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Abstract 

Despite the importance of spatial networks in 
real-life applications, most of the spatial database 
literature focuses on Euclidean spaces. In this 
paper we propose an architecture that integrates 
network and Euclidean information, capturing 
pragmatic constraints. Based on this architecture, 
we develop a Euclidean restriction and a 
network expansion framework that take 
advantage of location and connectivity to 
efficiently prune the search space. These 
frameworks are successfully applied to the most 
popular spatial queries, namely nearest 
neighbors, range search, closest pairs and e-
distance joins, in the context of spatial network 
databases.  

1.   Introduction 
Spatial databases have been well studied in the last 20 
years resulting in the development of numerous 
conceptual models, multi-dimensional indexes and query 
processing techniques [RSV02]. Surprisingly, most of 
existing work considers Cartesian (typically, Euclidean) 
spaces, where the distance between two objects is 
determined solely by their relative position in space. 
However, in practice, objects can usually move only on a 
pre-defined set of trajectories as specified by the 
underlying network (road, railway, river etc.). Thus, the 
important measure is the network distance, i.e., the length 
of the shortest trajectory connecting two objects, rather 

than their Euclidean distance. Previous work on spatial 
network databases (SNDB) is scarce and too restrictive 
for emerging applications such as mobile computing and 
location-based commerce. This necessitates the 
development of novel and comprehensive query 
processing methods for SNDB.  
Every conventional spatial query type (e.g., nearest 
neighbors, range search, spatial joins and closest pairs) 
has a counterpart in SNDB. Consider, for instance, the 
road network of Figure 1.1, where the rectangles 
correspond to hotels. If a user at location q poses the 
range query "find the hotels within a 15km range", the 
result will contain a, b and c (the numbers in the figure 
correspond to network distance). Similarly, a nearest 
neighbor query will return hotel b. Note that the results of 
the corresponding conventional queries are different (e.g., 
the Euclidean nearest neighbor is d, which is actually the 
farthest hotel in the network). Furthermore, queries may 
combine both location and network aspects, such as "find 
the nearest hotel to the south" (e.g., hotel a).    

 
      Figure 1.1: Road network query example 

A crucial pre-requisite for solving these queries in SNDB 
is a realistic architecture, which captures spatial entities 
(e.g., hotels) and the underlying network, preserving both 
Cartesian co-ordinates and connectivity. In addition, this 
architecture must take into account real-life constraints, 
such as unidirectional roads, “off-network” (but still 
reachable) entities, etc. Furthermore, although the 
network is almost static, the entities may change with 
high frequencies (e.g., a new/existing hotel opens/closes). 
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It is also possible that entire entity sets are added as more 
information or services become available (e.g., a new 
"restaurant" dataset is incorporated in the system). 
In this paper we propose a flexible architecture for SNDB, 
by separating the network from the entity datasets. In 
particular, we employ a disk-based network representation 
that preserves connectivity and location, while spatial 
entities are indexed by respective spatial access methods 
for supporting Euclidean queries and dynamic updates. 
Using this architecture, we develop two frameworks, 
Euclidean restriction and network expansion, for 
processing the most common spatial queries, namely 
nearest neighbors, range search, closest pairs and distance 
joins. The resulting algorithms expand conventional 
processing techniques by integrating connectivity and 
location information for efficient pruning of the search 
space. To the best of our knowledge, this is the first work 
dealing with the efficient processing of spatial queries in 
SNDB. 
The rest of the paper is organized as follows: Section 2 
overviews related work. Section 3 describes our 
architecture and its application in real-life scenarios. 
Sections 4 and 5 present algorithms for nearest neighbor 
and range search queries, respectively, while Sections 6 
and 7 discuss closest pairs and spatial joins. Section 8 
evaluates the proposed techniques with comprehensive 
experiments, and Section 9 concludes the paper with a 
discussion. 

2.   Related Work 
In this section we overview previous work related to 
location (Section 2.1) and connectivity (Section 2.2) 
representation and processing in databases.  

2.1 Spatial Query Processing in the Euclidean Space 
R-trees [G84, SRF87, BKSS90] are the most popular 
indexes for Euclidean query processing due to their 
simplicity and efficiency. The R-tree can be viewed as a 
multi-dimensional extension of the B-tree. Figure 2.1 
shows an exemplary R-tree for a set of points {a,b,…,j} 
assuming a capacity of three entries per node. Points that 
are close in space (e.g., a,b) are clustered in the same leaf 
node (E3) represented as a minimum bounding rectangle 
(MBR). Nodes are then recursively grouped together 
following the same principle until the top level, which 
consists of a single root.  
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Figure 2.1: An R-tree example 

R-trees (like most spatial access methods) were motivated 
by the need to efficiently process range queries, where 
the range usually corresponds to a rectangular window or 
a circular area around a query point. The R-tree answers 
the query q (shaded area) in Figure 2.1 as follows. The 
root is first retrieved and the entries (e.g., E1, E2) that 
intersect the range are recursively searched because they 
may contain qualifying points. Non-intersecting entries 
(e.g., E3) are skipped. Note that for non-point data (e.g., 
lines, polygons), the R-tree provides just a filter step to 
prune non-qualifying objects. The output of this phase has 
to pass through a refinement step that examines the actual 
object representation to determine the actual result. The 
concept of filter and refinement steps applies to all spatial 
queries on non-point objects.  

A nearest neighbor (NN) query retrieves the (k≥1) data 
point(s) closest to a query point q. The R-tree NN 
algorithm proposed in [HS99] keeps a heap with the 
entries of the nodes visited so far. Initially, the heap 
contains the entries of the root sorted according to their 
minimum distance (mindist) from q. The entry with the 
minimum mindist in the heap (E1 in Figure 2.1) is 
expanded, i.e., it is removed from the heap and its 
children (E3, E4, E5) are added together with their mindist. 
The next entry visited is E2 (its mindist is currently the 
minimum in the heap), followed by E6, where the actual 
result (h) is found and the algorithm terminates, because 
the mindist of all entries in the heap is greater than the 
distance of h. The algorithm can be easily extended for 
the retrieval of k nearest neighbors (kNN). Furthermore, it 
is optimal (it visits only the nodes necessary for obtaining 
the nearest neighbors) and incremental, i.e., it reports 
neighbors in ascending order of their distance to the query 
point, and can be applied when the number k of nearest 
neighbors to be retrieved is not known in advance. 
An intersection join retrieves all intersecting object pairs 
(s,t) from two datasets S and T. If both S and T are 
indexed by R-trees, the R-tree join algorithm [BKS93] 
traverses synchronously the two trees, following entry 
pairs that overlap; non-intersecting pairs cannot lead to 
solutions at the lower levels. Several spatial join 
algorithms have been proposed for the case where only 
one of the inputs is indexed by an R-tree or no input is 
indexed [RSV02]. For point datasets, where intersection 
joins are meaningless, the corresponding problem is the e-
distance join, which finds all pairs of objects (s,t) s ∈  S, t 
∈  T within (Euclidean) distance e from each other. R-tree 
join can be applied in this case as well, the only difference 
being that a pair of intermediate entries is followed if their 
distance is below (or equal to) e. The intersection join can 
be considered as a special case of the e-distance join, 
where e=0. 

Finally, a closest-pairs query outputs the (k≥1) pairs of 
objects (s,t) s ∈  S, t ∈  T with the smallest (Euclidean) 
distance. The algorithms for processing such queries 
[CMTV00] combine spatial joins with nearest neighbor 



search. In particular, assuming that both datasets are 
indexed by R-trees, the trees are traversed synchronously, 
following the entry pairs with the minimum distance. 
Pruning is based on the mindist metric, but this time 
defined between entry MBRs. As all these algorithms 
apply only location-based metrics to prune the search 
space, they are inapplicable for SNDB.  

2.2 Disk-based Graph Representations and Algorithms 
A graph is usually represented either as a 2D matrix 
(where each entry corresponds to an edge between a pair 
of nodes), or an adjacency list. Adjacency lists are 
preferable for applications, such as road networks, where 
the graphs are sparse. The main issue for adapting this 
representation to secondary memory is how to cluster lists 
of adjacent nodes in the same disk page, in order to take 
advantage of the access locality and minimize the I/O. 
The connectivity-clustered access method (CCAM) 
[SL97] generates a single-dimensional ordering of the 
nodes (using Z-ordering) and stores the lists of neighbor 
nodes together. Figure 2.2 shows a graph example and its 
CCAM structure, assuming that three adjacency lists fit in 
one page. The lists of the neighboring (in the Z-order) 
graph nodes n1, n3 and n5 are stored in page p1, and the 
lists of the remaining ones in page p2. Each entry in the 
list (e.g., l6) of a node (n6) contains an adjacent node (n2) 
and the corresponding network distance (3). In order to 
efficiently retrieve the adjacency list li of a node ni, the list 
pages are indexed by a B+-tree on the node id. An 
alternative technique for clustering graph nodes according 
to their proximity in space is proposed in [HJR96].  

 
(a) A graph example 

 
(b) The CCAM structure 

Figure 2.2: A graph example and its CCAM structure 
CCAM and similar architectures only preserve 
connectivity (but not location) information; thus, they are 
applicable only to shortest path and other graph traversal 
algorithms (but not conventional spatial query 
processing). The most popular shortest path algorithm, 
proposed by Dijkstra [D59], starts from the source and 
expands the route towards the destination, using a priority 

queue to store visited nodes (sorted according to their 
distance from the source node). Several variants of this 
algorithm [CLR90] differ on how they manage the 
priority queue. The A* algorithm [KHI+86] applies 
heuristics to prune the search space and direct the graph 
expansion. Materialization techniques accelerate shortest 
path processing (at the expense of space requirements) by 
using pre-computed results stored in materialized views 
[ADJ90, IRW93, JP96, JHR98]. The performance of 
secondary-memory adaptations of shortest path 
algorithms has been analyzed in [J92, SKC93]. 
The only existing approach that integrates spatial and 
connectivity information [HJR97], uses thematic spatial 
constraints to restrict the permitted paths (e.g., "find the 
shortest path that passes only through rural areas") and is 
inapplicable to general query processing. Finally, 
[SKS02] deal with nearest neighbor queries in road 
networks by transforming the problem to high 
dimensional space. Their solution is approximate and 
specific to this problem. On the other hand, the 
architecture presented in the next section supports all the 
counterparts of conventional queries in the SNDB 
context. 

3.   Architecture 
We assume a digitization process that generates a 
modeling graph from an input spatial network. 
Considering the road network in the introduction, the 
graph nodes generated by this process are: (i) the network 
junctions (e.g., the black points in Figure 3.1a), (ii) the 
starting/ending point of a road segment (white), and (iii) 
depending on the application, additional points (gray) 
such as the ones where the curvature or speed limit 
changes. The graph edges preserve the connectivity in the 
original network. Figure 3.1b shows the (modeling) graph 
for the network of Figure 3.1a; nodes at the boundary of 
the data space and the network distance of most edges are 
omitted for clarity.     

 
(a) A road network 

 
(b) The modeling graph 

Figure 3.1: Graph modeling of the road network 



In the sequel we use the term edge/segment to denote a 
direct link in the graph/network. Each edge connecting 
nodes ni, nj stores the network distance dN(ni,nj). For 
nodes that are not directly connected, dN(ni,nj) equals the 
length of the shortest path from ni to nj. If unidirectional 
traffic is allowed (e.g., one-way road segments), dN(ni,nj) 
is asymmetric (i.e., it is possible dN(ni,nj)≠dN(nj,ni)). 
Furthermore, dE(ni,nj) ≤ dN(ni,nj), i.e., the corresponding 
Euclidean distance dE(ni,nj) lower bounds  dN(ni,nj) 
(equality holds only if ni, nj are connected by a straight 
segment). We refer to this fact as the Euclidean lower-
bound property.  
Constraints, such as special traffic controls, can be 
modeled by including extra nodes to the graph. As an 
example, consider a road junction in Figure 3.2a, where 
right turns are not permitted. The corresponding graph is 
shown in Figure 3.2b, where 8 nodes in the same spatial 
position are used to capture this behavior. Depending on 
the application needs, additional information may be kept 
for nodes (such as the type of the node, e.g., highway 
junction) or the edges (speed limit, category of road 
segment e.g., highway). 

 
(a) A road junction (b) The modeling graph 

Figure 3.2: Example of pragmatic constraint  

In order to simplify the presentation, we describe our 
architecture for the basic functionality, where nodes have 
identical types and edges only store network distance. We 
separate the spatial entities (e.g., hotels) from the 
underlying network, by indexing each entity dataset using 
an R-tree. This division has many advantages: (i) all 
conventional (Euclidean) queries, which do not require 
the network, can be efficiently processed by the R-trees, 
(ii) as shown later, queries combining network and 
Euclidean aspects are supported, (iii) dynamic updates in 
each dataset are handled independently, (iv) new/existing 
datasets can be added to/removed from the system easily, 
and (v) specific optimizations can be applied to each 
individual (network or entity) dataset.  
The network storage scheme consists of three 
components. The adjacency component captures the 
network connectivity. The adjacency lists of the nodes 
close in space (according to their Hilbert1 values) are 
placed in the same disk page. In Figure 3.3 (based on 
Figure 3.1b), the list l1 of n1 consists of 3 entries, one for 
each of its connected nodes (n2, n3, n4) (ignoring nodes 
outside the boundary). The first entry (for edge n1n2) has 

                                                           
1 We apply Hilbert ordering, instead of the Z-ordering used by 
CCAM, because it achieves better locality. 

the form <NBptr(n2), 8, MBR(n1n2), PLptr(n1n2)>, where 
NBptr(n2) points to the disk page (i.e., P1) containing the 
adjacency list l2 of n2. NBptr(n2) enables fast access to the 
neighboring node n2, without any additional look-up 
(while CCAM, as reviewed in Section 2.2, requires B-tree 
accesses). The next field (8) is the network distance of 
edge n1n2. MBR(n1n2) records the minimum bounding 
rectangle of the actual poly-line n1n2 in the original 
network, which is stored in the disk page (=P3) specified 
by PLptr(n1n2). The other adjacency entries (for n3, n4) 
have the same format.  

 
Figure 3.3: Example of the proposed architecture 

The poly-line component, stores the detailed poly-line 
representation of each segment in the network. A poly-
line entry ninj also includes a pair of pointers to the disk 
pages containing the adjacency lists of its endpoints ni, nj. 
The last component is a network R-tree that indexes the 
poly-lines’ MBRs and supports queries exploring the 
spatial properties of the network. Each leaf entry contains 
a pointer to the disk page storing the corresponding poly-
line. The architecture supports the following primitive 
operations for SNDB: 
(i) check_entity(seg, p) is a Boolean function that returns 
true if point (entity) p lies on the network segment seg 
(we say that seg covers p). In accordance with the 
conventional spatial databases methodology, the MBR of 
seg is used for filtering and its poly-line representation for 
refinement. Due to approximation or digitization errors it 
is possible that, although point p actually lies on seg, its 
stored co-ordinates may deviate from the segment. This 
situation can be handled by defining an (application-
dependent) threshold dT, such that if p is within distance 
dT from seg, it is assumed to lie on it. 
(ii) find_segment(p): outputs the segment that covers point 
p by performing a point location query on the network R-
tree. If multiple segments cover p, the first one found is 
returned. This function is applied whenever a query is 
issued, to locate the segment on which the query point 
lies. If the query point does not lie on any segment, we 
can “snap” it to the closest one assuming incomplete 
information (e.g., an un-recorded alley), or we can 
consider it unreachable depending on the application 
specifications. Although uncertainty handling in SNDB is 
an interesting topic, for the sake of simplicity, in the 



following discussion we assume that each entity and 
query point falls on at least one network segment.  
(iii) find_entities(seg): returns entities covered by segment 
seg. Specifically it first finds all the candidate entities that 
lie in the MBR of seg, and then eliminates the false hits 
using the poly-line of seg.     
(iv) compute_ND(p1,p2): returns the network distance 
dN(p1,p2) of two arbitrary points p1, p2 in the network, by 
applying a (secondary-memory) algorithm to compute the 
shortest path from p1 to p2. Specifically, we chose to adapt 
Dijkstra's algorithm because it is simple, efficient and 
exhibits access locality, reducing the number of page 
faults during the retrieval of adjacency lists. However, 
Dijkstra's algorithm assumes that the source (i.e., query) 
and the destination (i.e., data point) fall on network nodes, 
while in our scenario points may fall on edges (or 
assigned to edges if approximation is used).  
Consider, for example, the computation of dN(p1,p2) in the 
modeling graph of Figure 3.4, where n1,...,n6 denote the 
nodes. The algorithm first invokes find_segment to return 
the segments n1n2 covering p1, and n5n6 covering p2. Then, 
it calculates the distance from p1 to n1 and n2 (5 and 12) 
using the poly-line n1n2, and initiates a priority queue 
Q=<(n1,5),(n2,12)>. The first entry n1 is de-queued and its 
adjacent nodes (n3, n4) are inserted into Q, together with 
their accumulated distance from p1, i.e., Q=<(n2,12), 
(n3,13), (n4,30)>. After the expansion of n2, the queue 
becomes Q=<(n3,13),(n4,25)> (the distance to n4 
decreases), and after the expansion of n3, Q=<(n5,23), 
(n4,25)>. Now the next node to expand is n5. Since p2 can 
be reached from n5 with cost 3, we insert it, and the queue 
becomes Q=<(n4,25), (p2,26)>. Similarly, after the 
expansion of n4, Q=<(p2,26), (n6,29)> and the algorithm 
terminates with dN(p1,p2)=26. If p1 or p2 fall on multiple 
segments, then by the definition of the graph they 
correspond to graph nodes, in which case the algorithm is 
still applicable. The same is true for networks containing 
unidirectional segments.  
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Figure 3.4: Illustration of fundamental operations 

Network distance computations can be facilitated by 
materialization of pre-computed results (e.g., [ADJ90, 
JHR98]). In Figure 3.4, for example, dN(p1,p2) can be 
obtained by fetching from the materialized view 
dN(n1,n5)=18, dN(n1,n6)=23, dN(n2,n5)=22, dN(n2,n6)=17, 
with four disk accesses using a hash function. Although 
materialization can be incorporated as an additional 
module in our architecture, we chose not to include it in 
the basic functionality due to the huge space requirements 
for large spatial networks.    

Next, we discuss all common spatial queries using this 
architecture. For each query type we propose two 
algorithms based on the Euclidean restriction and network 
expansion frameworks, respectively. Euclidean restriction 
takes advantage of the Euclidean lower-bound property to 
prune the search space. On the other hand, the network 
expansion framework performs query processing directly 
on the network. Since our aim is to illustrate the general 
methodology, we intentionally keep the algorithms simple 
and only present essential optimization techniques 
wherever necessary. Furthermore, we only describe the 
basic query forms; as discussed in Section 9, variations 
such as "find the nearest hotels to the south", can be easily 
processed by the proposed techniques. 

4.   Nearest Neighbors in SNDB 
Given a source point q and an entity dataset S, a k nearest 
neighbor (kNN) query retrieves the k (≥1) objects of S 
closest to q according to the network distance (e.g., find 
the hotel within the shortest driving distance). Sections 
4.1 and 4.2 present two algorithms for nearest neighbour 
queries in SNDB, based on the Euclidean restriction and 
network expansion frameworks, respectively. 

4.1   Incremental Euclidean Restriction 
The Incremental Euclidean Restriction (IER) algorithm 
applies the multi-step kNN methodology [FRM94, SK98], 
traditionally used for high-dimensional similarity 
retrieval. Specifically, assuming that only one NN is 
required, IER first retrieves the Euclidean nearest 
neighbor pE1 of q, using an incremental kNN algorithm 
(e.g., [HS99], see Section 2.1) on the entity R-tree of S. 
Then, the network distance dN(q,pE1) of pE1 is computed 
(by compute_ND(q,pE1)). Due to the Euclidean lower-
bound property, objects closer (to q) than pE1 in the 
network, should be within Euclidean distance 
dEmax=dN(q,pE1) from q, i.e., they should lie in the shaded 
area of Figure 4.1a. In Figure 4.1b, the second Euclidean 
NN pE2 is then retrieved (within the dEmax range). Since 
dN(q,pE2)<dN(q,pE1), pE2 becomes the current NN and dEmax 
is updated to dN(q,pE2), after which the search region (for 
potential results) becomes smaller (the shaded area in 
Figure 4.1b). Since the next Euclidean NN pE3 falls out of 
the search region, the algorithm terminates with pE2 as the 
final result. 
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Figure 4.1: Finding the NN pE2 



The extension to k nearest neighbors is straightforward. 
The k Euclidean NNs are first obtained using the entity R-
tree, sorted in ascending order of their network distance to 
q, and dEmax is set to the distance of the kth point. Similar 
to the single NN case, the subsequent Euclidean neighbors 
are retrieved incrementally, while maintaining the k 
(network) NNs and dEmax  (except that dEmax equals the 
network distance of the k-th neighbor), until the next 
Euclidean NN has larger Euclidean distance than dEmax. 
Figure 4.2 illustrates the pseudo-code of IER. 

Algorithm IER (q, k) 
/* q is the query point */ 
1. {p1,...,pk}=Euclidean_NN(q,k);  
2. for each entity pi  
3. dN(q,pi)=compute_ND(q,pi) 
4. sort {p1,...,pk} in ascending order of dN(q,pi)  
5. dEmax= dN(q, pk)  
6. repeat 
7.   (p,dE(q, p))=next_Euclidean_NN(q);  
8. if (dN(q,p)<dN(q,pk)) // p closer than the kth NN 
9.    insert p in {p1,...,pk} // remove ex-kth NN  
10.      dEmax = dN(q, pk)  
11. until dE(q,p)>dEmax 
End IER 

Figure 4.2: Incremental Euclidean Restriction 

4.2   Incremental Network Expansion 
IER (and the Euclidean restriction framework in general) 
performs well if the ranking of the data points by their 
Euclidean distance is similar to that with respect to the 
network distance. Otherwise, a large number of Euclidean 
NNs may be inspected before the network NN is found. 
Figure 4.3 shows an example where the black points 
represent the nodes in the modeling graph and rectangles 
denote entities. The nearest entity to the query q (white 
point) is p5. The subscripts of the entities (p1,p2,...,p5) are 
in ascending order of their Euclidean distance to q. Since 
p5 has the largest Euclidean distance, it will be examined 
after all other entities, i.e., p1 to p4 correspond to false 
hits, for which the network distance computations are 
redundant.  
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Figure 4.3: Finding the NN p5 

To remedy this problem, the Incremental Network 
Expansion (INE) algorithm performs network expansion 
(starting from q), and examines entities in the order they 
are encountered. Specifically, INE first locates the 
segment n1n2 that covers q, and retrieves all entities on 

n1n2 (using the primitive operation find_entities). Since no 
point is covered by n1n2, the node (n1) closest to the query 
is expanded (while, the second endpoint n2 of n1n2 is 
placed in a queue Q). No data point is found in n1n7 and n7 
is inserted to Q=<(n2,5), (n7,12)>. The expansion of n2 
reaches n4 and n3, after which Q=<(n4,7), (n3,9), (n7,12)> 
and point p5 is discovered on n2n4 (while no point is found 
on n2n3). The distance dN(q,p5) =6 provides a bound dNmax 
to restrict the search space. The algorithm terminates now 
since the next entry n4 in Q has larger distance (i.e., 7) 
than dNmax. Figure 4.4 shows the pseudocode of INE. 

Algorithm INE (q, k) 
1. ninj=find_segment(q) 
2. Scover=find_entities(ninj); // Scover is the set of entities 

covered by ninj   
3. {p1,...,pk}=the k (network) nearest entities in Scover 

sorted in ascending order of their network distance 
(pm, pm+1...,pk may be ∅  if Scover contains < k points) 

4. dNmax=dN(q,pk) // if pk=∅ , dNmax=∞  
5. Q = <(ni, dN(q,ni)), (nj, dN(q,nj))> //sorted on dN 
6. de-queue the node n in Q with the smallest dN(q,n) 
7. while (dN(q,n)<dNmax) 
8. for each non-visited adjacent node nx of n  
9.           Scover=find_entities(nxn); 
10.           update {p1,...,pk} from {p1,...,pk}∪ Scover 
11.  dNmax=dN(q,pk)  
12.      en-queue (nx,dN(q,nx)) 
13. de-queue the next node n in Q  
End INE 

Figure 4.4: Incremental Network Expansion  

5.   Range Queries in SNDB 

Given a source point q, a value e and a spatial dataset S, a 
range query retrieves all objects of S that are within 
network distance e from q. Section 5 applies the 
Euclidean restriction and network expansion paradigms 
for processing such queries.  

5.1   Range Euclidean Restriction 
The Range Euclidean Restriction (RER) method first 
performs a range query at the entity dataset and returns 
the set of objects S' within (Euclidean) distance e from q. 
Assuming the Euclidean lower bound property, S' is 
guaranteed to avoid false misses (i.e., dN(q,p)≤e ⇒ 
dE(q,p)≤e), but it may contain a large number of false hits. 
In order to reduce the number of network distance 
computations, RER performs network expansion only 
once, examining all segments within network distance e 
from q. Points of S' that fall on some segment, are 
removed from S' and returned to the user. The process 
terminates when all the segments in the range are 
exhausted, or when S' becomes empty.  
Figure 5.1 illustrates the pseudo-code of the algorithm. S' 
contains the results of the Euclidean range query sorted on 
some dimension. When a new segment is encountered, the 



sorted list is used to efficiently check if any point falls 
inside its MBR (filter step). Such points are then 
compared with the poly-line representation of the segment 
to determine whether they belong to the actual result 
(refinement step). Part of some segments at the boundary 
may exceed the query threshold e, but these segments 
must be considered anyway since they may contain data 
points that satisfy the query. 

Algorithm RER(q, e) 
/* q: query point, e: the network distance threshold */ 
1. result=∅  
2. S' = Euclidean-range(q, e) 
3. ninj=find_segment(q) 
4. Q=<(ni,dN(q,ni)), (nj,dN(q,nj))> 
5. de-queue the node n in Q with the smallest dN(q,n) 
6. while (dN(q,n)≤e and S' ≠∅ ) 
7.     for each non-visited adjacent node nx of n 
8.        for each point s of S'  
9.            if check_entity(nxn,s) 
10.                  result=result∪ {s}; S' =S' −{s} 
11.        en-queue (nx,dN(q,nx)) 
12.   de-queue the next node n in Q 
13. end while 
End RER 

Figure 5.1: Range Euclidean Restriction 

5.2   Range Network Expansion 
The Range Network Expansion (RNE) algorithm first 
computes the set QS of qualifying segments within 
network range e from q and then retrieves the data entities 
falling on these segments. The methodology is similar to 
INE, but now numerous queries, one for each qualifying 
segment, are performed simultaneously (i.e., an 
intersection join as discussed in Section 2.1). To illustrate 
RNE, assume that QS contains the segments shown in 
Figure 5.2a. Starting from the root of the object R-tree, 
RNE visits nodes that intersect the MBR of at least one 
segment in QS. Figure 5.2b illustrates the visited nodes 
and the qualifying objects in gray.   
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Figure 5.2: Example of RNE 

In order to avoid joining the entire QS (which may be 
large) with every entry, we perform the following 
optimization. QS is divided into (possibly overlapping) 
sets QSi, one for each entry Ei in the current R-tree node. 
A segment is assigned to all entries that intersect its MBR. 
When the children of Ei are visited, they are only 

compared against QSi. Thus, as RNE descends the tree, 
the number of comparisons performed for each entry 
drops. In Figure 5.2, the set of qualifying segments QS1 = 
∅ , while for E2, QS2 consists of all segments except n1n4 
and n5n8. Similarly, QS5 = {nqn2, n2n5, n2n6} and QS6 = 
{nqn1, n2n6, n4n7}. When the node of E5 (E6) is visited, its 
points will only be checked against the segments of QS5 
(QS6).  
An object can be reported more than once if it lies at the 
intersections of the segments in QS. Such duplicates are 
easy to remove, by sorting the results at each leaf node 
before reporting them. Finally, RNE is I/O optimal (since 
it only accesses R-tree nodes that overlap some qualifying 
segment, and therefore, may contain results). The pseudo 
code of RNE is presented in Figure 5.3. The initial 
parameters of the algorithm are (root of R-tree S, QS, ∅ ). 
To reduce the number of intersection tests, at lines 2 and 7 
we apply a plane sweep algorithm [APR+98]. 

Algorithm RNE(node_id, QS, result) 
1. if (node_id is an intermediate node) 
2.    compute QSi for each entry Ei in node_id // join 
3.     for each entry Ei in node_id 
4.           if (QSi ≠ ∅ )  
5.                RNE(Ei.node_id, QSi, result)  
6. else // node is a leaf node 
7.    resultnode_id =plane-sweep(node_id.entries, QSi) 
8.    sort resultnode_id to remove duplicates 
9.    result = result∪ resultnode_id 
End RNE 

Figure 5.3: Range Network Expansion 

An alternative is to use the methodology suggested by 
[PRS99]. In particular, the MBR of all segments in QS is 
applied as a range query to the object R-tree. When a leaf 
node is reached, its contents are joined with QS, using 
plane-sweep. This technique performs a simple 
intersection test at each visited R-tree node; however, if 
the network range is large and irregular it may visit 
numerous tree nodes that do not overlap any qualifying 
segment (e.g., E1 in Figure 5.2).  
Finally, if QS does not fit in memory, the join is 
performed in a block nested loops fashion, i.e., RNE is 
repeatedly applied for subsets of QS that fit in memory 
and the partial results are materialized. Another approach 
is to compute all qualifying segments, materialize them 
and join them with the object R-tree using one of the 
spatial join algorithms that are applicable in the presence 
of a single tree [RSV02].  

6.  Closest-Pairs in SNDB 
Given two datasets S, T and a value k, a closest-pairs 
query retrieves the k (≥1) pairs (s,t) s ∈  S, t ∈  T that are 
closest in the network (e.g., find the hotel, restaurant pair 
within the smallest driving distance). This section 
describes retrieval of closest pairs in SNDB. 



6.1   Closest-Pairs Euclidean Restriction 
Like IER, the Closest-Pairs Euclidean Restriction (CPER) 
algorithm applies the multi-step kNN methodology. 
Assume for instance that only the closest pair is required. 
CPER performs an incremental closest-pairs query 
[CMTV00] on the R-trees of S, T and retrieves the 
Euclidean closest pair (s,t). The network distance dN(s,t) 
provides an upper bound dEmax for all candidate pairs in 
the Euclidean space. Subsequent candidate pairs are 
retrieved incrementally, continuously updating the result 
and dEmax, until no candidate pairs can be found within the 
dEmax bound. The extension to k nearest neighbors is 
similar to that of IER. Figure 6.1 illustrates the pseudo-
code of CPER algorithm.   

Algorithm CPER (S,T, k) 
/* S and T are two entity data sets; k is the number of 
closest pairs to be retrieved*/ 
1. {(s1,t1),...,(sk,tk)}=Euclidean_CP(S,T,k);         

// find the k Euclidean closest pairs 
2. for i=1 to k  
3. dN(si,ti)=compute_ND(si,ti)  
4. sort (si,ti) in ascending order of their dN(si,ti) 
5. dEmax=dN(sk,tk) 
6. repeat 
7.   (s',t') = next_Euclidean_CP(S,T) 
8.   dN(s',t')=compute_ND(s',t') 
9.   if (dN(s',t')<dEmax  
 // (s',t') is closer in the network than (sk,tk)  
10.        insert (s',t') in {(s1,t1),...,(sk,tk)}  
11.        dEmax=dN(sk,tk)           
12. until dE(s',t')>dEmax 
End CPER 

Figure 6.1: Closest-Pairs Euclidean Restriction 

6.2   Closest-Pairs Network Expansion 
The difference between closest-pairs and the previous 
query types (range search and NN) is that now there does 
not exist a query point, which can be used as a source for 
network expansion. Thus, the only option is to use as 
sources all the data points of one dataset (the one with the 
smallest cardinality). The pseudo-code for Closest-Pairs 
Network Expansion (CPNE) algorithm is shown in Figure 
6.2, assuming that the seeds for expansion are provided by 
S. CPNE calls INE (Section 4.2) to retrieve the k nearest 
neighbors t1,.., tk (∈ T) of the first object s1 of S. The 
distance dN(s1,tk) provides a dNmax bound for subsequent 
expansions. As closer pairs are discovered, this bound 
gradually decreases.  
Obviously, in most cases CPNE is expected to be 
significantly more expensive than CPER. However, it is 
still useful in some extreme situations (e.g., large 
cardinality difference between the datasets, very high k). 
Furthermore, it is the only option if the lower bound 
property does not hold, in which case CPER is 
inapplicable. This issue will be discussed further in 
Section 9. 

Algorithm CPNE (S,T,k) 
1. {t1, ...,tk}=INE(s1,k)  
 // retrieve kNN t1,.., tk of first entity s1 in S 
2. result={(s1,t1), ..., (s1,tk)}  
3. dNmax=max{dN(s1,ti)} // current kth CP distance 
4. for each other point si∈ S (si≠ s1) 
5.   ninj=find_segment(si) 
6.  Tcover=find_entities(ninj); //in T 
7.  for every entity t in Tcover  
8.  if dN(si,t)<dNmax then update result and dNmax 
9. Q =<(ni,dN(si,ni)), (nj,dN(si,nj))> 
10. de-queue the node n in Q with the smallest dN(si,n) 
11. while (dN(si,n)≤ dNmax) 
12. for each non-visited adjacent node nx of n for si 
13. Tcover=find_entities(nxn)  
14.            for each entity t in Tcover 
15.                if dN(si,t)<dNmax then update result and dNmax 
16.  en-queue (nx,dN(si,nx)) 
17. de-queue the next node n in Q 
18. end while 
End CPNE 

Figure 6.2: Closest-Pairs Network Expansion 

7.  e-Distance Joins in SNDB 
Given two spatial datasets S, T and a value e, an e-
distance join retrieves the pairs (s,t) s ∈  S, t ∈  T such that 
dN(s,t)≤e (e.g., find the hotel, restaurant pairs within 10km 
driving distance). Similar to the previous query types, we 
present algorithms in the Euclidean restriction and 
network expansion paradigms, respectively. 

7.1   Join Euclidean Restriction 
A straightforward way to process the e-distance join is to 
perform an R-tree join and find the set of all pairs within 
Euclidean distance e. Then, for each pair we compute the 
network distance, filtering out the false hits. The overhead 
of false hits is especially serious in this case, due to the 
large output size of the Euclidean join. In order to 
illustrate how the situation can be improved, consider that 
the result of R-tree join contains six pairs: (s1, t1), (s1, t2), 
(s1, t3), (s2, t1), (s2, t4), (s2, t5) requiring six network 
distance computations. On the other hand, since there are 
only two objects s1 and s2 from the first dataset, the actual 
result may be obtained by expanding only these points.  
Based on this observation, the Join Euclidean Restriction 
(JER) algorithm first applies R-tree join and counts the 
number of distinct points from each dataset that appear in 
the output. The dataset with the smaller count is used to 
provide the "seeds" for node expansion. The pseudo-code 
of the algorithm is shown in Figure 7.1, assuming that the 
dataset with the smaller number of distinct objects in the 
result is S. For each such object, the network around it is 
expanded and the set QS of segments within range e are 
retrieved. Then, every object t ∈  T that appears with s in 
some (Euclidean) join pair is tested (using the primitive 
operation check_entity); if t falls on some segment of QS, 



then the pair (s,t) is added to the final result. In order to 
facilitate fast computation of Ts, and at the same time 
achieve spatial locality between consecutive expansions, 
the output of R-tree join is sorted on S using the Hilbert 
space filling curve. For large Rjoin-res, the algorithm is 
repeatedly applied for blocks of pairs that fit in memory. 

Algorithm JER (S,T,e) 
/* S and T are two entity data sets; e is the (network) 
distance threshold */ 
1. Rjoin-res=R-tree-join(S, T); 
2. sort Rjoin-res on s 
3. for each distinct object s ∈  S in Rjoin-res 
4.      Ts= set of objects ∈  T that pair with s in Rjoin-res 
5.      QS=expand_point(s,e) 
6.      for each object t ∈  Ts 
7.             for each segment seg in QS  
8.              if check_entity(seg,t) 
9.                  result= result∪ (s,t)   
End JER 

Figure 7.1: Join Euclidean Restriction 

7.2   Join Network Expansion 
The Join Network Expansion (JNE) algorithm expands 
the network around points of the smallest dataset (let it be 
S) to find the matching objects of the second dataset (T). 
Obviously, as in the case of CPNE, this approach is 
expected to be very expensive in most situations. In order 
to reduce the cost, JNE exploits access locality. In 
particular, the network is expanded around s1,.., sn (n 
depends on the available memory) neighboring points of 
S, producing corresponding sets of qualifying segments 
QSs1,.., QSsn. Then, the RNE algorithm (Section 5.2) is 
applied (on the R-tree of T) for all QSs1,..,QSsn 
simultaneously. Every point t∈  T that falls on a segment 
of QSsi appends a new pair (si,t) in the result. The 
advantage of this approach (with respect to 
straightforward network expansion) is that it saves disk 
accesses for segments that appear in multiple QSsi (which, 
otherwise, would generate multiple query windows on T). 
In order to achieve locality of points s1,.., sn, we utilize the 
R-tree structure, i.e., the points are obtained from the 
same or neighboring leaf nodes in the R-tree of S.   

Algorithm JNE (S,T,e) 
1. result=∅  
2. while S has not been exhausted 
3.    get next s1,.., sn points 
4.    for each point si  
5.        QSsi=expand_point(si,e) 
6. let QS=the union of QSsi (for 1≤i≤n) 
7.        RNE(rootRtreeT, QS, result) 
8. end while   
End JNE 

Figure 7.2: Join Network Expansion 

8.   Experimental Evaluation 
In this section we experimentally compare all algorithms 
in terms of CPU-time and I/O cost using a Pentium III, 
700MHz processor, running Windows NT. We set the 
page size of the data structures to 4K and employ an LRU 
buffer which accommodates 10% of the road network and 
10% of each R-tree participating in an experiment. In 
order to simulate real-life conditions, we use a spatial 
network of |N| = 179,000 segments, representing main 
roads in North America [WWW], “cleaned” to form a 
connected graph. For simplicity, we consider bidirectional 
edges; however, this does not affect the interpretability 
and value of the results. In order to control the density of 
the entities, we use synthetic datasets with cardinalities in 
the range 0.01⋅|N| to 10⋅|N|. The distribution of the entities 
follows the network distribution. For nearest neighbor and 
range search, we execute workloads of 200 queries, also 
following the network distribution.  

8.1 Nearest Neighbor Queries 
First we compare IER (incremental Euclidean restriction) 
with INE (incremental network expansion). Figures 8.1a 
and 8.1b plot the performance of the two methods in 
terms of I/O accesses and CPU cost, as a function of 
|S|/|N| (i.e., the ratio of entity to segment cardinality), for 
k=10. The I/O cost is broken to R-tree and network page 
accesses. 
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Figure 8.1: Cost vs. |S|/|N| (k=10) 

When the cardinality |S| of the entity set is small, the 
Euclidean nearest neighbors are far from the query point. 
As we see later this increases significantly the number of 
false hits, and therefore, the unnecessary network distance 
computations. The problem lessens as |S| increases, and 
the performance of IER improves. On the other hand, the 
I/O cost of INE is low because the range queries on the R-
tree exhibit high locality and the search path is in the 
buffer with high probability. Moreover, only the 
necessary network edges are visited (as ensured by the 
algorithm).  
Figure 8.2 shows the performance of the two methods for 
various values of k, when |S|=|N|. INE consistently 
outperforms IER and the gap increases with k. The 
explanation is similar to the previous case, i.e., a large k 
implies a high distance from the query point and, 
therefore, increases the number of false hits.  
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Figure 8.2: Cost vs. k (|S|=|N|) 

Figure 8.3 unveils the ratio of false hits retrieved by IER 
(i.e., the number of Euclidean NN that are not in the query 
result divided by k) for the two experiments of Figures 8.1 
and 8.2. The false hit ratio drops with the cardinality of S, 
since the entity set becomes denser and increases the 
probability to find all nearest neighbors on the edges 
adjacent to the query point or in its vicinity. On the other 
hand, the false hit ratio increases with k. The effects of 
false hits are reflected to the processing cost of IER.  
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Figure 8.3: False hits by IER 

Concluding, INE is more efficient and robust than IER, 
which suffers by the excessive network distance 
computations due to false hits. Nonetheless IER could 
perform better in denser, more regular networks (e.g., city 
blocks), where the Euclidean distance gives a better 
approximation of the travel cost. Furthermore, its cost will 
drop significantly if materialization is used (so that 
network distances can be computed very efficiently).   

8.2 Range queries 
The next set of experiments compares RER (range 
Euclidean restriction) with RNE (range network 
expansion). Figure 8.4 shows the cost of the algorithms as 
a function of |S|/|N|, fixing the query range e to 0.01 (1% 
of the data universe side length). Both algorithms perform 
a single expansion of the network. Their difference is that 
(i) RER first retrieves the candidate objects within the 
Euclidean range e and then expands the network, while 
(ii) RNE first expands and then performs the query on the 
data R-tree for the actual results. This explains the fact 
that the algorithms have the same network cost in all 
cases. On the other hand, RER also retrieves some false 
hits (i.e., objects in the Euclidean, but not in the network 
range), which result in more R-tree node accesses. 
Although, as shown in Figure 8.6a, the false hit ratio is 
almost constant, the absolute number of false hits 
increases with |S|, which is reflected in the increasing cost 

difference of the algorithms as the cardinality of the entity 
set grows.   
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Figure 8.4: Cost vs. |S|/|N| (e=0.01) 

Figure 8.5 compares the performance of the methods as a 
function of e, when |S|=|N|. The number of retrieved 
objects (and the cost of the algorithms) increases 
proportionally to the area covered by the range, i.e., 
quadratically with e. As shown in Figure 8.6b the false 
hits ratio of RER increases linearly with e. Consequently, 
the relative R-tree cost difference of the algorithms grows 
faster with e than with |S|. Summarizing, RNE is more 
efficient than RER in the current problem settings, due to 
the fact that it retrieves only the required R-tree nodes. 
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Figure 8.6: False hits by RER 

8.3 Closest pairs  
In this section, we compare CPER (closest-pairs 
Euclidean restriction) with CPNE (closest-pairs network 
expansion). First, we fix k=100, |T|=0.1|N| and vary the 
cardinality of S. Figure 8.7 plots the costs of the 
algorithms as a function of |S|. CPER outperforms CPNE 
in all cases, because CPNE expands the network around 
all points of the smallest dataset, while CPER only 
expands it incrementally around the Euclidean closest 
pairs. Note that the I/O cost of CPNE remains almost 
constant for |S| ≥ 0.1|N|, because after |S| reaches 0.1|N|, 
the entities of T (|T| = 0.1|N|) are used for expansion (i.e., 
the number of expansions is independent of |S|).  
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Figure 8.8 shows the relative costs of the algorithms when 
|S|=|T|=0.1|N| for different values of k. CPER is much 
faster than CPNE for k≤1000 for the reasons explained 
above. For k=10000 the cost of both algorithms explodes 
for different reasons (Note that the diagrams are in 
logarithmic scale). CPER now incurs numerous false hits, 
since there is a huge number of object-pairs with similar 
Euclidean distances, but diverge network distances. These 
pairs require many expensive distance computations of 
long paths, which incur extensive buffer thrashing. CPNE 
performs extensive expansion, which exceeds the 
available memory and causes many swaps in the buffer. 
Summarizing, CPER is much faster than CPNE in our 
settings, because it can utilize the Euclidean bounds to 
prune large areas of the search space early. 
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Figure 8.8: Cost vs. k (|S|=|T|=0.1|N|) 

8.4 e-Distance joins  
We proceed to compare JER (join Euclidean restriction) 
and JNE (join network expansion), using |T|=0.1|N| and 
setting the join distance e to 0.001. Figure 8.9a (8.9b) 
plots the number of disk accesses (CPU time) as a 
function of |S| ranging from 0.01|N| to |N|. JER has better 
I/O performance, but the difference diminishes as |S| 
increases. This is because, for large datasets, the number 
of object pairs qualifying the Euclidean distance join 
increases considerably, making the subsequent node-
expansion (for false hit elimination) expensive. In this 
case, JER consumes more CPU time, due to the expensive 
sorting overhead (for selecting the “seed” for node 
expansion).     
In Figure 8.10a (8.10b), we set |S| to 0.1|N| and measure 
the number of disk accesses (CPU cost) for different 
values of e. JER is significantly faster in terms of I/O, 
especially for small join distance in which case very few 
object pairs satisfy the Euclidean join. Interestingly, the 

relative CPU performance of JER and JNE changes at 
e=0.001. Particularly, the cost of JNE is almost 
independent of e, while JER incurs high CPU cost for 
large e because, similar to Figure 8.9b, its sorting step 
needs to process a large number of object pairs (that pass 
the Euclidean join). Therefore, JER is preferred for 
selective joins, while JNE should be applied otherwise. 
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Figure 8.10: Cost vs. e (|S|=|T|=0.1|N|) 

9. Conclusion 
This paper presents the first comprehensive approach for 
query processing in spatial network databases, proposing 
an architecture that preserves connectivity and location, 
and several novel algorithms, based on the Euclidean 
restriction and network expansion frameworks, covering 
the most common processing tasks. 
The Euclidean Restriction framework provides an 
intuitive way to deal with spatial constraints. If for 
instance, we want to "find the two nearest hotels to the 
south", we only need to retrieve the Euclidean neighbors 
in the area of interest using a constrained NN algorithm 
[FSA+01]. On the other hand, although network 
expansion is still applicable, it has limited pruning power 
on queries with selective spatial conditions. Considering 
again the example query, the network should be also 
expanded to the north of the query point, because 
subsequent nodes may lead to a nearest neighbor to the 
south.   
The Euclidean Restriction framework assumes the lower 
bounding property, which may not always hold in 
practice. If, for instance, the edge cost is defined as the 
expected travel time, the Euclidean distance cannot 
confine the search space (unless we make additional 
assumptions, such as maximum speed). On the contrary, 
network expansion permits a wide variety of costs 
associated with the edges. It assumes, however, that the 
cost increases monotonically with the path (i.e., a path 



cannot be cheaper than one of its sub-sets), because, 
otherwise there is no bound in the expansion process. 
Dijkstra's algorithm is also based on the same assumption, 
which is realistic for all SNDB applications. 
The experimental evaluation suggests that the network 
expansion framework has superior performance for range 
search and nearest neighbors, while Euclidean restriction 
is better for closest pairs and joins. Since, however, our 
goal was to propose a complete set of algorithms for 
numerous queries, we did not focus explicitly on 
optimization of each method. Therefore, further 
improvements are possible for the proposed algorithms. It 
will also be interesting to evaluate their relative 
performance in the presence of materialized network 
distances.  
This paper opens a door to several interesting and 
practical directions for future work. For instance, a 
continuous NN query [TPS02] would retrieve the two 
nearest gas stations (in terms of network distance) during 
the route from city A to city B. Our framework can also 
be used in the context of moving object databases to 
answer: "which is the closest taxi to my present location", 
"towards which direction should I walk to catch the next 
(moving) bus", etc. Since most real life objects move on 
pre-defined spatial networks, the SNDB versions of these 
queries are much more important than their Euclidean 
counterparts. 
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