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Abstract

Recent studies have shown that cache-
conscious indexes outperform conventional
main memory indexes. Cache-conscious in-
dexes focus on better utilization of each cache
line for improving search performance of a sin-
gle lookup. None has exploited cache spa-
tial and temporal locality between consec-
utive lookups. We show that conventional
indexes, even “cache-conscious” ones, suffer
from significant cache thrashing between ac-
cesses. Such thrashing can impact the per-
formance of applications such as stream pro-
cessing and query operations such as index-
nested-loops join.

We propose techniques to buffer accesses to
memory-resident tree-structured indexes to
avoid cache thrashing. We study several al-
ternative designs of the buffering technique,
including whether to use fixed-size or variable-
sized buffers, whether to buffer at each tree
level or only at some of the levels, how to
support bulk access while there are concur-
rent updates happening to the index, and how
to preserve the order of the incoming lookups
in the output results. Our methods improve
cache performance for both cache-conscious
and conventional index structures. Our exper-
iments show that buffering techniques enable
a probe throughput that is two to three times
higher than traditional methods.
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1 Introduction

Recent advances in the speed of commodity CPUs
have far outpaced advances in memory latency. Main
memory access is therefore increasingly a performance
bottleneck for many computer applications, including
database systems [4, 5]. As random access memory
gets cheaper, it becomes affordable to build comput-
ers with large main memories. More and more query
processing work can be done in main memory. Re-
cent database research has demonstrated that memory
access is becoming a significant — if not the major —
cost component of database operations [4, 5].

We focus on memory-resident tree-structured in-
dexes. There are many applications of such indexes,
since they speed up access to data. The applications
we address involve access patterns in which a large
number of accesses to an index structure are made in
a small amount of time. An example would be pro-
cessing stream data from a large number of mobile
sensors [1, 2]. As each sensed point arrives, a spatial
index is consulted to determine objects in the vicinity
of the point. A second example would be an index-
nested-loops join in a database system with a memory-
resident index on the inner table. The index is probed
once for each record of the outer table.

Our high-level goal is to make a bulk lookup sub-
stantially faster than a sequence of single lookups. Our
proposed solutions place minimal requirements on the
index structure. We assume the index is a tree of some
kind, and we require access to some statistics such as
the average branching factor. We do not place condi-
tions on the node size, or on architectural parameters
such as the cache size. We do not assume that each
lookup requires an exact match; for example, the tech-
nique would apply for “overlap” queries in an R-Tree,
or “nearest value” in a one-dimensional ordered tree.

The basic idea is to create buffers corresponding
to non-root nodes in the tree. As a lookup proceeds
down the tree, a record describing the lookup (contain-
ing a probe identifier and the search key) are copied
into a buffer of such records. These buffers are peri-
odically emptied, and divided' among buffers for the

1For some kinds of lookup, an access record may traverse
multiple branches of the tree.



child nodes. While there is extra copying of data into
buffers, we expect to benefit from improved spatial and
temporal locality, and thus to incur a smaller number
of cache misses. Buffering is not used for single-lookup
access, and so the index performance for such lookups
is unchanged. The optimizer decides whether lookups
need to be buffered.

We experimentally study buffering with several
kinds of index structures, including B*-Trees [9], R-
Trees [10], and CSBT-Trees [16]. Of these, the CSB™-
Tree was designed with main-memory performance of
single lookups in mind. We repeat our experiments
on three different architectures. The design parame-
ters include whether to use fixed-size or variable-size
buffers, whether to buffer at each tree level or at only
some of the levels, how to support bulk access while
there are concurrent updates happening to the index
and how to preserve the order of the incoming lookups
in results. We provide architecture-sensitive guidelines
for choosing buffering parameters.

Our results show that conventional index structures
have poor cache miss rates for bulk access. More
surprisingly, even cache-sensitive algorithms such as
CSB™"-Trees also have moderately high cache miss
rates for bulk access, despite their cache-conscious
design. Our new search algorithms yield speedups
by a factor of three over conventional BT-tree index
lookups, and by about a factor of two over CSB*-
tree and R-tree index lookups. Our algorithms can
gracefully handle a moderate number of updates mixed
with a large number of searches. Our algorithms can
achieve more than a factor of two improvement in
throughput, while retaining a response time guarantee
of less than one second for each probe.

Our methods improve cache performance for both
cache-conscious and conventional index structures. In-
terestingly, with buffering, conventional index struc-
tures can achieve cache performance that is compa-
rable to cache-conscious index structures for batch
lookup. Our algorithms can be implemented in cur-
rent commercial database systems without significant
changes to existing code.

The rest of this paper is organized as follows. We
discuss related work in Section 1.1. We briefly discuss
hierarchical memory systems in Section 2. We survey
cache-conscious index structures and demonstrate why
they are suboptimal for batch lookups in Section 3.
In Section 4, we present different buffering techniques
and detailed data structures. We derive guidelines to
choose where to place buffers in Section 5. In Sec-
tion 6, we present detailed experiments and validate
our algorithms. We conclude in Section 7.

1.1 Related Work

The Y-tree [11] adds a special lookup structure (heap)
in an index tree node to avoid random disk seeks;
it allows high volume fast insertions, but is slow for

lookups. A buffering idea similar to ours was proposed
for I/O optimization of non-equijoins in [18]. While
there is a high-level similarity between various levels
of the memory hierarchy, there are important aspects
of CPU architectures, such as TLB-misses and cache-
line prefetching, that make the details of main-memory
techniques more involved. Also, the algorithm of [18]
requires processing all accesses through each level in
turn, in a top-down breadth-first fashion. Such traver-
sal behavior is clearly inapplicable for processing con-
tinuous data streams, because one never has a “com-
plete” probe input. Finally, our techniques allow in-
dex updates to be interleaved with probes, which is
not considered by [18].

XJoin is an operator for producing the join of two
remote input streams [17]. Our techniques are differ-
ent from XJoin in that we’re joining one remote stream
with a local relation that has a local index. [5] con-
siders the impact of cache misses and TLB misses on
a radix-clustered hash join. Their algorithms do not
involving buffering, and apply only to equijoins.

We focus on applications that are probe-intensive,
with a relatively small number of updates. In situa-
tions with large numbers of updates per second, bulk
update operations [8, 14] may be appropriate.

2 Memory Hierarchy

Modern computer architectures have a hierarchical
memory system, where access by the CPU to main
memory is accelerated by various levels of cache mem-
ories. Cache memories are designed based on the prin-
ciples of spatial and temporal locality. A cache hit hap-
pens when the requested data is found in the cache.
Otherwise, it loads data from a lower-level cache or
memory, and incurs a cache miss. There are typically
two or three cache levels. The first level (L1) cache
and the second level (L2) cache are often integrated
on the CPU’s die. Caches are characterized by three
major parameters: capacity, cacheline size, and asso-
ciativity. Latency is the time span that passes after
issuing a data access until the requested data is avail-
able in the CPU. In hierarchical memory systems, the
latency increases with the distance from the CPU.
Logical virtual memory addresses used by applica-
tion code have to be translated into physical page ad-
dresses. The memory management unit (MMU) has
a translation lookaside buffer (TLB), a kind of cache
that holds the translation for the most recently used
pages. If a logical address is not found in the TLB, a
TLB miss occurs. Depending on the implementation
and the hardware architecture, TLB misses can have
a noticeable impact on memory access performance.
Memory latency can be hidden by correctly
prefetching data into the cache. On some architec-
tures, such as the Pentium 4, common access patterns
like sequential access are recognized by the hardware,
and hardware prefetch instructions are automatically



Pentium 4 Pentium 3 UltraSparc BT -tree | CSBT-tree | R-tree
OS Linux 2.4.17 | Linux 2.4.17 Solaris 8 Key type 32-bit floating point
CPU speed 1.8 GHz 1 GHz 296 MHz . 128 B
Main-memory size 1 GB 512 KB 1 GB Node Size 4 KB (cacheline) 4 KB
Memory type RDRAM DDR DRAM Index (Leaf) [510 key-pointer 30 keys 204 MBR-pointer
L1 cache size 16 KB 16KB 16KB Node Capacity | (510 key-RID) |(14 key-RID)| (204 MBR-RID)
L1 cacheline size 64 bytes 32 bytes 32 bytes Indexed Items 5 million kevs 1 million
L2 cache size 256 KB 256 KB 1 MB (Inner) Y unit rectangles
L2 cacheline size 128 bytes 32 bytes 64 bytes uery Entries - 1 million random
TLEB entries 64 61 64 Q (guter) 5 million random searches 2x2 rectangles
L1 miss latency 18 cycles 7 cycles 10 cycles Query Type exact match overlap
L2 miss latency 276 cycles 101 cycles 74 cycles Bulkloaded 75% 75% using [12]
TLB miss latency 46 cycles 5 cycles 51 cycles
Hardware prefetch Yes No No

Table 1: System Specifications

executed ahead of the current data references, without
any explicit instructions required from the software.
Table 1 lists the specifications of our experimental
systems.? The TLB miss latency of the Pentiums is
smaller than that of the UltraSparc. In our experi-
ments, L1 miss latency is so low that the impact of L1
misses on the total performance is insignificant. For
the rest of the paper, we will focus on the impact of
TLB misses and L2 misses. We use Sun’s CC compiler
on the UltraSparc and GNU’s gcc on the Pentiums.

3 Index Structures

Recent studies have shown that cache-conscious in-
dexes such as CSS-Trees [15] and CSB*-Trees [16] out-
perform conventional main memory indexes such as
BT-Tress. The key idea is to eliminate all (or most)
of the child pointers from an index node to increase
the fanout of the tree, and to choose a node size of the
order of the cache line size. Multidimensional cache-
conscious indexes such as CR-Trees [13] use compres-
sion techniques to pack more entries in a node. These
techniques effectively reduce the tree height and im-
prove the cache behavior of the index. Other indexes
such as pB*-Trees [6] and fpB*-Trees [7] use prefetch-
ing to create wider nodes and reduce the height of the
BT-tree. Different index structures propose different
optimal node sizes.

All these techniques focus on better utilization of
each cache line and optimize the search performance of
a single lookup. None has exploited cache spatial and
temporal locality between consecutive lookups. Cache
memories are typically too small to hold the whole
index structure. If probes to the index are randomly
distributed, consecutive lookups end with different leaf
nodes, and almost every lookup will find the corre-
sponding leaf node is not in the cache. By loading
the leaf node into cache, capacity cache misses occur
to evict other leaf nodes out of cache. The upper level
nodes are more frequently accessed, and thus less likely
to be the victims. However, the evicted leaf nodes are
required again by subsequent lookups, and have to be
loaded again in the future. This cache thrashing can
have a severe impact on the overall performance.

2We use LMbench [3] to measure the L1, L2 and TLB miss
latency on different systems.

Table 2: Index Setup

We illustrate index node cache thrashing by imple-
menting an index nested-loop join using a BT-tree, a
CSB™-tree, and an R-tree, as shown in Table 2. The
result of all three joins are pairs of outer RID and inner
RID of matching tuples. Subsequent tuple reconstruc-
tion is equal for all algorithms, and we do not include
that in our comparison. We measure the elapsed time
to compute the join on a Pentium 4 system.3

We explicitly measure the number of L2 cache
misses in each experiment. Modern machines have
hardware performance counters to measure such statis-
tics without any loss in performance.* In the graphs
we show the “cache miss penalty” as the total time
taken if each cache miss takes exactly the measured
cache miss latency. This is an approximation, because
sometimes multiple cache misses can be processed con-
currently by the memory subsystem. Note also that
some computation may be happening during the cache
miss wait time, and so the “cache miss penalty” bar
on the graph may also hide some concurrent compu-
tation. Despite these caveats, the graph will give us
a sense of the contribution of cache miss latency to
the overall response time, and thus the opportunity
for improvement by processing accesses in batches.
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Figure 1: Cache Thrashing Impact

Figure 1 shows the results for the three index struc-
tures. The CSB¥-tree does improve cache perfor-
mance over the conventional Bt-tree. However, both
suffer significantly from index node thrashing. For the
CSB™-tree, more than 30% of the time can be at-
tributed to index node cache misses. The Bt-tree and

3The other two systems have similar behavior.

4We use the Intel VTune Performance Tool on Pentium PCs
and use Solaris native hardware performance counters on the
UltraSparc machine.



R-tree suffer even more. There is thus an opportunity
for improving the cache behavior.

4 Buffering Techniques

Given an index tree, we first organize nodes into wvir-
tual nodes. Virtual nodes are the units of buffering.
A virtual node may contain a single tree node, or a
node together with several levels of its descendants.
Having larger virtual nodes corresponds to doing less
buffering. For now, we assume that the mapping from
tree nodes to virtual nodes is given, and defer the dis-
cussion of how to choose virtual nodes until Section 5.
Unless we state otherwise, a “node” is a “virtual node”
unless we explicitly call it a “tree node”.

Each node, excluding the root node, is associated
with a corresponding buffer. This buffer contains
batched queries (records describing the probes) that
have been passed down from higher levels, and have
yet to be divided according to the keys in the cur-
rent node. Thus, the buffer contains the “input” for a
node. Batch index lookups begin with the root node.
The query stream is passed through the root node,
and distributed among the buffers of its child nodes,
according to the usual traversal protocol of the index
structure. We continue the process until query entries
reach the leaf nodes and produce the join result.

What is the point of buffering? All it seems to do
is slow down probes as they progress through the tree!
The point of buffering is that it increases temporal and
spatial locality. When an index node is used for traver-
sal, instead of being used for just one probe, it is used
for many. As a result, the memory overhead for bring-
ing index nodes into the cache is smaller, amortized
over many accesses. Since this memory latency is a
large component of the total cost, buffering can im-
prove the throughput, i.e., the rate at which the probe
stream is processed.

At any point in time, a node can be flushed, at
which time its buffer is emptied and the records are dis-
tributed to the node’s children. We’ll describe choices
for when a buffer should be flushed below. We may also
flush the entire tree, which corresponds to flushing all
nodes in turn. When the entire tree is flushed, par-
ents must be flushed before their children. A preorder
traversal is used to facilitate cache reuse between a
parent and its children. We allow the probe stream to
contain explicit flush instructions, which force a flush
of the entire tree. A finite stream always ends with
such a flush instruction.’

4.1 Fixed-Size Buffer

In this method, each node explicitly has a correspond-
ing fixed size buffer. The buffers are created before
any probes happen and stay until all the probes are

5An infinite stream should be flushed regularly; otherwise
some access could sit in a rarely used buffer forever.

finished. Figure 2(a) shows a fixed-size buffered tree
with the buffer size of 3.

We divide up accesses until some child node buffer
becomes full. When a child node buffer is full, we flush
its buffer by dividing its accesses recursively among its
children, and then return to continue processing the
parent. We may have to interrupt the child node’s
flush temporarily if one of its children’s buffers be-
comes full, and so on. When accesses reach the leaves,
output records are produced. A partially-full buffer
may be flushed when the whole tree is being flushed.
In Figure 2(a), each node has a pointer pointing to
its buffer. The root node A continues processing the
query accesses until the fourth query access when the
buffer of node B is full. We flush the buffer by dis-
tributing its accesses between the children C and D,
and return to process the root node A.

The choice of buffer size can be important. As the
buffer size increases, search performance improves, due
to avoiding cache misses. On the other hand, larger
buffers require more memory, and all buffers must ex-
ist for the duration of the probe stream. Considering
both performance® and memory requirements, for the
remainder of this paper we choose a buffer size equal
to the (virtual) node size. Thus, the total size of the
buffers is roughly equal to the size of the index.

The fixed-size buffering technique eliminates a large
number of cache misses, but not all of them. Interme-
diate index nodes may still be loaded into the cache
multiple times. Nevertheless, we have some degree of
control over the memory usage by adjusting the size of
the buffers — most of the benefit of buffering is derived
from the initial portion of the allocated memory.

4.2 Variable-Size Buffer

In this method, buffers do not have a fixed capacity,
but can grow arbitrarily large. A node is flushed only
in response to an explicit tree-flush operation. We
completely eliminate index node cache thrashing by
loading each node exactly once.

Figure 2(b) shows a variable-size buffered tree.
Buffers are dynamically created. There is no pointer
necessary from a tree node to its buffer. The root node
A continues processing all the query accesses in the
outer relation. Buffers for nodes B and E are created
as required. Then the buffer of node B gets flushed,
buffers for nodes C and D are created and query ac-
cesses are distributed between the buffers. When this
step finishes (not shown in the figure), buffers for nodes
C and D get flushed and generate the join results.

A buffer is made up of a linked list of fixed-size
segments. To flush a node, a short array of size equal
to the number of its children is created. Each entry
contains one pointer which points to the current not-
yet-full segment in the buffer segment list and a slot
number which indicates the next available slot in that

6Experiment omitted due to lack of space.
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Figure 2: Buffered Tree

buffer. This design makes sure that storing one query
item involves only two cache lines. Since the array is
frequently accessed, there is a high probability that
it resides in the cache. Thus, storing one query item
incurs roughly one cache miss.

Buffers get smaller by roughly the branching fac-
tor as one descends a level in the tree. Also, bias in
the probe distribution may make some sibling buffers
larger than others. Without any prior knowledge, we
estimate that query entries are randomly distributed
among different branches. Therefore, we choose a
buffer segment size that is slightly larger than the to-
tal input size divided by the number of nodes at the
given level. (We could derive a more accurate num-
ber by just dividing the parent’s total buffer size by
the number of children, but that would prevent the
segment re-use optimization described below.) In the
event of a biased probe distribution, we may use more
memory than necessary, but overall time performance
is not sensitive to the segment size.

After processing a node, we go through each buffer
segment list, load the corresponding node and process
the query items from the last buffer segment, because
the last buffer segment has a higher probability of re-
siding in the cache. Because the buffer list is cyclic,
we are able to traverse all segments in the list.

When implementing variable-sized buffering, we can
take advantage of the fact that no pair of sibling nodes
will have active child buffers at the same time. The
memory allocated to one node’s buffer can be re-used
later for flushing its siblings. In Figure 2(b), buffers
for nodes C and D can be re-used for node F, for ex-
ample. Not only does this save overhead for allocation
and deallocation of memory, but it also reduces cache
thrashing for buffers. For buffers smaller than the L2
cache, the buffer is likely to remain in the cache as we
move from a node to its sibling.

For variable-size buffering, the memory requirement
is approximately %I , where B is the branching fac-
tor of the index, and I is the size of the input.

4.3 Order-Perserving Buffering

Simple buffering methods do not guarantee that the
output order matches the probe order. For query ex-

ecution plans that care about the result order, we
propose order-perserving buffering as shown in Fig-
ure 2(c). A result buffer of outer RIDs and inner RID-
lists has size equal to the number of probes between
flushes. The RID-lists are initialized to be empty. Be-
fore a probe traverses the root, we assign the probe
a sequence number and copy the RID into the cor-
responding result buffer entry. In the buffered tree,
pairs of a searching key and a probe sequence number
describe probes and are units of buffering. When a
match is found, the matching RIDs are appended to
the result buffer entry corresponding to the probe se-
quence number. In the event that at most one match
per probe is possible (e.g., an equality probe stream on
a key attribute), we can optimize the implementation
by using an RID rather than a RID-list for matches.
As we shall see in the experiments, the overhead to
maintain the probe order is small.

4.4 Updates

We now describe variant algorithms that allow concur-
rent updates to the index. The main insight is to allow
updates to be buffered along with the probes. Probes
and updates that happen after an update operation U
are guaranteed to see an index in which U has been
applied to the index. We will make changes to the
index update methods, but the changes will be small.

Update operations are buffered just as probes are
buffered, whether we use the fixed-size buffer technique
or the variable-size buffer technique. When an update
is received at the root node, an immediate flush op-
eration happens at the root. =~ Whenever an update
is passed down to a child buffer, that buffer is also
flushed. We always distribute the probes ahead of the
updates. When a leaf node is processed, all of the
probes generate output results, followed by the update
operation that may modify the node. If the modifica-
tion does not propagate beyond the leaf then we are
done, and we return to processing the input stream.

Depending on the kind of data structure used, there
may be different kinds of node modification that can
result from an update. For fixed-size buffering the
changes we require to the update methods for the in-
dex are simple, namely:



e Before a node is modified, call the flush operation
on that node.

e When a node is created, create a new buffer too.

e When a node is destroyed, deallocate its buffer.

Modifications that occur only along the root-to-leaf
path that the update followed do not need to be ex-
plicitly flushed again, because flushes were invoked on
the way down. Access requests may remain in the
buffers for unmodified nodes that are not on the up-
date’s path. Figure 3 shows an example traversal. If
the update path is 1 — 2 — 3 — 4, then the buffers
associated with nodes 2, 3, and 4 are flushed on the
way down. If a modification results in a change to
node 5, then that node’s buffer is also flushed before
the modification.

Figure 3: Buffering with Updates

For variable-size buffering, we dynamically use
buffers for different nodes. At any given level of the
tree, there is only one active set of buffers. As a re-
sult, in order to flush an update without requiring ad-
ditional buffers to be allocated, we need to flush the
entire subtree below the appropriate child of the root
node. Also, when the root node is changed, we need to
recreate a buffer segment list and make entries point to
the right buffers. We experimentally measure the per-
formance of each buffering technique with concurrent
updates in Section 6.

4.5 Throughput versus Response Time

Two key parameters of applications are the response
time and the throughput. Buffering achieves high
throughput at the cost of relatively slow response time.
For query plans in which response time is also impor-
tant, we flush the buffered tree more frequently to im-
prove the response time. Section 6.7 demonstrates the
trade-off.

5 Virtual Nodes

We now address the question of where to place buffers.
We group tree nodes into “virtual nodes,” as illus-
trated in Figure 4. Each virtual node has an asso-
ciated buffer, with the exception of the root virtual
node. By grouping multiple levels of a subtree into a
virtual node, we reduce the amount of buffering that
is done.

Figure 4: Virtual Nodes

Every buffer level incurs the cost of copying the
data to a buffer and rereading it to process the next
level. If this copying cost is significant, then there
is a potential for “too much” buffering. On the other
hand, if a virtual node is larger than the L2 cache, then
dividing the accesses from one buffering level to the
next may incur a large number of cache misses. Thus
there is also a potential for “too little” buffering. (The
unmodified index methods can be seen as examples of
“too little” buffering.)

Ideally, one would like to come up with a cost-based
way of estimating the expense of different buffering
configurations. We illustrate such an approach based
on the L2 cache size in Section 5.1. Nevertheless, ar-
chitectural issues such as the TLB miss behavior, and
whether the underlying architecture applies hardware
prefetching, have a noticeable impact on the perfor-
mance of any given configuration. We discuss these
issues in Section 5.2.

5.1 Virtual Nodes Based on the Cache Size

Let N be a virtual node of height d, i.e., the full d-
level subtree of a node in the index. Let L denote the
cache line size, and B the average branching factor of
the index. The branching factor of node N is B¢.

An active component of an index is one that is po-
tentially referenced during a lookup operation. For
example, if a B-tree node was 75% full, then three
quarters of the node would be considered active, and
one quarter of the node would be inactive. Since only
active components cause cache misses, we can discount
inactive components from our memory requirement
calculations. If I is an index node, then we say that
the effective size of I, written |I|., is the total size of
the active components of 1.

Let |N|. denote the total effective size of N, in
bytes. If e is the average effective size of (tree) nodes

in the index, then |N|. = Bijlle. For most indexes, e
is a small multiple m of B; for a B-tree, m corresponds
to the size of a pointer plus the size of a key.

If NV does not include any leaves of the index, then
the amount of L2 cache needed to avoid all (capacity)
cache misses is |[N|. + (B¢ + 1)L.

We need to store the entire node N and the tail



cache lines of B? buffers in the cache, as well as one
cache line for the tail of the input buffer. (Of course,
even with this much cache memory, we will encounter
conflict misses and compulsory misses.) If N is a leaf
node of the virtual-node tree, i.e., the lowest index
nodes in IV are all leaves, then the amount of L2 cache
needed to avoid all (capacity) cache misses is |N|.+2L.

Leaf nodes are different from internal nodes with
respect to buffering, because their “output” is not
buffered. We need just one cache line to store the input
buffer tail, and one cache line to store the tail of the
output result. (For index structures that can be un-
balanced, an intermediate formula between these two
extremes may apply.)

In either case, the memory needed is roughly a mul-
tiple of B%. We choose the largest d such that the
memory needed is less than the size of the L2 cache.”
Further, since a cache miss is generally more expen-
sive than a copy operation on cache-resident data (and
is likely to become even more so in future architec-
tures), the more important criterion is minimizing
cache misses.

Example 5.1 A Bt-tree with a 4KB node size, a 75%
occupancy factor, a 4 byte key, and a 4 byte pointer has
B = 375. For a two-level internal virtual node, the to-
tal memory requirement is over 10MB on a machine
with 64 byte cache lines. Since it is unlikely that the
L2 cache would be that large on a current commodity
machine, one concludes that a single level for each vir-
tual node would be optimal. On future machines with a
sufficient large L3 cache, the conclusion may be differ-
ent. (When the root node may have significantly fewer
keys than other nodes, one should also consider spe-
cial cases for combining the root node with its children
when the root branching factor is small.)

Example 5.2 For a CSB*-tree with a 64 byte node
size, a 15% occupancy factor, a 4 byte key, and a 4 byte
pointer, B = 11. For a four-level virtual node, the to-
tal memory requirement for internal nodes is over 1MB
on a machine with 64 byte cache lines, while for three
levels it is approzimately 90KB. For leaf-level virtual
nodes the requirements are approzimately 90KB and
9KB for four-level and three-level virtual nodes, re-
spectively. The appropriate choices depend on the L2
cache size.

There may still be many configurations that con-
form to the cache-based guidelines for choosing the
size of virtual nodes. If an index has three levels, and
virtual nodes containing two levels are recommended
by the cache analysis above, then there are two differ-
ent ways of partitioning the levels into virtual nodes.

7If there is a moderate amount of L2 cache space left over, it
is conceivable that one could benefit by adding part of the next
level of the index to the virtual node. We implemented this idea,
but the increase in the complexity of the code to traverse the
virtual node offset any potential performance gains.

We argue that it is unlikely to make a significant dif-
ference, in terms of cache misses, which of the two
alternatives is chosen. In both cases there is one level
of buffering, and the overhead is essentially the same.
Nevertheless, there may be a difference due to TLB
misses, which we discuss in Section 5.2.

Our configurations are based on the average branch-
ing factor of the index. Our experience indicates that
the results are not sensitive to local variation in the
node branching factor.

5.2 TLB Misses and Prefetching

We now analyze the TLB behavior of variable-size
buffering.? The TLB will contain one entry per page
of data. To calculate how many TLB entries we need,
we need to use the full size |I| for an index node rather
than the effective size, since we cannot assume that all
inactive parts of a node are both contiguous and larger
than a page. The number of TLB entries required for

the index is approximately %d:ll [[I|/P], where P is
the virtual memory page size. (This is approximate,
because alignment issues may result in additional TLB
entries.)

For leaf nodes just 2 additional TLB entries are re-
quired. The real problem for the TLB is the buffers for
internal nodes. Given sufficiently large buffers, each
buffer requires its own TLB entry. For internal nodes,
that means B? TLB entries. In almost all practical
cases, we expect to encounter TLB thrashing. The ex-
ceptions will be cases when d = 1 and B is no larger
than the TLB size (typically 64 entries on modern ma-
chines). Even if the average branching factor is high,
the root node may have a small key count, and thus
may also be an exception in this sense.

In these exceptional cases, we may expect signifi-
cantly fewer TLB misses when we choose to buffer at
each level. If the cost of a TLB miss is larger than the
cost of writing to and reading from a buffer, then we
might expect to get better performance from buffering
more often than the cache analysis would suggest. For
example, in a CSBT-tree with a branching factor of
11 (Example 5.2), it might be preferable to have three
initial buffered levels, rather than one buffered virtual
node of depth 3.

Some machines, such as the Pentium 4, employ
hardware prefetching. The machine automatically rec-
ognizes common access patterns, such as sequential ac-
cess, and prefetches ahead of the current references.
In our context, such prefetching reduces the cache-
miss cost of buffering, since buffering tends to use pre-
dictable access patterns. This is good news in terms
of measuring overall speedups. The reduction in cache
miss cost amplifies the impact of TLB misses on the
overall cost.

8The TLB behavior of fixed-size buffering is similar, but
slightly more involved, and is omitted due to space consider-
ations.
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5.3 Overall Algorithm

We initially run a calibration experiment to determine
whether, for the given index, on the given architecture,
it is worth partitioning a multiple-level virtual node
into smaller ones. For example, Figure 5 shows all
possible ways to break up a 3-level node. Partitioning
will be beneficial when different ways have similar L2
cache behavior and the TLB miss cost is not negligible.
Since the depth of a virtual node is likely to be small,
it is feasible to consider all possible ways of breaking
up a virtual node, and to determine the split with best
overall performance.

We calibrate by simulating each possible buffer
placement by probing with a relatively small uniformly
distributed input stream, and measuring the perfor-
mance. We only simulate the part of the index under
consideration. Thus, if we are considering whether to
split a three-level virtual node that includes the root
of the tree, we traverse only the first three levels of the
index during the simulation.

In the case of virtual nodes that do not include the
root, we choose a sample of such virtual nodes from
the index. Each of them is simulated with a num-
ber of probes that is large enough to touch almost all
tree nodes within the virtual node. The overall per-
formance is calculated as the average over all samples.

As shown in Section 6.2, calibration can typically
be performed in less than a second. The results of
such calibration experiments can be stored with other
database statistics, to avoid redundant work.

An important benefit of calibration, when compared
to an analytic derivation of virtual node size, is that it
is sensitive to the implementation characteristics of the
index. For example, when bulk-loading an index, it is
typical to allocate all nodes of a given level contigu-
ously. (If many nodes fit within a page, then many
fewer TLB entries would be required to access the
nodes.) On the other hand, a tree that has evolved
over time by insertions and deletions is much less likely
to have siblings close to each other in physical mem-
ory. Calibration can measure the actual TLB behavior
of the index, which will reflect the degree to which sib-
ling nodes are contiguous. It would be very difficult
for an analytic method to quantify this effect, since it
depends on low-level memory characteristics. A simi-
lar effect occurs when trying to quantify the impact of
hardware prefetching on the overall cost.

As we shall see in the experiments, cache misses
have much larger effect than TLB misses. Therefore,

our TLB calibration is based on the configuration sug-
gested by the cache analysis. Our algorithm for choos-
ing where to buffer proceeds as follows:

1. Perform the cache analysis of Section 5.1, and
choose a hierarchy of virtual nodes consistent with
having few capacity cache misses.

2. Use the calibration results to determine whether
it is beneficial to split a multi-level virtual node.
If so, partition the virtual node according to the
calibration experiment’s recommendation.

3. Recalibrate if the cache analysis changes or sig-
nificant tree structure changes happen.

We shall validate the choices made by this algorithm
in Section 6.2.

6 Experimental Validation
6.1 Methodology

We first evaluate the various index methods with uni-
formly distributed probes over uniformly distributed
data. This is a worst-case workload for all methods,
since there is no intrinsic locality in the probe stream.
Our choice of uniform data for evaluation is motivated
by the fact that designs based on worst-case behav-
ior are not likely to be subject to “surprises” when the
data crosses a locality threshold such as the cache size.
We compare buffering performance with non-uniform
probes in Section 6.5.

6.2 Buffer Placement

We now assess how well our buffer placement algo-
rithm works in practice in our three candidate archi-
tectures. In the first experiment, we validate the ac-
curacy and the importance of the cache analysis of
Section 5.1. In the second experiment, we demon-
strate the use of calibration to choose an optimal buffer
placement. For brevity, we consider just variable-size
buffering in this section.

We first implement a 3-level B*-tree with the char-
acteristics of Table 2. The L2 cache is too small to hold
either a two-level internal virtual node or a two-level
leaf virtual node. Therefore, cache analysis recom-
mends buffering every level. We denote this method
as (1,1,1). We also implement the two other possible
ways to implement buffering: a two-level root virtual
node labeled (2, 1), and a two-level leaf virtual node la-
beled (1,2). Figure 6 shows the elapsed time and cache
miss penalty of performing 5 million randomly gener-
ated query accesses on our three architectures. The
method (1, 1,1) has the smallest cache miss penalty in
all architectures. The method (1,1, 1) is confirmed to
be the best buffer placement.

In the second experiment, we implement a 7-level
CSB™-tree with a node size of 64 bytes. The Pentiums
have a cache line size different from 64 bytes, but we
choose to use the same index structure to make a clear
comparison. The index also has 5 million keys and is
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bulkloaded with a 75% occupancy factor. A leaf node
contains 5 (key,RID) pairs and an index node contains
11 keys. The root node contains 4 keys.

The cache analysis suggests a 3-level root virtual
node and 4-level leaf virtual nodes represented as
(3,4). The branching factor of the 3-level root vir-
tual node is larger than the TLB size. It may thus be
beneficial to partition the root virtual node. We can
partition the 3-level root virtual node in four ways, as
shown in Figure 5. We calibrate the four placements
by running 1 million randomly generated query ac-
cesses only over the first three levels of the index tree.
(One could get accurate measurements with fewer than
1 million probes in this case, since there are only about
550 leaves in this 3-level subtree, but even 1 million
probes can be performed quickly.)
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The left columns in Figure 7 show the results of
calibration on three architectures. We measure the
elapsed time; all calibrations complete in less than a
second. On the Pentium 3, the TLB penalty is small
(see Table 1) and method (3) is the fastest because
all three levels can fit in the L2 cache. On the Ul-
traSparc, the TLB penalty is high. On the Pentium
4, the TLB cost is also relatively high, and amplified
by the use of hardware prefetching to reduce the net
cache miss penalty. In either case, the TLB cost is
sufficiently large that method (3) is not the fastest.
Interestingly, since the root node contains only 4 keys,
the total branch factor of the first two levels combined
is still smaller than the TLB size. As a result, the
method (2, 1) is faster than either (1,1,1) or (1,2).

Is there a need to partition the 4-level virtual node
that includes the leaf level? According to our algo-
rithm, we simulate various partitions of the 4-level
nodes, and find that the 4-level node performs best.
It turns out that all four levels can be processed with-
out TLB thrashing. This is due to the combination
of two memory-related effects. First, all siblings in
a CSBT-tree are allocated contiguously, meaning that
they will usually be on the same page. Second, be-
cause the tree is generated by bulk-loading, all leaves
(not just groups of siblings) are contiguous. This anal-
ysis demonstrates the benefits of calibration discussed
in Section 5.3; calibration can “detect” that the tree
has been bulkloaded.

The right columns in Figure 7 show the overall per-
formance for 5 million probes on the three architec-
tures. The results match the calibration estimates.
The structure (3,4) is fastest on the Pentium 3 in
which the TLB miss latency is low. On both the Ul-
traSparc and Pentium 4, the (2, 1,4) is the fastest.

Of the three architectures, the Pentium 4 is the only
one that supports a TLB miss performance counter.
We measure both the cache and TLB miss penalty
on the Pentium 4 for all four placements, as shown
in Figure 8. The L2 cache cost is dominant for the
unbuffered index. All buffered placements have similar
L2 cache behavior, while differing in the impact of TLB
misses. These confirm that the performance difference
among the four placements is due to TLB misses.

The main conclusions from these experiments are
that when considering buffer placement, (a) the cache
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miss penalty is the main source of latency, (b) the
TLB cost, while smaller, is still measurable (especially
with good cache behavior), (c¢) different architectures
have different optimal virtual node structures, and (d)
calibration is a quick and effective tool for determining
buffer placement.

6.3 Overall Search Performance

We repeat the experiments of Figure 1 on the three
architectures and compare the original algorithm with
variable-size buffering. We follow our guidelines for
the choice of virtual node size. For the B*-tree and
the R-tree, each node is a virtual node.

Figure 9 shows the results. Buffered lookup is uni-
formly better, with speedups by a factor of two to
three. Interestingly, the performance of BT-trees and
CSB™-trees differ little once buffering techniques are
applied. In both cases, we have a three-level virtual
tree and we perform buffering twice. The buffering
overhead is the same; the size of nodes is relatively
unimportant for bulk access.

In the rest of this section, we show results on the
Pentium 4; the other systems have similar behavior.
Due to space limitations, we show results only for
buffered BT -trees.

6.4 Fixed-size versus Variable-size

We compare the search performance of different buffer-
ing techniques for a sequence of 5 million probes. We
implement both fixed-size and variable-size buffering
algorithms and compare with BT-tree and CSB™-tree.
For fixed-size buffering, we choose the buffer size to be
the same as the size of an index node, 4 Kbytes. We
begin our experiments with a clear cache.
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Figure 10: Search Performance

Figure 10 shows the elapsed time and the cache miss
penalty for different algorithms. The total elapsed
time for variable-size buffering includes the time to dy-
namically create buffers. We preallocate a large mem-
ory pool and space is allocated from the pool. Both
buffering techniques significantly decrease the impact
of cache misses. Fixed-size buffering does not elimi-
nate all cache thrashing. With the lowest cache miss
rate, variable-size buffering is fastest for pure search
performance, and is three times faster than traditional
lookup. Order-preserving buffering may incur addi-
tional cache misses for writes to the result buffer. In
this experiment, the result buffer is equal in size to the
number of probes, and we use the RID optimization
described in Section 4.3. The results demonstrate that
the overhead for maintaining probe order is small; the
additional cache miss latency can be overlapped with
other useful work.
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Figure 11: Buffering with Updates
We now examine the performance of both buffering

techniques on a workload that contains both probes
and updates (insertions).



Figure 11 compares a conventional BT-tree in-
dex, with unbuffered probes, with both fixed-size and
variable-size buffering. We randomly mix insertion
and search operations, controlling the percentage of
updates. We measure the elapsed time for a total of
5 million operations. The two horizontal lines respec-
tively represent the search performance for fixed-size
and variable-size buffering when there are no updates.

When the update percentage is small, both buffer-
ing techniques show small overhead. This is likely to
be the most common scenario in our target applica-
tions: there are likely to be orders of magnitude more
probes than updates in a given time window. As in-
sertions increase in frequency, buffers are flushed more
frequently and the advantage of buffering diminishes.
Fixed-size buffering shows better performance than
variable-size buffering, because the impact of flushing
is smaller; variable-size buffering flushes a relatively
large subtree for each update.

6.5 Non-Random Probes

We now examine how buffering techniques adjust to
different properties of probes. We consider 5 million
probes:

e Gaussian distributed probes such that 95% of the
probes touch 20% of the leaf nodes, and 5% of the
probes touch 80% of the leaf nodes

e Uniformly distributed probes sorted by the probe
keys
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Figure 12: Three Datasets

When probes are skewed, both buffered and non-
buffered structures show better performance and the
speedup due to buffering, while still significant, is
smaller (Figure 12). If probes are sorted by the search
keys, all methods show good spatial locality and share
similar performance. The performance for sorted ac-
cess shows that all methods have roughly the same
number of L2 cache misses and the buffering overhead
is minimal; the cost of buffering is offset by a signifi-
cant decrease in the number of L1 cache misses. Sorted
access is unlikely to be a common access pattern, and
explicitly sorting probes would be expensive.

6.6 Small Number of Probes

Buffering is helpful for a large number of probes. For
a small number of probes, the overhead of buffering
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Figure 13: Small Number of Probes

dominates the overall cost. Figure 13 compares the
performance when the probe cardinality ranges from
0.01% to 0.8% of the (5 million) indexed keys. Both
buffering methods get faster than the Bt-tree when
the outer relation size is larger than 0.08%, and be-
come faster than the CSB™-tree when the number ex-
ceeds 0.4%. The optimizer needs to consider the probe
cardinality to decide when buffering can be beneficial.

6.7 Response Time

Basic buffering methods do not guarantee fast re-
sponse time. We implement fixed-size buffering and
a timer thread that, after some fixed time interval ¢,
forces the whole tree to be flushed. That way, response
time is at most ¢; we call ¢ the response time guarantee.
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Figure 14: Response Time

In a first experiment, we model an index-nested-
loops join that is a component of a pipelined query
processing plan. We probe a BT-tree with the param-
eters of Table 2. Figure 14 shows response time for
different flush intervals. The experiment shows that
after a short initial period, buffered access produces
more output results (for processing by subsequent op-
erations) than unbuffered access.

In a second experiment, we model a stream-
processing application in which the data stream is used
to probe an index. We perform 107 probes, and mea-
sure the throughput as 107/7', where T is the total
time needed to complete the experiment.

Figure 15 shows the throughput as a function of
the response time guarantee. The horizontal dashed
lines respectively represent the throughputs for con-
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ventional BT-trees, CSB™*-trees, and the same fixed-
size buffered tree but flushing the tree only at the end.

When the response time guarantee is small, there
are more flush operations. The benefit of buffering is
small and the throughput is comparable with conven-
tional techniques. However, even when the response
time guarantee is 0.1 seconds, the throughput of the
buffered tree is noticeably better than those for the
BT-tree and the CSB™-tree. The throughput improves
as the response time guarantee increases. With a re-
sponse time guarantee of one second, the system can
achieve almost the same throughput as a fixed-size
buffer tree that only flushes at the end.

The importance of this experiment is that it demon-
strates that buffered indexes can achieve a through-
put that is simply not achievable with conventional
indexes. In a scenario in which the application needed
to handle 1 million lookups per second, and could tol-
erate small response time delays, buffered trees would
work on the given tree and architecture, while conven-
tional indexes would not.

7 Conclusion

Both conventional and cache-conscious index struc-
tures suffer from cache thrashing between query ac-
cesses. We propose techniques to buffer accesses
to memory-resident tree-structured indexes to exploit
cache spatial and temporal locality. The buffer struc-
tures are separate from the index structures. For single
lookups, one may use the index in a conventional fash-
ion. For bulk lookups, our algorithms improve the rate
at which probes can be processed typically by a factor
of two to three. Our algorithms can also handle up-
dates mixed with probes, while providing a response
time guarantee for probes.

These results are important for applications such as
stream processing, where probe throughput can be a
critical parameter. They are also relevant for speed-
ing up more conventional query processing operations,
such as index-nested-loops joins, in main memory.

While we have described buffering in the context of
a tree-based index, it also applies to structures such as
hash indexes. If the hash table is too large to fit in the
L2 cache, it may be beneficial to partition and buffer

the probes into smaller groups using a prefix of the
hashed key, so that the hash table fragment required
by each group can fit in the cache.
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