
Improving Performance with Bulk-Inserts in Oracle R-Trees

Ning An, Ravi Kanth V Kothuri, Siva Ravada

Spatial Technologies, Oracle Corporation, One Oracle Drive, Nashua, New Hampshire 03062, USA
Email: {ning.an, ravi.kothuri, siva.ravada}@oracle.com

Abstract

Spatial indexes play a major role in fast access to
spatial and location data. Most commercial appli-
cations insert new data in bulk: in batches or ar-
rays. In this paper, we propose a novel bulk inser-
tion technique for R-Trees that is fast and does not
compromise on the quality of the resulting index.
We present our experiences with incorporating the
proposed bulk insertion strategies into Oracle 10i.
Experiments with real datasets show that our bulk
insertion strategy improves performance of insert
operations by 50%-90%.

1 Introduction
Spatial databases are widely used in multiple sectors such
as census, cadastral management, environmental and ur-
ban planning, telecommunications, and CAD/CAM. Re-
cent advances in wireless technologies have increased the
scope of location-based applications thereby augmenting
the spatial database market. Given the wide-range of ap-
plications and the proliferating market segment for spa-
tial databases, most commercial database vendors, like
Oracle and IBM, provide the infrastructure and support
for storage and retrieval of spatial data. Oracle Spatial
supports fast searching of spatial data using R-trees and
Quadtrees [RSSB99]. These indexes combine and extend
the salient performance features of existing spatial indexing
techniques [Gut84, BKSS90, GLL98]. These indexes pro-
vide fast searching of spatial data and have been heavily op-
timized based on the type of data (points, non-points) and
type of queries (within-distance, nearest-neighbor, etc.). In
addition to fast searching capabilities, most commercial
spatial applications also require fast insertion into spatial
tables/indexes.

In this paper, we address the problem of inserting new
data in bulk into indexed spatial tables. We first describe

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment.

Proceedings of the 29th VLDB Conference,
Berlin, Germany, 2003

a framework for enabling bulk insertion in Oracle R-Trees.
We then examine existing strategies for bulk insertion, most
of which perform localized insertion and do not perform
any global reorganization. We then describe Oracle’s ap-
proach for performing bulk insertion in spatial indexes.
The features of this approach are: (1) batched insertion
into subtrees resulting in fast insertion times, and (2) fast
reorganization of subtrees whenever there is overlap (not
present in existing techniques) to ensure good quality of
index. In addition to presenting this novel bulk insertion
technique, we also present experiments to evaluate this pro-
posed bulk-insertion technique in a commercial database
server like Oracle. In these experiments on real datasets,
we observe that the new bulk insertion strategy improves
insertion-performance by 50%-90% without compromising
the quality of the index. In some cases, the quality of the
index (and thereby query performance) actually improves
due to the better clustering behavior of our bulk-insertion
strategy.

The rest of the paper is organized as follows. In Section
2, we describe the framework for enabling bulk-inserts in
spatial indexes. In Section 3, we describe our new bulk in-
sertion strategy. In Section 4, we describe our experiments
with this bulk insertion strategy in Oracle10i database. In
the final section, we summarize these results with pointers
to future research.

2 Framework for Bulk Insertions
Bulk insertion in spatial indexes can be performed in two
ways. In the first approach, bulk inserts into spatial indexes
can be performed when the user issues an

insert into <user-table> (sub-query)

Any data resulting from the “sub-query” are grouped
into 64K-memory-size batches and inserted into the spatial
indexes.

In addition to the above array-insert interface through
sub-queries in an insert SQL statement, Oracle Spatial pro-
vides the following defered-indexing model for performing
bulk insertions:

1. User alters the index to be deferred.
2. Subsequent inserts into the index are stored in a sepa-

rate “deferred” table associated with the index.

3. User alters the index to synchronize. An optional
batch size is also specified by the user. This operation
retrieves all inserts in the “deferred” table and inserts
them in batches of specified size into the index. Op-
tionally, a quad-code could be computed for the cen-
ters of the MBRs of these geometry data and can be
used to order the data being fetched and inserted in
batches into the spatial index.

Note that the batch size for bulk insertion in the deferred
indexing model is controlled by the user. In contrast, for the
SQL array insert it depends on internal memory chunk-size
parameters set for the database.

3 Bulk Insertion in Oracle R-trees
In this section, we examine different approaches for per-
forming batched inserts in R-Trees. We then describe our
technique implemented in Oracle 10i.

3.1 Related Work

Other than trivially invoking regular insertion one-by-
one (OBO) to perform an R-Tree bulk insertion, exist-
ing R-Tree bulk insertion techniques can be classified into
merging-based and buffering-based.

Merging-based Techniques: In [CCR99], Choubey et
al. proposed a technique, called Generalized R-Tree Bulk-
Insertion strategy (GBI), an improved version of their work
in [CCR98]. They first employed a conventional clustering
algorithm to cluster the input data into a set of clusters and
outliers. For each cluster, an R-Tree was built by bulk load-
ing, and merged into the target R-Tree. They then use OBO
method to insert the outliers into the target R-Tree.

Working along the same line, Kamel et al. [KKK96]
first sorted the input MBR items based on the Hilbert val-
ues of MBRs’ centers. Then they packed the sorted MBRs
into blocks that is identical to nodes of the target R-Tree.
At last, they would simply merge these blocks one by one
using the standard sub Rtree insertion on the target R-Tree.

Merging-based techniques utilized the potential spatial
proximity within the input data, and insert the proximate
data into the target R-Tree together under the umbrellas of
sub R-Trees. However, the constructed subtrees and the
target tree could have overlapping nodes resulting in poor
quality of index. This could lead to poor performance of
subsequent queries.

Buffering-based Techniques: Arge et al. [AH+99]
took a different approach on implementing bulk insertions
in R-Trees. Using an external memory paradigm [Arg96],
they grouped the input MBR items that share the same de-
scending path along the target R-Tree, and kept them to-
gether in buffers. Once a buffer is full, they descend its
MBR items together along the target R-Tree to the next
(lower) level buffers. This process would repeat until the
data reach the leaf level, and were inserted to the target R-
Tree properly. Their approach is asymptotically optimal in
terms of I/O cost, and the query performance of their up-
dated R-Tree matches the OBO updated R-Tree [AH+99].

Its large auxiliary structure, however, requires extra space
cost, and might not be feasible in the commercial database
environment.

Our technique extends buffering-based techniques by
not materializing the auxiliary structures and pushing the
data right to the leaves. Besides, our technique merges sub-
trees whenever they overlap which is not present in any of
the previous techniques

3.2 Bulk Insertion in Oracle R-Trees (BIOR)

In this section, we discuss our technique of Bulk Insertion
in Oracle R-Tree, referred to as BIOR.

Bulk-insert(n, b, E):
returns array of R-tree entries

1. If (b is null and E is null)
return R-tree entry for node n.

2. If n is a leaf node,
child_entries_list
:= Union of (entries in n, b

and E)
3. Otherwise do the following:

3.1 Consider n’ = n union b.
3.2 Partition entries in n’ into

<c1, bc1, ec1>, <c2, bc2,
ec2> ... such that

ci is not null, bci and eci
could be null, bci=bcj
(ci=cj) iff i=j, and
Union of eci=E(disjoint
subsets).
The partition that
minimizes the total overlaps
across all partitions is
chosen using the Choose
Subtree algorithm (of
R*-Tree).

3.3 child_entries_list
:= Union of (Bulk-insert(ci,

bci, eci)) for all i
4. return

rtree_cluster(child_entries_list);

Figure 1: BIOR Algorithm at A Node

Whenever new data items are inserted into the child sub-
trees of a node, the child subtrees could expand and over-
lap. Such overlaps could be avoided if the subtrees are re-
organized so as to minimize overlaps. To minimize the ef-
fort in re-organization, new data items should be inserted
into sets of potentially-overlapping subtrees. This could
be achieved by treating the potentially-overlapping roots of
the subtrees as one big “cluster node”. As this process is
continued downward to the leaves, the “cluster node” can
become too large to fit in memory. To limit the size of this
“cluster node”, we restrict the size of the potentially over-
lapping subtree set to 2, i.e., at most two child entries will

be paired for inserting a set of items. We refer to such pairs
of entries as “buddy” entries and corresponding nodes as
buddy nodes. In Figure 1, we describe the algorithm for
inserting the data items array E into a node n and its buddy
b (b can be null, e.g. at root). This algorithm returns a set
of entries to be incorporated in the parent of node n.

Using a stack-based implementation and expanding the
children in a depth-first fashion, the above recursive algo-
rithm can be implemented with limited memory (propor-
tional to the height of the resulting tree). The clustering
algorithm for clustering the child entries could be the same
as the one employed at index creation time. Note that each
node in the tree is accessed/updated at most once. This al-
gorithm combines the salient features of existing bulk in-
sertion algorithms and at the same time improves index
quality by a “regulated” merge of the most overlapping
pairs of subtrees.

4 Empirical Study

We have implemented our bulk insertion technique in Ora-
cle 10i. To evaluate this novel technique, we conduct var-
ious experiments with real datasets and different queries.
Due to space limitation, we will only present the result
of the US Blockgroup (USBG) dataset which consists of
about 230K polygon geometries.

In the following study, we keep 100K of USBG as the
base table, and build an Oracle R-Tree on it. The remain-
ing 130K USBG data serve as the pool of incoming data,
various portions of which will be inserted to the existing
R-Tree.

We use a workload of 1,000 window queries that fol-
lows the distribution of the target dataset and reflects the
aspect ratio of actual data. To eliminate the caching effects
in Oracle System, we choose the number of R-Tree nodes
being accessed as the main metric in our study. Our test-
ing system is a SUN OS 5.8 running on a SUN Ultra-60
Workstation.

4.1 Batch Size Study

In this subsection, we study the impact of the batch size on
BIOR technique. Here, we randomly take 10K USBG data
from the incoming data pool, which is 10% of the number
of geometries in the base table. Figure 2 shows the inser-
tion performance and the query performance for various
batch sizes. As the batch size increases initially, the in-
sertion performance improves because more incoming data
can be grouped together and descend the R-Tree together.
When the batch size goes beyond 800, the insertion perfor-
mance starts to flatten revealing that it approaches the sat-
uration point where the number of nodes must be accessed
for a particular set of incoming data. In general, batch size
3200 delivers both good insertion and query performance,
and it will be used for the following studies.

100 200 400 800 1600 3200
Batch Size

0

3000

6000

9000

12000

15000

of Nodes Read
of Nodes Write

Insertion Performance

100 200 400 800 1600 3200
Batch Size

140000

141000

142000

of

 N
od

es
 B

ei
ng

 A
cc

es
se

d

Query Performance - Read

Figure 2: The insertion performance improves as the batch
size increases from 100 to 800, and starts to flatten beyond
800. The query performances are marginally different across
the board while the batch size 3200 has the best result.

4.2 Incoming Dataset Size Study

In this subsection, we examine how the size of incom-
ing dataset affects BIOR technique, and compare it with
OBO technique. For this study, we randomly take 10,000,
20,000, 40,000, 80,000, and 100,000 data from the incom-
ing data pool as our incoming datasets which in turn are
10%, 20%, 40%, 80%, 100% of number of geometries in
our base table respectively.

10% 20% 40% 80% 100%
The ratio between the size of incoming data and the size of existing data

1000

10000

1e+05

1e+06

OBO Read
OBO Write
OBO Total
BIOR Read
BIOR Write
BIOR Total

Insertion Performance

10% 20% 40% 80% 100%
The ratio between the size of incoming data and the size of existing data

1e+05

1.5e+05

2e+05

2.5e+05

3e+05

of

 N
od

es
 B

ei
ng

 A
cc

es
se

d

OBO Read
BIOR Read

Query Performance

Figure 3: As the size of incoming dataset doubles, the inser-
tion cost of OBO almost doubles while the one of BIOR only
grows about 20%-30%.

From Figure 3, we have the following observations:

• In OBO technique, the number of reads is much larger
than number of writes during the insertion. It reveals
that OBO requires more work in locating the right
place for the incoming data than actually putting them
in the right place. On the other hand, in BIOR, the
number of writes is consistently larger than the num-
ber of reads because BIOR mostly locates the right
place for a group of incoming data instead of individ-
ual one, and does more work in putting the incoming
data in the right place than locating the right place for
them.

• As the size of incoming dataset doubles, the insertion
cost of OBO almost doubles while the one of BIOR
only grows about 20-30%.

• As to the query performance, BIOR has a slight edge
over OBO technique. It becomes more noticeable with
the increase of incoming data size.

We can conclude from these observations that the ad-
vantage of employing BIOR over OBO becomes more ap-
parent as the size of incoming dataset increases.

4.3 Clustering Impact

Incoming datasets often have different clustering charac-
teristics. To study the impact of these different clustering
characteristics on the performance of BIOR, We take a set
of 100,000 geometries as our base table, and the following
three sets of incoming geometries: 1) Clustering Outside:
10,000 geometries that are clustered in one area, and inter-
sect with no geometry in the base table; 2) Clustering In-
side: 10,000 geometries that are clustered in another area,
and intersect with some geometries in the base table; and
3) Random: 10,000 geometries that are randomly chosen
and hence are not clustered in any area. Figure 4 compares
BIOR with OBO on these three different kind of incoming
data.

CLUSTERING OUTSIDE CLUSTERING INSIDE RANDOM
100

1000

10000

1e+05

OBO
BIOR

(A) Insertion Performance - Read

CLUSTERING OUTSIDE CLUSTERING INSIDE RANDOM
0

5000

10000

15000

20000

of

 N
od

es
 B

ei
ng

 A
cc

es
se

d

OBO
BIOR

(B) Insertion Performance - Write

CLUSTERING OUTSIDE CLUSTERING INSIDE RANDOM

Various Clustering Cases

1.3e+05
1.35e+05
1.4e+05
1.45e+05
1.5e+05
1.55e+05

OBO
BIOR

(C) Query Performance - Read

Figure 4: For the clustering datasets, BIOR has superior in-
sertion performance, and slightly better query performance
compared to the the ones of OBO. For random data set, BIOR
has much better insertion performance than OBO while their
query performances are almost same.

For the clustering datasets, where incoming data are spa-
tially close to each other, BIOR effectively combines the
traversal/descent of the target R-Tree. As a result, BIOR
is about 90% faster than OBO for the clustering dataset as
shown in Figure 4. Even for the random datasets, where the
grouping affect of BIOR is not as dominant, BIOR is still
20% faster. In terms of query performance, BIOR is com-
parable to OBO, and is even slightly better than the latter
one in the clustering datasets.

5 Conclusions
Bulk insertion in spatial indexes is a common operation
in many commerical applications. Inserting data one by
one (OBO) into the spatial index (1) could be slow, and (2)
could deteriorate the quality of the index thereby adversely
affecting subsequent query performance. In this paper, we
proposed a novel bulk insertion strategy for Oracle R-Trees
that combines multiple inserts and reduces the number of
tree traversals. This strategy also improves the quality of
the constructed R-tree index by reorganizing overlapping
subtrees. The experiments using real datasets show an im-
provement in insertion performance by 50%-90% in com-
parison to an OBO insertion approach. Query performance
also improves. Future work can compare the performance
of our bulk insertion strategy with other proposed bulk in-
sertion techniques.

References
[AH+99] L. Arge, K. Hinrichs, et al. Efficient Bulk Operations

on Dynamic R-trees. In Workshop on Algorithm Engi-
neering and Experimentation (ALENEX), pages 328–
348, 1999.

[Arg96] L. Arge. Efficient External-Memory Data Structures
and Applications. BRICS Dissertation Series, DS-96-
3, University of Aarhus, 1996.

[BKSS90] N. Beckmann, H. Kriegel, R. Schneider, and
B. Seeger. The R* tree: An efficient and robust ac-
cess method for points and rectangles. In Proc. ACM
SIGMOD Int. Conf. on Management of Data, pages
322–331, 1990.

[CCR98] L. Chen, R. Choubey, and E. Rundensteiner. STLT:
Bulk Insertion into R-trees. In Proceedings of ACM
International Workshop on Advances in Geographic
Information Systems, pages 161–162, 1998.

[CCR99] R. Choubey, L. Chen, and E. Rundensteiner. GBI: A
Generalized R-Tree Bulk-Insertion Strategy. In Sym-
posium on Large Spatial Databases, pages 91–108,
1999.

[GLL98] Y. J. Garcia, S. T. Leutenegger, and M. A. Lopez. A
greedy algorithm for bulk loading R-trees. In Proc. of
ACM GIS, 1998.

[Gut84] A. Guttman. R-trees: A dynamic index structure for
spatial searching. Proc. ACM SIGMOD Int. Conf. on
Management of Data, pages 47–57, 1984.

[KKK96] I. Kamel, M. Khalil, and V. Kouramajian. Bulk In-
sertion In Dymanic R-trees. In Proceedings of 4th
International Symposium on Spatial Data Handling,
pages 3B.31–3B.42, 1996.

[RSSB99] K. V. Ravi Kanth, Siva Ravada, J. Sharma, and
J. Banerjee. Indexing medium-dimensionality data in
oracle. In Proc. ACM SIGMOD Int. Conf. on Man-
agement of Data, 1999.

