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Abstract

The history of histograms is long and rich, full
of detailed information in every step. It in-
cludes the course of histograms in different
scientific fields, the successes and failures of
histograms in approximating and compressing
information, their adoption by industry, and
solutions that have been given on a great va-
riety of histogram-related problems. In this
paper and in the same spirit of the histogram
techniques themselves, we compress their en-
tire history (including their “future history”
as currently anticipated) in the given/fixed
space budget, mostly recording details for the
periods, events, and results with the highest
(personally-biased) interest. In a limited set
of experiments, the semantic distance between
the compressed and the full form of the history
was found relatively small!

1 Prehistory

The word ‘histogram’ is of Greek origin, as it is a com-
posite of the words ‘isto-s’ (to70s) (= ‘mast’, also
means ‘web’ but this is not relevant to this discus-
sion) and ‘gram-ma’ (ypapua) (= ‘something writ-
ten’). Hence, it should be interpreted as a form of
writing consisting of ‘masts’, i.e., long shapes vertically
standing, or something similar. It is not, however, a
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word that was originally used in the Greek language'.
The term ‘histogram’ was coined by the famous statis-
tician Karl Pearson? to refer to a “common form of
graphical representation”. In the Oxford English Dic-
tionary quotes from “Philosophical Transactions of the
Royal Society of London” Series A, Vol. CLXXXVI,
(1895) p. 399, it is mentioned that “[The word ‘his-
togram’ was] introduced by the writer in his lectures
on statistics as a term for a common form of graphical
representation, i.e., by columns marking as areas the
frequency corresponding to the range of their base.”.
Stigler identifies the lectures as the 1892 lectures on
the geometry of statistics [69].

The above quote suggests that histograms were used
long before they received their name, but their birth
date is unclear. Bar charts (i.e., histograms with an
individual ‘base’ element associated with each column)
most likely predate histograms and this helps us put
a lower bound on the timing of their first appearance.
The oldest known bar chart appeared in a book by the
Scottish political economist William Playfair? titled
“The Commercial and Political Atlas (London 1786)”
and shows the imports and exports of Scotland to and
from seventeen countries in 1781 [74]. Although Play-
fair was skeptical of the usefulness of his invention, it
was adopted by many in the following years, includ-
ing for example, Florence Nightingale, who used them
in 1859 to compare mortality in the peacetime army
to that of civilians and through those convinced the
government to improve army hygiene.

From all the above, it is clear that histograms were
first conceived as a visual aid to statistical approxima-
tions. Even today this point is still emphasized in the
common conception of histograms: Webster’s defines a

1To the contrary, the word ‘history’ is indeed part of the
Greek language (‘istoria’ - toToptar) and in use since the ancient
times. Despite its similarity to ‘histogram’, however, it appears
to have a different etymology, one that is related to the original
meaning of the word, which was ‘knowledge’.

2His claim to fame includes, among others, the chi-square test
for statistical significance and the term ‘standard deviation’.

3In addition to the bar chart, Playfair is probably the fa-
ther of the pie chart and other extremely intuitive and useful
visualizations that we use today.



histogram as “a bar graph of a frequency distribution
in which the widths of the bars are proportional to the
classes into which the variable has been divided and
the heights of the bars are proportional to the class
frequencies”. Histograms, however, are extremely use-
ful even when disassociated from their canonical visual
representation and treated as purely mathematical ob-
jects capturing data distribution approximations. This
is precisely how we approach them in this paper.

In the past few decades, histograms have been used
in several fields of informatics. Besides databases, his-
tograms have played a very important role primarily
in image processing and computer vision. Given an
image (or a video) and a visual pixel parameter, a his-
togram captures for each possible value of the param-
eter (Webster’s “classes”) the number of pixels that
have this value (Webster’s “frequencies”). Such a his-
togram is a summary that is characteristic of the image
and can be very useful in several tasks: identifying sim-
ilar images, compressing the image, and others. Color
histograms are the most common in the literature, e.g.,
in the QBIC system [21], but several other parameters
have been proposed as well, e.g., edge density, tex-
turedness, intensity gradient, etc. [61]. In general, his-
tograms used in image processing and computer vision
are accurate. For example, a color histogram contains
a separate and precise count of pixels for each possi-
ble distinct color in the image. The only element of
approximation might be in the number of bits used to
represent different colors: fewer bits imply that several
actual colors are represented by one, which will be as-
sociated with the number of pixels that have any of
the colors that are grouped together. Even this kind
of approximation is not common, however.

In databases, histograms are used as a mechanism
for full-fledged compression and approximation of data
distributions. They first appeared in the literature and
in systems in the 1980’s and have been studied exten-
sively since then at a continuously increasing rate. In
this paper, we concentrate on the database notion of
histograms, discuss the most important developments
on the topic so far, and outline several problems that
we believe are interesting and whose solution may fur-
ther expand their applicability and usefulness.

2 Histogram Definitions
2.1 Data Distributions

Consider a relation R with n numeric attributes Xj;
(¢ = l.n). The value set V; of attribute X; is
the set of values of X; that are present in R. Let
Vi = {vi(k): 1<k <D,;}, where v;(k) < v;(j) when
k < j. The spread s;(k) of v;(k) is defined as
take s;(D;) = 1.) The frequency fi(k) of v;(k) is
the number of tuples in R with X; = wv;(k). The
area a;(k) of v;(k) is defined as a;(k) = fi(k) x s;(k).

The data distribution of X; is the set of pairs 7; =

The joint frequency f(ki, .., kn) of the value combi-
nation < vi(k1),..,vn(kn) > is the number of tuples
in R that contain v;(k;) in attribute X;, for all i. The
joint data distribution Ty, , of X1,.., X, is the entire
set of (value combination, joint frequency) pairs.

In the sequel, for 1-dimensional cases, we use the
above symbols without the subscript <.

2.2 Motivation for Histograms

Data distributions are very useful in database systems
but are usually too large to be stored accurately, so
histograms come into play as an approximation mech-
anism. The two most important applications of his-
togram techniques in databases have been selectivity
estimation and approximate query answering within
query optimization (for the former) or pre-execution
user-level query feedback (for both). Our discussion
below focuses exactly on these two, especially range-
query selectivity estimation as this is the most pop-
ular issue in the literature. It should not be forgot-
ten, however, that histograms have proved to be useful
in the context of several other database problems as
well, e.g., load-balancing in parallel join query execu-
tion [65], partition-based temporal join execution [68]
and others.

2.3 Histograms

A histogram on an attribute X is constructed by parti-
tioning the data distribution of X into S (> 1) mutu-
ally disjoint subsets called buckets and approximating
the frequencies and values in each bucket in some com-
mon fashion. This definition leaves several degrees of
freedom in designing specific histogram classes as there
are several possible choices for each of the following
(mostly orthogonal) aspects of histograms [67]:

Partition Rule: This is further analyzed into the
following characteristics:

e Partition Class: This indicates if there are any
restrictions on the buckets. Of great importance
is the serial class, which requires that buckets are
non-overlapping with respect to some parameter
(the next characteristic), and its subclass end-
biased, which requires at most one non-singleton
bucket.

e Sort Parameter: This is a parameter whose
value for each element in the data distribution
is derived from the corresponding attribute value
and frequencies. All serial histograms require that
the sort parameter values in each bucket form a
contiguous range. Attribute value (V), frequency
(F), and area (A) are examples of sort parameters
that have been discussed in the literature.

e Source Parameter: This captures the property
of the data distribution that is the most critical



in an estimation problem and is used in conjunc-
tion with the next characteristic in identifying a
unique partitioning. Spread (S5), frequency (F),
and area (A) are the most commonly used source
parameters.

e Partition Constraint: This is a mathematical
constraint on the source parameter that uniquely
identifies a single histogram within its partition
class. Several partition constraints have been pro-
posed so far, e.g., equi-sum, v-optimal, maxdiff,
and compressed, which are defined further below
as they are introduced. Many of the more suc-
cessful ones try to avoid grouping vastly different
source parameter values into a bucket.

Following [67], we use p(s,u) to denote a serial his-
togram class with partition constraint p, sort parame-
ter s, and source parameter u.

Construction Algorithm: Given a particular
partition rule, this is the algorithm that constructs
histograms that satisfy the rule. It is often the case
that, for the same histogram class, there are several
construction algorithms with different efficiency.

Value Approximation: This captures how at-
tribute values are approximated within a bucket,
which is independent of the partition rule of a his-
togram. The most common alternatives are the con-
tinuous value assumption and the uniform spread as-
sumption; both assume values uniformly placed in the
range covered by the bucket, with the former ignoring
the number of these values and the later recording that
number inside the bucket.

Frequency Approximation: This captures how
frequencies are approximated within a bucket. The
dominant approach is making the uniform distribution
assumption, where the frequencies of all elements in
the bucket are assumed to be the same and equal to
the average of the actual frequencies.

Error Guarantees: These are upper bounds on
the errors of the estimates a histogram generates,
which are provided based on information that the his-
togram maintains.

A multi-dimensional histogram on a set of at-
tributes is constructed by partitioning the joint data
distribution of the attributes. They have the exact
same characteristics as 1-dimensional histograms, ex-
cept that the partition rule needs to be more intricate
and cannot always be clearly analyzed into the four
other characteristics as before, e.g., there is no real
sort parameter in this case, as there can be no order-
ing in multiple dimensions [66].

3 The Past of Histograms

First Appearance

To the best of our knowledge, the first proposal to use
histograms to approximate data distributions within
a database system was in Kooi’s PhD thesis [47]. His

proposal was an immediate loan from statistics of the
simplest form of histogram, with the value set being
divided into ranges of equal length, i.e., the so called
equi-width histograms. Hence, in terms of the tax-
onomy of Section 2.3, the entry point for histograms
into the world of databases was the serial class of equi-
sum('V,S), where the equi-sum partition constraint re-
quires that the sums of the source-parameter values
(spreads in this case) in each bucket are equal. Within
each bucket, values and frequencies were approximated
based on the continuous value assumption and the uni-
form distribution assumption, respectively.

Equi-width histograms represented a dramatic im-
provement over the uniform distribution assumption
for the entire value set (i.e., essentially a single-bucket
histogram), which was the state of the practice at the
time. Hence, they were quickly adopted by the Ingres
DBMS in its commercial version, and later on by other
DBMSs as well.

First Alternative

A few years after Kooi’s thesis, the first alternative
histogram was proposed, changing only the source
parameter [62]. Instead of having buckets of equal-
size ranges, the new proposal called for buckets with
(roughly) the same number of tuples in each one, i.e.,
the so called equi-depth or equi-height histograms. In
terms of the taxonomy, these are the equi-sum(V,F)
histograms. There was ample evidence that equi-depth
histograms were considerably more effective than equi-
width histograms, hence, many commercial vendors
switched to those in the years following their intro-
duction. Equi-depth histograms were later presented
in their multi-dimensional form as well [58].

Optimal Sort Parameter

After several years of inactivity on the topic of his-
tograms, interest in it was renewed in the context of
studying how initial errors in statistics maintained by
the database propagate in estimates of the size of com-
plex query results [36]. In particular, it was shown
that, under some rather general conditions, in the
worst case, errors propagate exponentially in the query
size (i.e., in the number of joins), removing any hope
for high-quality estimates for large multi-join queries.

The first results that led towards new types of his-
tograms were derived in an effort to obtain statistics
that would be optimal in minimizing/containing the
propagation of errors in the size of join results [37].
The basic mathematical tools used were borrowed from
majorization theory [55]. The focus was on a rather
restricted class of equality join queries, i.e., single-join
queries or multi-join queries with only one attribute
participating in joins per relation (more generally, with
a 1-1 functional dependency between each pair of join
attributes of each relation). For this query class, and



under the assumption that the value set is known ac-
curately, it was formally proved that the optimal his-
togram was serial and had frequency as the sort pa-
rameter?.

Ten years ago

The above result might have not had the impact it did
if it had remained true only for the restricted query
class it was first proved for. Soon afterwards, however,
in VLDB’93, it was generalized for arbitrary equality
join queries, giving a strong indication that the most
effective histograms may be very different from those
that were used until that point [34].

To the best of our knowledge, histograms with fre-
quency as the sort parameter represented the first de-
parture from value-based grouping of buckets, not only
within the area of databases, but overall within math-
ematics and statistics as well. Furthermore, their in-
troduction essentially generalized some common prac-
tices that were already in use in commercial systems
(e.g., in DB2), where the highest frequency values were
maintained individually and accurately due to their
significant contribution to selectivity estimates. Such
a practice is an instance of a special case of a histogram
in the end-biased partition class, with frequency as the
sort parameter: the highest sort-parameter values are
maintained in singleton buckets. Although less accu-
rate than general serial histograms, in several cases,
end-biased histograms proved quite effective.

New Partition Constraints

The results on the optimality of frequency as the sort
parameter left open two important questions. First,
which partition constraints are the most effective, i.e.,
which ones among all possible frequency-based bucke-
tizations? Second, which histograms are optimal when
the value set is not accurately maintained but is ap-
proximated in some fashion?

The answer to the first question came in the form
of the v-optimal histograms, which partition the data
distribution so that (roughly) the variance of source-
parameter values within each bucket is minimized [38].

Unfortunately, the second question had no analyt-
ical answer, but extensive experimentation led to the
formation of the space of histogram characteristics
that we use as the basic framework for our discussion
in this paper (Section 2.3) [67]. In addition to the equi-
sum and v-optimal partition constraints, it introduced
several possible new ones as well, which similarly to v-
optimal had as a goal to avoid grouping together in the
same bucket vastly different source-parameter values.
Among them, we distinguish mazdiff, which places
bucket boundaries between adjacent source-parameter

4These were called simply serial histograms at the time, but
the term was later generalized to imply non-overlapping ranges
of any sort parameter, not just frequency, which is how we use
the term in this paper as well.

values (in sort-parameter order) whose difference is
among the largest, and compressed, which puts the
highest source values in singleton buckets and parti-
tions the rest in equi-sum fashion. Overall, the new
partition constraints (i.e., v-optimal, maxdiff, com-
pressed) were shown to be the most effective in curbing
query-result-size estimation errors.

The same effort pointed towards several possibilities
for the sort and source parameters, i.e., value, spread,
frequency, area, cumulative frequency, etc., with fre-
quency and area being the best source parameters. In-
terestingly, the best sort parameter proved to be the
value and not the frequency, as the original optimal-
ity results would suggest, indicating that, if values are
not known accurately, having buckets with overlapping
value ranges does not pay off for range queries.

The most effective of these histograms have actu-
ally been adopted by industrial products (see Section
4). Furthermore, in addition to selectivity estimation
for various relational and non-relational queries, these
histograms have proved to be very effective in approx-
imate query answering as well [39].

Since the specification of the above space of his-
tograms, there have been several efforts that have
studied one or more of its characteristics and have
proposed alternative, improved approaches. For each
characteristic, we outline some of the most notable
pieces of work on it in a separate subsection below.
Unless explicitly mentioning the opposite, the discus-
sion is about 1-dimensional histograms.

Alternative Partition Constraints

In addition to the partition constraints that were in-
troduced as part of the original histogram framework
[67], a few more have been proposed that attempt to
approach the effectiveness of v-optimal, usually hav-
ing a more efficient construction cost. Among them,
we note one that uses a simplified form of the opti-
mal knot placement problem [18] to identify the bucket
boundaries, which are where the ‘knots’ are placed
[46]. The simplification consists of using only linear
splines that are also allowed to be discontinuous across
bucket boundaries. This is combined with interesting
alternatives on the value and frequency approximation
within each bucket.

Multi-Dimensional Partition Rules

The first introduction of multi-dimensional histograms
was by Muralikrishna and DeWitt [58], who essentially
described 2-dimensional equi-depth histograms. Space
was divided in the same way it is done in a Grid-
file, i.e., recursively cutting the entire space into half-
spaces by using a value of one of the dimensions as a
boundary each time, the dimension and the value be-
ing chosen in a way prespecified at the beginning of the
process [58]. Buckets were non-overlapping (the multi-
dimensional version of the serial partition class) on



the space of the multi-dimensional values (the multi-
dimensional version of value as the sort parameter),
the boundaries chosen with equi-sum as the partition
constraint and frequency as the source parameter.

It was not until several years later that any new par-
tition rules were proposed [66], this time taking advan-
tage of the generality of the histogram taxonomy [67].
The most effective family of such rules was MHIST-
2, which starts from the entire joint data distribution
placed in a single bucket and, at each step, splits the
space captured by one of the buckets it has formed
into two subspaces, until it has exhausted its budget
of buckets. The split is made in the bucket and along
the dimension that is characterized as most “critical”,
i.e., whose marginal distribution is the most in need
of partitioning, based on the (1-dimensional) partition
constraint and source parameter used. In combination
with the most effective partition constraints and source
parameters (i.e., v-optimal or maxdiff with frequency
or area), MHIST-2 represented a dramatic improve-
ment over the original multi-dimensional equi-depth
histograms.

Since MHIST, there have been several other inter-
esting partition rules that have been proposed. One of
them is GENHIST [31], which was originally proposed
in the context of multi-dimensional real-valued data,
but its applicability is broader. The main characteris-
tic of GENHIST is that it allows buckets to overlap in
the space of multi-dimensional values: the algorithm
starts from a uniform grid partitioning of the space and
then iteratively enlarges the buckets that contain high
numbers of data elements. This has two effects: first,
the density of data in each bucket decreases, thus mak-
ing the overall density smoother; second, the buckets
end up overlapping, thus creating many more distinct
areas than there are buckets per se. The data distribu-
tion approximation within each area is a combination
of what all the overlapping bucket that form the area
indicate. This results in a small number of buckets
producing approximations with low errors.

Another alternative is the STHoles Histogram [11],
which takes, in some sense, a dual approach to GEN-
HIST: instead of the region covered by a bucket in-
creasing in size and overlapping with other buckets,
in STHoles, this region may decrease in size due to
the removal of a piece of it (i.e., opening a hole) that
forms a separate, child bucket. This creates buckets
that are not solid rectangles, and is therefore capable
of capturing quite irregular data distributions.

Identifying effective multi-dimensional partition
rules is by no means a closed problem, with different
approaches being proposed continuously [23].

Value Approximation Within Each Bucket

Given a specific amount of space for a histogram, one
of the main tradeoffs is the number of buckets ver-
sus the amount of information kept in each bucket.

A small amount of information within each bucket im-
plies gross local approximations but also more buckets.
Finding the right balance in this tradeoff to optimize
the overall approximation of the data distribution is a
key question.

With respect to approximating the set of values that
fall in a 1-dimensional bucket, there have been essen-
tially two approaches. Under the traditional continu-
ous value assumption, one maintains the least amount
of information (just the min and max value), but noth-
ing that would give some indication of how many val-
ues there are or where they might be. Under the more
recent uniform spread assumption [67], one also main-
tains the number of values within each bucket and
approximates the actual value set by the set that is
formed by (virtually) placing the same number of val-
ues at equal distances between the min and max value.
A different version of that has also been proposed that
does not record the actual average spread within a
bucket but one that reduces the overall approximation
error in range queries by taking into account the pop-
ularity of particular ranges within each bucket [46].
There have been several studies that show each gen-
eral technique superior to the other, an indication that
there may be no universal winner.

The two main approaches mentioned above have
been extended for multi-dimensional buckets as well,
maintaining the min and max value of each dimension
in the bucket. Under the continuous value assump-
tion nothing more is required, but under the uniform
spread assumption, the problem arises of which dis-
tinct (multi-dimensional) values are assumed to exist
in the bucket. If d; is the number of distinct values in
attribute X; that are present in a bucket and v} (k) is
the k’th approximate value in dimension ¢ (obtained
by applying the uniform spread assumption along that
dimension), then a reasonable approach is to assume
that all possible combinations < v{(k1),.., v} (k,) >,
1 < k; < d;, exist in the bucket [66].

There has also been an interesting effort that in-
troduces the use of kernel estimation into the 1-
dimensional histogram world [10] to deal specifically
with real-valued data. Roughly, it suggests choosing
the points of considerable change in the probability
density function as the bucket boundaries (in a spirit
similar to the maxdiff partition constraint) and then
applying the traditional kernel estimation method for
approximating the values within each bucket. This has
also been generalized for the multi-dimensional case
[31].

Frequency Approximation Within Each Bucket

With respect to approximating the set of frequencies
that fall in a bucket, almost all efforts deal with the
traditional uniform distribution assumption. Among
the few exceptions is one that is combined with the
linear spline partition constraint mentioned above and



uses a linear spline-based approximation for frequen-
cies as well [46]. It records one additional data item
per bucket to capture linearly growing or shrinking
frequencies at the expense of fewer buckets for a
fixed space budget. Likewise, another exception uses
equally small additional space within each bucket to
store cumulative frequencies in a 4-level tree index
[13]. Contrary to the previous effort, however, it is
combined with some of the established partition con-
straints, i.e., v-optimal and maxdiff.

Efficient and Dynamic Constructions

Although estimation effectiveness is probably the most
important property of histograms (or any other com-
pression/estimation method for that matter), con-
struction cost is also a concern. With respect to this
aspect, histograms may be divided into two categories:
static histograms and dynamic/adaptive histograms.

Static histograms are those that are traditionally
used in database systems: after they are constructed
(from the stored data or a sample of it), they remain
unchanged even if the original data gets updated. De-
pending on the details of the updates, a static his-
togram eventually drifts away from what it is sup-
posed to approximate, and the estimations it produces
may suffer from increasingly larger errors. When this
happens, the administrators ask for a recalculation, at
which point the old histogram is discarded and a new
one is calculated afresh. An important consideration
for static histograms is the cost of each calculation
itself, which is mostly affected by the partition con-
straint. Most such constraints (e.g., equi-sum, maxd-
iff, compressed) have straightforward calculations that
are efficient. This is not the case, however, for what
has been shown to be the most effective constraint,
i.e., v-optimal, whose straightforward calculation is in
general exponential in the number of source-parameter
values. A key contribution in this direction has been
the proposal of a dynamic-programming based algo-
rithm that identifies the v-optimal histogram (for any
sort and source parameter) in time that is quadratic
in the number of source-parameter values and linear in
the number of buckets, thus making these histograms
practical as well [42]. Subsequently, several (mostly
theoretical) efforts have introduced algorithms that
have reduced the required running time for calculat-
ing these optimal histograms, eventually bringing it
down to linear overall and achieving similar improve-
ments for the required space as well [30]. Dynamic-
programming algorithms have also been proposed for
constructing the optimal histograms for (hierarchical)
range queries in OLAP data [44]. For the multi-
dimensional case, optimal histogram identification is
NP-hard, so several approximate techniques have been
proposed [59].

Another interesting development has been the pro-
posal of algorithms to identify optimal sets of his-

tograms (as opposed to individual histograms), based
on an expected workload [40]. This effort focuses on v-
optimal histograms, but is equally applicable to other
partition constraints as well.

Even with the existence of efficient calculation al-
gorithms, however, static histograms suffer from in-
creasing errors between calculations. Moreover, in
a data stream environment, static histograms are
not an option at all, as there is no opportunity to
store the incoming data or examine it more than
once. Hence, several works have proposed various ap-
proaches to dynamic/adaptive/self-tuning histograms,
which change as the data gets updated, while remain-
ing competitive to their static counterparts. Among
these, we note one for equi-depth and compressed his-
tograms [26], one for v-optimal histograms [27], and
one for (linear) spline-based histograms [46]. There
is also an effort focusing on data streams, where a
sketch on the (joint) data distribution of the stream is
maintained, from which an effective multidimensional
histogram may be constructed [72]; the STHoles his-
togram is used for experimentation with the method,
but in principle, it could be applied to other histogram
classes as well.

Another approach to dynamic construction that has
been examined in the past consists of query feed-
back mechanisms that take into account actual sizes
of query results to dynamically modify histograms so
that their estimates are closer to reality. In essence,
this is histogram adaptation at query time instead of
at update time. The main representatives in this cat-
egory are the ST-histograms [2] and their descendant
STHoles histograms [11], which employ a sophisticated
partition rule as well. These techniques are indepen-
dent of the particular characteristics of the initial his-
tograms, which may be constructed in any way, e.g.,
they could be equi-depth histograms. In addition to
their dynamic nature, a key advantage of these ap-
proaches is their low cost.

The LEO system [70] generalizes these efforts as
it uses result sizes of much more complicated queries
to modify its statistics, including join and aggregate
queries, queries with user-defined functions, and oth-
ers. Interestingly, LEO does not update the statistics
in place, but puts all feedback information into sepa-
rate catalogs, which are used in combination with the
original histograms at estimation time.

Error Guarantees

Most work on histograms deals with identifying those
that exhibit low errors in some estimation problem,
but not with providing, together with the estimates,
some information on what those errors might be. The
first work to address the issue [42] suggests storing
in each bucket the maximum difference between the
actual and the approximate (typically, the average)
frequency of a value in the bucket and using that to



provide upper bounds on the error of any selectivity
estimates produced by the histogram for equality and
range selection queries. An interesting alternative fo-
cuses on optimizing top-N range queries and stores ad-
ditional information on a per-histogram rather than on
a per-bucket basis [20].

Other Data Types

As mentioned earlier, most work on histograms has fo-
cused on approximating numeric values, in one or mul-
tiple dimensions (attributes). Nevertheless, the need
to approximation is much broader, and several efforts
have examined the use of histograms for other data
types as well.

With respect to spatial data, the canonical ap-
proaches to 2-dimensional histograms do not quite
work out as these are for point data and do not extend
to objects that are 2-dimensional themselves. Further-
more, frequency is usually not an issue in spatial data,
as spatial objects are not repeated in a database. Sev-
eral interesting techniques have been presented to ad-
dress the additional challenges, which essentially are
related to the partition rule, i.e., how the spatial ob-
jects are grouped into buckets. Some form buckets
by generalizing conventional histogram partition con-
straints while others do it by following approaches used
in spatial indices (e.g., R-trees). The MinSkew His-
togram [5] is among the more sophisticated ones and
divides the space by using binary partitionings (recur-
sively dividing the space along one of the dimensions
each time) so that the overall spatial skew of all buckets
is minimized. The latter captures the variance in the
density of objects within each bucket, so it follows, in
some sense, the spirit of the v-optimal histograms. The
SQ-Histogram [3] is an interesting alternative, divid-
ing the space according to the Quad-tree rule (which
is more restrictive than arbitrary binary partitionings)
and, in addition to spatial proximity, taking into ac-
count proximity in the size as well as the complexity
(number of vertices) of the polygons that are placed in
the same bucket. Both approaches are quite effective,
with SQ being probably the overall winner. Spatial
histograms, i.e., MinSkew histograms, have also been
extended to capture the velocity of object movement,
thus becoming able to approximate spatio-temporal
data as well [17].

The recent interest in XML could not, of course,
leave untouched XML file approximation, XML query
result size estimation, and other related problems. The
semi-structured nature of XML files does not lend
itself to histogram-based approximation, as there is
no immediate multi-dimensional space that can be
bucketized but one needs to be formed from some
numeric XML-file characteristics. In the StatiX ap-
proach [22], information in an XML Schema is used
to identify potential sources of structural skew and
then 1-dimensional histograms are built for the most

problematic places in the schema, approximating the
distributions of parent ids for different elements. In
the XPathLearner approach [49], (first-order) Markov
Histograms are used [1], where the frequencies of
the results of traversing all paths of length 2 are
stored in two 2-dimensional histograms. The dimen-
sions always represent the ‘from’ and ‘to’ nodes of
the paths in the XML graph; in the first histogram,
both nodes/dimensions are for XML tags, whereas
in the second histogram, the ‘from’ node/dimension
is an XML tag and the ‘to’ node/dimension is a
value. Assuming enough memory, frequencies are
maintained accurately for all tag-to-tag pairs (accu-
rate histogram), as there are very few. To the con-
trary, <tag,value> pairs are placed in a histogram
that is based on a 2-dimensional version of the com-
pressed partition constraint, with frequency as the
source parameter. Another approach for estimating
XML-query result sizes builds position histograms on
a 2-dimensional space as well, only here the two di-
mensions are directly or indirectly related to the num-
bering of each node in a preorder traversal of the XML
graph [79]. Finally, histograms have also been used in
combination with or as parts of other data structures
for XML approximations. The XSketch is quite an
effective graph-based synopsis that tries to captured
both the structural and the value characteristics of an
XML file [63, 64]. Histograms enter the picture as
they are used at various parts of an XSketch to cap-
ture statistical correlations of elements and values in
particular neighborhoods of the XSketch graph.

In addition to XML graphs, histograms have also
been proposed to capture the degrees of the nodes in
general graphs as a way to compare graphs between
them and grade their similarity [60].

Unconventional Histograms

Throughout the years, there have been a few interest-
ing pieces of work that do not quite follow the gen-
eral histogram taxonomy or histogram problem defi-
nitions. One of them suggests the use of the Discrete
Cosine Transform (DCT) to compress an entire multi-
dimensional histogram and store its compressed form
[48]. Tt employs a very simple multi-dimensional parti-
tion rule (a uniform grid over the entire space), divides
the space into a large number of small buckets, and
then compresses the bucket information using DCT.
This appears to save on space but also estimation time,
as it is possible to recover the necessary information
through the integral of the inverse DCT function.
There is also a promising line of work that combines
histograms with other techniques to produce higher-
quality estimations than either technique could do
alone. In addition to several such combinations with
sampling, a particularly interesting technique tries to
overcome the ‘curse of dimensionality’ by identify-
ing the critical areas of dependence and independence



among dimensions in multi-dimensional data, captur-
ing them with a statistical interaction model (e.g.,
log-linear model) which can then form the basis for
lower-dimensional MHIST histograms to approximate
the overall joint data distribution [19].

Finally, there is a very interesting departure from
the convention that histograms are built on base rela-
tions and estimations of the data distributions of in-
termediate query results are obtained by appropriate
manipulations of these base-relation histograms [12].
It discusses the possibility of maintaining histograms
on complex query results, which proves to be quite ef-
fective in some cases. This work uses the main SQL
Server histograms (essentially maxdiff - see Section 4)
to demonstrate the proposed approach, but the overall
effort is orthogonal to the particular histogram class.
As the number of potential complex query histograms
is much larger than that of base-relation histograms,
the corresponding database design problem of choos-
ing which histograms to construct is accordingly more
difficult as well. Fortunately, a workload-based algo-
rithm proves adequate for the task.

4 Industrial Presence of Histograms

Histograms have not only been the subject of much
research activity but also the favorite approximation
method of all commercial DBMSs as well. Essentially
all systems had equi-width histograms in the begin-
ning and then eventually moved to equi-depth his-
tograms. In this section, we briefly describe the cur-
rently adopted histogram class for three of the most
popular DBMSs.

DB2 employs compressed histograms with value as
the sort parameter and frequency as the source pa-
rameter [50]. Users may specify the numbers of single-
ton and non-singleton buckets desired for the most-
frequent values and the equi-depth part of a com-
pressed histogram, respectively, with the default be-
ing 10 and 20. A departure from our general descrip-
tions above is that DB2 stores cumulative frequencies
within non-singleton buckets. Histogram construction
is based on a reservoir sample of the data. DB2 ex-
ploits multi-dimensional cardinality information from
indices on composite attributes (whenever they are
available) to obtain some approximate quantification
of any dependence that may exist between the at-
tributes, and uses this during selectivity estimation.
Otherwise, it assumes attributes are independent. The
learning capabilities of LEO [70] play a major role in
how all available information is best exploited for high-
quality estimation.

Oracle still employs equi-depth histograms [78]. Its
basic approach to multi-dimensional selectivities is
similar to that of DB2, based on exploiting any avail-
able information from composite indices. In addition
to that, however, it offers dynamic sampling capabil-
ities to obtain on-the-fly dependence information for

rather complex predicates whenever needed (selections
and single-table functions are already available, while
joins will be in the next release). It also takes into
account the dependencies that exist between the at-
tributes of a cube’s dimensions’ hierarchies during roll-
up and provides estimates at the appropriate hierar-
chy level. Finally, the next release will employ learning
techniques to remember selectivities of past predicates
and use them in the future.

SQL Server employs maxdiff histograms with value
as the sort parameter and essentially average frequency
(within each bucket) as the source parameter [9]. It
permits up to 199 buckets, storing within each bucket
the frequency of the max value and (essentially) the
cumulative frequency of all values less than that. His-
togram construction is typically based on a sample
of the data. Composite indices are used in a similar
fashion as in the other systems for obtaining multi-
dimensional selectivity information.

Note that all commercial DBMSs have implemented
strictly 1-dimensional histograms. Except for some in-
cidental indirect information, they essentially still em-
ploy the attribute value independence assumption and
have not ventured off to multi-dimensional histograms.

5 Competitors of Histograms

The main technique that has competed against his-
tograms in the past decade is wavelets, which is very
important for image compression and has been intro-
duced into the database world in the late 90’s [7, 56].
Wavelets have been used extensively for approximate
answering of different query types and/or in differ-
ent environments: multidimensional aggregate queries
(range-sum queries) in OLAP environments [75, 76],
aggregate and non-aggregate relational queries with
computations directly on the stored wavelet coefli-
cients [14], and selection and aggregate queries over
streams [28]. As with histograms, there have also been
efforts to devise wavelet-based techniques whose ap-
proximate query answers are provided with error guar-
antees [24], as well as to construct and maintain the
most important wavelet coefficients dynamically [57].
Sampling is not a direct competitor to histograms,
as it is mostly a runtime technique, and furthermore,
the literature on sampling is extremely large, so it is
impossible to analyze the corresponding highlights in
the limited space of this paper. However, we should
emphasize that sampling is often a complementary
technique to histograms, as static (and even several
forms of dynamic) histograms are usually constructed
based on a sample of the original data [15, 26, 62].
There are also several specialized techniques that
have been proposed and compete with histograms on
specific estimation problems. These include techniques
for selectivity estimation of select-join queries [71] or
spatial queries [8], using query feedback to modify
stored curve-fitting/parametric information for bet-



ter selectivity estimation [16], selectivity estimation
for alphanumeric/string data in 1-dimensional [43, 45]
and multi-dimensional environments [41, 77|, identifi-
cation of quantiles [6, 53, 54] and their dynamic main-
tenance with a priori guarantees [29], approximate
query answering for aggregate join queries [4], select-
join queries [25], and within the general framework of
on-line aggregation [33, 32, 51], computing frequencies
of high-frequency items in a stream [52], and others.
Despite their suboptimality compared to some of these
techniques on the corresponding problems, histograms
remain the method of choice, due to their overall ef-
fectiveness and wide applicability.

6 The Future of Histograms

Despite the success of histograms, there are several
problems whose current solutions leave enough space
for significant improvement and several others that re-
main wide open, whose solution would make the ap-
plicability of histograms much wider and/or their ef-
fectiveness higher. We have recently discussed various
problems of both types [35], some addressing specific
histogram characteristics from the existing taxonomy
while others being cast in a slightly more general con-
text. In this section, we focus on three of the open
problems, those that we believe are the most promis-
ing and sense as being the furthest away from any past
or current work that we are aware of.

Histogram Techniques and Clustering

Abstracting away the details of the problem of
histogram-based approximation, one would see some
striking similarities with the traditional problem of
clustering [73]: the joint data distribution is parti-
tioned into buckets, where each bucket contains similar
elements. Similarity is defined based on some distance
function that takes into account the values of the data
attributes and the value of the frequency if there is
any variation on it (e.g., if it is not equal to 1 for all
data elements). The buckets are essentially clusters in
the traditional sense, and for each one, a very short
approximation of the elements that fall in it is stored.

Despite the similarities, the techniques that have
been developed for the two problems are in general
very different, with no well-documented reasoning for
many of these differences. Why can’t the histogram
techniques that have been developed for selectivity es-
timation be used for clustering or vice versa? From
another perspective, why can’t the frequency in selec-
tivity estimation be considered as another dimension
of the joint data distribution and have the problem be
considered as traditional clustering? What would the
impact be of using stored approximations developed
for one problem to solve another? In general, given the
great variety of techniques that exist for the two prob-
lems, it is crucial to obtain an understanding of the
advantages and disadvantages of each one, its range of

applicability, and in general, their relative characteris-
tics when mutually compared. A comprehensive study
needs to be conducted that will include several more
techniques than those mentioned here. The “New Jer-
sey Data Reduction Report” [7] has examined many
techniques and has produced a preliminary compar-
ison of their applicability to different types of data.
It can serve as a good starting point for verification,
extrapolation, and further exploration, not only with
respect to applicability, but also precise effectiveness
trade-offs, efficiency of the algorithms, and other char-
acteristics.

Bucket Recognition and Representation

The goal of any form of (partition-based) approxima-
tion, e.g., histogram-based and traditional clustering,
is to identify groups of elements so that all those within
a group are similar with respect to a small number
of parameters that characterize them. By storing ap-
proximations of just these parameters, one is able to
reconstruct an approximation of the entire group of
elements with little error. Note that, in the terms
of the histogram taxonomy, these parameters should
be chosen as the source parameter(s), to satisfy the
proximity-expressing partition constraint.

How do we know which parameters are similar for
elements so that we can group them together and rep-
resent them in terms of them? This is a typical ques-
tion for traditional pattern recognition [73], where be-
fore applying any clustering techniques, there is an
earlier stage where the appropriate dimensions of the
elements are chosen among a great number of possi-
bilities. There are several techniques that make such
a choice with varying success depending on the case.

It is important, however, to emphasize that, in prin-
ciple, these parameters may not necessarily be among
the original dimensions of the data elements presented
in the problem but may be derivatives of them. For
example, in several histogram-based approximations
as we have described them above, proximity is sought
directly for frequencies but not for attribute values, as
attention there is on their spreads. (Recall also the
success of area as a source parameter, which is the
product of frequency with spread.) The frequencies in
a bucket are assumed constant and require a smaller
amount of information to be stored for their approxi-
mation than the attribute values, which are assumed
to follow a linear rule (equal spread). Hence, con-
ventional histogram-based approximation, under the
uniform distribution and uniform spread assumptions,
implies clustering in the derived space of frequency
and spread. In principle, however, not all data distri-
butions are served best with such an approach.

To increase the accuracy of histogram approxima-
tions, there should be no fixed, predefined approxi-
mation approach to the value dimensions and the fre-
quencies. It should not necessarily even be the same



for different buckets. Histograms should be flexible
enough to use the optimal approximation for each di-
mension in each bucket, one that would produce the
best estimations for the least amount of information.
Identifying what that optimal approximation is, is a
hard problem and requires further investigation.

Histograms and Tree Indices

The fact that there is a close relationship between ap-
proximate statistics kept in databases, especially his-
tograms, and indices has been recognized in the past
in several works [7]. If one considers the root of a B+
tree, the values that appear in it essentially partition
the attribute on which it is built into buckets with the
corresponding borders. Each bucket is then further
subdivided into smaller buckets by the nodes of the
subsequent level of the tree. One can imagine storing
the appropriate information next to each bucket spec-
ified in a node, hence transforming the node into a
histogram, and the entire index into a so called hi-
erarchical histogram. This may adversely affect in-
dex search performance, of course, as it would reduce
the out-degree of the node, possibly making the tree
deeper. Nevertheless, although this idea works against
the main functionality of an index, its benefits are non-
negligible as well, so it has even been incorporated into
some systems.

We believe that hierarchical histograms and, in gen-
eral, the interaction between approximation structures
and indices should be investigated further, as there
are several interesting issues that remain unexplored
as analyzed below. Consider again a B+ tree whose
nodes are completely full. In that case, the root of the
tree specifies a bucketization of the attribute domain
that corresponds to an equi-depth histogram, i.e., each
bucket contains roughly an equal number of elements
under it. Similarly, any node in the tree specifies an
equi-depth bucketization of the range of values it leads
to.

The main issue with B+ trees being turned into
hierarchical equi-depth histograms is that the latter
are far from optimal overall on selectivity estimation
[67]. Histograms like v-optimal and maxdiff are much
more effective. What kind of indices would one get if
each node represented bucketizations following one of
these rules? Clearly, the trees would be unbalanced.
This would make traditional search less efficient on the
average. On the other hand, other forms of searches
would be served more effectively. In particular, in a
system that provides approximate answers to queries,
the root of such a tree would provide a higher-quality
answer than the root of the corresponding B+ tree.
Furthermore, the system may move in a progressive
fashion, traversing the tree as usual and providing a
series of answers that are continuously improving in
quality, eventually reaching the leaves and the final,
accurate result.

Returning to precise query answering, note that
typically indices are built assuming all values or ranges
of values being equally important. Hence, having a
balanced tree becomes crucial. There are often cases,
however, where different values have different impor-
tance and different frequency in the expected work-
loads [46]. If this query frequency or some other such
parameter is used in conjunction with advanced his-
togram bucketization rules, some very interesting trees
would be generated whose average search performance
might be much better than that of the B+ tree.

From the above, it is clear that the interaction be-
tween histograms and indices presents opportunities
but also several technical challenges that need to be
investigated. The trade-off between hierarchical his-
tograms that are balanced trees with equi-depth buck-
etization and those that are unbalanced with more ad-
vanced bucketizations requires special attention. The
possibility of some completely new structures that
would strike even better trade-offs, combining the best
of both worlds, cannot be ruled out either.

7 Conclusions

Histograms have been very successful within the
database world. The reason is that, among several ex-
isting competing techniques, they probably represent
the optimal point balancing the tradeoff between sim-
plicity, efficiency, effectiveness, and applicability for
data approximation/compression. Research-wise most
of the basic problems around histograms seem to have
been solved, but we believe there are still better so-
lutions to be found for some of them. Moreover, as
outlined in the previous section, there are some un-
touched foundational problems whose solution may re-
quire significant changes in our overall perspective on
histograms. As much as the past ten years have been
enjoyable and productive in deepening our collective
understanding of histograms and applying them in the
real world, we believe the next ten will be even more
exciting and really look forward to them!

8 Personal History

Our personal history with histograms has been
strongly influenced by Stavros Christodoulakis. It all
started during the “Query Optimization Workshop”,
which was organized in conjunction with SIGMOD’89
in Portland, when Stavros argued that optimizing very
large join queries did not make any sense, as the er-
rors in the selectivity estimates would be very large
after a few joins. Wanting to prove him wrong due
to a personal interest in large query optimization, we
started collaborating with him on the error propaga-
tion problem, work that led to results that justified
Stavros’ fears completely [36]. During this effort, we
were initiated by Stavros into the wonderful world of
majorization theory, Schur functions, and all the other



mathematical tools that much of our subsequent his-
togram work would be based on. Further collaboration
with Stavros resulted in the identification of “serial his-
tograms” and the first realization of their significance
[37], which was the springboard for the VLDB’93 pa-
per. For all these, we want to express our sincere grat-
itude to Stavros for revealing an exciting research path
that was hiding many treasures along the way.

The second person who has marked significantly our
involvement with histograms is Vishy Poosala. As
a PhD student at Wisconsin, Vishy took the origi-
nal “serial histogram” results, dived deep into them,
and pushed them in many different directions, an ef-
fort that eventually led us to several interesting results
that have played an important role in the success of
histograms. For the long and fruitful collaboration we
have had, both before and after his PhD degree, many
thanks are due to Vishy as well.

Acknowledgements: For this present paper, we
would like to thank Minos Garofalakis, Neoklis Poly-
zotis, and again Vishy Poosala for several useful sug-
gestions and for verifying that the error in the approxi-
mation of the history of histograms presented is small.
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