical records or hospital accounting records), surveys (questionnaires
and interviews), experiments (treatment decision to investigate the effects of the assigned therapy, treatment and control groups),
clinical trials (to test efficacy or toxicity of a treatment with respect to control group) and external sources (published reports or
data banks). The set of all elements in a data is known as statistical population, while a sample consists of one or more
observations extracted from the population. Each member (or element) of the data under investigated is called statistical unit.
A statistical variable is each aspect or characteristic of the statistical unit that is considered for the study. A statistical variable can be
qualitative or quantitative, depending on whether their nature is countable or not. Quantitative variables can be characterized as
discrete or continuous. Examples of discrete variables are the number of daily admissions to a general hospital or the number of
decayed, while examples of continuous variables are the diastolic blood pressure, the heart rate, the heights of the adult males or
the ages of patients. On the other hand, qualitative or categorical variables involve observations that can be grouped into
categories. In particular, these data can be statistically divided into three groups: nominal (when exist a natural ordering among the
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categories), binary or dichotomous (when there are only two possible levels), and ordinal data (when there is a natural order
among the categories). Examples of categorical variables involve the sex (male or female), the genotype (AA, Aa, or aa), or the
ankle condition (normal, sprained, torn ligament, or broken).

Sometimes in statistics, we use the word measurement (or measurement scale) to categorize and quantify variables. In
particular, a measurement is the assignment of numbers to objects or events according to a set of rules. Different measurement
scales are distinguished on the relationships assumed to exist between object having different scale values. The most important
types of measurement scales are: nominal, ordinal, interval, and ratio. The lowest measurement scale is the nominal scale.
It consists of naming observations or classifying them into various mutually exclusive and collectively exhaustive categories.
The practice of using numbers to distinguish among the various medical diagnoses constitutes measurement on a nominal
scale. When the observations are ranked according to some criterion (from lowest to highest observations), they are said to
be measured on an ordinal scale. Convalescing patients may be characterized as unimproved, improved, and much improved.
The interval scale is a more sophisticated scale than the nominal and ordinal scale. Here, not only is it possible to order
measurements, but also to known the distance between any two measurements. We know that the difference between a mea-
surement of 20 and a measurement of 30 is equal to the difference between measurements of 30 and 40. The ability to do
this implies the use of a unit distance and a zero point, both of which are arbitrary. A clear example is the Fahrenheit or
Celsius scale. The unit of measurement is the degree of temperature, and the point of comparison is the arbitrarily chosen
“zero degrees”, which does not indicate a lack of heat. The interval scale unlike the nominal and ordinal scales is a truly
quantitative scale. The highest level of measurement is the ratio scale. This scale is characterized by the fact that equality of ratios
as well as equality of intervals may be determined. Fundamental to the ratio scale is a true zero point. The measurement of
such familiar traits as height, weight, and length makes use of the ratio scale. Interval and ratio data are sometimes referred
to as parametric and nominal and ordinal data are referred to as nonparametric. Parametric means that it meets certain
requirements with respect to parameters of the population (normal or bell curve). Parametric data are analyzed using statistical
techniques called parametric statistics. Nonparametric data are lacking those same parameters and are investigated by using
non-parametric statistics.

Fig. 1 Main steps of a statistical investigation.
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Collection, Organization and Visualization of Data

The first step of explaining a biological or biomedical phenomenon is the collection of data under investigated (first step in Fig. 1).
Then, the second step is the organization of observed data into tables or data matrix in order to visualize their distribution (second
step in Fig. 1). Let N be the number of element or individuals in the population and let X be a random variable assuming the
values xi, for i¼1,2,…,n. We denote the number of individuals presenting the value (or characteristic) xi as ni. This number ni is the
absolute frequency of the observed value xi, while the relative frequency fi of the observed value xi is the proportion on the total
population N of values presenting the value xi. In symbols, the relative frequency is the ratio

fi ¼
ni
N

ð1Þ

for i¼1,…,n. Note that the sum of the absolute frequencies is equal to the total number of data N and the sum of the relative
frequencies is equal to 1: Xn

i¼1

ni ¼N;
Xn
i¼1

fii ¼ 1

The observed values xi, the absolute and relative frequencies are usually organized in tables, called statistical tables or frequency
distribution. These tables show the way in which the values of the variable are distributed among the specified characteristics. An
example of a univariate statistical table is given in Table 1. When we have a large amount of information, data are grouped into
class intervals. A common rule used to choose the number of intervals is to take no fewer than 5 intervals and no more than 15.
The better way to decide how many class intervals to employ is to use the Sturges’s formula given by k¼1þ 3.322 log10(N), where
k stands for thre number of class intervals and N is the number of values in the data set. The width of the class intervals is
determined by dividing the range R by k. The range R is given by the difference between the smallest xmin and the largest
observation xmax in the data set. The number of values, falling within each class interval, is the absolute frequency ni, while the
proportion of values falling within each class interval is the relative frequency fi (see Table 2). Starting from the definition of
(absolute and relative) frequency distribution, it is possible to calculate the (absolute and relative) cumulative frequency (Ni and
Fi, i¼1,…,n) distribution, which indicates the number of elements in the data set that lie above (or below) a particular value in a
data set. For instance, see Tables 1 and 2. Usually, the information contained in these tables can be presented graphically under the
form of histograms and cumulative frequency curves. A histogram is a graphical representation of the absolute or relative
frequencies for each value of the characteristic or class intervals. It is commonly used for quantitative variables. A cumulative
frequency curve is a plot of the number or percentage of individuals falling in or below each value of the characteristic or class
intervals. Other types of graphical representations are the pie chart or the bar plot. The first graph is a circular chart divided into
sectors, showing the relative magnitudes in frequencies or percentages. The second one, often used to display categorical data, is a

Table 1 Frequency distribution

Values of characteristics Absolute frequency Relative frequency Cumulative absolute frequency Cumulative relative frequency
xi ni fi Ni Fi

x1 n1 f1 ¼ n1
N

n1¼N1 f1¼F1
x2 n2 f2 ¼ n2

N
n1þ n2¼N2 f1þ f2¼F2

… … … … …
xi ni fi ¼ ni

N
n1þ n2þ…þ ni¼Ni f1þ f2þ…þ fi¼Fi

… … … …
xk nk fk ¼ nk

N
n1þ n2þ…þ nk¼N f1þ f2þ…þ fk¼1

Total N 1

Source: UF Health – UF Biostatistics. Available at: http://bolt.mph.ufl.edu/2012/08/02/learn-by-doing-exploring-a-dataset/.

Table 2 Frequency distribution based on class intervals. The symbol � | means that only the superior limit is included into the class interval

Class intervals Absolute frequency Relative frequency Cumulative absolute frequency Cumulative relative frequency
xi� |xiþ 1 ni fi Ni Fi

x1� |x2 n1 f1 ¼ n1
N

n1¼N1 f1¼F1
x2� |x3 n2 f2 ¼ n2

N
n1þ n2¼N2 f1þ f2¼F2

… … … … …
xi� 1� |xi ni fi ¼ ni

N
n1þ n2þ…þ ni¼Ni f1þ f2þ…þ fi¼Fi

… … … …
xn� 1� |xn nn fn ¼ nn

N
n1þ n2þ…þ nn¼N f1þ f2þ…þ fn¼1

Total N 1

Source: Reproduced from Daniel, W.W., Cross, C.L., 2013. Biostatistics: A Foundation for Analysis in the Health Sciences, tenth ed. John Wiley & Sons.
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chart with rectangular bars with lengths proportional to the values they represent. They can be plotted vertically or horizontally.
Histogram, pie chart and bar plot are graphs very useful for presenting data in a comprehensible way to a statistical and
non-statistical audience.

Descriptive Measures

After the organization and visualization of data, several statistical functions can be computed to describe and summarize the set of
data (third step in Fig. 1) and to interpret the obtained results (fourth step in Fig. 1). These functions are called descriptive
measures or statistics. There are three general types of statistics: measures of central tendency (or location), measures of dispersion
(or variability), and measures of symmetry (or shape). The measures of central tendency convey information about the average
value of a data. The most commonly used measures of location are the mean, the median, and the mode (Manikandan, 2011a,b;
Wilcox and Keselman, 2003). These descriptive measures are called location parameters, because they can be used to designate
specific positions on the horizontal axis when the distribution of a variable is graphed. Let X be a random variable and let x be the
observed values of the random variable X. The mean is obtained by adding all the values in a population or sample and dividing
by the number of values that are observed. We use the Greek letter m to stand for the population mean, while we use the symbol x
to define the sample mean:

m¼ 1
N

XN
i ¼ 1

Xi; x ¼ 1
n

XN
i ¼ 1

xi ð2Þ

The value N indicates the population size, the quantity n is the number of observed values in the sample. Similarly, we can
compute the mean for (simple and grouped) frequency distributions. An alternative to the mean is the computation of the
median. The median is a numerical value that divides the ordered set of values (from lowest to highest value) into two equal parts,
such that the number of values equal to or greater than the median is equal to the number of values equal to or less than the
median. If the number of values is odd, the median is the middle value of the ordered set of data. If the number of values is even,
the median is the mean of the two middle values. In addition, when the median is close to the mean, then we use as statistics the
mean, even if the median is usually the better choice. Similarly, we can compute the median for (simple and grouped) frequency
distributions. Other location parameters include percentiles or quartiles. These descriptive measures divide the data set into four
equal parts each containing 25% of the total observations. The 50th percentile Q2 is the median. The 25th percentile is the first
quartile Q1. The 75th percentile is the third quartile Q3. Finally, the mode of a variable is the value that occurs most frequently into
the data. The mode may not exist, and even if it does, it may not be unique. This happens when the data set has two or more values
of equal frequency, which is greater than the other values. The mode is usually used to describe a bimodal distribution. In a
bimodal distribution, the taller peak is called the major mode and the shorter one is the minor mode. For continuous data, the
mode is the midpoint of the interval with the highest rectangle in the histogram. If the data are grouped into class intervals, than
the mode is defined in terms of class frequencies. The mode is used also for describing qualitative data. For example, suppose that
the patients in a mental health clinic, during a given year, received one of the following diagnoses: mental retardation, organic
brain syndrome, psychosis, neurosis, and personality disorder. The diagnosis, occurring most frequently in the group of patients, is
called modal diagnosis. The computational formulas of location measures are shown in Table 3.

Dispersion measures describe the spread or variation present in a set of data. The most important statistics of variability are the
range, the variance, the standard deviation and the coefficient of variation (Manikandan, 2011c). The range R is the difference
between the largest and smallest value in a set of observations. The variance and the standard deviation are two very popular
measures of dispersion.

The variance is defined as the average of the squared differences from the mean, while the standard deviation is a measure of
how the data are spread out across the mean. We use the Greek letter s2 to indicate the population variance, while we use the
symbol s2 to define the sample variance:

s2 ¼ 1
N

XN
i ¼ 1

ðXi � mÞ2; s2 ¼ 1
n� 1

XN
i ¼ 1

ðxi � xÞ2 ð3Þ

The standard deviation is the square root of the variance. The more variation there is into the data, the larger is the standard
deviation. The standard deviation is useful as a measure of variation within a given set of data. When two distributions are taken
into account and their measures are expressed in different units, compare the two standard deviations may lead to false results. For
example, for a certain population we wish to know whether serum cholesterol levels, measured in milligrams per 100 mL, are
more variable than body weight, measured in pounds. Therefore, in this case, we use a measure of relative variation rather than
absolute variation. Such measure is called coefficient of variation CV, which expresses the standard deviation as a percentage of the
mean: it is a unit-free measure. The CV is small if the variation is small and it is unreliable if the mean is near zero. Hence, if we
consider two groups, the one with less CV is said to be more consistent.

Another measure of dispersion is the interquartile range (IQR). It is the difference between the third and first quartiles, i.e.,
IQR¼Q3�Q1. A large IQR indicates a large amount of variability among the middle 50% of the relevant observations, and a
small IQR indicates a small amount of variability among the relevant observations. A useful graph for summarize the information
contained in a data set is the box-and-whisker plot. The construction of a box-and- whisker plot makes use of the quartiles of a
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data set (see Fig. 2). An outlier is an observation whose value either exceeds the value of the third quartile by a magnitude greater
than 1.5	 (IQR) or is less than the value of the first quartile by a magnitude greater than 1.5	 (IQR). Similarly, we can compute
the (simple and grouped) dispersion measures for frequency distributions. The computational formulas of variability measures are
shown in Table 3.

An attractive property of a data distribution occurs when the mean, median, and mode are all equal. The well-known
“bell-shaped curve” is a graphical representation of a distribution for which the mean, median, and mode are equal among them.
Much statistical inference is based on this distribution called normal distribution (see Fig. 3). Generally, a data distribution can be
classified on the basis of their form (symmetric or asymmetric). A symmetric distribution is a type of distribution where the left
side of the distribution mirrors the right side (see Fig. 3). When the left half and right half of the graph of a distribution are not
mirror images of each other, the distribution is asymmetric. In this case, the distribution is said to be skewed. In other words,

Fig. 2 Boxplot or box plot whisker diagram.

Fig. 3 Normal or Gaussian distribution with mean m¼5 and standard deviation s¼2.
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mean, median and mode occur at different points of the distribution. In particular, there are two kinds of skewness. The
distribution is said to be left-skewed (or negatively skewed) if the distribution appears to be skewed to the left, i.e. its mean is less
than its mode. On the contrary, the distribution is said to be right-skewed (positively skewed) if the distribution is skewed to the
right, i.e., its mean is greater than its mode. Most computer statistical packages (e.g., The R Project for Statistical Computing)
include this statistic as part of a standard printout. A value of skewness40 indicates positive skewness and a value of skewnesso0
indicates negative skewness (see Fig. 4). As skewness involves the third moment of the distribution, kurtosis involves the fourth
moment. Usually, kurtosis is quoted in the form of excess kurtosis (kurtosis relative to normal distribution kurtosis). Excess
kurtosis is simply kurtosis less 3. In fact, kurtosis for a standard normal distribution is equal to three. There are three different ways
to define the kurtosis. A distribution with excess kurtosis equal to zero (and kurtosis exactly 3) is called mesokurtic, or mesokurtotic.
A distribution with positive excess kurtosis (and g243) is called leptokurtic, or leptokurtotic. A distribution with negative excess
kurtosis (and g243) is called platykurtic, or platykurtotic. For instance, see Fig. 5. In terms of shape, a leptokurtic distribution has
fatter tails while a platykurtic distribution has thinner tails. The computational formulas of skewness and kurtosis are shown in
Table 3.

Inferential Statistics

Statistical inference is the procedure by which we obtain a conclusion about a population on the basis of the information
contained in a sample drawn from that population. The basic assumption in statistical inference is that each element, within the
population of interest, has the same probability of being included in a specific sample. Therefore, the knowledge of the probability
distribution of a random variable provides the clinician and researcher with a powerful tool for summarizing and describing a set
of data and for reaching conclusions about a population of data on the basis of a sample drawn from that population. In this
section, we discuss two general areas of statistical inference, estimation and hypothesis testing, used to infer the population
parameters under the assumption that the sample estimates follow the normal or Gaussian distribution. These types of statistical
inference procedures are classified as parametric statistics.

Continuous Probability Distributions

To understand the nature of the distribution of a continuous random variable, we consider the probability density function which
is the area under a smooth curve between any two points a and b, i.e., the definite integral between a and b. Thus, the probability of
a continuous random variable to assume values between a and b is denoted by P(a o X o b). The graph of probability density
function is shown in Fig. 6.

The normal distribution is the most important continuous probability distribution in statistics. It describes well the dis-
tribution of random variables that arise in practice, such as the heights, weights, blood pressure, body mass, etc. Let X be a random
variable normally distributed, the probability density function of X is given by

f xð Þ ¼ 1ffiffiffiffiffiffiffiffi
2ps

p exp�ðx�mÞ2
2s2 ; �1 o xoþ1 ð4Þ

Fig. 4 Positively Skewed Distribution (to the right) and negatively Skewed Distribution (to the left).
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where the parameters m and s2 are the mean and variance of X, respectively. Generally, we write XBN(m, s2). Which means that X
follows the normal distribution (or X is normally distributed) with mean m, and variance s2. The graph of the normal distribution
produces the familiar bell-shaped curve shown in Fig. 7. It is symmetrical about its mean m. Mean, median and mode are equal.
The total area under the curve above the x-axis is one square unit. In particular, the 68% of observations lie between m7sð Þ, 95%
of observations lie between m72sð Þ and 99.7% of observations lie between m73sð Þ. For instance, see Fig. 8. The normal
distribution is completely determined by the parameters m and s2. Different values of m and s shift the graph of the distribution
along the x-axis. Different values of s determine the degree of flatness or peakedness of the graph of the distribution. Because of the
characteristics of these two parameters, m is often referred to as a location parameter and s is often referred to as a shape parameter.
The normal distribution with mean m¼0 and s2¼1 is called standard normal distribution. It is obtained from Eq. (5) by setting

z¼ ðx� mÞ
s

This value is called z-transformation (or z-score). Hence, the probability density function of the standard normal distribution is

f ðxÞ ¼ 1ffiffiffiffiffiffi
2p

p exp�z2
2 ;�1o x oþ1 ð5Þ

Fig. 6 Graph of a continuous distribution showing area between a and b. The probability of a continuous random variable to assume values
between a and b is denoted by P(aoXob).

Fig. 5 Kurtosis distributions: a distribution with kurtosis equal to zero is called mesokurtic, or mesokurtotic (red line); a distribution with positive
kurtosis is called leptokurtic, or leptokurtotic (blue line); a distribution with negative kurtosis is called platykurtic, or platykurtotic (gold line).
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The graph of the standard normal distribution is shown in Fig. 9. The probability of the random variables z between two points
(or to the left/right of a given z-score) on the z-axis is the areas located under the curve of the standard normal distribution. The
probability of z can be calculated by using standard normal distribution tables well known in literature.

Three important distributions related to the normal distribution are: Chi-square distribution, t distribution and F distribution.
Let X1,X2,…,Xm be m independent random variables having standard normal distribution, i.e., XiBN(0,1), the new random
variable

Z ¼
Xm
i ¼ 1

X2
i Bχ2m

follows a Chi-Square distribution with m degrees of freedom (i.e., the number of random variables). Its mean is m, and its variance
is 2m. The probability density function of Z is given by

f zð Þ ¼ 1

2
m
2G m

2

� � exp�z
2 z

m
2�1; 0ozoþ1 ð6Þ

where the gamma function G is the integral

G að Þ ¼
Z 1

0
ya�1e�ydy; a40

Fig. 7 Normal or Gaussian distribution with mean m and standard deviation s.

Fig. 8 Standard deviation and coverage. About 68% of values drawn from a normal distribution are within one standard deviation away from the
mean; about 95% of the values lie within two standard deviations; and about 99.7% are within three standard deviations.
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Note that as the degrees of freedom increase, the chi-square curve approaches a normal distribution. The graph of the
Chi-squares X2 distribution is shown in Fig. 10.

The Student’s t distribution is a probability distribution that is used to estimate population parameters when the sample size is
small and/or when the population variance is unknown. Let Z be a random variable with standard normal distribution, i.e., ZBN
(0,1), and let V be a random variable having a Chi-square distribution with m degrees of freedom, i.e., VBχ2m: Assume further that
Z and V are independent. Define a new random variable T by

T ¼ Zffiffiffiffiffiffiffiffiffiffi
V=m

p BTm

called Student t distribution with m degrees of freedom. The probability density function of the t distribution with m degrees of
freedom is

f tð Þ ¼
G mþ1

2

� �ffiffiffiffiffiffiffi
pm

p
G m

2

� � 1þ t2

m


 �� mþ1
2

;�1otoþ1 ð7Þ

It is symmetrical about the mean equal to zero. It has a variance greater than 1, but the variance approaches 1 as the sample
size becomes large, i.e., Var Tð Þ ¼ m

m�2 : The shape of the t-distribution curve depends on the number of degrees of freedom.
Compared to the normal distribution, the t distribution is less peaked in the center and has thicker tails. Finally, the t
distribution approaches the standard normal distribution as m tends to infinity. The graph of the Student t distribution is shown in
Fig. 11.

Let U and V be independent chi-square random variables with m and n degrees of freedom, respectively. The variable

F ¼ U=m
V=n

BFm;n

follows the Fisher F distribution with numerator degree of freedom m and denominator degree of freedom n. The probability
density function of the F distribution is

f ðxÞ ¼
G mþn

2

� �
G m

2

� �
G n

2

� � m
n

� �m
2
x

n
2�1 1þm

n
x

� �� ðmþnÞ
2
; 0otoþ1 ð8Þ

Then, the mean is E Xð Þ ¼ n
n�2 and the variance Var Xð Þ ¼ 2n2ðmþn�2Þ

m n�2ð Þ2ðm�4Þ. In general, the F distribution is skewed to the right. The

graph of the Fisher F distribution is shown in Fig. 12. The X2,t,F distributions, like the standard normal, has been extensively
tabulated.

Estimation

The estimation process consists of estimate sample statistics in order to give an approximation of the corresponding parameters of
the population from which the sample is drawn. For example, we suppose that the administrator of a hospital is interested in the

Fig. 9 Standard normal distribution with mean m¼0 and standard deviation s¼1.
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mean age of patients admitted to the hospital during a given year. He decides to examine only a sample of the records to conduct
his analysis in order to determine a mean age estimation of all patients admitted to the hospital during the year. This statistic is an
estimation of the corresponding population mean. Typically, we expect the estimate to differ by some amount from the parameter
it estimates.

For each of the population parameters, we can compute two types of estimate: a point estimate and an interval estimate. A
point estimate is a single numerical value used to estimate the corresponding population parameters, while an interval estimate is
an interval that, with a specified degree of confidence, most likely includes the parameters being estimated (Gardner and Altman,
1986). For example, let X be a random variable that follows the normal distribution with mean m, and variance s2. The computed
sample mean x is a point estimator of the population mean m. Similarly, the computed sample variance s2 is a point estimation of
the of the population variance s2. Interval estimation is an alternative procedure to point estimation. It consists to replace the
point estimator of the population parameter by using a statistic that allows to calculate an interval of the parameter space. Let Θ be
the parameter space and let X be a random variable from a distribution that belongs to a family of distributions with a parameter
yAΘ. yA confidence interval (CI) is an interval composed by two numerical values, called lower and upper limit, that with a
specified degree of confidence aA(0,1) includes the unknown parameter y. In other words, it is an interval that with probability
1� a, include the unknown parameter y. The probability 1� a is called the confidence coefficient and represents the area under the
probability distribution between the two limits of the CI. Usually, 1� a is taken to be 0.90, 0.95 or 0.99. To construct a confidence
interval CI, we generally consider the following steps:

1. the sample statistic is identified to estimate a population parameter y (for example, the population mean or the population
variance);

2. the confidence level 1� a is fixed to compute the margin of error, i.e., the product between the critical value (which is a term
that splits the area under the probability distribution in two regions) and the standard deviation;

3. the limits of the confidence interval are determined as follow.

CI¼ sample statistic 7margin of error ð9Þ

In particular, when X is a random variable normally distributed with mean m, and variance s2, we can construct different type of
CI for the mean m with known or unknown variance s2.

Fig. 10 Chi-square distribution for different degrees of freedom.
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Confidence interval CI for the population mean l

When the variance s2 is known, the statistic used to construct a 100(1� a) confidence interval CI for the population mean m is the
quantity

z¼ x � m
s=

ffiffiffi
n

p BNð0; 1Þ ð10Þ

where s is the known population standard deviation. Then, an interval estimate for m is expressed as

x� za=2
sffiffiffi
n

p ; xþ za=2
sffiffiffi
n

p

 �

ð11Þ

where the critical value, denoted by za/2, is the value of z to the left of which lies � a/2 and to the right of which lies a/2 of the area
under its curve, i.e., P Z � jza=2j

� �
¼ a

2 with ZBN(0,1). For instance, see Fig. 13. When the variance s2 is unknown and the sample
size n is large (n430), we consider the Student’s t distribution. In this case, the statistic used to construct a 100(1� a) confidence
interval CI for the population mean m is given by

t ¼ x� m
s=

ffiffiffi
n

p BTðn�1Þ ð12Þ

where s is the sample standard deviation to replace s in Eq. (11). This statistics follows a Student’s distribution with n� 1 degrees
of freedom. An interval estimate for m is expressed as

x� ta=2;n�1
sffiffiffi
n

p ; xþ ta=2;n�1
sffiffiffi
n

p

 �

ð13Þ

where the critical value, denoted by ta/2,n�1, is the value of t to the left of which lies � a/2 and to the right of which lies a/2 of the
area under its curve, i.e. PðT � ta;n�1 Þ ¼ a

2

���� with TBT(n�1). For instance, see Fig. 14.

Confidence interval CI for the difference between the population means l1� l2
Sometimes we are interested in estimating the difference between two population means. From each of the populations
an independent random sample is drawn and, from the data of each, the sample means x1 and x2 respectively, are computed.

Fig. 11 Student distribution for different degree of freedom.
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Fig. 13 Critical regions for the standard normal distribution.

Fig. 12 Fisher distribution for different degree of freedom.

Fig. 14 Critical regions for the Student distribution.
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An unbiased estimate of the difference between the population means, m1� m2, is the difference between the sample

means, x1 � x2. The variance of the estimator is s21
n

� �
þ s22

m

� �
, where n and m are the sample sizes. The statistic used to construct a

100(1� a) confidence interval CI for the difference between the population means, m1� m2 is

z¼ x1 � x2ð Þ � ðm1 � m2Þffiffiffiffiffiffiffiffiffiffiffiffiffi
s21
n þ s22

m

q BNð0;1Þ ð14Þ

Hence, a confidence interval CI for m1� m2 is given by

ðx1 � x2Þ � za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21
n
þ s22

m

r
; ðx1 � x2Þ þ za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21
n
þ s22

m

r !
ð15Þ

where the critical value, denoted by za/2, is the value of z to the left of which lies � a/2 and to the right of which lies a/2 of the area
under its curve, i.e. PðZ � za=2 Þ ¼ a

2

���� with ZBN(0,1). For instance, see Fig. 13. An investigation of a confidence interval CI for the
difference between population means provides information that is helpful in deciding whether or not it is likely that the two
population means are equal. When the constructed interval does not include zero, we say that the interval provides evidence that
the two population means are not equal. When the interval includes zero, we say that the population means may be equal. When
population variances are unknown, we use the t distribution to estimate the difference between two population means with a
confidence interval CI. We assume that the two sampled populations are normally distributed. With regard to the population
variances, we distinguish two cases: (1) the population variances are equal, and (2) the population variances are not equal. Let us
consider each situation separately. If the population variances are equal, the two sample variances that we compute from two
independent samples are estimates of the same quantity, the common variance. This estimation is called pooled estimate and it is
obtained by computing the weighted average of the two sample variances. Each sample variance is weighted by its degrees of
freedom. The pooled estimate is given by the formula

s2p ¼
n� 1ð Þs21 þ m� 1ð Þs22

nþm� 2
ð15Þ

where n and m are the sample sizes. The statistic used to construct a 100(1� a) confidence interval CI for the difference between
the population means, m1� m2 is

z¼ x1 � x2ð Þ � ðm1 � m2Þ
sp

ffiffiffiffiffiffiffiffiffiffiffi
1
n þ 1

m

q BTðnþm�2Þ ð16Þ

Hence, a confidence interval CI for m1–m2, when population variances are unknown and equal, is given by

ðx1 � x2Þ � ta=2; nþm�2sp

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
þ 1
m

r
; ðx1 � x2Þ þ ta=2; nþm�2sp

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
þ 1
m

r !
ð17Þ

where the critical value, denoted by ta=2;nþm�2, is the value of t to the left of which lies –a/2 and to the right of which lies a/2 of the
area under its curve, i.e., PðT � ta;nþm�2 Þ ¼ a

2

���� with TBT(nþm–2).
If the population variances are not equal, the solution, proposed by Cochran (1964) consists of computing the reliability

factor, t0a=2 by the following formula:

t0a=2 ¼
w1t1 þ w2t2
w1 þ w2

where w1 ¼ s21
n , w2 ¼ s22

m, t1–ta/2 for n–1 degrees of freedom, and t2–ta/2 for m–1 degrees of freedom. Hence, an approximate a 100
(1–a) confidence interval CI for the difference between the population means, m1–m2 is given by

ðx1 � x2Þ � t0a=2sp

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
þ 1
m

r
; ðx1 � x2Þ þ t0a=2sp

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
þ 1
m

r !
ð18Þ

Confidence interval CI for a population proportion
Many questions of interest to the health science are related to population proportions. For example, the proportion of patients
who receive a particular type of treatment, or the proportion of some population who has a certain disease or the proportion of a
population who is immune to a certain disease. In this case, we consider the binomial distribution frequently used to model the
number of successes p in a sample of size n drawn with replacement from a population of size n. Hence, the binomial distribution
is characterized by two parameters, n and p. When the sample size is large, the distribution of sample proportions is approximately
normally distributed by virtue of the central limit theorem. The mean of the distribution, mp̂, that is, the average of all the possible
sample proportions, is equal to the true population proportion, p, and the variance of the distribution, s2p̂ , is equal to

p 1�pð Þ
n . To

estimate the population proportion, we compute the sample proposition p̂. This sample proportion is used as the point estimator
of the population proportion. In particular, when both np and n(1–p) are greater than 5, we can say that the sampling distribution
of p̂ is approximately normally distributed with mean mp̂ ¼ p. Hence, the statistic used to construct a 100(1–a) confidence interval
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CI for the population proportion p is given by

z¼ p� p̂ffiffiffiffiffiffiffiffiffiffiffi
p̂ð1�p̂Þ

n

q BNð0;1Þ ð19Þ

A confidence interval CI for the population proportion p is

p̂� za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ 1� p̂ð Þ

n

r
; p̂þ za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ð1� p̂Þ

n

r !
ð20Þ

where the critical value, denoted by za/2, is the value of z to the left of which lies –a/2 and to the right of which lies a/2 of the area
under its curve, i.e., PðZ � za=2 Þ ¼ a

2

���� with ZBN(0,1). For instance, see Fig. 13.

Confidence interval CI for the difference between two population proportions
Often there are two population proportions in which we are interested and we desire to assess the probability associated with a
difference in proportions computed from samples drawn from each of these populations. The relevant sampling distribution is the
distribution of the difference between the two sample proportions. If independent random samples of size n and m are drawn
from two populations of dichotomous variables where the proportions of observations with the characteristic of interest in the two
populations are p1 and p2, respectively, the distribution of the difference between sample proportions, p̂1 � p̂2, is approximately
normal with mean and variance equal to

mp̂1�p̂2
¼ p1 � p2; and s2p̂1�p̂2

¼ p1ð1� p1Þ
n

þ p2ð1� p2Þ
m

respectively, when n and m are large (i.e., np1, mp2, n(1–p1) and m(1–p2) are greater than 5). Hence, an unbiased point estimator
of the difference between two population proportions is provided by the difference between sample proportions, p̂1 � p̂2. The
statistic used to construct a 100(1–a) confidence interval CI for the difference between two population proportions p1–p2 is

z¼ ðp̂1 � p̂2Þ � ðp1 � p2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂1ð1�p̂1Þ

n þ p̂2ð1�p̂2Þ
m

q BNð0;1Þ ð21Þ

A confidence interval CI for p1–p2 is given by

ðp̂1 � p̂2Þ � za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂1ð1� p̂1Þ

n
þ p̂2ð1� p̂2Þ

m

r
; ðp̂1 � p̂2Þ þ za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂1ð1� p̂1Þ

n
þ p̂2ð1� p̂2Þ

m

r !
ð22Þ

where the critical value, denoted by za/2, is the value of z to the left of which lies –a/2 and to the right of which lies a/2 of the area
under its curve, i.e., PðZ � za=2 Þ ¼ a

2

���� with ZBN(0,1). For instance, see Fig. 13.

Confidence interval CI for the population variance r2

The statistic used to construct a 100(1–a) confidence interval CI for the population variance s2 is

χ2 ¼ ðn� 1Þs2
s2

Bχ2ðn� 1Þ ð23Þ

This statistics follows a chi-square X2 distribution with n–1 degrees of freedom. An interval estimate for s2 is expressed as

ðn� 1Þs2
χ21�a=2;n�1

;
ðn� 1Þs2
χ2a=2;n�1

 !
ð24Þ

where s is the sample variance and χ21�a=2;n�1Þ and χ2a=2;n�1Þ are the values from the X2 table to the left and right of which,
respectively, lies a/2 of the area under the curve, i.e., PðYr χ21�a=2;n�1Þ ¼ 1� a

2 and PðY � χ2a=2;n�1ÞÞ ¼ a
2 with YBχ2ðn�1Þ. For

instance, see Fig. 15. If we take the square root of each term in Eq. (23), we have the confidence interval for s, the population
standard deviation.

Fig. 15 Critical regions for the Chi-square distribution.
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Confidence interval CI for the ratio of the variances of two normally distributed populations
Generally, we consider the ratio s21=s

2
2 to compare the variances of two normally distributed populations. If two variances are

equal, their ratio will be equal to 1. We usually will not know the variances of populations of interest, and, consequently, any
comparisons we make will be based on sample variances. In other words, we may wish to estimate the ratio of two population
variances. The assumptions are that s21 and s22 are computed from independent samples of size n and m respectively, drawn from
two normally distributed populations. The variance s21 is designed as the larger of the two sample variances. Hence, the statistic
used to construct a 100(1–a) confidence interval CI for the ratio of the variances of two normally distributed populations is

F ¼ s21=s
2
1

s22=s
2
2
BFðn�1;m�1Þ ð25Þ

This statistic follows a F distribution depending on two-degrees-of-freedom values, one corresponding to the value of n–1 used
in computing s21 and the other corresponding to the value of m–1 used in computing s22. These are usually referred to as the
numerator degrees of freedom and the denominator degrees of freedom. An interval estimate for the ratio s21=s

2
2 is expressed as

s21=s
2
2

F1�a=2;n�1;m�1
;

s21=s
2
2

Fa=2;n�1;m�1


 �
ð26Þ

where F1–a/2;n–1;m–1 and Fa/2;n–1;m–1 are the values from the F table to the left and right of which, respectively, lies a/2 of the area
under the curve i.e., PðFr F1�a=2;n�1;m�1Þ ¼ 1� a

2 and PðY � Fa=2;n�1;m�1Þ ¼ a
2 with FBF(n–1;m–1). For instance, see Fig. 16.

Note that the tables of all the critical values can be used for both one-sided (lower and upper) and two-sided tests with specific
values of a.

Hypothesis Testing

The aim of hypothesis testing is to aid the clinician and researcher in reaching a conclusion concerning a population by examining
a sample from that population. Interval estimation, discussed in the preceding section, and hypothesis testing are based on similar
concepts. In fact, confidence intervals can be used to obtain the same conclusions that are reached through the use of hypothesis
tests. There are two statistical hypotheses involved in hypothesis testing: the null hypothesis and the alternative hypothesis. The
null hypothesis is the hypothesis to be tested and it is designated by the symbol H0. The null hypothesis is the hypothesis of no
difference (or equality, either¼ ,r, or Z), since it is a statement of agreement with conditions supposed to be true in the
population under investigated. Consequently, the conclusion that the researcher is seeking to reach is to reject the null hypothesis.
If the null hypothesis is not rejected, we conclude that the data not provide sufficient evidence that the null hypothesis is not in
reality true. The alternative hypothesis, designed by the symbol H1, is the statement that researchers hope to be true. In other
words, it is the hypothesis of effect or real difference. Based on the sample data, the test determines whether to reject the null
hypothesis. In particular, we can follow two types of decisional strategies. The first approach is based on the computation of test
statistic, the second one is called p-value approach (Altman and Krzywinski, 2017; Gardner and Altman, 1986). All possible values
that the test statistic can assume are arranged on the horizontal axis of the probability distribution and are divided into two
regions: the rejection region and non rejection region. The values of the test statistic forming the rejection region are those values
that are less likely to occur if the null hypothesis is true, while the values making up the acceptance region are more likely to occur
if the null hypothesis is true. The decision rule tells us to reject the null hypothesis if the value of the test statistic that we compute
from the sample falls in the rejection region or not. The decision to reject or accept the null hypothesis is based on the level
of significance a. A computed value of the test statistic that falls in the rejection region is said to be significant. Generally, a
small value of a is selected to make the probability of rejecting a true null hypothesis small. The more frequently values used
for a are 0.01, 0.05, and 0.10. The relationship between the (unknown) reality if the null hypothesis is true or not and the decision
to accept or reject the null hypothesis is shown in Table 4. The error committed when a true null hypothesis is rejected is called
the type I error. The type II error is the error committed when a false null hypothesis is not rejected. The probability of committing
a type II error is designated by b. The II error is know as the statistical power, which is the ability of a test to detect a true effect,
i.e., reject the null hypothesis if the alternative hypothesis is true. The second strategy is based on the concept of p-value, which
is the probability that the computed test statistic is at least as extreme as a specified value of the test statistic when the null

Fig. 16 Critical regions for the Fisher distribution.
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hypothesis is true. Thus, the p-value is the smallest value (typical less than 5%) for which we reject a null hypothesis. To calculate
the p-value, we first calculate the value of the test statistic, and then, using the known distribution of the test statistic, calculate the
p-value. Note that the probability of rejecting a true null hypothesis is the significance level a, we conclude that, if the p-value is less
than (or equal to) a, then the null hypothesis is rejected, while, if the p-value is greater than a, then the null hypothesis is not
rejected (or accepted). For instance, see Tables 5 and 6.

Non-Parametric Statistics

In this section, we explore the most common non-parametric techniques used when the underlying assumptions of traditional
hypothesis tests are violated. These statistical procedures allow for the testing of hypotheses that are not statements about
population parameter values and are applied when the form of the sampled population is unknown.

Wilcoxon signed-rank test for location
Suppose to test a null hypothesis about a population mean, but neither z nor t is an appropriate test statistic because the sampled
population does not follow or approximate a normal distribution (Wilcoxon, 1945). When confronted with such a situation
we use a non-parametric statistical procedure called Wilcoxon signed-rank test for location. It makes use of the magnitudes of
the differences between measurements and a hypothesized location parameter rather than just the signs of the differences. The
Wilcoxon test is based on the following assumptions about the data: (i) the sample is random; (ii) the variable is continuous; (iii)
the population is symmetrically distributed about its mean m; (iv) the measurement scale is at least interval. After the formulation
of null mean H0 and alternative hypothesis H1,

H0 : m¼ m0 r; �ð Þ vs H1 : mam0 4;oð Þ

we perform the Wilcoxon test when the population mean m0 is unknown.

1. Subtract the Hypothesized Mean m0 from Each Observation xi, to Obtain
di ¼ xi � m0:
If any xi is equal to the mean, so that, di¼0, eliminate that di from the calculations and reduce n accordingly.

2. Rank the usable di from the smallest to the largest without regard to the sign of di. That is, consider only the absolute value of
the di, designated |di|, when ranking them. If two or more of the |di| are equal, assign each tied value the mean of the rank
positions the tied values occupy. If, for example, the three smallest |di| are all equal, place them in rank positions 1, 2, and 3, but
assign each a rank of (1þ 2þ 3)/3¼2.

Table 4 Conditions under which type I and type II errors may be committed

Decision rules The truth

H0 true H1 true

Accept H0 Correct decision Type II error
Reject H0 Type I error Correct decision

Table 5 Confidence intervals (CI) and hypothesis test for the single population mean m and for the difference between two population means
m1 and m2 when sampling from normally distributed populations

Statistics s2 Known

CI at level a Hypthesis test Critical regions

z ¼ x�m0
s=
ffiffi
n

p BNð0; 1Þ
z-transformation

x � za=2 sffiffi
n

p ; x þ za=2 sffiffi
n

p
� �

Reject H0

zr� za/2ezZ ta/2
H0 : m¼m0 p-valueoa
H1 : mam0
(m4m0omom0) Accept H0

� za/2r zr za/2
p-value4a

z ¼ x 1�x 2ffiffiffiffiffiffiffiffiffiffiffi
s21
n þ

s22
m

q BNð0; 1Þ

n and m sample sizes

X 1 � X 2 � za=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21
n þ s22

m

q
; X 1 � X 2 þ za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21
n þ s22

m

q
 �
Reject H0

zr� za/2ezZ za/2
H0 : m1¼m2 p-valueoa
H1 : m1am2
(m14m2om1om2) Accept H0

� za/2r zr za/2
p-value4a
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3. Assign each rank the sign of the |di| that yields that rank.
4. Find Tþ the sum of the ranks with positive signs, and, T–, the sum of the ranks with negative signs.

The Wilcoxon test statistic is either Tþ or T–, depending on the nature of the alternative hypothesis. If the null hypothesis is true,
that is, if the true population mean is equal to the hypothesized mean, the probability of observing a positive difference di¼xi–m0 of a
given magnitude is equal to the probability of observing a negative difference of the same magnitude. Then, in repeated sampling,
when the null hypothesis is true and the assumptions are met, the expected value of Tþ is equal to the expected value of T–. However,
when H0 is true, we do not expect a large difference in their values. Consequently, a sufficiently small value of Tþ or a sufficiently
small value of T– will cause rejection of H0. When the alternative hypothesis is two-sided (mam0), either a sufficiently small value of
Tþ or a sufficiently small value of T– will cause rejection of H0. The test statistic, then, is Tþ or T–, whichever is smaller. To simplify
notation, we call the smaller of the two T. Similarly, when the one-sided alternative hypothesis is true a sufficiently small (or large)
value of Tþ (or T–) will cause rejection of H0, and Tþ (or T–) is the test statistic. Critical values of the Wilcoxon test statistic are given
in probability tables well known in literature. The following are the decision rules for the three possible alternative hypotheses:

1. H1:mam0. Reject H0 at the level of significance a if the calculated T is smaller than or equal to the tabulated T for n and
preselected a/2 (see Fig. 17).

2. H1:mom0. Reject H0 at the level of significance a if Tþ is less than or equal to the tabulated T for n and preselected a.
3. H1:m4m0. Reject H0 at the level of significance a if T– is less than or equal to the tabulated T for n and preselected a.

The Mann–Whitney test
Another important non-parametric test is the Mann–Whitney test based on the ranks of the observations (Mann and Whitney,
1947). The assumptions underlying the Mann–Whitney test are as follows: (i) the two samples, of size n and m, respectively,
available for analysis have been independently and randomly drawn from their respective populations; (ii) the measurement scale
is at least ordinal; (iii) the variable of interest is continuous; (iv) if the populations differ at all, they differ only with respect to their
medians. When these assumptions are met we test the null hypothesis that the two populations have equal medians against either
of the three possible alternatives: (1) the populations do not have equal medians (two-sided test), (2) the median of population 1
is larger than the median of population 2 (one-sided test), or (3) the median of population 1 is smaller than the median of
population 2 (one-sided test). If the two populations are symmetric, so that within each population the mean and median are the
same, the conclusions we reach regarding the two population medians will also apply to the two population means. In particular,
the null and alternative hypotheses are given by:

H0 : MX ¼MY r;�ð Þ vs H1 : MXaMY 4;oð Þ

where MX is the median of a population of population 1 and MY is the median of population 2. For a fixed significance level a,
we compute the test statistic combining the two samples and rank all observations from smallest to largest while keeping track of
the sample to which each observation belongs. Tied observations are assigned a rank equal to the mean of the rank positions for
which they are tied. The test statistic is

T ¼ S� nðnþ 1Þ
2

where n is the number of sample X observations and S is the sum of the ranks assigned to the sample observations from the
population of X values. The choice of which sample’s values we label X is arbitrary. If the median of the X population is smaller than
the median of the Y population, as specified in the alternative hypothesis, we would expect (for equal sample sizes) the sum of the
ranks assigned to the observations from the X population to be smaller than the sum of the ranks assigned to the observations from
the Y population. A sufficiently small value of T will cause rejection of H0. Critical values of the Mann-Whitney test statistic are given
in probability table well known in literature. The following are the decision rules for the three possible alternative hypotheses:

1. H1:MXaMY. Reject H0 if the computed T is either less than wa/2, or greater than w1–a/2, where wa/2, is the tabulated critical
value of T for n, the number of X observations; m, the number of Y observations; and a/2, the chosen level of significance, and
w1–a/2¼nm–wa/2. For instance, see Fig. 17.

Fig. 17 Critical regions for a free distribution.
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Table 7 Clinical depression data. For each patient, the dataset contains the following characteristic or variables. Hospt: the patient’s hospital
with 1, 2, 3, 5, or 6; Treat: the treatment received by the patient (Lithium, Imipramine, or Placebo); Outcome: recurrence or no recurrence occurred
during the patient’s treatment; Time: the length (in days) of the patient’s participation in the study in terms of recurrence or no recurrence; AcuteT:
the time (in days) that the patient was depressed prior to the study; Age: the age of the patient in years, when the patient entered the study;
Gender: The patient’s gender (1¼Female, 2¼Male). The number of patients are 109

Hospt Treat Outcome Time AcuteT Age Gender

1 Lithium Recurrence 36,143 211 33 1
1 Imipramine No Recurrence 105,143 176 49 1
1 Imipramine No Recurrence 74,571 191 50 1
1 Lithium Recurrence 49,714 206 29 2
1 Lithium No Recurrence 14,429 63 29 1
1 Placebo Recurrence 5 70 30 2
1 Lithium No Recurrence 104,857 55 56 1
1 Placebo Recurrence 2,857 512 48 1
1 Placebo No Recurrence 102,429 162 22 2
1 Placebo Recurrence 55,714 306 61 2
1 Imipramine No Recurrence 106,429 165 58 1
1 Imipramine No Recurrence 105,143 129 31 1
1 Imipramine No Recurrence 83 428 44 1
1 Imipramine Recurrence 27,286 256 55 2
1 Lithium No Recurrence 105,857 197 57 2
1 Lithium Recurrence 5,571 227 46 1
1 Imipramine No Recurrence 98 168 58 1
1 Lithium No Recurrence 16,286 194 57 1
2 Lithium Recurrence 1,286 173 54 1
2 Lithium No Recurrence 2,143 48 23 1
2 Imipramine No Recurrence 100 47 65 1
2 Imipramine Recurrence 27,143 95 27 1
2 Lithium Recurrence 4 148 50 1
2 Lithium Recurrence 74,143 127 41 2
2 Placebo No Recurrence 104,857 129 65 1
2 Placebo Recurrence 0,143 182 52 1
2 Placebo Recurrence 1,429 90 60 1
2 Placebo Recurrence 45,857 177 25 2
2 Imipramine Recurrence 17,429 234 27 2
2 Imipramine No Recurrence 78 322 32 1
2 Imipramine Recurrence 66,857 141 43 2
2 Placebo No Recurrence 78,429 165 20 2
2 Lithium No Recurrence 78,429 239 23 2
2 Imipramine No Recurrence 78,143 147 36 2
2 Imipramine No Recurrence 15,857 348 22 2
3 Lithium No Recurrence 79 274 49 2
3 Imipramine No Recurrence 32,571 130 40 2
3 Lithium Recurrence 9 98 54 2
3 Lithium Recurrence 3,286 77 26 1
3 Imipramine No Recurrence 206 90 48 1
3 Lithium Recurrence 30 280 51 2
3 Placebo Recurrence 7,143 167 35 2
3 Placebo Recurrence 31 181 28 1
3 Placebo Recurrence 17,286 399 23 1
3 Placebo Recurrence 0,143 289 57 2
5 Lithium Recurrence 3,286 182 47 1
5 Imipramine No Recurrence 1,571 159 31 2
5 Lithium Recurrence 19,714 122 27 1
5 Imipramine No Recurrence 126,714 115 61 1
5 Placebo Recurrence 8 343 60 1
5 Lithium Recurrence 71,714 114 28 1
5 Placebo Recurrence 63,714 249 36 1
5 Placebo No Recurrence 96,286 140 29 1
5 Lithium No Recurrence 50,857 110 34 1
5 Imipramine No Recurrence 155 214 49 1
5 Imipramine No Recurrence 39,571 224 45 1
5 Lithium Recurrence 36,286 294 28 1

(Continued )

Introduction to Biostatistics 667



2. H1:MX4MY. Reject H0 if the computed T is less than w1–a, where w1–a¼nm–wa is the tabulated critical value for n, the number
of X observations; m, the number of Y observations; and a, the chosen level of significance.

3. H1:MXoMY. Reject H0 if the computed T is less than wa, where wa is the tabulated critical value of T for n, the number of X
observations; m, the number of Y observations; and a, the chosen level of significance.

When either n or m is greater than 20 we compute the following test statistic

z¼ T � nm=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nmðnþmþ 1Þ=12

p BNð0;1Þ

Table 7 Continued

Hospt Treat Outcome Time AcuteT Age Gender

5 Placebo No Recurrence 102,571 162 24 2
5 Placebo Recurrence 8,143 140 33 2
5 Imipramine No Recurrence 28 147 34 1
5 Imipramine No Recurrence 38 138 60 1
5 Imipramine No Recurrence 111,571 196 23 2
5 Lithium No Recurrence 165 139 35 1
5 Placebo Recurrence 16 246 45 1
5 Lithium No Recurrence 124,571 105 46 1
5 Lithium No Recurrence 68 160 38 2
5 Placebo No Recurrence 39,571 146 32 2
5 Placebo No Recurrence 131 187 33 1
5 Imipramine Recurrence 3,429 372 52 1
5 Lithium No Recurrence 42 146 50 2
5 Imipramine No Recurrence 26 131 38 1
5 Lithium Recurrence 37,857 237 47 1
5 Imipramine Recurrence 92,714 105 23 1
5 Imipramine No Recurrence 106,714 140 31 1
5 Placebo Recurrence 11,143 136 55 1
5 Placebo No Recurrence 115 147 39 1
5 Placebo Recurrence 44 160 41 1
5 Imipramine No Recurrence 75 175 62 2
5 Placebo No Recurrence 77,857 261 50 2
5 Lithium Recurrence 0,286 146 46 1
5 Imipramine No Recurrence 86 195 33 2
5 Placebo No Recurrence 12,429 476 22 1
5 Lithium No Recurrence 22 441 37 2
6 Lithium Recurrence 5,429 86 40 2
6 Lithium No Recurrence 67 201 22 1
6 Imipramine Recurrence 3,429 130 30 2
6 Lithium Recurrence 6,286 86 63 2
6 Imipramine No Recurrence 5 209 40 1
6 Lithium Recurrence 5,286 214 23 1
6 Imipramine Recurrence 1 72 52 1
6 Placebo Recurrence 3,429 238 23 1
6 Placebo Recurrence 6,571 133 22 2
6 Placebo Recurrence 1 128 23 1
6 Placebo No Recurrence 45 139 30 2
6 Imipramine No Recurrence 109,571 148 26 2
6 Lithium Recurrence 0,857 285 46 1
6 Placebo Recurrence 4,714 141 61 1
6 Imipramine Recurrence 0,571 212 30 2
6 Imipramine No Recurrence 9,143 168 39 1
6 Imipramine No Recurrence 102 305 49 1
6 Lithium Recurrence 46,286 204 57 1
6 Lithium Recurrence 0,571 140 51 1
6 Lithium Recurrence 6,429 182 53 1
6 Placebo Recurrence 0 162 31 1
6 Placebo Recurrence 20,857 207 43 1
6 Placebo Recurrence 18,286 102 29 1
6 Imipramine Recurrence 31,857 154 28 1
6 Imipramine Recurrence 22 203 51 1
6 Lithium Recurrence 2 176 33 1
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and compare the result, for significance, with critical values of the standard normal distribution. Finally, many computer packages
give the test value of both the Mann–Whitney test (U) and the Wilcoxon test (W). These two tests are algebraically equivalent tests,
and are related by the following equality when there are no ties in the data:

U þW ¼ mðmþ 2nþ 1Þ
2

Case Studies

In this section, we consider two datasets as case studies. The first is the Clinical depression dataset downloaded from http://bolt.
mph.ufl.edu (for instance, see Table 7). The depression is the most common mental illness in the United States, affecting
19 million adults each year (Source: NIMH, 1999). Nearly 50% of individuals who experience a major episode will have
a recurrence within 2–3 years. In a study conducted by the National Institutes of Health, 109 clinically depressed patients
were separated into three groups, and each group was given one of two active drugs (imipramine or lithium) or no drug at all.
For each patient, the dataset contains the following characteristic or variables:
Hospt: The patient’s hospital, represented by a code for each of the 5 hospitals (1, 2, 3, 5, or 6).
Treat: The treatment received by the patient (Lithium, Imipramine, or Placebo).
Outcome: Whether or not a recurrence occurred during the patient’s treatment (Recurrence or No Recurrence).
Time: Either the time (days) till recurrence, or if no recurrence, the length (days) of the patient’s participation in the study.
AcuteT: The time (days) that the patient was depressed prior to the study.
Age: The age of the patient in years, when the patient entered the study.
Gender: The patient’s gender (1¼Female, 2¼Male).

Using these data, researchers are interested in comparing therapeutic solutions that could delay or reduce the incidence of
recurrence.

In the second dataset a researcher designed an experiment to assess the effects of prolonged inhalation of cadmium oxide.
Fifteen laboratory animals served as experimental subjects, while 10 similar animals served as controls. The variable of interest was
hemoglobin level following the experiment. The results are shown in Table 8. We wish to know if we can conclude that prolonged
inhalation of cadmium oxide reduces hemoglobin level.

Results

In this section, we describe the main results obtained from the descriptive and inferential analysis using the information contained
Tables 7 and 8.

The first dataset (Clinical depression dataset) is composed by four categorical variables (Hospt, Treat, Outcome, Gender)
and two numerical variables (Time, Time, AcuteT). Bar plots for Hospt, Outcome, and Gender variables are plotted for a
qualitative analysis of these data (see Fig. 18). On the contrary, a quantitative descriptive analysis is performed for the variable
age of patients. Table 9 summarizes the main results of some statistical measures computed using the formulas shown in
Table 3. Finally, the confidence intervals (CI) and hypothesis test for the difference between two population means m1 and m2

Table 8 Hemoglobin determinations (grams)
for 25 laboratory animals

Exposed animals Unexposed animals

14.4 17.4
14.2 16.2
13.8 17.1
16.5 17.5
14.1 15.0
16.6 16.0
15.9 16.9
15.6 15.0
14.1 16.3
15.3 16.8
15.7 –

16.7 –

13.7 –

15.3 –

14.0 –

Introduction to Biostatistics 669

http://bolt.mph.ufl.edu
http://bolt.mph.ufl.edu


are detected using the second listed test statistic illustrated in Table 6. In particular, we test the effect of the treatment
(Imipramine) with respect to the control group (Placebo) during the participation of patients in the study (Time). The sample
mean estimates are 37.58 and 63.06 for each group under investigated (n¼34-Imipramine and m¼38-Placebo). The test
statistic (two-tailed test) is t¼ � 2.38 with 70 degree of freedom, the confidence interval at level a¼0.05 is (–46.84,–4.12) and
the p-value is significant (p-value¼0.0201o0.05). Hence, the null hypothesis H0 is rejected which means that the true
difference in means is not equal to zero. This means that there is an evidence on the effects of therapy in the treatment of
patients with Imipramine during the study.

In the second dataset, we consider the hemoglobin levels (measured in grams) for 25 laboratory animals, divided in two
groups: exposed (X) and not exposed (Y) to cadmium oxide. We assume that the assumptions of the Mann–Whitney test are
applicable. Therefore, with n¼15, m¼10 and a¼0.05, we find the statistic test (two-tailed test) T¼25 and the p-value equal to
0.006008 (p-value o0.05, statistically significant). We conclude that MX is smaller than MY. This leads to the conclusion that
prolonged inhalation of cadmium oxide does reduce the hemoglobin level.

Software

We use the R statistical software (see Relevant Websites section) to plot the graphs and to perform the descriptive statistics and
statistical inference. In particular, we apply the common used statistical packages in R.

Table 9 Data synthesis of patients grouped by age

Class intervals ni fi fi(%) Fi ci ci ni ci2 ni

19� |25 16 0.15 15 0.15 22 352 7,744
25� |31 21 0.20 20 0.34 28 588 16,464 Mode class
31� |37 14 0.13 13 0.47 34 476 16,184
37� |43 11 0.10 10 0.57 40 440 17,600 Median class
43� |49 15 0.14 14 0.70 46 690 31,740
49� |55 15 0.14 14 0.84 52 780 40,560
55� |71 17 0.15 15 1 63 1,071 67,473
Total 109 1 100 4,397 197,765

Mean Median Mode Variance Standard
deviation

First
quartile

Third
quartile

IQR

40.34 38.8 28 187.04 13.68 28.16 51.14 22.98

Fig. 18 Bar plots of the qualitative variables: Host (A), Outcome (B) and Gender (B). The first plot indicates that the number of patients from
hospital 5 is greater than the others. The second plot shows that the outcome of the treatment for patients with no recurrence exceeds that with
recurrence. The third plot displays that the number of female patients is greater than that of males.
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Conclusions

Biostatistics can be defined as the application of mathematics used in statistics to the fields of biological sciences and medicine.
When research activities involve data collection on a sample of a population, an understanding of descriptive and inferential
analysis become essential for an accurate study of the phenomenon to draw conclusions and make inferences about the entire
population. The two major areas of statistics are the descriptive statistics and the inferential statistics. The aim of the first areas is to
collect data and obtain a synthesis of this information in order to give a descriptive overview of the data. On the other hand, the
goal of the statistical inference is to decide whether the findings of an investigation reflect chance or real effects at a given level of
probability. Both estimation and testing hypothesis are covered. These statistical tools are useful for researchers in order to decide
what type of study to use for their research project, how to execute the study on patients and well people, and how to evaluate the
final results.

See also: Natural Language Processing Approaches in Bioinformatics
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