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Abstract 

Transcription is the first stage of gene expression, leading to the eventual determination the protein 

abundance and affecting metabolism. Hence, there is a need to measure and characterize 

transcriptional activities accurately. This article discusses the experimental techniques to 

characterizing transcriptional activities from a single-gene approach (quantitative PCR) to high-

throughput methods (microarray technology and next generation sequencing). Computational 

approaches to predicting relative transcript abundance from sequence features and gene co-

expression network will be described. As a proxy to protein / enzyme abundance, transcriptional 

activities are critical in developing simulatable biochemical models, which can then to test 

biological hypotheses before laboratory experimentation. 
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Background 



Information in biological systems are encoded in a string of biopolymers known as 

deoxyribonucleic acids or DNA. The Central Dogma, comprising of the processes DNA 

replication, transcription and translation, describes the sequential flow of information by which 

living cells enzymatically decode and process latent genetic information into messenger 

ribonucleic acids (mRNA) and further into active proteins for essential and secondary cellular 

metabolism. The ability to accurately measure and characterize transcriptional activities – the 

study of DNA promoter elements driving mRNA transcription – both in vitro and in vivo could 

potentially revolutionize the way in which biology and medicine are studied. Conventionally, 

transcriptional activities are characterized in low throughput by real time quantitative polymerase 

chain reaction (qPCR) and semi-qualitative Northern blot assay. Recent progress in DNA 

microarray and RNA sequencing have enabled large scale and high quality whole cell 

transcriptome analysis to be performed. When complemented with gene ontology and principled 

analysis software, both technologies could rapidly isolate important genetic determinants for 

further validation by qPCR. Besides the measurement of transcription at the mRNA level, other 

studies have sought to quantify gene expression using reporter proteins in synthetic genetic circuits 

both whole cell and cell free. The results of these studies are usually integrated into computational 

models to enable the prediction of gene expression at larger scale. In the following sections of this 

review, the various methods for characterizing transcriptional activities will be further discussed. 

 

Experimental Techniques 

In this section, three major experimental techniques; namely, quantitative PCR, microarrays, and 

RNA-seq (which is an example of next generation sequencing technology); for analyzing 

transcriptomic activities will be discussed. This is followed by a discussion on reporter proteins, 

which are instrumental for experimental validation of transcriptomic activity. 

 

Reverse Transcription & qPCR. qPCR is a widely adopted molecular biology workflow that 

exploits the sensitivity and sequence specificity of PCR reactions for targeted gene expression 

analysis (Figure 1). Through this method, transcriptional activities could be characterized either in 

terms of the absolute transcripts abundance, or as relative quantitation between samples in different 

biological contexts. qPCR is also used to validate differential gene expression results obtained 

from high throughput DNA microarray and RNA sequencing technologies, despite the limit to 



analyze a maximum of 384 samples per run. In the qPCR workflow, mRNA is first isolated from 

the biological sample using commercial RNA extraction kit. An RNA stabilizing agent, 

RNAlater®, is often added to the biological sample prior to cell disruption to protect RNA integrity 

as the extraction process may take at least an hour or more. TRIzol® reagent, a monophasic 

solution of phenol and guanidine isothiocyanate, is routinely used for the extraction of total RNA 

of mammalian, plant, yeast or bacteria origin. When chloroform is added to tissue samples or cells 

homogenized in TRIzol®, RNA is preferentially extracted into the top aqueous phase. Afterwards, 

isopropanol is added to the aqueous layer to precipitate out RNA. Purified RNA in sterile, 

diethylpyrocarbonate (DEPC)-treated water, comprising mainly of rRNAs and tRNAs and about 

1% – 5% mRNA, is analyzed for RNA integrity and quantity using synthetic dyes that emit 

fluorescence when bound to nucleic acids or the NanoDrop spectrophotometer. As a rule of thumb, 

the 260:280 nm ratio of the total purified RNA should be between 1.9 – 2.1 and that of 260:230 

nm should be 2.0 – 2.2. Appreciable lower values may indicate the presence of contaminants by 

either proteins or RNA extraction reagents. Clear and distinct rRNA bands observed on agarose 

gel electrophoresis also indicates the availability of good quality RNA for downstream qPCR. To 

generate cDNA templates for qPCR, the isolated mRNA (mixed in total RNA) is reversed 

transcribed into single stranded cDNA using random primers, dNTPs, reaction buffer and reverse 

transcriptase from commercial kits. Depending on the target gene expression level ranging from 

low to high expression, between 1 ng – 100 ng of total RNA may be required. Random primers 

are made of short oligomers with six to nine nucleotides and are able to bind to any region in the 

RNA pool of most organisms. Other types of primers that could be used for cDNA synthesis are 

oligo(dT)s which anneal non-specifically to the 3’ poly(A) tails of mRNA, and sequence specific 

primers which anneal to only targeted mRNA regions. However, unlike random primers, 

oligo(dT)s are seldom used in prokaryotic cDNA synthesis as the poly(A) tails of prokaryotic 

mRNA are generally shorter and less polyadenated (Sarkar, 1997). During reverse transcription, 

bound DNA primer is extended towards the 5’ direction of mRNA. Thus, even though nonspecific 

primers may generate truncated cDNAs from internal mRNA sequence, gene expression results 

would not be much affected so long as qPCR primers are designed targeting the 5’ end of the 

mRNA. Sequence specific primers for cDNA synthesis are commonly used for synthetic RNA 

standards or where analysis only involves a few gene targets.  

 



 
 
Fig 1. qPCR analysis of targeted transcripts. (A) Sample preparation for qPCR. Total RNA is chemically 

extracted from biological sample and then reverse transcribed to generate single stranded cDNA molecules. 

Thereafter, the cDNA are used as templates for qPCR in real time thermocyclers. SYBR green bind to 

double stranded cDNA during the extension process and fluorescence readings are recorded. (B) Sigmodal 

amplification of DNA during qPCR. A threshold is set above noise level in the exponential phase and used 

to determine the threshold cycle, Ct. (C) Relationship between cDNA concentration and Ct values under 

ideal condition, i.e. DNA exactly doubles with each PCR cycle. Hypothetical Ct values from (B) is reflected 

in (C) by colored circles.  

 

To initiate the qPCR reaction, appropriate amounts of cDNA template, sequence specific primers 

and nuclease-free water are added to qPCR master mix, comprising of DNA-binding dye (SYBR), 

dNTPs, magnesium and Taq polymerase, according to the manufacturer’s instruction, before 

importing into the qPCR thermocycler for gene expression measurement. qPCR could be 



performed in standard PCR tubes, 96-well PCR plates, or 384-well PCR plates. qPCR primers, 

typically 20 bp – 30bp are designed to amplify approximately 60 bp – 150 bp of the sense strand 

of the target cDNA at the 5’ end. Amplicons above 150 bp usually suffers from poor PCR 

efficiency, resulting in gross underestimation of the actual amount of transcripts. qPCR 

thermocycles are equipped with optical instruments to detect fluorescent signals from DNA-

binding dye. As qPCR cycle proceeds, double stranded amplicons are generated, resulting in more 

PCR products for SYBR to bind and consequential increase in green fluorescence emission. 

Fluorescence intensity correlates directly with the amount of DNA amplicons, and in turn gives an 

indication of the amount of cDNA template (mRNA transcripts). As a standardized practice, gene 

expressions are calculated based on the threshold cycle (Ct), or the number of PCR cycles it takes 

for fluorescence to be at a critical value above background, which also indicates the start of PCR 

exponential phase. Ct values are inversely proportional to initial template amount. Variations in 

sampling procedures, RNA extraction, reverse transcription and qPCR reaction may significantly 

lead to bias and compound error (Sanders et al., 2014). To mitigate the extent of potential bias in 

qPCR analysis, gene expression results are normalized to internal reference genes. One common 

practice is setting genes of core genomic functions, such as constitutive housekeeping genes as the 

normalization reference. These genes are assumed to have constant expression (mRNA levels) at 

all times, despite several studies have shown otherwise (Bustin, 2000; Dundas and Ling, 2012; 

Thellin et al., 1999). To improve the accuracy of measurement, target gene expression could be 

normalized to the geometric average of two or more internal control genes (Vandesompele et al., 

2002). It is also good practice to validate the internal control genes with statistical software such 

as geNorm, NormFinder and BestKeeper (Andersen et al., 2004; Pfaffl et al., 2004; Vandesompele 

et al., 2002). The relative expression ratio of two samples could be determined using the 

generalized Pfaffl method as illustrated in Example 1 (Hellemans et al., 2007; Pfaffl, 2001). To 

determine the absolute amount of mRNA transcript, a standard curve of threshold cycle number 

plotted against varying amount of cDNA standard, Ct versus log [cDNA], could be developed by 

performing qPCR on synthesized cDNA standards with six or more serial dilutions. Importantly, 

the synthesized standard and target cDNA should be similar in PCR efficiency, amplicon length 

and primer binding efficiency, ensuring that the standard curve is applicable for the gene of interest. 

Known amounts of synthetic RNA standards could also be spiked into the extracted RNA to 



account for reverse transcription bias. Recommendations on experimental design, results reporting 

and selection of reference genes are described in the MIQE guidelines (Bustin et al., 2009, 2010).   

 

Example 1: Fold-expression Calculation. Real time quantitative PCR was performed to analyze 

how the gene expression of an efflux pump would change when cells were exposed to antibiotic 

stress. Results of the qPCR run is shown in Table 1 below. In this experiment, three different 

housekeeping genes (Ref Gene A, B and C) were used as reference genes. “Treated” and “Control” 

represent the mRNA extracted from cells with and without antibiotics treatment, respectively. For 

each gene, threshold cycles are the arithmetic mean of technical replicates. Determine the relative 

fold expression change of the target gene and comment if the efflux pump (gene of interest; GOI) 

is up- or down-regulated following antibiotics exposure.   

 

Table 1. qPCR analysis of gene encoding for efflux pump after exposure to antibiotics 

 GOI Ref Gene A Ref Gene B Ref Gene C 

Efficiency 2 2 2 2 

Treated 28.50 21.25 19.00 23.00 

Control 34.00 20.50 18.75 22.00 

 

The general formula for normalized relative quantities (NRQ) with multiple reference genes is 

given as, 𝑁𝑅𝑄 = 
𝐸𝐺𝑂𝐼

∆𝐶𝑡𝐺𝑂𝐼 (𝑐𝑜𝑛𝑡𝑟𝑜𝑙−𝑡𝑟𝑒𝑎𝑡𝑒𝑑)

√∏ 𝐸𝑟𝑒𝑓0
∆𝐶𝑡𝑟𝑒𝑓0 (𝑐𝑜𝑛𝑡𝑟𝑜𝑙−𝑡𝑟𝑒𝑎𝑡𝑒𝑑)𝑓

0

𝑓  

 

In this analysis, we assumed that the efficiency of amplification is 100% and that DNA amount 

exactly doubles with every qPCR cycle in the exponential phase. This gives an efficiency value of 

2 for both the GOI and reference genes, 𝑁𝑅𝑄 =  
2𝐺𝑂𝐼

∆𝐶𝑡𝐺𝑂𝐼 (𝑐𝑜𝑛𝑡𝑟𝑜𝑙−𝑡𝑟𝑒𝑎𝑡𝑒𝑑)

√∏ 2𝑟𝑒𝑓0
∆𝐶𝑡𝑟𝑒𝑓0 (𝑐𝑜𝑛𝑡𝑟𝑜𝑙−𝑡𝑟𝑒𝑎𝑡𝑒𝑑)𝑓

0

𝑓  

 

The 2∆Ct value of GOI is 45.25 (2𝐺𝑂𝐼
∆𝐶𝑡𝐺𝑂𝐼 (𝑐𝑜𝑛𝑡𝑟𝑜𝑙−𝑡𝑟𝑒𝑎𝑡𝑒𝑑) = 2(34.00−28.50) = 45.25). Similarly, 

the 2∆Ct values of reference genes A, B and C are 0.59, 0.84 and 0.5, respectively. Geometric mean 

of 2∆Ct values of the three reference genes is 0.63. 

 



√∏2𝑟𝑒𝑓0
∆𝐶𝑡𝑟𝑒𝑓0 (𝑐𝑜𝑛𝑡𝑟𝑜𝑙−𝑡𝑟𝑒𝑎𝑡𝑒𝑑)

𝑓

0

𝑓

= √0.59 × 0.84 × 0.5
3

=  0.63 

   

Fold expression ratio of GOI / reference genes, 𝑁𝑅𝑄 =  
45.25

0.63
= 71.83. Hence, the efflux pump 

gene increased by ~72-folds upon antibiotic exposure, implying that the gene was up-regulated in 

the experiment.  

 

DNA Microarray. The DNA microarray is a structured 2D array of short, single-stranded DNA 

molecules that are systematically deposited or synthesized on solid surfaces as discrete spots 

(Figure 2). These DNA molecules, also known as oligo probes, are designed to be complementary 

to target gene sequence so that hybridization could readily occur between a fluorescent labeled 

target DNA and the immobilized probe when in contact. Each spot contains at least picomoles of 

oligo probes between 25 bp – 80 bp. In a typical microarray experiment, total RNA is first isolated 

from both test and control biological samples using commercially available RNA extraction kits. 

Thereafter, the extracted RNAs are assessed for microarray suitability using both capillary 

electrophoresis and NanoDrop. RNA quality is validated by the RNA integrity number (RIN) 

measured on the Agilent 2100 Bioanalyzer, and a value of 7 or higher is considered suitable for 

microarray experiment. Depending on the microarray technology, cell type and nature of the study, 

a range of between 200 ng – 20 μg of total RNA (typical concentration ~1 μg/μl) may be required 

(Kang and Chang, 2012; Ling et al., 2013; Trevino et al., 2007). In Affymetrix arrays, the extracted 

mRNAs are used to generate labeled cDNAs in a one pot reverse transcription reaction. 

Comparatively, in Agilent arrays, mRNAs are first retro-transcribed into T7 RNA promoter tailed 

cDNAs, and then converted into labeled cRNAs by the Eberwine reaction (Van Gelder et al., 1990). 

In either workflows, the cDNA and cRNA molecules are labeled using fluorescent labeled 

nucleotides. Common fluorescent dyes used for distinguishing gene expression profiles includes 

the red Cy5 and the green Cy3. Following the generation of single stranded cDNA (cRNA) 

molecules, equal amounts of both test and control cDNAs (cRNAs) are pooled together and 

allowed to hybridize on the microarray slides. At this point, competitive hybridization occurs in 

which the test and control cDNAs (cRNAs), each tagged to different fluorescent dye, compete for 

binding to discrete spots of the microarray. Successful hybridization events will result in an 



increase of local fluorescent intensity that is proportional to the abundance of the target mRNA 

transcript. These results could be measured using a robotic fluorescent scanner which consist of a 

device similar to that of a fluorescence microscope coupled with excitation laser and digital camera 

for image capturing. Captured fluorescent images are overlapped and computationally processed 

to convert spot intensities into numerical outputs.  Where Cy5 is used for the labeling of cDNAs 

generated from the control transcripts and Cy3 for that generated from test transcripts, effective 

green and red fluorescence indicates up and down -regulation of the target genes, respectively. 

Yellow spots, implying the lack of any significant changes in gene expression, are observed when 

transcripts from both the test and control biological sample are of comparable abundance. In 

general, genes are considered differentially expressed when test and control hybridizations exhibit 

2- or more fold differences. Microarray results are usually reported based on the MIAME 

guidelines created by the Functional Genomics Data Society (Brazma et al., 2001).  

 



 
 

Fig 2. Schematic of a DNA microarray workflow. 

 

 



Example 2: Statistical Analysis of Microarray Results. Two-sample microarrays, also known as 

two-channel microarrays are used determine differential gene expressions between two samples; 

such as, healthy tissues versus diseased tissues (as shown in Figure 2). It is common for a gene to 

be represented more than once within a microarray for the purpose of statistical calculations. In 

this example, we assume a hypothetical microarray of only five genes and each gene is represented 

by five probes. The summarized results are given in Table 2. The t-statistic of each gene and its p-

value can be calculated using the following equation, where n is the number of probes per gene. 

 

𝑡 − 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 =
|𝐻𝑒𝑎𝑙𝑡ℎ𝑦̅̅ ̅̅ ̅̅ ̅̅ ̅̅

 ̅𝐺𝑒𝑛𝑒(𝑖) − 𝐷𝑖𝑠𝑒𝑎𝑠𝑒𝑑̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
𝐺𝑒𝑛𝑒(𝑖)|

𝑠𝐻𝑒𝑎𝑙𝑡ℎ𝑦
√𝑛
⁄

 

 

Table 2. Microarray Summarized Values and Statistics  

Gene 
Name 

Healthy Tissue Signal Diseased Tissue Signal 

t-statistic p-value Significance 
Mean 

Intensity 
Standard 
Deviation 

Mean 
Intensity 

Standard 
Deviation 

Gene A 14.09 1.703 14.82 0.023 1.242 0.2821 Not Significant 

Gene B 13.64 0.642 15.43 0.375 4.983 0.0076 Significant 

Gene C 14.14 0.053 15.99 0.796 18.002 5.6E-05 Significant 

Gene D 8.18 0.836 9.73 1.487 3.785 0.0194 Not Significant 

Gene E 12.72 1.102 13.39 1.227 1.413 0.2303 Not Significant 

 

The threshold (α) for determining statistical significance is taken as 0.05. From this point of view, 

Gene D is significantly upregulated in diseased tissue compared to healthy tissue (p-value = 

0.0194). However, as there are multiple t-tests to be carried out (one test for each gene), the total 

threshold will increase – when 2 and 3 t-tests are carried out for an experiment, the threshold 

increases from 0.05 to 0.0975 (1 - 0.952) and 0.143 (1 - 0.952) respectively. Hence, there is a need 

to maintain the overall threshold at 0.05 and a simple way is by Bonferroni correction, which is to 

reduce the threshold to the quotient of 0.05 and the number of statistical tests required. In this case, 

the Bonferroni corrected threshold is 0.01 (0.05 / 5) as there are 5 t-tests required. As a result, 

Gene D is not significantly upregulated in diseased tissue compared to healthy tissue. 

 

RNA-Seq. In 1977, a method to decode extracted DNA sequences at single nucleotide level was 

developed by Nobel Prize chemist Frederick Sanger and his colleagues (Sanger et al., 1977). The 



Sanger method, which was based on the selective incorporation of chain-terminating fluorescent 

dideoxynucleotide, was used as the core technology to complete the Human Genome Project 

(Schmutz et al., 2004). Since then, a remarkable transformation is witnessed in the field of DNA 

sequencing with newly developed chemistries and chip-based analytical platforms, giving rise to 

second and third generation sequencing technologies (Chen et al., 2013; Heather and Chain, 2016; 

Schadt et al., 2010; Voelkerding et al., 2009). These developments led to higher throughput, 

sequencing depth and reliability, enabling applications beyond functional genomics, including the 

transcriptome analysis of prokaryotic and higher-order eukaryotic organisms, also known as RNA 

sequencing (RNA-Seq) (Croucher and Thomson, 2010; Mäder et al., 2011; McGettigan, 2013). 

RNA-Seq measures transcript abundance by repeated, direct sequencing of reverse-transcribed 

cDNAs. Sequence data are then mapped back to a reference genome and the number of mapped 

reads are normalized to quantify output expression as reads per kilobase of transcript per million 

mapped reads (RKPM) or transcripts per million (TPM) (Mortazavi et al., 2008; Wagner et al., 

2012). Example 3 shows the different procedures to normalize raw transcripts output into RKPM 

or TPM. The normalization procedures are required because sequencing depth, i.e. the number of 

times a sample is read, and transcript length result in higher raw output readings on the detection 

platform. TPM provides a more straightforward breakdown of gene expression profile, although 

both normalization approaches are equally accepted by the scientific community (Wagner et al., 

2012).  

 

Over the years, RNA-Seq has gradually displaced microarrays for transcriptomic analysis. Without 

the need to hybridize to transcript complementary probes, RNA-Seq avoided common problems 

associated with microarray gene expression measurement. Firstly, microarray experimental design 

relied on the availability of known genome sequence for chip synthesis. Hence, when genome 

sequences are not available, the only way forward is by using chips originally intended for other 

closely related specie to capture cDNA. Due to sequence variability; however, this approach may 

miss out on capturing the full transcriptome profile of the target. In contrast, RNA-Seq could be 

performed for unknown samples in parallel with whole genome sequencing to access both 

functional genomics and transcriptome data. This greatly reduces experiment down time while 

also enables the identification of novel transcript isoforms (Trapnell et al., 2010). A second 

advantage is in the reliability of transcriptome data. RNA-Seq is not affected by the non-specific 



hybridization of cDNA to probes. Instead, multiple reads are performed on the same sample to 

ensure sequence reliability. This procedure allows transcription to be accurately mapped down to 

single nucleotide resolution, and could be particularly useful when characterizing transcriptomes 

with frequent repeats. Additionally, because transcript abundance is measured by direct 

sequencing reads, RNA-Seq exhibits a larger dynamic range of detection, with better sensitivity at 

both low and high gene expression levels. On the other hand, the upper detection limit of 

microarray is bounded by the optical sensitivity of microarray scanner under saturating condition 

(blinding effect). Despite the apparent advantages, there are a few considerations on the use of 

RNA-Seq, namely data management and storage, speed, and cost. Data generated from RNA-Seq 

are typically in the giga- to terabytes range while those from microarray are in tens of megabytes. 

This implies that sequencing data is inherently more complicated to work with and would require 

a reliable suite of bioinformatics tools for data normalization and analysis (Trapnell et al., 2012). 

In terms of speed, a typical sequencing run takes between 2 – 14 days to complete while microarray 

experiment could be done within a day. Microarray consumables are also cheaper than those 

required for RNA-Seq by ~10-folds. In the longer run, however, these concerns would likely be 

reconciled as new sequencing platforms with higher throughput, sequence accuracy and longer 

read lengths are developed. Ongoing efforts to correct experimental bias and consolidate best 

practices in RNA-Seq would eventually pave the way for dominance of this technology in high 

throughput transcriptomics study (Conesa et al., 2016).  

 

In the RNA-Seq workflow, total RNA is first extracted using commercial kits and analyzed for 

amount and quality on NanoDrop and Agilent 2100 Bioanalyzer. RNA requirements for 

sequencing are more stringent than that for microarray; at least a RIN > 8 for eukaryotic cells and > 

9.5 for prokaryotic cells should be satisfied. Illumina also recommends to evaluate RNA suitability 

in terms of the percentage of RNA fragments > 200 nucleotides (DV200) on Agilent 2100 

Bioanalyzer. A few hundred nanograms total RNA with DV200 > 30% would be appropriate for 

downstream application. Before RNA-Seq library preparation, it is prudent to remove unwanted 

rRNA transcripts which competes with mRNA for sequencing capacity.  For this purpose, 

terminator exonuclease (TEX), which processively degrades only rRNA substrates with 5’-

monophosphate ends, could be added to the total RNA pool (Croucher et al., 2009; Sharma et al., 

2010). Alternatively, subtractive-hybridization kits sold by Illumina (Ribo-Zero™), Qiagen 



(GeneRead™) and Thermofisher Scientific (RiboMinus™) could be used to deplete prokaryotic 

and eukaryotic rRNAs. Oligonucleotide probes on magnetic beads support are used to capture 

rRNAs by hybridization, followed by subsequent ethanol extraction of mRNA from supernatant 

after beads pull down (Croucher et al., 2009; O’Neil et al., 2013; Petrova et al., 2017; Stewart et 

al., 2010; Westermann et al., 2016). Depending on the sequencing equipment and the purpose of 

the study, different methods have been developed to prepare RNA-Seq cDNA libraries, which in 

turn determines if the directional information of transcriptional activities could be effectively 

captured (Croucher and Thomson, 2010). A common workflow involves fragmenting rRNA-

depleted samples by ultra-sound sonication or nebulization into 200 bp – 400 bp RNA fragments. 

This is followed by dephosphorylation of the fragmented transcripts on the 5’ end and ligation 

with the first sequencing adaptor on the 3’ end. Transcript 5’ ends are then re-phosphorylated with 

T4 polynucleotide kinase and ligated with the second sequencing adaptor. Processed transcripts 

are reverse transcribed using 3’ adaptor as primer to generate first strand cDNA (Westermann et 

al., 2016). Alternatively, rRNA-depleted samples could be 3’ polyadenylated with poly(A) 

polymerase and then treated with tobacco acid pyrophosphatase. This effectively converts 5’ 

triphosphate into monophosphate for 5’ adaptor ligation. Processed transcripts are reverse 

transcribed using oligo(dT)-adapter primers to generate first strand cDNA (Westermann et al., 

2016). Noteworthy, in both methods, the adaptors are attached stepwise in specific orientation to 

preserve directional information. Besides mechanical fragmentation, transpososome could be used 

to fragment and incorporate modified adaptors onto double stranded cDNA in a one pot reaction 

known as tagmentation (Adey et al., 2010; Kia et al., 2017). In this process, rRNA-depleted 

samples are reverse transcribed and amplified to generated double stranded cDNA, using uracil 

instead of thymine for second strand synthesis. The resultant cDNA molecules are transposed with 

sequencing adapters and treated with USER enzyme mix to deplete the second cDNA strand, 

retaining only tagged single stranded cDNA. This cDNA library is selectively amplified by 

Phusion polymerase (Phusion polymerase do not extent well on DNA templates with uracil 

residues) and purified (Gertz et al., 2012).   

 

The next step in RNA-Seq involves hybridizing cDNA libraries to support material, typically 

insoluble beads or glass slide, which contains oligonucleotides complementary to the adaptors. 

With sufficient dilution, each bead is expected to capture only one cDNA molecule. In the case of 



glass slide, the hybridized cDNAs would be sparsely distributed on a two-dimensional axis. Bead 

capture is adopted in Ion Torrent and SOLiD sequencing workflows, while glass slide in the form 

of a flow cell is adopted by Illumina. Captured transcripts are then clonally amplified by emulsion 

PCR into bead-bound libraries, or by isothermal bridge amplification into clusters of DNA clones. 

Finally, sequencing primers are added to initiate the actual sequencing process. Raw sequence 

reads are mapped to specific transcripts of the reference genome and normalized to provide 

accurate expression output data in RKPM or TPM. Currently, the Illumina sequencing-by-

synthesis platform (SBS) is considered the most dominant next generation sequencing (NGS) 

technology (Figure 3) (Greenleaf and Sidow, 2014). Other NGS platforms include (1) Ion Torrent 

that also works on the principle of SBS but detects H+ proton instead of fluorescence during 

nucleotide addition, (2) ABI SOLiD that relies on ligation chemistry (synthesis-by-ligation), and 

(3) single molecule sequencing technologies from PacBio and Oxford Nanopore. For more 

information on the various NGS platforms, the reader is referred to comprehensive reviews 

published elsewhere (Heather and Chain, 2016; Mardis, 2017; Schadt et al., 2010).  

 



 
 

Fig 3. Schematic of Illumina RNA-Seq workflow. 

 

 



Example 3: RKPM and TPM Calculation. An RNA-Seq experiment was performed to determine 

the transcript abundance in a cell culture with three technical replicates. From simplicity, it is 

assumed that the cell has expressed 5 different genes. Results of the sequencing run are presented 

in Table 3 as raw transcript counts. Determine the normalized TPM and RKPM values. 

 

Table 3. Transcript abundance data from RNA-Seq  

  Mapped Reads ( × 𝟏𝟎𝟔 ) 

 Size (kb) Replicate I Replicate II 
Replicate 

III 

Gene A 0.5 1.2 1.5 1.6 

Gene B 1 3.0 3.2 2.9 

Gene C 2 4.0 4.2 4.2 

Gene D 3 2.0 1.8 2.2 

Gene E 4 0.5 0.5 0.6 

 

TPM is obtained after two normalization steps, first with gene size and then by sequencing depth. 

Sample calculation for Replicate I, Gene A with size of 0.5 kb. 

 

𝑠𝑒𝑞 𝑐𝑜𝑢𝑛𝑡𝑠

𝑔𝑒𝑛𝑒 𝑠𝑖𝑧𝑒
=  
1.2

0.5
= 2.40 
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  Mapped Reads ( × 𝟏𝟎𝟔 ) 

 Size (kb) Replicate I Replicate II Replicate III 

Gene A 0.5 2.40 3.00 3.20 

Gene B 1 3.00 3.20 3.30 

Gene C 2 2.00 2.10 2.10 

Gene D 3 0.67 0.60 0.73 

Gene E 4 0.13 0.13 0.15 

Total Count 8.19 9.03 9.48 

 

Total sequencing depth of Replicate I after 1st normalization is 8.19 million reads. 



 

𝑇𝑃𝑀 = 
𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑠𝑒𝑞 𝑐𝑜𝑢𝑛𝑡𝑠

𝑡𝑜𝑡𝑎𝑙 𝑐𝑜𝑢𝑛𝑡𝑠
=  
2.40

8.19
= 0.29 
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  Mapped Reads in TPM 

 Size (kb) Replicate I Replicate II Replicate III 

Gene A 0.5 0.29 0.33 0.34 

Gene B 1 0.37 0.35 0.35 

Gene C 2 0.24 0.23 0.22 

Gene D 3 0.08 0.07 0.08 

Gene E 4 0.02 0.01 0.02 

Total Count 1.00 1.00 1.00 

 

 

RKPM is obtained after two normalization steps in the reverse order of TPM, first with sequencing 

depth and then by gene size. Total sequencing depth of Replicate I before normalization is 10.7 

million reads (𝑇𝑜𝑡𝑎𝑙 𝑠𝑒𝑞 𝑐𝑜𝑢𝑛𝑡𝑠 = 1.2 + 3.0 + 4.0 + 2.0 + 0.5 = 10.7). 

 

Sample calculation for Replicate I, Gene A (1st normalization by sequencing depth). 

 

𝑠𝑒𝑞 𝑐𝑜𝑢𝑛𝑡𝑠

𝑡𝑜𝑡𝑎𝑙 𝑐𝑜𝑢𝑛𝑡𝑠
=  
1.2

10.7
= 0.11 
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  Mapped Reads ( × 𝟏𝟎𝟔 ) 

 Size (kb) Replicate I Replicate II Replicate III 

Gene A 0.5 0.11 0.13 0.13 

Gene B 1 0.28 0.29 0.28 

Gene C 2 0.37 0.38 0.35 

Gene D 3 0.19 0.16 0.18 

Gene E 4 0.05 0.04 0.05 

Total Count 1.00 1.00 1.00 



 

2nd normalization by gene size for the same gene, 𝑅𝐾𝑃𝑀 = 
𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑠𝑒𝑞 𝑐𝑜𝑢𝑛𝑡𝑠

𝑔𝑒𝑛𝑒 𝑠𝑖𝑧𝑒
= 

0.11

0.5
= 0.22 
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  Mapped Reads in RKPM 

 Size (kb) Replicate I Replicate II Replicate III 

Gene A 0.5 0.22 0.27 0.27 

Gene B 1 0.28 0.29 0.28 

Gene C 2 0.19 0.19 0.18 

Gene D 3 0.06 0.05 0.06 

Gene E 4 0.01 0.01 0.01 

Total Count 0.75 0.81 0.80 

 

Note that RKPM can be converted to TPM by dividing by the total RKPM values. Sample 

calculation for Replicate I, Gene A with RKPM value of 0.22, 𝑇𝑃𝑀 = 
𝑅𝐾𝑃𝑀

∑𝑅𝐾𝑃𝑀
= 

0.22

0.75
= 0.29. 

 

Reporter Proteins. Reporter proteins are fluorescent proteins, or enzymes that are able to convert 

specific substrates into colorimetric or luminescent products.  To quantify gene expression, genes 

that encode for reporter proteins are assembled downstream of DNA promoters in synthetic genetic 

circuits, and then introduced into the biological host of choice by either electroporation or chemical 

transformation. This approach has been adopted to characterize promoter strengths in diverse 

genetic context, including bacterial, yeast, plant, mammalian cells, and cell-free extracts 

(Auslander et al., 2012; Canton et al., 2008; Chappell et al., 2013; Huang et al., 2010; Redden and 

Alper, 2015; Reeve et al., 2016; Schaumberg et al., 2016; Wong et al., 2015). The amount of 

reporter proteins generated during gene expression is assumed to be proportional to background-

subtracted readings measured on optical instruments; such as, flow cytometry and fluorescent plate 

readers. Reporter proteins could also be purified and measured at different concentrations to obtain 

calibration plots of the optical readers. Direct quantification of gene expression by reporter 

proteins circumvent the need to isolate mRNA from cell cultures, a procedure that is often time 

consuming, labor intensive, costly and prone to human error. For this reason, the use of reporter 

proteins is preferred over qPCR for quantifying gene expression, especially for the large-scale 



validation of DNA promoters. Importantly, the results of this approach reflect the combined effect 

of transcription, translation and post-translational activities, rather than a true measurement of 

mRNA transcription alone. Incorporating the results of reporter protein outputs into computational 

models could give estimate of the amount of transcript produced. This will require either additional 

experiments or probing through systems biology databases to determine key modelling parameters, 

including the rates of mRNA degradation, protein maturation, protein degradation, and cell growth 

(Canton et al., 2008; Milo et al., 2010). Reporter proteins could also be used for functional analysis. 

For example, promoter sequences could be mutated and then assayed for changes in gene 

expression. When complemented with DNA sequencing, this procedure could rapidly identify core 

promoter regulatory regions and develop synthetic promoter libraries of varying strengths (Alper 

et al., 2005; Hartner et al., 2008; Rud et al., 2006; Siegl et al., 2013).  

 

Due to the ease of use, fluorescent proteins are among the most commonly used reporter proteins 

in gene expression studies. The superfolder green fluorescent protein (sfGFP) in particular, is a 

highly evolved variant of wild type GFP with unmatched performance in terms of folding kinetics, 

solubility and tolerance to high temperature and chemicals (Pédelacq et al., 2006). A major 

limitation of GFP and its variants however, is the need for molecular oxygen as cofactor during 

fluorophore formation, thus restricting its application to only aerobic biological systems. Flavin 

mononucleotide-based fluorescent proteins (FbFP) was later developed to enable fluorescent 

detection in both aerobic and anaerobic condition, but the low output fluorescence remains a 

technical hurdle that hindered widespread adoption (Drepper et al., 2007). For anaerobic biological 

systems, the use of non-fluorescent reporters such as light emitting luciferases and absorbance 

changing enzymes are still commonplace. Popular examples of enzyme-based reporter proteins 

include β-galactosidase, β-glucosidase and β-glucuronidase (Partow et al., 2010; Siegl et al., 2013). 

The recent development of Spinach2, an RNA aptamer that binds to 3,5-difluoro-4-

hydroxybenzylidene imidazolinone (fluorophore mimic of GFP), provides an exciting platform to 

study gene expression at the mRNA level in vivo (Strack et al., 2013).   

 

Bioinformatics Analysis / Applications 

Bioinformatics can be applied to the study of transcriptional activities in two major ways – (1) the 

prediction of gene expression using sequence features (such as, response elements in promoters) 



or from the expression of other genes, and (2) constructing mathematical models for further 

analyses. 

 

Predicting Gene Expressions. In prokaryotes, it is common to find several genes with related 

functions grouped together and regulated by a common promoter and a set of enhancers, forming 

an operon. Hence, it is likely that the expression of genes within the same operon to be correlated 

(Sabatti et al., 2002). This is supported by a study (De Hoon et al., 2004) examining the gene 

expressions between genes within operons and across operons, and found that genes within 

operons show higher correlation than genes across operons. Using expressional correlation, De 

Hoon et al. (2014) can predict whether the genes are from the same operon, with 79.9% accuracy. 

This concept of expressional correlation from genes within the same operon has been used to 

improve microarray analysis by noise reduction (Xiao et al., 2006). However, despite having the 

same promoter, the correlation is not absolute as the relative position of the genes within the operon 

may affect expression. A study on Streptomyces coelicolor operons found that the expression of 

genes decreases along the relative position on the operon by normalizing expression of all genes 

in the operon to that of the first gene in the operon (Laing et al., 2006) but this expression decline 

is not statistically significant up to the 5th gene on the operon. This is not observed in which was 

not observed in Escherichia coli where the expression of all genes in the operon is constant 

regardless of positioning in the operon. However, a study using synthetic operon found that gene 

expression increases linearly with the distance from the start of a gene to the end of the operon 

(Lim et al., 2011). Nevertheless, these studies suggest that expression of genes within the same 

operon can be predicted by knowing the expression of one of the genes within the operon, 

subjected to species-specific variability as in the case of S. coelicolor. 

 

In both prokaryotes and eukaryotes, several genes may be activated by the same transcription 

factor. Similar to the reason why genes within the same operon is likely to be expressionally 

correlated, a set of genes activated by the same set of transcription factors are also likely to be 

expressionally correlated. Binding of transcription factors to the promoter may affect chromatin 

accessibility (Lamparter et al., 2017), leading to correlated expression patterns from genes affected 

by the same transcription factors (Mahdevar et al., 2013). A study (Zhang and Li, 2017) examining 

more than 1000 human transcription factors found that transcription factor usage can be used to 



predict gene expression level (r2 of up to 0.617). Genes with similar sequence features in the 

promoter sequence may also exhibit correlated expression profiles. For example, it has been shown 

that genes with dioxin-response element in their promoter demonstrate correlated expression (Kim 

et al., 2006). Similar cases have also been discovered in other response elements; such as, immune 

response (Care et al., 2015). It is plausible to conceive that several genes must be expressed in 

response to a given stimulus (Kim et al., 2003), and the regulatory signaling of such stimulus may 

involve the same set of transcription factors or response elements.  

 

This is supported by a previous study examining the functional aspects of genes with correlated 

expressions and found that genes with correlated expression demonstrate functional 

correspondence (Reverter et al., 2005). Moreover, a study on transcriptomics (Ling et al., 2008) 

also found large number of genes that are correlated. Hence, it may be possible to predict entire 

transcriptome from known expression of a handful of genes by constructing gene co-expression 

network. This concept is demonstrated by a study (Ling and Poh, 2014), which uses the expression 

values of 59 genes to predict the expression of the entire E. coli transcriptome. The correlation 

between predicted and actual expression value is 0.467, which is similar to the microarray intra-

array variation. This suggests that intra-array variation accounts for a substantial portion of the 

transcriptome prediction error and further strengthen the potential of this approach with more 

reliable experimental data. Ling and Poh (2014) demonstrated the application of their predictive 

model using a case study – hydrogenase 2 to hydrogen production during glucose (Maeda et al., 

2007) or glycerol fermentation (Trchounian et al., 2013) and hydrogenase 2 maturation 

endopeptidase (hybD) is involved in the maturation of hydrogenase 2. The model predicted 87 

genes significantly affected by the 56% knockdown of hybD, and was subjected to Gene Ontology 

Enrichment Analysis (Zheng and Wang, 2008). All 5 significant molecular functions enriched 

were of carbon/sugar transferase-typed activity, which corresponds to the expected activity as 

previously described (Maeda et al., 2007; Trchounian et al., 2013). Knowing that 56% knockdown 

of hybD significantly affects the expression of 87 genes, it is then possible to ask for the range of 

hybD expression variation that will not significantly affect any other genes; that is, the expression 

buffer of hybD. Using 10% stepwise changes of hybD from 100% knockout to 2x over-expression 

the number of affected genes is symmetrical and fits a quadratic model and solving the roots of 



the quadratic model, the expressional buffer of hybD in E. coli MG1655 is estimated to be we 

estimate to be between 73.88% and 124.52% of its mean expression. 

 

 

Fig 4. Percentage of reachable genes affected by varying levels of hydrogenase 2 
maturation endopeptidase (hybD) expressions.  

 

Two sequence features of the gene, GC content and codon usage, have been found to be useful in 

predicting gene expressions. In a study of more than four thousand human promoters across eight 

different cell lines (Landolin et al., 2010), it was found that the GC content of promoters can be 

predictive of gene expression as promoters high in GC content (more than 50% GC) demonstrating 

constitutive expression and promoters with low GC content (less than 50% GC) more inclined 

towards cell-specific expression. This resulted in significant correlation (r = 0.43) between 

promoter activity and reporter gene expression. Of the 789 genes expressed in all eight cell lines, 

719 (91%) were genes with high GC promoters and only 70 (9%) were from genes with low GC 

promoters. Conversely, 378 of the 483 genes (78.3%) that were expressed in only one of the eight 

cell lines were from low GC promoters. This suggests that GC content of human promoters can be 

indicative of cell specificity.  

 

However, the relative impact of GC content and codon usage on gene expression and transcript 

stability is a subject of debate. A study (Barahimipour et al., 2015) attempted to resolve this by 

designing 4 yellow fluorescent protein (YFP) genes encoding the same amino acid sequence for 

expression in Chlamydomonas reinhardtii using differing GC content and codon usages. Using 

this, Barahimipour et al. (2015) found that codon usage plays a more important role in expression 
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efficiency and transcript stability compared to GC content in C. reinhardtii. Expression efficiency 

is contributed by translational efficiency as the relative abundance between RNA and protein are 

highly correlated using RNA blot analysis, suggesting that expression efficiency is a result of 

transcriptional efficiency and the codon usage plays an important role in transcriptional efficiency. 

Moreover, this study also adds strength to the usefulness of transcriptomics analysis as a proxy for 

proteomics analysis as it depends on high correlation between transcript abundance and peptide 

abundance, given that it is experimentally easier to conduct transcriptomics studies (using 

experimental tools such as microarrays and RNA-seq) than proteomics studies (using experimental 

tools such as mass spectrometry).  

 

There are a number of metrics to calculate codon usages bias. These include codon adaptation 

index (Sharp and Li, 1987), relative codon bias strength (Das et al., 2012), relative codon 

adaptation (Fox and Erill, 2010), and modified relative codon bias strength (Sahoo and Das, 2014). 

Fox and Erill (2010) used relative codon usage bias to predict the expression levels of E. coli genes 

of more than 1000 bp, achieving a correlation of 0.489 between predicted and actual expression. 

Similarly, a study (Das et al., 2017) found correlation between these metrics but modified relative 

codon bias strength was found to have the highest correlation with transcriptomics (r = -0.31) and 

proteomics (r = -0.44). Although the correlations are not high, these studies do suggest the potential 

of using codon usage bias to predict transcriptional activities. 

 

Modeling and Simulation. The main reason for studying transcriptional activities of a cell; and 

by extension, the entire transcriptome at large; on the premise of correlation between transcript 

abundance and peptide / protein abundance; is that the knowledge of transcriptional activities 

allows for a door towards elucidating the genetic and biochemical basis of various conditions. For 

example, it is the fundamental step for analyzing differential gene expression between various 

conditions (such as, disease versus healthy, or different treatment conditions) or across various 

time points (Creecy and Conway, 2015; Du et al., 2017; Herrera-Marcos et al., 2017; Kato et al., 

2005; Lin et al., 2016; Liu et al., 2015), or to construct models to predict the phenotype given a 

transcriptomic change (transcriptome-phenotype correlation).  

 



A biochemical reaction is commonly written as (where A, B, and C are the substrates; P, Q, and R 

are the products), with the following rate laws, 

 

𝐴
𝐸𝑛𝑧𝑦𝑚𝑒
→     𝑃 𝑟𝑎𝑡𝑒 𝑙𝑎𝑤 1 =  

𝑘𝑐𝑎𝑡[𝐸𝑛𝑧𝑦𝑚𝑒][𝐴]

𝐾𝑚 + [𝐸𝑛𝑧𝑦𝑚𝑒][𝐴]
 

𝐵 + 𝐶
𝐸𝑛𝑧𝑦𝑚𝑒
→     𝑄 + 𝑅 𝑟𝑎𝑡𝑒 𝑙𝑎𝑤 2 =  

𝑘𝑐𝑎𝑡[𝐸𝑛𝑧𝑦𝑚𝑒][𝐵][𝐶]

𝐾𝑚 + [𝐸𝑛𝑧𝑦𝑚𝑒][𝐵][𝐶]
 

 

Where 𝑘𝑐𝑎𝑡  and 𝐾𝑚  are the turnover number (per unit time) and Michaelis-Menten constant 

(concentration) of the enzyme respectively, and 𝑘𝑐𝑎𝑡[𝐸𝑛𝑧𝑦𝑚𝑒] corresponds to the 𝑉𝑚𝑎𝑥  of the 

reaction (per unit time). When there is more than one substrate or product, the mechanism can take 

more complicated forms; such as ternary-complex mechanisms (Yang et al., 2011) or ping-pong 

mechanisms (Nakamura et al., 1994). However, these more complicated mechanisms will be 

unwieldy to be extended to enzymes using more than 2 substrates. In addition, these mechanisms 

will require a larger set of enzyme kinetics which is not easily obtainable. Hence, we propose to 

use an approximation where we consider the enzyme can only work when all the required 

substrates are present at the same location and with a random probability. Hence, the approximated 

rate law in generalized form can be written as  

𝑘𝑐𝑎𝑡[𝑒𝑛𝑧𝑦𝑚𝑒](∏ [𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒𝑖]
𝑁
𝑖=1 )

𝐾𝑚 + (∏ [𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒𝑖]
𝑁
𝑖=1 )

 

 

The concentration of enzymes, which can be directly represented by the transcriptional activity of 

the gene encoding the enzyme, play a crucial role in the rate laws. The concentrations of both 

substrate(s) and product(s) over time can be defined as ordinary differential equations (ODEs) as 

 

𝑑[𝐴]

𝑑𝑡
= −𝑟𝑎𝑡𝑒 𝑙𝑎𝑤 1 

𝑑[𝑃]

𝑑𝑡
= 𝑟𝑎𝑡𝑒 𝑙𝑎𝑤 1 

𝑑[𝐵]

𝑑𝑡
=
𝑑[𝐶]

𝑑𝑡
= −𝑟𝑎𝑡𝑒 𝑙𝑎𝑤 2 

𝑑[𝑃]

𝑑𝑡
=
𝑑[𝑄]

𝑑𝑡
= 𝑟𝑎𝑡𝑒 𝑙𝑎𝑤 2 

 

As enzymes are the result of gene expression, the concentration of an enzyme can be modelled 

using ODEs developed in previous studies (Jayaraman et al., 2016; Saeidi et al., 2011). Briefly, 

expressed protein concentration from an inducible promoter can be modelled as  



𝐹𝑜𝑟 𝑐𝑜𝑛𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑣𝑒 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛:
𝑑[𝑅𝑁𝐴]

𝑑𝑡
= 𝑣0 − 𝛾𝑅𝑁𝐴[𝑅𝑁𝐴] 

 

𝐹𝑜𝑟 𝑖𝑛𝑑𝑢𝑐𝑖𝑏𝑙𝑒 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛:
𝑑[𝑅𝑁𝐴]

𝑑𝑡
= 𝑣0 +

𝑣𝑚𝑎𝑥 + [𝑖𝑛𝑑𝑢𝑐𝑒𝑟]
𝑛

𝐾𝑚 + [𝑖𝑛𝑑𝑢𝑐𝑒𝑟]𝑛
− 𝛾𝑅𝑁𝐴[𝑅𝑁𝐴] 

 

𝐹𝑜𝑟 𝑟𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑏𝑙𝑒 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛:
𝑑[𝑅𝑁𝐴]

𝑑𝑡
= 𝑣0 +

𝑣𝑚𝑎𝑥
𝐾𝑚 + [𝑟𝑒𝑝𝑟𝑒𝑠𝑠𝑜𝑟]𝑛

− 𝛾𝑅𝑁𝐴[𝑅𝑁𝐴] 

 

𝑑[𝐸𝑛𝑧𝑦𝑚𝑒]

𝑑𝑡
=
𝑑[𝑝𝑟𝑜𝑡𝑒𝑖𝑛]

𝑑𝑡
= 𝛽[𝑅𝑁𝐴] − 𝛾𝑝𝑟𝑜𝑡𝑒𝑖𝑛[𝑝𝑟𝑜𝑡𝑒𝑖𝑛] 

 

Where 𝑣0 and 𝑣𝑚𝑎𝑥 are the baseline and maximum expression (concentration per second) of the 

promoter, 𝐾𝑚 is the Michaelis-Menten constant (concentration), n is the Hill coefficient, 𝛽 is the 

relative ribosome binding site (RBS) strength (Wang et al., 2017), and 𝛾𝑅𝑁𝐴 and 𝛾𝑝𝑟𝑜𝑡𝑒𝑖𝑛 are the 

degradation rates (per unit time) of RNA and protein respectively. 

 

Once created, models can be used as both a repository of knowledge and an in silico platform for 

hypothesis testing and analysis (Ling, 2016) for the purpose of advising the experimentalist on the 

parameters to optimize for the optimal yield (MacDonald et al., 2011). This approach had been 

used in several studies. For example, an enzyme pathway kinetic model of mevalonate pathway 

had been constructed to study the crucial steps for the production of amorphadiene from 

mevalonate in E. coli (Weaver et al., 2015). After model construction, global sensitivity analysis 

was carried out to determine which of the six enzymes are important and found that amorphadiene 

synthase expression and activity are most critical. Another study attempted to increase carotenoid 

production in maize also constructed an enzyme kinetic model (Comas et al., 2016). While 

amorphadiene from mevalonate is a linear pathway (Weaver et al., 2015), many carotenoids can 

be synthesized from phytoene in a branched pathway with many enzymes (Comas et al., 2016); 

hence, it is not obvious which enzyme expression to overexpress or knockdown to result in 

increasing specific carotenoids. By analyzing the model, four independent maize lines were 

engineered using insights from the model analysis and validated experimentally.  

 



These studies suggest that modeling and simulation can provide important computational tools to 

advise experimentalists but the success of these tools depends on the quality of characterization 

data from previous experiments. The quality of these experimental data can be further strengthened 

using bioinformatics approaches to reduce noise, as in the case of Xiao et al. (2006). Hence, there 

is a reflective process between laboratory and experimental experimentation. It can then be 

expected that increased experimental data will improve current computational methods, and 

improved computational methods will better inform laboratory experiments. This trend is likely to 

stay in the foreseeable future. 
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