
Automated design of multidimensional clustering tables for
relational databases

Sam S. Lightstone

IBM Toronto Laboratory

Markham, Ontario, Canada

light@ca.ibm.com

Bishwaranjan Bhattacharjee

IBM T. J. Watson Research Center

Hawthorne, New York, USA

bhatta@us.ibm.com

Abstract

The ability to physically cluster a database table
on multiple dimensions is a powerful technique
that offers significant performance benefits in
many OLAP, warehousing, and decision-support
systems. An industrial implementation of this
technique for the DB2® Universal Database™
(DB2 UDB) product, called multidimensional
clustering (MDC), which co-exists with other
classical forms of data storage and indexing
methods, was described in VLDB 2003. This
paper describes the first published model for
automating the selection of clustering keys in
single-dimensional and multidimensional
relational databases that use a cell/block storage
structure for MDC. For any significant
dimensionality (3 or more), the possible solution
space is combinatorially complex. The
automated MDC design model is based on what-
if query cost modeling, data sampling, and a
search algorithm for evaluating a large
constellation of possible combinations. The
model is effective at trading the benefits of
potential combinations of clustering keys against
data sparsity and performance. It also effectively
selects the granularity at which dimensions
should be used for clustering (such as week of
year versus month of year). We show results
from experiments indicating that the model
provides design recommendations of comparable
quality to those made by human experts. The
model has been implemented in the IBM® DB2
UDB for Linux®, UNIX® and Windows®
Version 8.2 release.

1. Introduction
Multidimensional clustering (MDC) techniques have been
shown to have very significant performance benefits for
complex workloads [4][12][14][15][20]. In fact, the
literature on MDC has focused on how to better design
database storage structures, rather than on how to select
the clustering dimensions. However, for any given storage
structure used for MDC, there are complex design trade-
offs in the selection of the clustering dimensions. In this
paper we present a model for doing so in the form of an
MDC Advisor that will select MDC keys (i.e., designs)
optimized for a specified combination of workload,
schema, and data. We also describe its implementation for
the MDC physical layout scheme introduced in DB2 UDB
Version 8.1 [2] and report the results of experiments that
indicate the model provides design recommendations that
are in line with the quality of human expert
recommendations. The value of exploiting MDC would
be superior system performance, reduced time from test to
production system, and reduced skill requirements within
an enterprise.

MDC is motivated to a large extent by the spectacular
growth of relational data, which has spurred the continual
research and development of improved techniques for
handling large data sets and complex queries. In
particular, online analytical processing (OLAP) and
decision-support systems (DSS) have become popular for
data mining and business analysis [16]. OLAP and DSS
systems are characterized by multidimensional analysis of
compiled enterprise data, and typically include
transactional queries including group-by, aggregation,
(multidimensional) range queries, cube, roll-up and drill-
down.

The performance of multidimensional queries, (such as
GROUP BY and range queries) is often improved through
data clustering, which can significantly reduce I/O costs,
and modestly reduce CPU costs. Yet the choice of
clustering dimensions and the granularity of the clustering
are nontrivial choices and can be difficult to design even
for experienced database designers and industry experts.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Very Large Data Base Endowment. To copy
otherwise, or to republish, requires a fee and/or special permission from
the Endowment
Proceedings of the 30th VLDB Conference,
Toronto, Canada, 2004

1170

In recent years, there have been several research and
industrial initiatives focused on physical database design.
In particular, a number of projects have focused on design
automation for indexes, materialized views, and table
partitioning [3][5][6][7][8][13][17][18][19].

The recent flurry of papers on index and materialized
view selection, and the development of industrial
applications in self-managing, or autonomic, systems by
leading RDBMS vendors such as Microsoft, IBM and
Oracle, all attest to the growing corporate recognition of
this important area of investigation.

The rest of the paper is organized as follows: Section 2
gives an overview of relevant design advisor issues,
Section 3 describes the approach used with the MDC
Advisor, Section 4 describes experiments with the MDC
Advisor, and we conclude with Section 5.

2. Background

2.1 DB2 UDB V8.1 MDC implementation
In the MDC implementation in DB2 UDB V8.1 proposed
by Padmanabhan et al. [15], each unique combination of
dimension values forms a logical cell that is physically
organized as blocks of pages, where a block is a set of
consecutive pages on disk. Every page of the table is part
of exactly one block, and all blocks of the table consist of
the same number of pages. The clustering dimensions are
individually indexed by B+ indexes, known as dimension
block indexes, which have dimension values as keys and
block identifiers as key data.

The DB2 UDB implementation was chosen by its
designers for its ability to co-exist with other database
features such as row-based indexes, table constraints,
materialized views, high-speed load, and mass delete.

Figure 1 illustrates these concepts. It depicts an MDC
table clustered along the dimensions year(orderDate),
region and itemId. The figure shows a simple logical cube
with only two values for each dimension attribute. Logical
cells are represented by sub-cubes in the figure and blocks
by shaded oval, and are numbered according to the logical
order of allocated blocks in the table. We show only a few
blocks of data for a cell identified by the dimension
values <1997,Canada,2>.

Figure 1: Logical view within an MDC table

2.2 Cost-based evaluation for database
advisors
Lohman et al. [13] suggest using cost estimates provided
by the database optimizer as part of the evaluation engine
of an index advisor that recommends table indexes. In this
model, Lohman et al. used a simulation technique to
determine access cost impact of potential table indexes.
Tthe DBMS is taught to consider “virtual” indexes within
its query compiler, resulting in an effective costing of
query performance.

The key advance in Lohman’s technique is the use of
optimizer estimates to evaluate the value of a potential
change in the design of a database. The empirical results
for this technique were found to be quite good for index
selection. A variation of this method was exploited again
for another physical database design problem in [18] to
design partitioning schemes for shared-nothing massively
parallel processing (MPP) databases.

The idea of reusing the database optimizer’s cost
estimations for evaluating cost benefit of physical design
changes in the database is based on the observation that
the query optimizer’s cost modeling is sensitive to both
the logical and physical design of a database. Having the
model for workload resource consumption allows us to
exploit this model for “what-if” analysis.

In the area of automating MDC dimension selection, there
are implementations such as WARLOCK [21], which was
limited to parallel warehouses for shared- everything or
shared-disk architectures. It used its own cost model
instead of using the database engines.

2.3 Estimating the cardinality of distinct
values in a set from a data sample
The ability to estimate the cardinality of a set from a
sample is an important aspect of MDC design. This topic
was surveyed in depth in the 1990s, notably in [9][10].

1171

The known estimators can be divided into two main
categories: i) those that evaluate cardinality while
examining the frequency data in the sample, and ii) those
that generate a result without considering frequency
distribution across classes in the sample. The latter type
are significant to this paper because they can be calculated
easily with only a small set of input variables describing
the sample, such as sample frequency, sample size and the
cardinality of unique values in the sample. The best of
these latter estimators is the First Order Jackknife
estimator, which can be described as follows:

When the data set contains no skew the scale-up
factor, defined as Scale = D/E[d], is given by

))1(1/(1][/)/(dNqdEDScale −−== (1.)

Here D is the number of distinct values in the set and
d is the number of distinct values in the sample. Also,
E[d] is the expected number of distinct values in the
sample under Bernoulli sampling with rate q = n/N,
where n is the sample size and N is the set size. E[d]
is the theoretical expected value of d, i.e., the average
value of d over many repeated samples. The idea
behind the "method of moments" estimator is to
derive an equation relating E[d] to D, based on
theoretical considerations. We solve for D to get a
relation of the form:

])[(dEfD =

for some function f . Our estimator D̂ is then
obtained by substituting d for E[d] in the above
relation:

)(ˆ dfD = (2.)

Such a substitution is reasonable if the sample is not too
small. E[d] is the "first moment" of d, so we are replacing
a moment by an observed value.

2.4 Expression based columns
Some popular RDBMS products available today provide
the ability to define expression-based columns as part of a
relational table definition. These columns, sometimes
called generated columns or virtual columns, are
mathematical functions of columns within their record
tuple. For example, one might define an expression-based
column on an employee table that is a function of each
employee’ s SALARY as follows:

CREATE TABLE EMPLOYEES
(EMPLOYEE_ID INT,
SALARY DECIMAL(10,4),

SALARY_RANGE INT
GENERATED ALWAYS AS
 (SALARY/1000))

These expression-based columns based on mathematical
and lexical models in many cases have superior clustering
potential over one or more base columns. For example,
INT(SALARY/1000) is likely to be superior in terms of
clustering potential to clustering directly on SALARY.

3. MDC Dimension Selection
MDC requires the allocation of storage blocks to disk for
all cells (unique combinations of dimensions) that have at
least one tuple. Since in practice all cells will have at least
one incompletely filled block, MDC will generally cause
some storage expansion. Since storage may be
constrained and does impact system performance, it is
treated as a constraint on the selection problem.
Accordingly, MDC solutions are considered only if they
require no more than 10% extra space than a non-MDC
implementation. 10% was chosen as a reasonable trade-
off to a) constrain increased storage costs and b) constrain
any possible negative effect that storage increase may
have on queries processing data along access patterns that
do not benefit from MDC.

With this constraint in mind, we exploit the SQL query
optimizer to model the resource consumption of the
workload with and without MDC clustering. Once a set of
candidate dimensions,, and their respective benefits to the
workload, is identified, we also model how each
dimension’ s benefit will degrade at various
coarsifications. Finally, through a search and sample
process, the space of possible combinations of dimensions
and their coarsifications is examined to find the MDC
design for a table that maximizes the combinations of
dimensions while satisfying the expansion constraint.

The search space for selecting clustering dimensions is
huge. The basic problem of selecting clustering
dimensions from a finite set can be modeled easily as a
simple combination problem. However, since each
dimension has some number of degrees of coarsification,
the search space expands exponentially. Assuming an
equal number of degrees of coarseness for each
dimension, the following equation shows the
combinations of “ n” dimensions each with “ c” degrees of
coarsification:

n
n

r

r ccrnrn +−∑
−

=

))))!(!/()!(((
1

1

 (3.)

This equation takes a standard formula for the
combination of n items, and expands based on the fact
that, for each iteration of the sum, each tuple has its

1172

combinations expanded by a factor of cr because each part
of the tuple has c degrees of coarsification (i.e., c ways in
which it can be selected). Similarly, the formula
concludes with cn since the selection space for a selection
that includes every dimension, each being selected at one
of c degrees, is cn. In general, not all dimensions have the
same number of degrees of coarsification. Even so,
equation (3) suggests the complexity of the space.

In Subsection 3.1 we give an overview of the
methodology adopted, and in subsequent subsections we
expand on some key areas. This methodology expects the
following inputs from the user:

1. A workload specification, detailing specific
queries and the frequency of execution of each.

2. A sample database including the database tables,
indexes, and a sample of data. The more
complete this database is, the better the
recommendations.

Note that the MDC Advisor was designed as an extension
to the DB2 Design Advisor, which supports several
techniques for automated workload capture, compression,
ranking, and weighting [11][17].

3.1 High-level overview of the MDC selection
model
Our approach is based on searching over the constellation
of combinations of dimensions at various coarsifications
to find a combination that has the highest expected benefit
while satisfying the storage expansion constraint.

1) Identify candidate clustering dimensions and their
maximal potential workload benefit:
a) Baseline the expected resource consumption (via

SQL optimizer estimates) of each query in the
workload with all optimizer clustering statistics
simulated to represent poor clustering.

b) Each query in the workload is reoptimized in a
special mode, whereby the SQL optimizer
simulates the effect of clustering on all candidate
clustering dimensions. The dimensions are
selected by their use in predicates, as described
in Section 3.2. During this phase the optimizer is
essentially modeling a best-case scenario where
the data is clustered perfectly along all
potentially useful clustering dimensions. Also,
during this phase we are modeling the maximum
potential benefit of MDC apart from its total
storage requirement. The clustering dimensions
are modeled within the query compiler/optimizer
at the finest level of granularity possible for each
dimension as if that dimension was the only
clustering dimension used. This granularity is
titled the Finest Useful Dimensions Granularity
(FUDG, pronounced “ fudge”), and represents an
upper bound on the granularity of each

dimension that satisfies the storage expansion
constraint. At the FUDG coarsification, a single
dimension can be reasonably useful as a
clustering dimension while still populating most
of the storage blocks. The maximum cardinality
of cells is deterministic, as described in Section
3.3, and can be used directly in the optimizer
virtual simulation.

c) Contrasting 1a and 1b we can determine which
virtual clustering dimensions in 1b resulted in
significant positive differences in the access
plans and resource consumption of the queries.
The relative reduction in query resource
consumption (estimated by the query optimizer)
provides an estimate of the benefit gained by
clustering on each candidate dimension at its
FUDG coarsification.

2) Generate a search space of candidate MDC keys:
a) A list of candidate dimension and their maximal

potential contributions was generated in the
previous step. We begin the next phase by
designing potential coarsifications of each
dimension (where supported): for example,
SALARY/1000, SALARY/2000,
SALARY/4000, etc., described in detail in
Sections 3.4, 3.5, 3.6). A sample of data for each
table is then collected. This sample includes a
small percentage of tuples from the base but
covers exclusively the clustering dimensions
identified in step 1c above. The sample data also
includes generated expressions that define the
coarsifications for each dimension.

b) Statistics are then collected regarding the
cardinality of distinct values for each column in
the sampled data, and extrapolated by means of
the First Order Jackknife estimator to estimate
the cardinality of each dimension at the various
degrees of coarsification considered.

c) The maximum potential clustering benefit or
each dimension was determined in step 1c but
only at the FUDG coarsification. Now for each
dimension its potential value will be estimated
again at each of the coarsifications considered,
with the assumption that benefit generally
decreases as coarsification increases. The benefit
attenuation is determined by a curve- fitting
process, described in Section 3.7. This yields an
expected benefit for each coarsification of each
dimension.

d) For each table, a set of candidate clustering keys
is then generated, forming a search space, as per
Section 3.8. Each key in the set includes a
possible final clustering solution for an
individual table. The generated keys are
produced by a weighted randomized search.
With just one or two candidate dimensions, it is
possible to perform an exhaustive search, but

1173

with more dimensions the search space can be
prohibitive.

This process yields a set of candidate MDC keys (i.e.,
potential designs) for each table.

3) For each table, test the candidate MDC clustering

keys for satisfaction of the storage expansion
constraint.
a) The candidate clustering keys in 2d are sorted by

expected benefit. Benefit is assumed to be the
sum of the estimated benefits of the parts (i.e.,
individual dimensions) for the key. This is not
entirely accurate, but a sufficient simplification.

b) For each table, the candidate clustering keys are
then evaluated for space constraint. The space
consumption for each candidate key is evaluated
through a sampling process (Section 3.9.2) and
keys that exceed the space expansion constraint
are rejected.

c) Since the candidate keys were first sorted in rank
order (by expected benefit), the first candidate
key that satisfies the storage expansion constraint
is selected as the winner.

d) This process is repeated for subsequent tables,
until all tables identified in 1c have been
evaluated.

Note that phase 1 of this analysis (Select dimension
candidates) is done across all tables simultaneously by
simulating virtual clustering across all referenced tables in
the workload. One of the important observations by
Lohman et al. is that early algorithms for index selection
assumed separability, such that design decisions on one
table could be made independently of design decision for
another table (specifically in the case of index advisors).
However, Lohman et al. [13] observe that this assumption
is not always true, as in the case of a nested loop join
between relations R and S where an index on one of R or S
reduces the need for an index on the other. This is so
because as long as one of R and S has an index, the join
predicate can be applied to the inner relation. Thus, it
appears that, at least in the case of joins between relations,
data access patterns are co-dependent, and design
decisions should not be made for each table in complete
isolation. The same arguments apply to the problem of
MDC design, so separability should not be assumed. Our
approach is a hybrid in which we modeled dimension
interdependency in steps 1 and 2 above, but assumed
independence in 3a.

3.2 Identifying candidate columns
Candidate clustering columns are identified during
optimization of SQL queries and the simulation of virtual
MDC: these include columns that are used for predicates

and operators and are likely to benefit from clustering,
such as:
� GROUP BY,
� ORDER BY,
� CUBE,
� ROLLUP,
� WHERE predicates for equality, inequality, and

ranges.

3.3 Modeling space waste from table
conversion to MDC
Figure 2 illustrates several cells each containing a number
of storage blocks, with the final blocks in each cell only
partially filled. The greater the number of cells there are,
the more partially filled blocks, and therefore the more
space wasted. An estimate of the space waste can be made
by assuming each cell contains a single partially filled
block at the end of its block list. The space waste is then:

βη ⋅Ρ⋅= %cellsW (4.)

where %Ρ is the average percentage of each storage block

left empty per cell, and β is the blocking size. On
average, the last block in each cell will be 50% filled,
except in cases of largely empty cells (very few tuples in
the cell). In the presence of either data skew, or very high
cell cardinality, the number of cells with very few tuples
may increase, resulting in a high vacancy rate in the final
block of some cell. In fact, the choice of %Ρ is not
critical, provided it is larger than 50%, since the goal is to
observe gross expansion of space rather than to estimate
space use accurately. In our implementation, we have
used a conservative estimate for %Ρ of 65%.

Cell #5

Cell #1

Cell #4

Cell #3

Cell #2

Storage blocks for cells

Figure 2: Partially filled blocks within cells

3.4 Coarsification approaches for specific
dimension types
For each range dimension, there are specific ways that we
can coarsify the clustering, but not an infinite set. In
practice, once we have identified FUDG, as illustrated in

1174

the following examples, there are approximately 4 to10
degrees of useful coarsification that we can apply. For
example, when coarsifying a date field, we can imagine
the following possibilities:

day->month->quarter->year

Similarly, for an INTEGER type, we can coarsify the
dimension using division, with a logarithmic scale (i.e.,
divide by 2, 4, 8, 16, etc).

However, since storage expansion will be proportional to
the cardinality of cells in the resulting MDC table, clearly
to satisfy the expansion constraint the combinations of
dimensions in the final solution must be small enough as
per equation (4.). Since the cardinality of cells can only
grow as dimensions are taken in combination (e.g., AB
will have a cardinality of cells >= A or B individually),
therefore, the finest useful granularity that is worth
considering in the search space for any single dimension
must likewise satisfy this constraint. This granularity is
known as the FUDG coarsification, and is described in
more detail in the next section. In our selection scheme
we begin with the FUDG coarsification, and consider
further coarsification of the FUDG coarsification for each
clustering dimension showing workload benefit.

3.5 Determining the FUDG coarsification for
a candidate clustering dimension

For numeric types, coarsification begins by calculating
the FUDG coarsification using the HIGH2KEY statistic
(second largest column value) and LOW2KEY statistic
(second smallest column value) to define the range of the
dimensions, then defining an expression that divides that
range into �cells_max ranges (cells). If the base column has
cardinality that is below the FUDG cardinality, then the
base column defines the FUDG coarsification for that
candidate dimension (i.e., this column’ s FUDG
coarsification is simply the base column itself and
requires no coarsification).

We define a mathematical function that divides the range
between HIGH2KEY and LOW2KEY into a number of
ranges, where the number of ranges is the same as the
maximum number of cells possible in the table given the
space constraint, as shown in Figure 3. HIGH2KEY and
LOW2KEY are assumed to represent the reasonable range
of values for the dimension.

high2key low2key
equidistant ranges

Number of ranges = �cells_max = maximum
number of cells given space constraint

Figure 3: Calculating FUDG for numeric types

DFUDG = (Column – LOW2KEY)/iCoarsifier (5.)

where iCoarsifier is....

 iCoarsifier = ((HIGH2KEY –
LOW2KEY)/iNum_blocks_min); (6.)

 and iNum_blocks_min is...

 iNum_blocks_min = MAX(1, table_size /�); (7.)

In (7) table_size is the size of the table we are evaluating
for MDC, and � is the size of the storage blocks in the
cell-block model. In order for this process to work, it is
necessary that the dimension be converted to integer form
(so that the cardinality of the resulting range is discrete).
For real types (DECIMAL, FLOAT, DOUBLE) this
means ensuring that they have a substantial positive
range. To accomplish this, the FUDG coarsification for
Real types includes a multiplicative factor that ensures
HIGH2KEY is > 1000.

For DATE and TIMESTAMP fields, we coarsify by
casting first to INT and BIGINT, respectively, then using
integer division to coarsify to week, month, quarter, year.
Special assumptions are made when determining the
FUDG coarsification for DATE and TIMESTAMP
because of the practical concern that the data currently in
the database at the time the MDC Advisor is run may only
be a time-fragment of the real data (for example one
month’ s worth of data). This is a very significant and
realistic situation for database designers. If only a single
month of data were provided, the cardinality of cells in
the DATE dimension might be limited to 31 distinct
values, while in fact the data may only be a one month
sample of a seven-year data warehouse. Therefore, to
mitigate this risk, in both TIMESTAMP and DATE cases,
we assume that WEEK of YEAR is a reasonable estimate
of FUDG since it coarsifies the column to a maximum of
52 cells per year. We do not recommend clustering on
DATE or TIMESTAMP without coarsification, even
when the apparent cardinality of cells in the dimension
data is low enough.

1175

3.6 Sampling for cardinality estimates
For each dimension, once the FUDG coarsification has
been estimated, further coarsification is designed. The
search model requires a reasonable estimate of the
cardinality of each dimension at each of the dimension
coarsifications (during step 2b of the process described in
3.1 above), as well as the ability to measure the
cardinality of combinations of these dimensions (during
step 3a in Section 3.1 above). To facilitate a reasonable
response time for the MDC Advisor, a sampling approach
is used. In this sampling model, data is sampled for each
candidate table only once, and stored in a temporary
staging table. The sampling is performed using a
Bernoulli sampling method. Statistics including
cardinality of dimensions, dimension coarsifications and
combination of dimensions can be collected over the
sampled data rather than the base table, which enables the
evaluation of a large number of variants while only
sampling the base table once. While the staging table
holding the sample may need to be scanned multiple
times, significant performance benefit accrues from the
fact that the staging table is a small fraction of the size of
the base table from which its data came.

Cardinality estimation research [9][10] suggests that the
accuracy of statistical cardinality estimators drop off
precipitously when sampling rates fall below 1%.
Therefore, the staging table constructed here uses the
larger of a 1% sample or a sample of 10000 tuples to
construct its sample.

The staging table Ttemp, includes a definition of all the
base columns from Tbase that are candidate clustering
dimensions. In addition, Ttemp includes expression-based
columns for all of the coarsification of the base columns
the MDC Advisor will consider, starting with the FUDG
coarsification level, and increasing from there. For
example, if SALARY may have a FUDG coarsification of
SALARYf = SALARY/1000, we may also create
generated columns of SALARYf /4, SALARYf /16,
SALARYf /64..., etc. The staging table is populated with a
1% sample from the base table. This allows the
cardinalities of unique values that are needed in 2c and 3a
of Section 3.1 to be counted while only taking the sample
once (i.e., sample once, count many).

3.7 Modeling workload benefit consequences
of clustering coarsification
One of the key issues is to understand the likely effect of
coarsification on the expected benefit in clustering on any
given dimension. A brute force approach to solving this
problem would be to re-evaluate (simulate) the workload
cost with each individual coarsification of each
dimension, or perhaps all possible combinations. Such an

approach for workloads of any significant dimensionality
is impractical. Instead we use a simple model sufficient
for the MDC selection process, based on the following
two observations

1. When a database table has only one cell, MDC
provides no value.

2. Expected benefit at the FUDG coarsification was
determined through simulation within the SQL
optimizer.

This gives us two points of reference on a performance
versus cardinality of distinct values graph, when
cardinality is 1 (i.e., zero benefit) and at the cardinality of
distinct values at the FUDG coarsification. We also infer
that the benefit due to clustering is monotonic and
decreasing as coarsification increases.

Although the exact shape of the monotonic curve cannot
be easily determined, we have modeled it as a smooth
logarithmic relationship, such that the penalty for
coarsifying a dimension is initially minor, but increases
dramatically at higher coarsification levels. We apply a
curve-fitting process to plot a concave polynomial
between the two well-known points to derive a benefit-
coarsification function, as per Figure 4. From this
relationship function, we can model the performance
benefit of any coarsification level of a dimension given its
cardinality of cells at the FUDG coarsification level.

Figure 4: Curve-fitted benefit-coarsification function

The benefit versus cardinality of cells function is then
determined as follows in equations (8) and (9).

 B = m * log(C) (8.)
 m = Bf/(log(Cf)) (9.)

 B is the performance benefit at a given coarsification
level, and C is the cardinality of cells at the same
coarsification level. Bf is the performance benefit at the
FUDG coarsification and Cf is the cardinality of cells at
the FUDG coarsification level for the dimension.

1176

3.8 Search algorithm
To find an optimal combination of dimensions that
satisfies our storage expansion constraint, we have used a
simple weighted randomized search, which includes some
qualities of a genetic algorithm including weighted
selection of attributes. After completing steps 1a, 1b, and
1c described in Section 3.1, the algorithm is left with a
search problem that must select the best possible MDC
design given a list of candidate dimensions with estimated
performance benefit at their FUDG coarsification. The
search space for this problem is all possible combinations
and permutations of all these candidate dimensions at any
of their possible coarsifications. The complexity of this
search was described in equation (3). Since the evaluation
of a candidate clustering key requires some degree of
cardinality evaluation (to ensure the storage constraint is
not exceeded) the evaluation function requires some
sampling and counting. Therefore, the need for cardinality
estimation requires a computationally costly evaluation
function, and an exhaustive search is not practical.

Using our weighted randomized search, combinations of
dimensions at various coarsifications are selected in
probabilistic proportion to their relative benefit to the
workload. Each such combination forms a candidate
solution. The set of generated candidate MDC keys (i.e.,
solutions) are then sorted by benefit. For simplicity, the
benefit of each MDC solution is assumed to be the sum of
the workload benefit for each dimension in the solution.
Once the candidate clustering keys have been generated
and ranked, they are evaluated in rank order using the
evaluation function described in the previous section to
determine whether they satisfy the storage expansion
constraint. Since the candidate clustering keys are sorted
in rank order, the first candidate key to pass the test for
storage expansion is chosen as the final clustering
recommendation for a given table.

To improve the efficiency of the search, when a candidate
key is found to have a design that will lead to gross
storage expansion (e.g., >5x storage growth), then we
reject this key, and also eliminate near neighbours in the
search constellation. This near-neighbour reduction has
been effective in high dimensionality search spaces in
greatly reducing the search cost. On our experiments, the
efficiency of the search was improved by 400% in some
cases by this addition.

3.9 Evaluation function for candidate keys

3.9.1 Estimating workload benefit
The search method used in this paper will require an
evaluation function to assess the fitness (or value) of each

search point in the candidate solution space. The “ value”
in this context is the potential benefit to the query
workload in improving performance. To do this we
exploit a variation of the technique used by Lohman et al.
[13] where the database optimizer is used to provide a
cost estimate of the workload. In this method the
optimizer is given a simulation of the table definition and
table statistics (and statistics for dependent objects)
against which it makes its estimations. In the case of
MDC the problem is more complex for these reasons:
� MDC affects the base table: it is not simply an

optional attachment, as in the case of an index;
� MDC affects the statistics of the base table,

namely table size;
� The MDC search typically includes search points

for dimensions at multiple degrees of
coarsification.

To deal with the complexities, the optimizer model is
extended to model MDC candidates, affecting statistics of
the base table as well as cluster ratios on existing indexes.
The benefit of the FUDG coarsification of a dimension is
then calculated as the aggregate of the resource
consumption reduction for each query in the workload
that exploits the virtual clustering dimension as compared
to the same resource consumption analysis without MDC
clustering. However, the cardinality of cells at a given
coarsification of a dimension cannot be reliably estimated,
and sampling is required to determine this. Once a
reasonable estimate of the cardinality of cells is obtained,
the attenuated workload benefit due to coarsification of a
dimension can be estimated using equation (8) as
described in Section 3.7. Therefore, the SQL query
optimizer is used to estimate the workload benefit for
each dimension at its FUDG coarsification, while
sampling, counting, and curve fitting are used to estimate
the benefit of the same dimension at increased levels of
coarsification.

Once the benefit of each candidate dimension is
calculated at its FUDG coarsification, the expected
benefit for each dimension at further coarsifications is
modeled through the process described in Section 3.7 and
the curve-fitting algorithm described there, provided
cardinalities or estimates of cardinalities are known for
each coarsification of the dimensions we wish to model.
These estimates of cardinality for each candidate
dimension are similarly detected through the sampling
process described in Section 3.6, and extrapolated using
the First Order Jackknife Estimator.

Using these methods in combination, we now have a
model for:

a) Detecting candidate dimensions.
b) Estimating the workload benefit of a candidate

clustering dimension at its FUDG coarsification.

1177

c) Modeling the benefit of each candidate
clustering dimension at coarsifications beyond
the FUDG coarsification, as a logarithmic
function of cardinality reduction.

3.9.2 Evaluating satisfaction of the storage
expansion constraint
The remaining problem in the evaluation function is to
determine for any given combination of dimensions and
coarsifications what the cardinality of resulting cells will
be. This measure of cardinality of cells is critical to
determine in order to satisfy the storage expansion
constraint. Using the same data sample collected above
into Ttemp, we can use SQL to count the cardinality of the
unique values of a combination of dimensions that
correspond to the dimensions in a MDC solution we being
evaluated.

To do this, we use an SQL query such as the following:

SELECT COUNT(*) FROM (SELECT DISTINCT
A,B,C FROM T-TEMP)
AS CELL_CARD; (10.)

This returns the COUNT of distinct values of the
clustering key (ABC). Once the cardinality in Ttemp of
distinct values of the candidate clustering key is
determined, we can scale this sampled cardinality using
the First Order Jackknife Estimator to estimate the
number of cells that would exist in the entire table. This
sampling and extrapolation method effectively models
correlation between the dimensions in a candidate
solution.

Once the cardinality of cells is estimated, it can be tested
against equation (4) to determine whether the storage
expansion constraint is satisfied.

3.10 Data skew

In a few instances (see 3.6, 3.7 and 3.9.2), the MDC
Advisor algorithm requires a statistical estimator to
extrapolate the cardinality of unique values in a sample.
The First Order Jackknife Estimator was chosen for its
simplicity. This estimator is known to be weak in the
presence of severe data skew. Though length limitations
do not allow for a detailed analysis here, it can be shown
that the specific requirements in this algorithm are quite
tolerant to estimation inaccuracies, which allow the First
Order Jackknife estimator to be adequate in the presence
of data skew in most cases. Even so, several other
estimators with superior skew handling are described in
[9][10], which can be substituted to improve the
robustness of the algorithm.

4. Experimental Results

4.1 Test Objectives & Description
The objective of the tests was to compare the quality of
the MDC Advisor recommendation when compared to
expert human recommendation against a well-known
schema and workload. The industry standard TPC-H
benchmark was used for the tests [1]. The metric used for
comparison is called the TPC-H Composite Query-per-
Hour (QphH@Size). For the experiments a 10 GB TPC-H
database running on DB2 UDB V8.1 on a pSeries® server
with AIX® 5.1, 4 X 375 MHz CPUs and 8 GB RAM was
used. Six experimental tests were performed:

1. Baseline: The performance of the benchmark without

MDC. Table 1 describes those tradition RID (row)
indexes used for the baseline experiment, which had
cluster ratio quality of 5% or better, a measure of
percentage of data that is well clustered along one
dimension.

2. Advisor 1: The performance of the benchmark using
the top most MDC design (described in Table 2) of
the Advisor.

3. Advisor 2: The performance of the benchmark using
the second best MDC design (described in Table 3)
for the Advisor.

4. Expert 1: The MDC design used during IBM’ s most
recent 2003 TPC-H publication. This is described in
Table 4. According to TPC-H guidelines, the MDC
design was constrained to clustering exclusively on
base columns (coarsification was not permitted).

5. Expert 2: The top MDC design provided by the DB2
MDC development team described in Table 5.

6. Expert 3: An alternative MDC design provided by the
DB2 MDC development team is described in Table 6.

Index name Base table Columns

 (key parts)
Cluster
quality
(%)

L_OK LINEITEM +L_ORDERKEY 100
R_RK REGION +R_REGIONKEY 100

S_NK SUPPLIER +S_NATIONKEY 36.8

PS_PK_SK PARTSUPP +PS_PARTKEY
+PS_SUPPKEY

100

S_SK SUPPLIER +S_SUPPKEY 100

PS_PK PARTSUPP +PS_PARTKEY 100

Table 1: Single dimensional clustering in baseline

1178

Base table MDC dimensions
CUSTOMER C_NATIONKEY,C_MKTSEGMENT
LINEITEM (INT(L_SHIPDATE))/7,

L_RETURNFLAG,
(INT(L_RECEIPTDATE))/14,
L_SHIPINSTRUCT

ORDERS (INT(O_ORDERDATE))/7,
O_ORDERSTATUS

PART P_SIZE
PARTSUPP (((PS_PARTKEY)/(((1999999 -

2)/(19956))*(8))))
SUPPLIER S_NATIONKEY

Table 2: MDC design for "Advisor 1"

Base table MDC dimensions
CUSTOMER C_NATIONKEY/2, C_MKTSEGMENT
LINEITEM (INT(L_SHIPDATE))/14,

L_RETURNFLAG,
(INT(L_RECEIPTDATE))/7,
L_SHIPINSTRUCT

ORDERS (INT(O_ORDERDATE))/14,
O_ORDERSTATUS

PART P_SIZE/2, P_CONTAINER
PARTSUPP (((PS_PARTKEY)/(((1999999 -

2)/(19956))*(16))))
SUPPLIER S_NATIONKEY/2

Table 3: MDC design for "Advisor 2"

Base table MDC dimensions
LINEITEM L_SHIPDATE
ORDERS O_ORDERDATE

Table 4: MDC design for "Expert 1"

Base table MDC dimensions
CUSTOMER C_NATIONKEY
LINEITEM (INT(L_SHIPDATE))/100,

L_SHIPMODE, L_SHIPINSTRUCT
ORDERS O_ORDERDATE
SUPPLIER S_NATIONKEY

Table 5: MDC design for "Expert 2"

Base table MDC dimensions
CUSTOMER C_NATIONKEY,C_MKTSEGMENT
LINEITEM (INT(L_SHIPDATE))/100,

L_SHIPMODE, L_SHIPINSTRUCT,
(INT(L_RECEIPTDATE)/10000

PART P_SIZE, P_BRAND

Table 6: MDC design for "Expert 3"

The TPC-H workload was run three times for each test;
the shortest run for each design is noted here. Execution
time variability was found to be quite minimal among the
three runs, generally less than 2%. The tests were done
with identical database and database manager parameters.

4.2 MDC Advisor search space
A graphical display of search points considered by the
MDC Advisor algorithm (Figure 14) for the two largest
tables, LINEITEM and ORDERS illustrates some

interesting search characteristics. The shaded areas
covering the rightmost portions of the space are areas
where the search points would have caused severe table
storage expansion. As a result, these high expansion
candidates are not practical as solutions and are simply
rejected from the candidate solution set.

Figure 5 shows the performance benefit versus storage
expansion projected for each candidate solution explored
in the MDC search. Note that the benefit model assumed
< 10% growth, so that candidate solutions resulting in
more than 10% growth have bogus benefit. The density of
search points that lie along a region in the � domain
between 1.0x and 1.1x expansion is quite reasonable,
illustrating that the search algorithm is successful in
finding many candidate solutions in the acceptable range
of expansion. The circled area shows the keys with
highest benefit and reasonable data expansion from which
the final recommended MDC solution is chosen.

Figure 5: Distribution of search points for TPC-H

two largest tables

4.3 MDC table expansion
Table 7 shows the actual table expansion rates for the
TPC-H tables for the six clustering designs.

The MDC Advisor logic, was quite effective at selecting
MDC designs that were constrained to the space
constraint goal of 10% expansion. The largest table
expansion was seen in Advisor 1 experiment where
LINEITEM table expanded by 11.98%, and 12.76%
expansion on PARTSUPP, which is quite good given the
1% sampling rate of the First Order Jackknife estimator.

Table
name

No
MDC

Expert
1

Expert
2

Expert
3

Advisor
1

Advisor
2

 Size
(4K)

Growth
(%)

Growth
(%)

Growth
(%)

Growth
(%)

Growth
(%)

LINEITEM 2081040 1.05 4.69 8.42 11.98 11.95

ORDERS 443840 4.08 4.08 0.00 5.23 4.89

PART 76240 0.00 0.63 5.56 0.63 9.99

PARTSUPP 319296 0.00 0.00 0.00 12.76 6.49

CUSTOMER 69168 0.00 0.35 1.50 1.50 3.63

SUPPLIER 4096 0.00 7.81 0.00 7.81 6.25

Total 2993680 1.34 3.90 6.03 10.53 10.07

Table 7: Table expansion with MDC

1179

0

100

200

300

400

500

600

700

800

900

Q14 Q2 Q9
Q20 Q6

Q17
Q18 Q8

Q21
Q13 Q3

Q22
Q16 Q4

Q11
Q15a Q1

Q10
Q19 Q5 Q7

Q12

E
xe

cu
tio

n
tim

e
(s

)

Baseline

Expert 1

Advisor 2

Expert 3

Advisor 1

Expert 2

Also the expert designs by human designers (Expert 1,
Expert 2, and Expert 3) were generally more aggressive
than the MDC Advisor in constraining space expansion
(1.34%, 3.90% and 6.03% total expansion, respectively),
a likely reflection of their deep knowledge and many
years of experience with the TPC-H workload

4.4 Query performance results
The MDC Advisor completed its design analysis and
reported its recommendations in less than an hour.

Figure 6 shows the QphH results for the six clustering
designs and they show the performance benefit of MDC
and the effectiveness of the MDC Advisor algorithm in
selecting MDC designs in comparison to human experts.

In these experiments, all of the MDC designs showed
significant benefit over the baseline throughput. The rank
ordering of the five MDC designs according to their
performance benefit Advisor 2 with 11.12%, Expert 1
with 13.35%, Expert 3 with 14.20%, Advisor 1 with
14.54%, and Expert 2 with 18.08%. Significantly,
Advisor 1, which represents the MDC Advisor’ s best
recommendation was measurably superior to to MDC
Advisor 2, and both Expert 1 and Expert 3.

Also revealing is a view of the performance by individual
queries, as shown in Figure 7. No single clustering design
achieved gains across the entire workload, highlighting
the complexity of the search problem. Specifically, a
successful advisor algorithm must consider the overall
benefit of clustering designs across all tables and all
queries, which is one of the highlights of the approach
described in this paper.

 5. Conclusion and future work

5.1 Summary
The MDC Advisor algorithm leverages past work in
automated physical database design and statistical
modeling, in combination with new ideas on MDC, to
provide a method for automating the design problem of
MDC. To our knowledge, this is the first published
algorithm to tackle this important problem. The algorithm
exploits a combination of query optimizer what-if
analysis, weighted randomized search, data sampling, and
statistical extrapolation. Six experiments were performed
using a 10 GB TPC-H database to compare the advisor
designs against those of human experts and it was found
to provide design recommendations that were in line with
the quality of these experts. The advisor was effective at
modeling correlation between dimensions through
sampling, and was able to limit the database expansion
under MDC to a value very close to its design goal of
10%. Based on the value shown through these
experiments and the importance of the studied problem,
the model described in this paper has been implemented
for the V8.2 release of DB2 UDB for Linux, UNIX and
Windows.

TPCH performance with various clustering designs

4000

4200

4400

4600

4800

5000

5200

5400

Design

W
or

kl
oa

d
ex

ec
ut

io
n

tim
e

(s
)

Series1 5227 4646 4529 4485 4467 4282

Baseline: Advisor 2 Expert 1 Expert 3 Advisor 1 Expert 2

Figure 6: TPC-H overall results

Figure 7: TPC-H query performance for all 6 experiments

1180

5.2 Future work
This work can be enhanced by investigating:
� Hierarchy climbing for dimension coarsification.
� Improving coarsification models and storage

estimates in the presence of data skew.
� Efficient table migration (alter) schemes for
 conversion to MDC.
� Recommendation of block size and adaptive blocking

sizes, to better accommodate data skew.
� Improved selection of the storage expansion

constraint, including adaptive algorithms.
� Experimentation on larger/varied data sets, schemas,

and workloads, in particular including database
schemas and workloads from user environments

References
[1] “ Transaction Processing Performance Council”

http://www.tpc.org/default.asp.
[2] “ DB2 Universal Database for Linux, UNIX and

Windows” http://www-
306.ibm.com/software/data/db2/udb/

[3] S. Agrawal, S. Chaudhuri, V.R. Narasayya,
“ Automated selection of materialized views and
indexes in SQL databases” . Proc. VLDB 2000, Cairo,
Egypt

[4] B. Bhattacharjee, S. Padmanabhan, T. Malkemus, T.
Lai, L. Cranston, M. Huras, “ Efficient Query
Processing for Multi-Dimensionally Clustered Tables
in DB2” , Proc. VLDB 2003, Berlin, Germany

[5] S. Chaudhuri, E. Christensen, G. Graefe,
V. Narasayya, M. Zwilling, “ Self-Tuning
Technology in Microsoft SQL Server” ,
IEEE Data Eng. Bul. 22(2), June 1999

[6] S. Chaudhuri, V. Narasayya, ''AutoAdmin 'What-if'
Index Analysis Utility'', Proc. SIGMOD, 1998,
Seattle, USA

[7] S. Chaudhuri, V. Narasayya, ''Microsoft Index Tuning
Wizard for SQL Server 7.0'', Proc. SIGMOD, 1998,
Seattle, USA

[8] M.R. Frank, E.R. Omiecinski, S.B. Navathe,
''Adaptive and Automated Index Selection in
RDBMS'', Proc. EDBT 1992, Vienna, Austria

[9] P.J. Haas, J.F. Naughton, S. Seshadri, L. Stokes,
“ Sampling Based Estimation of the Number of
Distinct Values of an Attribute” , Proc. VLDB 1995,
Zurich, Switzerland

[10] P.J. Haas, L. Stokes, “ Estimating the number of
classes in a finite population” , JASA, V. 93, Dec,
1998

[11] S. Lightstone. D. Zilio, C. Zuzarte, G. Lohman, J.
Rao, K. Cheung, “ DB2 Design Advisor: More than
just index selection” , IDUG 2004, Orlando, USA.

[12] J.H Liou, S.B. Yao, “ Multi-dimensional clustering for

database organizations” . Information Systems, 2:187--
198, 1977.

[13] G. Lohman, G. Valentin, D. Zilio, M. Zuliani, A.
Skelly, "DB2 Advisor: An optimizer smart enough to
recommend its own indexes", Proc. ICDE 2000, San
Diego, USA

[14] V. Markl, F. Ramsak, R. Bayer, “ Improving OLAP
Performance by Multi-dimensional Hierarchical
Clustering” , Proc. IDEAS’ 99, Montreal, Canada

[15] S. Padmanabhan, B. Bhattacharjee, T. Malkemus, L.
Cranston, M. Huras, “ Multi-Dimensional Clustering:
A New Data Layout Scheme in DB2.” SIGMOD
2003, San Diego, USA

[16] N. Pendse, R. Creeth, “ The OLAP Report” ,
http://www.olapreport.com/.

[17] J. Rao, S. Lightstone , G. Lohman, D. Zilio , A.
Storm, C. Garcia-Arellano, S. Fadden “ DB2 Design
Advisor: integrated automated physical database
design” , Proc. VLDB 2004, Toronto, Canada.

[18] J. Rao, C. Zhang, N. Megiddo, G. Lohman,
“ Automating physical database design in a parallel
database.” , Proc. SIGMOD 2002, Madison, USA

[19] B. Schiefer, G. Valentin, “ DB2 Universal Database
Performance Tuning” , IEEE Data Eng. Bul 22(2),
June 1999

[20] T. Stöhr, H. Märtens, E. Rahm, “ Multi-Dimensional
Database Allocation for Parallel Data Warehouses” ,
Proc. VLDB 2000, Cairo, Egypt

[21] T. Stohr, E. Rahm, “ WARLOCK : A Data Allocation
Tool for Parallel Warehouses” , Proc. VLDB 2001,
Rome, Italy (Software Demonstration)

Trademarks
AIX, DB2, DB2 Universal Database, IBM, and pSeries
are trademarks or registered trademarks of International
Business Machines Corporation in the United States,
other countries, or both.

Linux is a trademark of Linus Torvalds in the United
States, other countries, or both.

Windows is a registered trademark of Microsoft
Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the
United States and other countries.

Other company, product, and service names may be
trademarks or service marks of others.

1181

