
MAX-PLANCK-INSTITUT

F

�

UR

INFORMATIK


 	

� �

Equality Reasoning in

Sequent-Based Calculi

Anatoli Degtyarev and Andrei Voronkov

MPI{I{98{2{011 July 1998

���

�

��

k

I N F O R M A T I K

Im Stadtwald

D 66123 Saarbr�ucken

Germany

i



ii



Author's Address

Anatoli Degtyarev: Computing Science Department, Uppsala University,

Box 311, S-75105, Uppsala, Sweden.

anatoli@csd.uu.se, http://www.csd.uu.se/~anatoli.

Andrei Voronkov: Computing Science Department, Uppsala University,

Box 311, S-75105, Uppsala, Sweden.

voronkov@csd.uu.se, http://www.csd.uu.se/~voronkov.

Publication Notes

Anatoli Degtyarev is partially supported by grants from the Swedish Royal

Academy of Sciences and TFR. Andrei Voronkov is partially supported by

grants from TFR and Max-Planck-Institute.

This report is a preliminary version of the article to appear in the Hand-

book of Automated Reasoning by Elsevier Science in 1999, edited by Alan

Robinson and Andrei Voronkov.

Acknowledgements

We thank Evgeny Dantsin, Thomas Eiter, Georg Gottlob, and Gabriel Ku-

per.

iii



Abstract

We overview methods of equality reasoning in sequent-based

systems. We consider the history of handling equality

in sequent systems, methods based on rigid E-uni�cation,

paramodulation-based methods, the equality elimination

method and equality reasoning in nonclassical logics.
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1 Introduction

Handling equality in resolution theorem proving is one of the central top-

ics of research in automated reasoning. The �rst general method based on

paramodulation was proposed by Robinson and Wos already in 1969 [134] (al-

though there were some earlier publications based on other techniques). The

treatment of equality in sequent-based machine-oriented calculi has much

longer history started by Wang in 1960 [162] and Kanger in 1963 [91]. Ideas

of Kanger related to equality handling were more thoroughly expressed by

Lifschitz [97] and Orevkov [125].

The next generation of works in this area is based on rigid uni�cation in-

troduced by Gallier, Raatz and Snyder in 1987 [72]. Recently, this area wit-

nessed a rapid development of new results and techniques, including results

on rigid E-uni�cation, the equality elimination method, rigid superposition

and rigid paramodulation. It has also been discovered that rigid uni�cation

has close connections with intuitionistic logic with equality, second-order uni-

�cation and some combinatorial problems.

In this article we describe automated reasoning techniques for all known

sequent-based methods of automated deduction, including the tableau me-

thod, the connection method, model elimination and the inverse method. We

illustrate main results and ideas on the tableau method and sometimes on

the inverse method (as a typical backward and a typical forward proof search

methods in sequent calculi).

The paper covers the following topics:

� methods of proof-search in sequent calculi;

� early history of sequent-based automated deduction;

� translation of logic with equality into logic without equality;

� theorem proving using simultaneous rigid E-uni�cation;

� tableau calculi with rigid paramodulation/superposition;

� the equality elimination method; and

� equality reasoning in nonclassical logics.
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Due to the rapidly growing interest in tableau-based theorem proving, and

because the usual techniques of handling equality in automated reasoning

do not straightforwardly generalize to tableaux, we believe that equality rea-

soning in tableaux and related procedures will be among the central topics

in automated deduction in the nearest future. We present many new results

that have not yet been presented in any systematic way. We do not assume

that readers have any special knowledge of equality reasoning.

In this section we introduce the reader in the area of equality reasoning.

In Section 1.1 we introduce the main notation used in the paper. In Sec-

tion 1.2 we discuss the standard axiomatization of equality. In Section 1.2

we consider several techniques of handling equality in resolution-based proce-

dures and discuss various versions of the paramodulation rule. In Section 1.4

we introduce the main sequent calculus for equality reasoning LK

=

which

corresponds to the ground version of semantic tableaux.

1.1 Some useful notation

We assume some knowledge of most fundamental notions of mathematical

logic, like those of a term or a formula. They may be found in the standard

textbooks on mathematical logic, e.g. Kleene [92], Smullyan [144], Chang

and Lee [95], Gallier [67] or Fitting [64].

◮ Formulas are de�ned as usual, using atomic formulas, the connectives

^;_;�;: and the quanti�ers 8; 9.

◮ A literal is either an atomic formula or a negation of an atomic formula.

◮ A clause is a �nite multiset of literals, denoted L

1

; : : : ; L

n

.

◮ The empty clause is denoted 2.

Atomic formulas will also be called atoms. If L is a literal and C = L

1

; : : : ; L

n

is a clause, then L;C will denote the clause L; L

1

; : : : ; L

n

and similar for C;L.

Alternatively, we shall sometimes consider a clause L

1

; : : : ; L

n

as the formula

L

1

_ : : : _ L

n

.

We use the following notation for substitutions and uni�cation:

◮ substitutions will be denoted by [x

1

7! t

1

; : : : ; x

n

7! t

n

];

◮ the empty substitution will be denoted ";
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◮ the domain of a substitution �, i.e. the set of variables fx j x� 6= xg

will be denoted by dom(�);

◮ the application of a substitution � = [x

1

7! t

1

; : : : ; x

n

7! t

n

] to any

expression E (i.e. term, formula, clause, multiset of formulas etc.) is

the expression obtained by the simultaneous replacement of free oc-

currences of x

1

; : : : ; x

n

by t

1

; : : : ; t

n

, respectively, with renaming, if

necessary, those bound variables in E that coincide with a variable

occurring in any t

i

. The result of the application is denoted by E�.

◮ The composition of substitutions � and �, denoted ��, is the substitu-

tion de�ned by x(��) ⇋ (x�)�, for every variable x.

◮ A substitution � is more general than a substitution �, denoted � � �,

if and only if there exists a substitution � such that �� = �.

◮ A term, literal, or clause is called ground , if it contains no variables.

◮ A formula is called closed , if it contains no free occurrences of variables.

◮ The universal (respectively, existential) closure of a formula ', de-

noted 8' (respectively, 9'), is the formula 8x

1

: : :8x

n

' (respectively,

9x

1

: : : 9x

n

'), where x

1

; : : : ; x

n

are all free variables of ' in the order

of their occurrence in '.

◮ A substitution � is called grounding for a set of variables V if for every

variable v 2 V the term v� is ground.

The notation ⇋ stands for \equal by de�nition". We denote the equality

predicate symbol by �. For any expression E (like clause, formula or a

multiset of formulas), the set vars(E) is de�ned as the set of all (free) variables

occurring in E.

◮ A clause C is called an instance of a clause D if there is a substitution

� such that C� = D;

◮ A clause C is called a variant of a clause D if C is an instance of D

and D is an instance of C.

◮ An equation is any formula of the form s � t;

5



◮ A disequation is any formula of the form :(s � t), denoted s 6� t.

We do not distinguish the formula s � t from t � s.

We denote

. constants by a; b; c; d; e;

. variables by x; y; z; u; v; w;

. function symbols by f; g; h;

. predicate symbols by P;Q;R;

. terms by p; q; r; s; t;

. atoms by A;B;

. literals by L;M;N ;

. clauses by C;D;

. formulas by '; �;  ;

. sets or multisets of formulas

by �;�;�;�;

. substitutions by �; �; �; �,

maybe with indices.

We denote

◮ mgu(s; t) any idempotent most general uni�er of terms s and t; and

◮ mgu(hs

1

; : : : ; s

n

i; ht

1

; : : : ; t

n

i) any idempotent simultaneous most gen-

eral uni�er of s

1

and t

1

, : : : , s

n

and t

n

.

◮ We assume that all terms are written in a �xed �nite function signature

F ,

unless the opposite is explicitly stated. Constants are function symbols of

arity 0. We denote

◮ T

F

the set of ground terms in the signature F ;

◮ T

F

(X) the set of terms in the signature F with variables in a set X.

To avoid expressions with many parentheses, we shall denote applica-

tions of unary functions to arguments without parentheses, for example fgx

instead of f(g(x)).
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1.2 Equality. The �rst axiomatization

The equality predicate � plays a special role in automated reasoning. Math-

ematical theorems often contain the equality predicate and assume that it

satis�es special equality axioms. The same is true for many areas of computer

science where �rst-order logic is used.

The necessity of handling equality in automated reasoning has been rec-

ognized already in the very early papers in the area (Wang [162], Kanger

[91], Wos et.al. [164], Robinson [136], Darlington [36] and Robinson and

Wos [134]). Equality in �rst-order logic can be axiomatized by the following

equality axioms:

◮ re
exivity axiom: x � x;

◮ symmetry axiom: x � y � y � x;

◮ transitivity axiom: x � y ^ y � z � x � z;

◮ function substitution axioms: x

1

� y

1

^: : :^x

n

� y

n

� f(x

1

; : : : ; x

n

) �

f(y

1

; : : : ; y

n

), for every function symbol f ;

◮ predicate substitution axioms: x

1

� y

1

^ : : :^x

n

� y

n

^P (x

1

; : : : ; x

n

) �

P (y

1

; : : : ; y

n

) for every predicate symbol P .

In principle, for a theorem ' with equality one can add the conjunction �

of these equality axioms as a premise and try to prove 8� � ' by any existing

method for logic without equality. However, this leads to a combinatorial

explosion due to the universal applicability of equality axioms.

Example 1.1 Suppose that F contains a binary function symbol f . Then

from a � b we can derive any equation of the form

f(s

1

; f(s

2

; : : : ; f(s

n�1

; s

n

) : : : )) � f(t

1

; f(t

2

; : : : ; f(t

n�1

; t

n

) : : : ))

such that fs

1

; : : : ; s

n

; t

1

; : : : ; t

n

g � fa; bg. For example, f(a; f(a; b)) �

f(a; f(b; a)) has the following derivation by positive hyperresolution:

a � a

a � b b � a x

1

6� y

1

_ x

2

6� y

2

_ f(x

1

; x

2

) � f(y

1

; y

2

)

f(a; b) � f(b; a)

;

x

1

6� y

1

_ x

2

6� y

2

_ f(x

1

; x

2

) � f(y

1

; y

2

)

f(a; f(a; b)) � f(a; f(b; a))
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where b � a and a � a have the folowing derivations:

a � b x 6� y _ y � x

b � a

;

a � b b � a x 6� y _ y 6� z _ x � z

a � a

:

Thus, even the early methods of handling equality in automated reasoning

tried to avoid the use of the equality axioms. In the rest of this section we

shall consider some of the main ideas developed in resolution-based theorem

proving with equality.

1.3 Paramodulation and its re�nements

◮ We write '[s] to indicate that the formula ' contains an occurrence of

the term s such that all occurrences of variables in s are free in '.

We also denote by '[t] the result of replacing this particular occurrence of s

in ' by t. We shall use similar notation for occurrences of subterms in terms

r[s] and terms in sets or multisets of formulas �[s].

In �rst-order logic, the rule or replacement of equal by equal is a derived

rule:

'[s] s � t

'[t]

:

A suitable formulation of this rule can alternatively be used to replace all

equality axioms except for re
exivity. Later, we shall give some sequent

systems for �rst-order logic using such a replacement rule. In automated

reasoning, a rule of this form has already been used in Wang [162].

A modi�cation of this rule for resolution-based reasoning known as para-

modulation has been introduced by Robinson and Wos [134]. The paramo-

dulation rule is de�ned on clauses and uses most general uni�ers.

◮ Paramodulation is the following inference rule:

L[s

0

] _ C

1

s � t _ C

2

(L[t] _ C

1

_ C

2

)mgu(s; s

0

)

(par)

(1)

8



Robinson and Wos [133] proved completeness of the system consisting of

resolution, factoring and paramodulation only in presence of an additional

◮ function re
exivity axiom: f(x

1

; : : : ; x

n

) � f(x

1

; : : : ; x

n

), for every

function symbol f 2 F .

This axiom seems very similar to the re
exivity axiom x � x, but there

is a fundamental di�erence important for understanding equality reasoning

in general. In order to explain the meaning of the function re
exivity axiom

we �rst show that paramodulation rule leads to nonliftable derivations. A

standard technique of proving completeness of various methods or strategies

in automated deduction is to prove the existence of a ground derivation and

then to make lifting to the nonground case. Lifting for an inference system

R is a technique for proving completeness that can abstractly be explained

in the following way.

◮ Let an inference system R have the following property. Suppose that

C

1

; : : : ; C

n

be clauses and C

0

1

; : : : ; C

0

n

be their ground instances. Fur-

thermore, suppose that

C

0

1

� � � C

0

n

C

0

is an inference of R, where C

0

is a ground clause. Then there exists a

clause C such that C

0

is an instance of C and such that C is derivable

from C

1

; : : : ; C

n

in R. Then R is said to have the lifting property .

The logical system consisting of resolution and factoring, as well as many

modi�cations of resolution, has the lifting property. However, the addition

of paramodulation leads to nonliftable derivations. Indeed, consider two

clauses P (x; x) and a � b and their ground instances P (fa; fa) and a � b.

Consider the following ground derivation:

P (fa; fa) a � b

P (fa; fb)

(par)

(2)

This derivation is nonliftable.
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The system consisting of resolution, factoring, paramodulation and the

function re
exivity axiom has the lifting property. For example, in this sys-

tem the above derivation can be lifted as follows, using the axiom fx � fx:

P (x; x)

fx � fx a � b

fa � fb

(par)

P (fa; fb)

(par)

Although function re
exivity leads to a liftable system, it is hard to �nd

any reasonable implementation of function re
exivity, as Example 1.1 demon-

strates. As it was shown later, resolution with factoring and paramodulation

is complete without function re
exivity (Brand [33], Peterson [128]). How-

ever, the understanding of the nature of function re
exivity is important for

understanding some problems arising in automating sequent systems with

equality. The e�ect of the function re
exivity axioms is the possibility of

substituting almost an arbitrary term for a variable. For example, to lift

ground derivation (2), we had to substitute fa for x, which can be achieved

by using the instance fx � fx of the function re
exivity axiom.

Getting rid of function re
exivity drastically reduces search space in

methods based on resolution and paramodulation. However, unrestricted ap-

plications of paramodulation also lead to combinatorial explosion because of

a too general applicability of paramodulation. Further history of paramodu-

lation-based theorem proving had been aiming at restricting the applicability

of the paramodulation rule. Among the restrictions, we shall brie
y consider

the following:

1. paramodulation into a variable is prohibited;

2. the use of reduction orderings;

3. the basic strategy of paramodulation;

4. simpli�cation.

Many of these re�nements of paramodulation aimed at the development of \a

refutation complete set of inference rules for all �rst-order logic with equality

which reduces to the Knuth-Bendix procedure when restricted to equality

units" (Peterson [128]). This refers to the famous completion procedure of

Knuth and Bendix [93] for solving word problems in universal algebras.
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The history of the development of these and other paramodulation restric-

tions can be seen from Brand [33], Degtyarev [38, 39], Peterson [128], Degt-

yarev and Voronkov [46], Hsiang and Rusinowitch [86, 87], Pais and Peterson

[126], Zhang and Kapur [165], Bachmair and Ganzinger [8, 10], Rusinowitch

[138], Bachmair et.al. [12, 13] and Nieuwenhuis and Rubio [122, 123], Lynch

[103], Bachmair and Ganzinger [11].

We can avoid applying paramodulation into a variable:

L[x] _ C

1

s � t _ C

2

(L[t] _ C

1

_ C

2

)[x 7! s]

(par)

Note that such an application of paramodulation is always possible when we

have a nonground clause L[x]_C

1

, because x is uni�able with s. It is known

that the system consisting of paramodulation, resolution and factoring is

complete when paramodulation into a variable is prohibited (i.e. the term s

0

in paramodulation rule (1) is not a variable) (Brand [33], Peterson [128])

1

Often, paramodulation allows one to repeatedly apply the same equation

obtaining larger and larger terms.

Example 1.2 The equation x � fx can repeatedly be applied as in the

derivation below:

Pa x � fx

P (fa)

(par)

x � fx

P (ffa)

(par)

.

.

.

P (f : : : fa)

obtaining longer and longer literals P (f

n

a).

Such increasing applications of paramodulations can be avoided by the

introduction of ordering restrictions based on reduction orderings.

◮ A reduction ordering on T

F

(X) is any ordering � on T

F

(X) such that

1. � is well-founded;

2. if s � t then r[s�] � r[t�], for all terms s; t; r and substitutions �.

1

Strictly speaking, neither Brand nor Peterson could entirely prohibit paramodula-

tions into variables. This problem was comletely solved later by Bachmair et.al. [12] and

Nieuwenhuis and Rubio [122].
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◮ A reduction ordering is called a simpli�cation ordering if for any term

t[s] such that s is a proper subterm of t we have t[s] � s.

The results involving reduction orderings in this paper are true for any re-

duction ordering total on T

F

.

Reduction orderings are used for two main purposes: restricting paramo-

dulation and simpli�cation. Here and below we write

◮ s � t to denote that s � t or s = t.

The simplest ordering restriction on paramodulation gives us

◮ ordered paramodulation that can be formulated as follows:

L[s

0

] _ C

1

s � t _ C

2

(L[t] _ C

1

_ C

2

)�

such that

1. � = mgu(s; s

0

);

2. s

0

is not a variable;

3. t� 6� s�.

Note that when s� and t� are ground terms and � is linear on ground terms,

the last condition is equivalent to s� � t�. Ordered paramodulation has been

originally considered in Peterson [128] and Hsiang and Rusinowitch [86].

If we use ordered paramodulation, no derivation from P (a) and x � fx

is possible (compare with Example 1.2).

A stronger restriction is the so-called maximal paramodulation (in the

terminology of Pais and Peterson [126]) that takes into attention not only

ordering on terms but also ordering on literals of clauses.

◮ Maximal paramodulation is the following inference rule:

L[s

0

] _ C

1

s � t _ C

2

(L[t] _ C

1

_ C

2

)

such that

12



1. � = mgu(s; s

0

);

2. term s

0

is not a variable;

3. t� 6� s�;

4. L[s

0

]� is maximal w.r.t. � in (L[s

0

] _ C

1

)�;

5. (s � t)� is maximal w.r.t. � in (s � t _ C

2

)�.

The next re�nement of paramodulation is known as superposition. The

notion of superposition comes from Knuth and Bendix [93], where super-

position has been de�ned for positive unit clauses (equations). The above

de�nition of maximal paramodulation can be strengthened to the de�nition

of superposition in the following way. For simplicity, we assume that all

atoms are equations. Then, the literal L[s

0

] in the paramodulation rule has

either the form p[s

0

] � q or p[s

0

] 6� q. We only consider the former case.

◮ Superposition is the following inference rule:

p[s

0

] � q _ C

1

s � t _ C

2

(p[t] � q _ C

1

_ C

2

)�

such that

1. � = mgu(s; s

0

);

2. s

0

is not a variable;

3. t� 6� s�;

4. (p[s

0

] � q)� is strictly maximal w.r.t. � in C

1

�;

5. (s � t)� is strictly maximal w.r.t. � in C

2

�;

6. q� 6� p[s

0

]�.

Calculus with such rule was proposed by Zhang and Capur in [165]. If we drop

condition (5), we come to extended superposition (Rusinowitch [138]). There

are further re�nements of superposition, for example strict superposition of

Bachmair and Ganzinger [8, 9, 11].

Recent results in this area are related to the so-called basic strategy. The

idea of the basic strategy is to forbid paramodulation in terms introduced

by substitutions applied during previous inference steps. The basic strategy

(without ordering restrictions) has been explicitly introduced for the �rst
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time in Degtyarev [38, 39] by the name of monotone paramodulation. It has

also been described in Degtyarev and Voronkov [46] in terms of the so-called

conditional clauses which are now known by the name of equality constraint

clauses (Nieuwenhuis and Rubio [121]). Such clauses have been de�ned in

Degtyarev and Voronkov [46] as pairs C � C where C is a clause and C is

a set of equations fs

1

� t

1

; : : : ; s

n

� t

n

g. The equations s

i

� t

i

in C are

considered as constraints to be solved by a simultaneous most general uni�er

of (s

i

; t

i

), i.e. a substitution � such that s

i

� = t

i

� for all i 2 f1; : : : ; ng.

Thus, the substitution � introduced by the previous inference steps has been

divided from the \skeleton" C of the clause C�. Following [39], Degtyarev

and Voronkov [46] described two forms of monotone paramodulation:

L[s

0

] _ C

1

� C

1

s � t _ C

2

� C

2

L[t] _ C

1

_ C

2

� C

1

[ C

2

[ fs

0

� sg

and

L[s

0

] _ C

1

� C

1

s � t _ C

2

� C

2

L[z] _ C

1

_ C

2

� C

1

[ C

2

[ fs

0

� s; z � tg

where in both rules s

0

is not a variable and in the second rule z is a new

variable

2

.

The basic strategy with ordering restrictions has later been independently

proposed in Nieuwenhuis and Rubio [121, 122] and Bachmair et.al. [12] as an

extension of a basic narrowing technique proposed �rst in [88] in the Knuth-

Bendix framework to refutational theorem proving with arbitrary clauses. In

these papers the basic strategy has been applied to superposition, i.e. com-

bined with ordering restrictions. The ordering restrictions can be elegantly

added by extending equational constraints to ordering constraints. A vari-

ant of basic superposition with ordering constraint inheritance proposed in

Nieuwenhuis and Rubio [122, 123] is de�ned and used in Section 6.2. Bach-

mair et.al. [13] described further re�nements of the basic strategy which

included term selection functions and redex ordering.

Resolution-based theorem proving is usually based on the saturation pro-

cedures. Such procedures start with a set of clauses S, adding to this set

new clauses obtained by application of inference rules to clauses in S. The

2

In the second form, after paramodulation into s

0

, subsequent paramodulations are

only possible into positions \orthogonal" to s

0

or into positions of superterms of s

0

in

L[s

0

]. Hence the name \monotone paramodulation".

14



search space for such procedures grows rapidly. Saturation procedures be-

come much more e�cient when they are augmented with redundancy criteria

allowing us to remove redundant clauses from the search space. Examples of

redundancy deletion rules are subsumption and simpli�cation. Subsumption

was introduced by Robinson [135] for the general resolution and simpli�ca-

tion has been introduced for equality reasoning by Knuth and Bendix [93].

In order to formalize simpli�cation, we introduce inference rules working on

multisets of clauses. Suppose S is a multiset of clauses. Then

◮ simpli�cation is the following inference rule:

S [ fL[s

0

] _ C; s � tg

S [ fL[t�] _ C; s � tg (3)

such that s� = s

0

, s� � t� and L[s�] � (s� � t�) (Peterson [128]).

The meaning of this inference rule is that s

0

can be replaced by t�, thus

discarding the clause L[s

0

] _ C. Simpli�cation has been recognized a very

strong strategy for equational reasoning. However, until very recently, sim-

pli�cation has not been introduced in sequent-based methods. There are

other formulations of simpli�cation, where the condition L[s�] � (s� � t�)

is replaced by other conditions (e.g. Rusinowitch [138] and Bachmair and

Ganzinger [10]). As far as we know, these condition are needed in order to

apply the corresponding completeness proofs. It is not known whether these

conditions are necessary.

Discussion of various aspects of redundancy criteria can be found in Wos

et.al. [164] Knuth and Bendix [93], Slagle [143], Lankford [94], Loveland [101],

Peterson [128], Wos, Overbeek and Lusk [163], Rusinowitch [138], Lusk [102],

Voronkov [155], Bachmair and Ganzinger [10], Bachmair et.al. [13], Nieuwen-

huis and Rubio [123], Tammet [147] and Mints, Orevkov and Tammet [117],

Lynch [103], Bachmair and Ganzinger [11].

In all examples of this paper we shall use a special kind of reduction

ordering, called the lexicographic path ordering.

◮ A precedence relation on F is any total ordering on F .

◮ Let �

F

be a precedence relation on F . The lexicographic path ordering

� induced by �

F

is the ordering on terms de�ned recursively as follows:

15



t � x if x 6= t and x occurs in t;

It is not the case that x � t;

Let s = f(s

1

; : : : ; s

m

) and t = g(t

1

; : : : ; t

n

). Then s � t if one of

the following is true:

s

i

� t, for some i with 1 � i � m;

f �

F

g and s � t

j

, for all j with 1 � j � n;

f = g, (s

1

; : : : ; s

m

) �

lex

(t

1

; : : : ; t

n

) and s � t

j

, for all j with

1 � j � n,

where (s

1

; : : : ; s

m

) �

lex

(t

1

; : : : ; t

m

) if there is j � m such that

s

j

� t

j

and for all i < j we have s

i

= t

i

.

The reader can check that lexicographic path ordering is a simpli�cation

ordering, and that it is total on T

F

when �

F

is total on F .

1.4 Equality in sequent systems

In this section we introduce the sequent calculus LK

=

for classical �rst-order

logic with equality. We also explain the relation between ground version of

semantic tableaux and derivations in LK

=

.

◮ A sequent is any expression of the form �! � where �;� are multisets

of formulas.

◮ � (respectively �) is called the antecedent (respectively, the succe-

dent) of the sequent �! �.

◮ A sequent �! � is closed if all formulas in �;� are closed.

We shall denote sequents by S, maybe with indices.

The intuitive semantics of a sequent '

1

; : : : ; '

n

!  

1

; : : : ;  

m

is

^

i2f1;::: ;ng

'

i

�

_

j2f1;::: ;mg

 

m

:

Thus, this sequent is inconsistent if and only if all '

i

are true and all  

j

are

false. For this reason, instead of sequents one can dually consider multisets of

signed formulas, where signs T and F correspond to \true" and \false". For

example, the above sequent can alternatively be represented as the multiset of

16



signed formulas T '

1

; : : : ; T '

n

; F  

1

; : : : ; F  

n

. Conventional formalizations

of the tableau method deal with signed formulas. For convenience, we shall

sometimes alternatively consider sequents as multisets of signed formulas.

Multisets of signed formulas will also be denoted by �;�, maybe with indices.

◮ The sequent calculus LK

=

is shown in Figure 1.

This calculus is similar to the calculi introduced by Kanger [90, 91].

In view of the relation between sequents and multisets of signed formulas,

the calculus LK

=

can be reformulated in terms of signed formulas. Inference

rules working on signed formulas are traditionally classi�ed into �-, �-, 
-,

�- and :-rules.

The correspondence is given in the following table:

Signed formulas Sequents

� (^ !), (! _), (!�)

� (! ^), (_ !), (�!)


 (8 !), (! 9)

� (! 8), (9 !)

: (! :), (: !)

The calculus LK

=

represented for signed formulas is shown in Figure 2.

The ordinary LK

=

derives sequents, LK

=

for signed formulas derives

multisets of formulas. Derivations of LK

=

for signed formulas are sometimes

represented in the form of so-called tableaux (see Fitting [64]). We shall give

examples below.

◮ We write � ` ' to denote that the sequent �! ' is derivable in LK

=

.

◮ We speak about derivations or derivability of a formula ' meaning

derivations or derivability of the sequent ! '.

◮ A derivation � in LK

=

is called regular if it satis�es the following

properties:

1. equality rules are applied before all other rules, i.e. above applica-

tions of (�) in � there can only be applications of (�), (Ax) and

(re
);
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2. in the rules (�), the occurrences of t replaced by s are in atomic

formulas only.

We give an example which will be used several times in this article.

In order to simplify derivations, we shall sometimes use a modi�ed form

of the rules (! 9) and (
) without repeating their principal formula 9x' in

the premises, i.e., use the rules

�! �; '[x 7! t]

�! �; 9x'

(! 9)

and

�; T 8x'; T '[x 7! t]

�; T 8x'

(
):

Example 1.3 (Main example, sequent calculus) Assume that we want

to prove the formula

9xyuv

�

(a � b � g(x; u; v) � g(y; fc; fd)) ^

(c � d � g(u; x; y) � g(v; fa; fb))

�

:

We show its regular derivation in LK

=

in the following three forms:

1. In LK

=

using sequents in Figure 3;

2. In LK

=

using multisets of signed formulas (without duplicating) in

Figure 4;

3. In a ground version of a tableau system in Figure 5.

Tableaux are trees whose nodes are signed formulas. A tableau can be

though of as a multiset of branches, every branch is understood as a mul-

tiset of formulas occurring in this branch. A tableau T represents a LK

=

-

derivation D such that the leaves of D are the branches of the tableau. We

can note the following inessential di�erence between tableaux and derivations

in LK

=

. When we counterapply an �-rule in LK

=

, for example

T a � b; F g(fa; fc; fd) � g(fb; fc; fd)

F a � b � g(fa; fc; fd) � g(fb; fc; fd)

(�);

we remove the principal formula (in this case F a � b � g(fa; fc; fd) �

g(fb; fc; fd)) from the premise, while it remains on the tableau branch.
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As can be seen from these examples, sequent derivations, corresponding

derivations on the multisets of signed formulas and the ground version of

semantic tableaux are di�erent ways of representing derivations in LK

=

. For

the rest of this paper, we shall mostly use LK

=

in the form of signed formulas.

Many techniques considered in this paper are implicitly based on the fact

that we can restrict ourselves by regular derivations:

Theorem 1.4 (existence of regular derivations in LK

=

) Any sequent

derivable in LK

=

has a regular derivation.

For simplicity, in this paper we do not consider derivations in the method

of matings as described by Andrews [1, 2, 3] or the connection method as

described by Bibel and Schreiber [31] and Bibel [28, 29]. For those, who is

used to connections or matings, we shall give the same example in Section 3,

after we consider the free variable version of semantic tableaux.

◮ A formula is said to be in Skolem negation normal form if it is con-

structed from literals using the connectives ^;_ and the quanti�er 9.

There is a provability-preserving translation of formulas without equivalences

into formulas in skolem negation normal form consisting of the standard

skolemization and a translation into negation normal form used, e.g. in An-

drews [2].

Sequent systems based on signed formulas avoid some redundancies by

joining similar inference rules under one name, for example, �-rule. For

formulas in negation normal form, there are more elegant sequent systems.

One of such systems has already been described in Sch�utte [140]. First, for

formulas in negation normal form signs are not needed any more. Instead of

using signs, we can consider all formulas in a sequent as having the sign F by

considering axioms of the form �; A;:A instead of �; T A; F A. Second, there

is only one inference rule for each connective: all �-rules become a rule for

disjunction, all �-rules become a rule for conjunction, 
- and �-rules become

quanti�er rules (see Figure 6). The Sch�utte system did not even have the

(_)-rule, because he considered disjunctions of formulas instead of sequents.

For formulas in skolem negation normal forms, we do not need the (8)-

rule. Sequent systems for formulas in skolem negation normal forms can

further be re�ned. For example in Voronkov [154] a sequent system is de�ned

whose only rule is the (^)-rule.
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In this paper, when it concerns classical logic, we only work with skolem-

ized formula to avoid the use of �-rules (i.e. the rules (! 8) and (9 !))

of LK

=

. Various forms of �-rules have been considered in Beckert, H�ahnle

and Schmitt [23], H�ahnle and Schmitt [85], Baaz and Leitsch [7], Baaz and

Ferm�uller [6]. We cannot, however, avoid using �-rules in sequent calculi for

intuitionistic logic (see Section 9).
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�; A! �; A

(Ax)

�! �; t�t

(re
)

�[x 7! t]; s � t! �[x 7! t]

�[x 7! s]; s � t! �[x 7! s]

(�)

�; ';  ! �

�; ' ^  ! �

(^ !)

�! �; ' �! �;  

�! �; ' ^  

(! ^)

�; '! � �;  ! �

�; ' _  ! �

(_ !)

�! �; ';  

�! �; ' _  

(! _)

�;  ! � �! �; '

�; ' �  ! �

(�!)

';�! �;  

�! �; ' �  

(!�)

�! �; '

�;:'! �

(: !)

';�! �

�! �;:'

(! :)

�; 8x'! �; '[x 7! t]

�; 8x'! �

(8 !)

�! �; '[x 7! y]

�! �; 8x'

(! 8)

�; '[x 7! y]! �

�; 9x'! �

(9 !)

�! �; 9x'; '[x 7! t]

�! �; 9x'

(! 9)

In the rule (Ax), A is an atomic formula. In the rules (! 8) and (9 !)

the variable y has no free occurrences in the conclusions of the rules. The

variable y is called the eigenvariable of these rules. This condition on the

rules (! 8) and (9 !) is called the eigenvariable condition.

Figure 1: Calculus LK

=
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�; T A; F A

(Ax)

�; F t � t

(re
)

�[x 7! t]; T s � t

�[x 7! s]; T s � t

(�)

�; T '; T  

�; T ' ^  

(�)

�; F ' �; F  

�; F ' ^  

(�)

�; T ' �; T  

�; T ' _  

(�)

�; F '; F  

�; F ' _  

(�)

�; T  �; F '

�; T ' �  

(�)

�; T '; F  

�; F ' �  

(�)

�; F '

�; T :'

(:)

�; T '

�; F :'

(:)

�; T 8x'; T '[x 7! t]

�; T 8x'

(
)

�; F '[x 7! y]

�; F 8x'

(�)

�; T '[x 7! y]

�; T 9x'

(�)

�; F 9x'; F '[x 7! t]

�; F 9x'

(
)

In the rule (Ax), A is an atomic formula. Both rules (�) satisfy the eigen-

variable condition.

Figure 2: Calculus LK

=

for signed formulas
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a � b! g(fa; fc; fd) � g(fa; fc; fd)

(re
)

a � b! g(fa; fc; fd) � g(fb; fc; fd)

(�)

! a � b � g(fa; fc; fd) � g(fb; fc; fd)

(!�)

c � d! g(fc; fa; fb) � g(fc; fa; fb)

(re
)

c � d! g(fc; fa; fb) � g(fd; fa; fb)

(�)

! c � d � g(fc; fa; fb) � g(fd; fa; fb)

(!�)

! (a � b � g(fa; fc; fd) � g(fb; fc; fd))^ (c � d � g(fc; fa; fb) � g(fd; fa; fb))

(! ^)

! 9v((a � b � g(fa; fc; v) � g(fb; fc; fd)) ^ (c � d � g(fc; fa; fb) � g(v; fa; fb)))

(! 9)

! 9uv((a � b � g(fa; u; v) � g(fb; fc; fd)) ^ (c � d � g(u; fa; fb) � g(v; fa; fb)))

(! 9)

! 9yuv((a � b � g(fa; u; v) � g(y; fc; fd))^ (c � d � g(u; fa; y) � g(v; fa; fb)))

(! 9)

! 9xyuv((a � b � g(x; u; v) � g(y; fc; fd))^ (c � d � g(u; x; y) � g(v; fa; fb)))

(! 9)

Figure 3: An LK

=

-derivation using sequents

T a � b; F g(fa; fc; fd) � g(fa; fc; fd)

(re
)

T a � b; F g(fa; fc; fd) � g(fb; fc; fd)

(�)

F a � b � g(fa; fc; fd) � g(fb; fc; fd)

(�)

T c � d; F g(fc; fa; fb) � g(fc; fa; fb)

(re
)

T c � d; F g(fc; fa; fb) � g(fd; fa; fb)

(�)

F c � d � g(fc; fa; fb) � g(fd; fa; fb)

(�)

F (a � b � g(fa; fc; fd) � g(fb; fc; fd)) ^ (c � d � g(fc; fa; fb) � g(fd; fa; fb))

(�)

F 9v((a � b � g(fa; fc; v) � g(fb; fc; fd)) ^ (c � d � g(fc; fa; fb) � g(v; fa; fb)))

(
)

F 9uv((a � b � g(fa; u; v) � g(fb; fc; fd)) ^ (c � d � g(u; fa; fb) � g(v; fa; fb)))

(
)

F 9yuv((a � b � g(fa; u; v) � g(y; fc; fd))^ (c � d � g(u; fa; y) � g(v; fa; fb)))

(
)

F 9xyuv((a � b � g(x; u; v) � g(y; fc; fd))^ (c � d � g(u; x; y) � g(v; fa; fb)))

(
)

Figure 4: An LK

=

-derivation using signed formulas

2
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F 9xyuv((a � b � g(x; u; v) � g(y; fc; fd))^ (c � d � g(u; x; y) � g(v; fa; fb)))

F 9yuv((a � b � g(fa; u; v) � g(y; fc; fd))^ (c � d � g(u; fa; y) � g(v; fa; fb)))

F 9uv((a � b � g(fa; u; v) � g(fb; fc; fd)) ^ (c � d � g(u; fa; fb) � g(v; fa; fb)))

F 9v((a � b � g(fa; fc; v) � g(fb; fc; fd)) ^ (c � d � g(fc; fa; fb) � g(v; fa; fb)))

F (a � b � g(fa; fc; fd) � g(fb; fc; fd)) ^ (c � d � g(fc; fa; fb) � g(fd; fa; fb))

F a � b � g(fa; fc; fd) � g(fb; fc; fd) F c � d � g(fc; fa; fb) � g(fd; fa; fb)

T a � b

F g(fa; fc; fd) � g(fb; fc; fd)

T c � d

F g(fc; fa; fb) � g(fd; fa; fb)

F g(fa; fc; fd) � g(fa; fc; fd) F g(fc; fa; fb) � g(fc; fa; fb)

Figure 5: An LK

=

-derivation using tableaux

24



�; A;:A

(Ax)

�; t � t

(re
)

�[x 7! t]; s 6� t

�[x 7! s]; s 6� t

(�)

�; ';  

�; ' _  

(_)

�; ' �;  

�; ' ^  

(^)

�; '[x 7! t]; 9x'

�; 9x'

(9)

�; '[x 7! y]

�; 8x'

(8)

In the rule (Ax), A is an atomic formula. The rule (8) satis�es the eigenvari-

able condition.

Figure 6: Calculus LK

=

for formulas in negation normal form
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2 Translation of logic with equality into logic

without equality

Instead of inventing methods of equality handling in sequent calculi, one can

use \e�cient" transformations of logic with equality into logic without equal-

ity. By \e�cient" we mean that the transformations avoid adding equality

axioms. There are two such methods, the �rst is proposed by Brand [33] and

known as the modi�cation method, or Brand's transformation and the sec-

ond by Moser and Steinbach [119] and independently in a stronger form by

Bachmair, Ganzinger and Voronkov [14], under the name of constraint equal-

ity elimination. Since these transformations are used to implement equality

in several tableau-based theorem provers (Schumann [139], Bibel et.al. [30]),

we brie
y consider them in this section.

Both transformations are applied to a set of clauses. To apply them to

a set of formulas, one should �rst transfer them to the clause form. Both

transformations apply to the set of clauses a sequence of transformation

steps, each step eliminating the need in some equality axioms. Throughout

this section we assume that we deal with a set of clauses whose only predicate

symbol is equality.

2.1 Modi�cation method

The transformation used by the modi�cation method comprises three parts:


attening, symmetry elimination and transitivity elimination.

Flattening. This transformation eliminates the need in function and pred-

icate substitution axioms.

◮ A clause is 
at if all occurrences of non-variables terms in it are argu-

ments to the equality predicate.

◮ An 
at form of a clause C is any clause that is 
at and is equivalent

to C.

For example, the clause g(a; b) � b is not 
at. Two possible 
at forms of this

clause are b 6� x _ g(a; x) � x and b 6� x _ b 6� y _ g(a; x) � y.

Every clause can be translated to an equivalent 
at clause by the 
atten-

ing transformation:
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C[f(t)] ) t 6� y _ C[f(y)];

where y is a new variable. The essence of 
attening is expressed by the

following theorem of Brand [33].

Theorem 2.1 A set of 
at clauses is satis�able if and only if it has a model

in which � is interpreted as an equivalence relation.

In this section, when we speak about unsatis�ability of a set of clauses,

we shall treat the equality predicate di�erently. One possibility is to de�ne

satis�ability as the existence of a model satisfying all clauses and the equality

axioms. In this case we shall speak about equational satis�ability. Another

possibility is to treat the equality predicate as satisfying either some equality

axioms or none at all. Flattening eliminates the need in function and predi-

cate substitution axioms, thus leaving us only with re
exivity, symmetry and

transitivity. Thus, the above theorem says that a set of clauses is equation-

ally unsatis�able if and only if it has no model in which � is an equivalence

relation.

Thus, instead of adding all equality axioms to the set of 
attened clauses

we have to only add the axioms expressing that � is an equivalence relation:

x � x;

x 6� y _ y � x;

x 6� y _ y 6� z _ x � z:

The next two steps of the transformation allow us to get rid of symmetry

and transitivity.

Symmetry elimination.

◮ We call a symmetric version of C any clause obtained from C by re-

placing one or more positive equations s � t by t � s.

◮ The symmetry elimination replaces every clause by all symmetric ver-

sions of this clause.

For example, one possible symmetric version of the clause a � b_b � c_x 6�

f(x) is a � b _ c � b _ x 6� f(x). The clause a � b _ b � c _ f(x) 6� x is not

a symmetric version of this clause, since only the sides of positive equations

can be swapped. Evidently, symmetry elimination produces 2

n

clauses from
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a clause with n positive equations (unless the clause contains a literal t � t,

in which case it is redundant).

One can prove that after symmetry elimination only transitivity and re-


exivity axioms should be taken care of:

Theorem 2.2 Let N be a set of 
at clauses and N

0

be obtained from N by

symmetry elimination. Then N is equationally unsatis�able if and only if N

0

has no model in which � is interpreted as a re
exive and transitive relation.

Transitivity elimination. Transitivity elimination replaces every positive

equation s � t by the disjunction t 6� y_ s � y with a new auxiliary variable

y.

For example, transitivity elimination replaces the clause

f(x) � a _ b � y _ x 6� y

by the clause

a 6� z _ f(x) � z _ y 6� u _ b � u _ x 6� y:

After transitivity elimination the only axiom that remains is re
exivity:

Theorem 2.3 Let N be a set of 
at clauses and N

0

be obtained from N by

symmetry and transitivity elimination. Then N is equationally unsatis�able

if and only if N

0

[ fx � xg is unsatis�able.

Consider an example. Suppose that the modi�cation method is applied

to the following set of two clauses:

b � c (4)

f(c; x) 6� x (5)

Clause (4) is 
at. Symmetry and transitivity elimination applied to this

clause yield clauses (6) and (7) below. Clause (5) is not 
at. Flattening

yields clause (8) below. Symmetry and transitivity elimination do not change

the clause. Thus, the modi�cation method gives the following four clauses.
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b 6� y _ c � y (6)

c 6� y _ b � y (7)

c 6� y _ f(y; x) 6� x (8)

x � x (9)

Brand's transformation and basic paramodulation. It was noted by

several researchers that there exist close connections between the modi�ca-

tion method and basic paramodulation. Basic paramodulation inferences

on the set of original clauses can be simulated by resolution on the set of

transformed clauses. Consider, for example, the following paramodulation

inference from clauses (4) and (5):

b � c f(c; x) 6� x

f(b; x) 6� x

:

If we transform, using the modi�cation method, the conclusion of this in-

ference, we obtain the clause b 6� y _ f(y; x) 6� x. The same clause can be

obtained by the resolution inference from modi�ed clauses (6) and (8)

b 6� y _ c � y c 6� y _ f(y; x) 6� x

b 6� y _ f(y; x) 6� x

:

This technique of simulating derivations in the paramodulation-based refuta-

tion system by resolution-based derivations on the transformed set of clauses

can be used to prove completeness of the modi�cation method. Brand used

pure model-theoretic technique to prove completeness.

One can also note that some resolution inferences on the modi�ed set

of clauses correspond to redundant inferences on the original set of clauses.

For example, paramodulation into a variable is known to be redundant. The

picture below shows such a redundant inference and the corresponding reso-

lution inference:

a � x b � c

a � b and

c � y _ b 6� y x 6� y _ a � y

b 6� y _ a � y

:

Some resolution inferences correspond to unordered applications of pa-

ramodulation. For example, if we consider any reduction ordering in which

b � c, then no ordered paramodulation is possible from clauses (4) and (5),
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but we have seen that the modi�ed set of clauses allows for some resolution

inferences. For quite some time people who worked on theorem proving us-

ing tableau and related methods tried to optimize the modi�cation method

so that less resolution inferences on the transformed set will correspond to

redundant superposition inferences.

2.2 Constrained equality elimination

Such an optimized translation has been proposed by Bachmair, Ganzinger

and Voronkov [14] under the name of constraint equality elimination, or sim-

ply, CEE-transformation. This transformation comprises two of three parts.

Flattening and symmetry elimination are the same as in Brand's transfor-

mation. The third part (transitivity elimination) is di�erent from Brand's

transformation in several aspects. To precise CEE-transformation we need

some additional notions.

Constrained clauses.

◮ By an ordering constraint , or simply constraint we mean a conjunction

of expressions which can be of two kinds:

◮ equality constraint s = t, or

◮ inequality constraint s � t or s � t,

where s; t are terms.

◮ A substitution � is called a solution to an equality constraint s = t

(respectively, inequality constraint s � t or s � t) if � is grounding for

vars(s) [ vars(t) and s� = t� (respectively, s� � t� or s� � t�), where

� is interpreted as a reduction ordering. A substitution � is a solution

to a conjunction C of constraints if � is a solution to every equality or

inequality constraint in C.

◮ A constraint C is satis�able if it has a solution.

◮ Constraints C

1

and C

2

are called equivalent if they have the same sets

of solutions.
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Note that we use a di�erent equality symbol in equality constraints, in order

to emphasize that we mean the syntactic equality.

There are e�cient methods for solving ordering constraints for lexico-

graphic path orderings described e.g. in Nieuwenhuis [120] and Nieuwenhuis

and Rubio [123].

◮ We call a constrained clause a pair consisting of a clause C and a

constraint C. Such a constrained clause is be denoted by C � C. We

identify a constrained clause C � >, where > is the empty conjunction,

with the unconstrained clause C.

◮ A ground instance of a constrained clause C � C is any ground clause

C� such that the substitution � is a solution to the constraint C.

◮ We call two constrained clauses C

1

� C

1

and C

2

� C

2

equivalent , if they

have the same ground instances. A set N of constrained clauses is

satis�able if the set of all its ground instances is satis�able.

Transitivity elimination. One of the ideas of transitivity elimination in

constraint equality elimination is to introduce so-called link constraints into

transitivity elimination. For example, the equation s � t is transformed into

(t 6� x _ s � x) � (t � x ^ s � x). The names comes from the intuitive idea

that the variable x is the link variable used to simulate transitivity.

The rationale behind introducing link constraints is that the sequence of

equational replacements

s � s

0

� s

1

� : : : � s

n

� t

(using equations s

i

� s

i+1

) can be simulated by a sequence of resolution

inferences using s

i

� x

i

$ s

i+1

� x

i

, plus a �nal resolution step with the

re
exivity axiom x � x that instantiates the link variables. The ordering

constraints

1. ensure that the variables x

i

can only be instantiated by minimal terms

among the s

i

;

2. block the search for alternative equational proofs that apply the same

equations but di�er in the instantiation of the link variables.
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◮ Formally, transitivity elimination is the following transformation:

s � t ) (t 6� x _ s � x) � (t � x ^ s � x)

s 6� t ) (t 6� x _ s 6� x) � (t � x ^ s � x)

s � x ) (s � x) � (s � x)

s 6� x ) (s 6� x) � (s � x)

where t is not a variable. This transformation replaces every literal in

the clause by the corresponding literals shown after ), and adds to

the clause the corresponding constraints.

◮ The variables x introduced by the transformation are called the

link variables.

◮ Each constraint introduced by the transformation (for example

s � x is called the link constraint .

Consider again clauses (4) and (5). We have already considered how

Brand's transformation behaves on these clauses. Now we apply CEE-trans-

formation to these clauses, using any ordering in which c is the least ele-

ment. With such ordering, no ordered paramodulation is possible. CEE-

transformation yields four clauses:

(b 6� y _ c � y) � (b � y ^ c � y)

(c 6� y _ b � y) � (c � y ^ b � y)

(c 6� y _ f(y; x) 6� x) � (c � y ^ f(y; x) � x)

x � x

Note that the constraint c � y is unsatis�able and the constraint c � y

can only be satis�ed when c = y. The constraint f(y; x) � x is valid. Thus,

we can simplify the set to

c 6� c _ b � c

c 6� c _ f(c; x) 6� x

x � x

Since the set contains x � x, both occurrences of c 6� c can be removed,

yielding

b � c

f(c; x) 6� x

x � x
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No derivation by either resolution or model elimination is possible! This ex-

ample shows the power of CEE-transformation compared to Brand's trans-

formation.

The main property of CEE-transformation is preservation of satis�ability

proved in [14]:

Theorem 2.4 A set N of unconstrained equational clauses is equationally

unsatis�able if and only if the transformed set is unsatis�able.

CEE-transformation can be used by any non-equational prover by adding

constraints. The transformation without constraints is also sound and com-

plete. The least constant optimization that removed the clause containing

c � y and simpli�ed the clauses containing c � y in the example, can be

also be used by provers that do not handle constraints. In fact, this trans-

formation without constraints was described by Moser and Steinbach [119]

and used in some versions of the theorem prover SETHEO (Ibens and Letz

[89]).

Compared to Brand's transformation, CEE-transformation has the fol-

lowing advantages:

1. link constraints are added;

2. positive equations t � x are not split into x 6� y _ t � y.

The disadvantage is that negative equations t 6� s are split giving longer

clauses. Preliminary experiments with CEE-transformation [14] with the

Protein prover (Baumgartner and Furbach [16]) on certain simple problems

in group theory have shown that constraints may eliminate 99% percent of

model elimination derivations even for comparatively simple examples.

Following Bachmair, Ganzinger and Voronkov [14], we give examples that

show Brand's transformation cannot be improved by either link constraints

or non-splitting of positive literals t � x.

1. Suppose that Brand's transitivity elimination is equipped by link con-

straints. Consider an equationally unsatis�able set of unit clauses

a � b, a � c and b 6� c. We obtain the following set of constrained

clauses
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(b 6� x _ a � x) � (b � x ^ a � x)

(a 6� x _ b � x) � (a � x ^ b � x)

(c 6� x _ a � x) � (c � x ^ a � x)

(a 6� x _ c � x) � (a � x ^ c � x)

b 6� c

x � x

We show that this of set of constraint clauses is satis�able given an

ordering in which c � b � a. Indeed, the �rst and third clause contain

the unsatis�able constraint a � x and hence can be removed. The re-

maining clauses are satis�able even without the constraints. In short,

ordering constraints are not compatible with Brand's original transfor-

mations.

2. The set of three unit clauses f(x) � x, g(x) � x and f(x) 6� g(x)

is equationally unsatis�able. Suppose that we use Brand's transfor-

mation, but do not split positive equations t � x. Then we obtain a

satis�able set of clauses

f(x) � x f(x) 6� y _ x � y

g(x) � x g(x) 6� y _ x � y

f(x) 6� g(x) x � x

In short, non-splitting of positive equations is not compatible with

Brand's original transformations. Equally, we can say that constraint

equality elimination cannot be improved by non-splitting negative lit-

erals s 6� t, even if we drop constraints.

Although the modi�cation method has been proposed in the resolution

framework, it has not been widespread used. The principal in
uence of this

method on the equality reasoning was the proof of completeness of para-

modulation without functional re
exivity axioms (conjectured by Robinson

and Wos [134]). The main tool for handling equality in resolution-based

systems is paramodulation augmented with ordering restrictions and redun-

dancy deletion. At the same time, most existing implementations of sequent-

based methods with equality are based on the Brand's translation because

the known ways of handling equality in resolution has not been generalized

to sequent-based methods until very recently.
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The distinction between CEE-transformation and Brand's transformation

re
ects the progress in equality handling made for more than twenty years

(from 1975).
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3 Free variable systems

The system LK

=

, while having some nice proof-theoretical properties, is

not very suitable for automatic proof-search. The main problem lies in the


-rules, for example

�; F '[x 7! t]; F 9x'

�; F 9x'

(
)

where t can be any term. Application of such rules from conclusions to

premises create too high nondeterminism. To make LK

=

suitable for au-

tomatic proof-search, we have to introduce its free variable version, where

instead of t we substitute a variable, which during the proof-search can be in-

stantiated to some particular term t. In this section we consider two possible

ways of making LK

=

a free variable system. One gives rise to the semantic

tableaux and the other to the inverse method. We also brie
y consider the

method of matings.

3.1 Free variable tableaux

For the formalization of free variable tableaux it is not enough to give sequent-

style inference rules, like for LK

=

. Free variables are global for the whole

tableau that represents a derivation. Thus, we need to introduce a calculus

dealing with derivations. There are several ways of de�ning such calculi. One

way is to de�ne a calculus on trees, like in Fitting [64]. Another possibility is

to only deal with the multiset of branches of such trees, which gives a more

succinct formalization of inference rules (e.g. Moser, Lynch and Steinbach

[118], Plaisted [129] or Degtyarev and Voronkov [54]). In this section we

shall present such a formalization for free variable tableaux. Since we restrict

ourselves to skolemized formulas, we do not need to consider �-rules.

◮ A branch is any �nite multiset of signed formulas.

◮ A tableau is any �nite multiset f�

1

; : : : ;�

n

g of branches, denoted by

�

1

j : : : j �

n

.

◮ The tableau with n = 0 is called the empty tableau and denoted by #.

If � is a branch and X ' is a signed formula, where X 2 fT; Fg, then

�; X ' denotes the branch � [ fX 'g, and similar for X ';�.

Let � be a branch in a tableau.
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◮ The multiset of literals on �, denoted lit(�), is de�ned by

lit(�) ⇋ fA j A is an atom and T A 2 �g [

f:A j A is an atom and F A 2 �g:

◮ A branch � is called closed if lit(�) is inconsistent.

One can use any standard de�nition of inconsistency for �rst-order classical

logic. In terms of the calculus LK

=

the inconsistency means that the sequent

lit(�) ! is derivable in LK

=

. It is obvious that in a derivation of such a

sequent one can only use the rules (: !), (Ax), (re
) and (�). For logic

without equality, the inconsistency is equivalent to the condition that lit(�)

contains a pair of complementary literals A and :A. For logic with equality,

a criterion for inconsistency is given in Theorem 3.4 below.

◮ The tableau calculus TK is given in Figure 7 (compare it with LK

=

in

the form using signed formulas);

◮ �-, �-, 
-, and :-rules are called the tableau expansion rules;

◮ the rule (abc) is called the atomic branch closure rule.

Compairing the calculus TK introduced above with the calculus LK

=

for signed formulas, we note the following. First, TK operates multisets

of multisets of formulas (trees) and not multisets of formulas (branches) as

LK

=

. So derivations in TK are always linear and not tree-like as in LK

=

.

Second, applications of TK-inference rules correspond to counterapplications

(from the conclusion to the premises) of LK

=

-inference rules.

The following version of Herbrand theorem forms the theoretical basis for

the tableau method:

Theorem 3.1 Let ' be a closed formula. It is provable in classical logic if

and only if there is a tableau T obtained from F ' by applications of tableau

expansion rules and a substitution � such that any branch in T � is closed.

Theorem 3.1 suggests the following way of proving ': starting with F ',

we construct a tableau by some applications of the tableau expansion rules.

Then, we try to �nd the substitution � that makes all branches in the tableau

closed. In the case without equality, this theorem and standard lifting yield

the following theorem:
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�

1

; T ' ^  j : : : j �

n

�

1

; T '; T  j : : : j �

n

(�)

�

1

; F ' ^  j : : : j �

n

�

1

; F ' j �

1

; F  j : : : j �

n

(�)

�

1

; T ' _  j : : : j �

n

�

1

; T ' j �

1

; T  j : : : j �

n

(�)

�

1

; F ' _  j : : : j �

n

�

1

; F '; F  j : : : j �

n

(�)

�

1

; T ' �  j : : : j �

n

�

1

; F ' j �

1

; T  j : : : j �

n

(�)

�

1

; F ' �  j : : : j �

n

�

1

; T '; F  j : : : j �

n

(�)

�

1

; T :' j : : : j �

n

�

1

; F ' j : : : j �

n

(:)

�

1

; F :' j : : : j �

n

�

1

; T ' j : : : j �

n

(:)

T 8x' j : : : j �

n

�

1

; T '[x 7! z];�

1

; T 8x'; j : : : j �

n

(
)

F 9x' j : : : j �

n

�

1

; F '[x 7! z];�

1

; F 9x'; j : : : j �

n

(
)

�

1

; T A; F B j �

2

j : : : j �

n

(�

2

j : : : j �

n

)mgu(A;B)

(abc)

In both rules (
) the variable z does not occur in the premise. In the rule

(abc) the formulas A and B are atomic formulas whose predicate symbol is

di�erent from �.

Figure 7: Calculus TK,

Theorem 3.2 Let � be a closed formula without equality. It is provable in

classical logic if and only if there is a derivation in TK of the empty tableau

# from the tableau F �.

For logic with equality the situation is more complicated because there is no

simple criterion of inconsistency of a branch.

Theorem 3.1 suggests the following notion (coming back to Chang and

Lee [95]).

◮ A branch � is called substitutively inconsistent if there is a substitution

� such that lit(�)� is inconsistent.
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◮ A tableau �

1

j : : : j �

n

is called substitutively inconsistent if there is a

substitution � such that for every i 2 f1; : : : ; ng the multiset lit(�

i

)�

is inconsistent.

In order to illustrate Theorem 3.1 for logic with equality, we come back

to Example 1.3.

Now, we represent derivation in TK as trees with signed formulas (i.e.

as semantic tableau in the common meaning).

Example 3.3 Consider again the formula of Example 1.3. After some appli-

cation of tableau expansion rules we obtain the free variable tableau shown

in Figure 8. This tableau has two branches. The multisets of literals on the

two branches are, respectively

fa � b; g(x; u; v) 6� g(y; fc; fd)g and

fc � d; g(u; x; y) 6� g(v; fa; fb)g:

(10)

The tableau is substitutively inconsistent: the substitution [x 7! fa; y 7!

fb; u 7! fc; v 7! fd] makes both branches closed.

To demonstrate that a branch is closed, we have to be able to check a

multiset of literals L for inconsistency. To give a characterization of incon-

sistency for �rst-order logic with equality, we introduce some de�nitions. Let

E be a multiset of equations and L

1

; L

2

be terms or literals.

◮ We write L

1

$

E

L

2

if there exists an equation (s � t) 2 E such that

L

1

is L[s] and L

2

is L[t]. We denote by$

�

E

the re
exive and transitive

closure of $

E

.

The following statement characterizes inconsistency of a multiset of liter-

als:

Theorem 3.4 Let L be a multiset of literals and E(L) be the multiset of

equations in L. Then the following conditions are equivalent:

1. L is inconsistent;

2. either there is a literal (s 6� t) 2 L such that s $

�

E(L)

t, or there are

non-equality literals A;:B 2 L such that A$

�

E(L)

B.
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F 9xyuv((a � b � g(x; u; v) � g(y; fc; fd))^ (c � d � g(u; x; y) � g(v; fa; fb)))

F 9yuv((a � b � g(x; u; v) � g(y; fc; fd))^ (c � d � g(u; x; y) � g(v; fa; fb)))

F 9uv((a � b � g(x; u; v) � g(y; fc; fd))^ (c � d � g(u; x; y) � g(v; fa; fb)))

F 9v((a � b � g(x; u; v) � g(y; fc; fd))^ (c � d � g(u; x; y) � g(v; fa; fb)))

F (a � b � g(x; u; v) � g(y; fc; fd))^ (c � d � g(u; x; y) � g(v; fa; fb))

F a � b � g(x; u; v) � g(y; fc; fd)) F c � d � g(u; x; y) � g(v; fa; fb)

T a � b

F g(x; u; v) � g(y; fc; fd))

T c � d

F g(u; x; y) � g(v; fa; fb)

Figure 8: A free variable tableau derivation
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The inconsistency can be checked using any congruence closure algorithm

(e.g. Shostak [142]). However, the real question is how to close tableau

branches for a given free variable tableau. This questions leads to simulta-

neous rigid E-uni�cation considered in Section 5.

3.2 Matings

In this section we brie
y discuss the method of matings which can be con-

sidered as another formalization of proof-search in a free-variable sequent

calculus.

Let us come back to the formula of Example 1.3. The tableau constructed

in Example 3.3 can be represented as a matrix in the method of matings as

shown in Figure 9. For a better illustration, we also show the construction

of the matrix. After translation to the negation normal form, the negation

of the input formula becomes 8xyuv((a � b^ g(x; u; v) 6� g(y; fc; fd))_ (c �

d^g(u; x; y) 6� g(v; fa; fb))). From this formula, we can perform the sequence

of steps shown in Figure 9. The matrix in the �gure has two vertical paths

which are precisely the multisets in (10).

In general, for every matrixM consisting only of literals we can construct

a tableau T such that the multiset of vertical paths in M is the multiset of

multisets of literals on the branches of T . Methods and algorithms described

in this paper work on tableaux represented as multisets of branches. To mod-

ify them for the connection format, one has to imagine matrices as multisets

of branches

3

.

A detailed explanation of equational matings can be found in Gallier,

Raatz, and Snyder [73], Gallier et.al. [70] or Gallier [68].

3.3 The inverse method

Derivations in the free variable tableau system correspond to the backward

(i.e. from conclusions to premises) proof-search in LK

=

. There is an orthog-

onal method of forward proof-search in LK

=

which gives rise to the inverse

method. Forward proof-search starts with axioms and tries to derive the

goal formula. The whole idea of the forward direction of proof-search seems

at the �rst sight strange. But in the case of sequent calculi, the possibility

3

Some rules formulated below, for example tableau paramodulation or superposition,

have a convenient presentation on tableaux but have no straightforward analogue for

matrices.
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of such proof-search direction is based on some proof-theoretic properties of

LK

=

, most notably

◮ the subformula property : for every derivation � of a formula �, all

sequents occurring in � consist of formulas of the form '�, where ' is

a subformula of �.

This property together with the use of free variables gives rise to a proof-

search method originally described by Maslov [106, 108, 110]. Since the

inverse method is much less known than the tableau method, we describe in

this section a version of the inverse method for logic without equality.

Our formalization of the inverse method will mainly follow Voronkov

[155]. Some other recent formalizations may be found in Lifschitz [98], Tam-

met [147]. In this section, we only formalize the inverse method for logic

without equality. The inverse method for logic with equality is considered

in Section 8.3. Given a closed formula � as the goal, the inverse method

constructs a logical system IK

�

which is a specialization of LK

=

intended

for proving �. This calculus works on sequents that consist of formulas '�

such that ' is a subformula of �.

For simplicity, we assume that � is in the skolemized negation normal

form and give a calculus consisting of the rules (_), (^) and (9), like the

calculus of Figure 6. Before de�ning IK

�

, we de�ne some operations related

to substitutions.

Let s; t be terms.

◮ A weak most general uni�er of s; t denoted wmgu(s; t) is a pair of

substitutions (��; �) such that � is a renaming substitution, s� and t

have no common variables, and � is a most general uni�er of s� and t.

◮ A most general uni�er of substitutions �

1

; �

2

, denoted mgu(�

1

; �

2

),

is a substitution � de�ned as follows. Let fx

1

; : : : ; x

n

g = dom(�

1

) [

dom(�

2

). Then � is any simultaneous most general uni�er of tuples

hx

1

�

1

; : : : ; x

n

�

1

i and hx

1

�

2

; : : : ; x

n

�

2

i.

◮ We denote by �

�x

the substitution de�ned as follows. For every variable

y,

y�

�x

⇋

�

x; if x = y;

y�; otherwise
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Using these notions, we de�ne the calculus IK

�

formalizing the inverse

method in the following way.

◮ Sequents in the calculus IK

�

consist of formulas '� such that ' is a

subformula of � and all variables in dom(�) are free variables of '.

◮ The calculus IK

�

is given in Figure 10.

Consider an example on an inverse method proof of the formula

9x9y8z(P (x) _ P (y) � P (z)):

After skolemization and translation into the negation normal form we obtain

the formula � = 9x9y((:P (x) ^ :P (y)) _ P (f(x; y))). An IK

�

-derivation of

� is given in Figure 11.

As related to proof-search, there are several terms to distinguish the

tableau method from the inverse method:

Tableau method Inverse method

bottom-up top-down (proof-theoretic terminology)

top-down bottom-up (search-related terminology)

backward forward

direct indirect

goal-oriented inverse

analytic non-analytic

nonlocal local

The inverse method for classical logic can be simulated by hyperresolution

using a structure-preserving clause-form translation that has been described

in various forms in Maslov [109], Eder [61], Plaisted and Greenbaum [130]

and Boy de la Tour [32]. We consider an example in Section 8.3.
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8xyuv((a � b ^ g(x; u; v) 6� g(y; fc; fd)) _

(c � d ^ g(u; x; y) 6� g(v; fa; fb)))

)

8yuv((a � b ^ g(x; u; v) 6� g(y; fc; fd)) _

(c � d ^ g(u; x; y) 6� g(v; fa; fb)))

)

8uv((a � b ^ g(x; u; v) 6� g(y; fc; fd)) _

(c � d ^ g(u; x; y) 6� g(v; fa; fb)))

)

8v((a � b ^ g(x; u; v) 6� g(y; fc; fd)) _

(c � d ^ g(u; x; y) 6� g(v; fa; fb)))

)

(a � b ^ g(x; u; v) 6� g(y; fc; fd)) _

(c � d ^ g(u; x; y) 6� g(v; fa; fb))

)

�

a � b ^ g(x; u; v) 6� g(y; fc; fd) c � d ^ g(u; x; y) 6� g(v; fa; fb)

�

)

� �

a � b

g(x; u; v) 6� g(y; fc; fd)

�

c � d ^ g(u; x; y) 6� g(v; fa; fb)

�

)

� �

a � b

g(x; u; v) 6� g(y; fc; fd)

� �

c � d

g(u; x; y) 6� g(v; fa; fb)

� �

Figure 9: Matings
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A�

1

;:B�

2

(Ax)

�; '�

�; (' _  )�

(_)

�;  �

�; (' _  )�

(_)

�; '�

1

�;  �

2

(�;�; '�

1

^  �

2

)mgu(�

1

; �

2

)

(^)

�; '�

1

; '�

2

(�; '�

1

)mgu(�

1

; �

2

)

(fac)

�; '�

�; (9x')�

�x

(9)

In the rule (Ax), A and :B are subformulas of � and (�

1

; �

2

) = wmguA;B. In the other rules, the formulas

' ^  , ' _  and 9x' are subformulas of �.

Figure 10: Calculus IK

�

:P (x)[x 7! f(x; y)]; P (f(x; y))

(Ax)

:P (y)[y 7! f(x; y)]; P (f(x; y))

(Ax)

(:P (x)[x 7! f(x; y)] ^ :P (y)[y 7! f(x; y)]; P (f(x; y)); P (f(x; y)))"

(^)

((:P (x) ^ :P (y)) _ P (f(x; y)))[x 7! f(x; y); y 7! f(x; y)]; P (f(x; y)); P (f(x; y))

(_)

9x9y((:P (x) ^ :P (y)) _ P (f(x; y))); P (f(x; y)); P (f(x; y))

(9)

9x9y((:P (x) ^ :P (y)) _ P (f(x; y))); P (f(x; y))

(fac)

9x9y((:P (x) ^ :P (y)) _ P (f(x; y))); ((:P (x) ^ :P (y)) _ P (f(x; y)))"

(_)

9x9y((:P (x) ^ :P (y)) _ P (f(x; y))); 9x9y((:P (x) ^ :P (y)) _ P (f(x; y)))

(9)

9x9y((:P (x) ^ :P (y)) _ P (f(x; y)))

(fac)

Figure 11: An IK

�

-derivation
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4 Early history

Cut-free sequent calculi for �rst-order logic introduced by Gentzen [76] turned

out to be an important tool for investigating basic proof-theoretic problems

(e.g. Gentzen [77] and Girard [79]). It has also been realized that sequent

systems give a convenient tool for designing proof-search algorithms.

One of the �rst sequent-based proof procedures has been proposed by

Kanger [90] independently of the more known papers of Beth [27, 26] (the

monograph [90] is based on lectures made in Stockholm University in 1955).

The distinctive features of the calculi used in Kanger [90, 91] are the ab-

sence of structure rules and invertibility of all inference rules (calculi with

similar properties have been studied in Matulis [113, 114] and Curry [35]).

Antecedents and succedents of sequents in Kanger's calculi are multisets of

formulas. Invertibility of rules allowed Kanger to prove completeness \by

means of arguments which are new in some respect and which involve a new

turn to the notion of validity". This means that if a sequent S is unprovable,

then any derivation tree for S has a branch containing a countermodel for

S.

Search for a countermodel is the basis for the tableau method developed

by Beth [27, 26]. In [26] Beth noted that his tableau calculus F can equiva-

lently be described as a sequent calculus similar to the Kleene's G3 [92]. In

fact, the tableau calculus of Beth was even more similar to the calculus of

Kanger [90].

As far as we know, the �rst sequent-based proof system for logic with

equality has been proposed and implemented by Wang [162]. Equality has

been axiomatized by one axiom

�! �; t � t

and one inference rule

�; t � s! �[x 7! s]

�; t � s! �[x 7! t]

The �rst extensive analysis of sequent calculi for equational logic have

been made in Kanger [91] and in the papers of the Leningrad group of math-

ematical logic (Rogava [137], Lifschitz [96, 97], Orevkov [125] and Pliu�skevi-

�ciene [131]). The main rule for handling equality used by Kanger is based on

the simultaneous replacement of all occurrences of the same subterm:
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s � t;�

s

t

! �

s

t

s � t;�! �

where �

s

t

denotes the result of the simultaneous replacement of all occurrences

of the term s by t in �. This rule is close to simultaneous paramodulation of

Benanav [25]. It is notable that the system with simultaneous paramodula-

tion has the lifting property.

Kanger [91] also introduced some restrictions on derivations that are in-

teresting from the viewpoint of the current knowledge of the area. First, he

only allowed nonincreasing applications of the above equality rule, i.e. appli-

cations in which the depth of t is not greater than the depth of s. Second,

he restricted himself to regular derivations only.

Lifschitz [96, 97] and Orevkov [125] considered some extravagant ways

of orientation of equations. For example, Orevkov [125] oriented equations

using any asymmetric binary relation R. The replacement of s by t using

s � t has only been allowed when it is not true that sRt.

In addition to the brilliant

4

formalization of equality, the free variable sys-

tem of Kanger used a new strategy for instantiating variables in the applica-

tions of 
-rules (i.e. the rules (! 9) and (8 !)). His strategy of instantiating

variables is based on two ideas: the use of free variables and instantiation of

free variables by terms already occurring in the derivation.

Free variables used by Kanger have been originally introduced by Prawitz

[132] for logic without equality. The idea is to introduce a new kind of

variables (called \dummies" in both Prawitz [132] and Kanger [91]), and

to delay instantiation of these variables until necessary information for it is

obtained. Comparing this approach to an earlier work of Beth [26], Prawitz

[132] noted: \the solution proposed here is quite di�erent but well-suited for

mechanical use". This method was independently proposed in Russia by N.

Shanin in 1962 (see [106]) and has been characterized as the \metavariable

method" in Maslov, Mints and Orevkov [112]. Information for instantiation

is provided by constructing an uninstantiated proof, and checking from time

to time whether one can �nd values for dummies which make it a valid proof.

In Kanger [91] this check is reduced to verifying that the top sequents are

\directly demonstrable", i.e. can be obtained from axioms by applications of

equality rules. The possibility of applying all equality rules before all other

4

Brilliant, since Kanger has anticipated many tendencies used in the modern methods

of handling equality in automated deduction.
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rules has also been demonstrated in Orevkov [125] and used in Maslov [107].

Dummies or metavariables have later been called \free variables" in Fit-

ting [64]. For instantiation of dummies, or free variables, Kanger [91] pro-

posed an approach later called minus-normalization in Maslov and Mints

[111]. According to this approach, instantiation of variables in the applica-

tions of 
-rules from the conclusion to the premise is made only by ground

terms explicitly occurring in the conclusion. This method is complete for

�rst-order logic. However, for a language with function symbols minus-

normalization is interesting mostly theoretically. Even in simplest cases,

minus-normalization requires a huge number of instantiations. For example,

in the tableau of Example 1.3, we have to consider 8

4

possible instantiations

of variables x; y; u; v by terms in the set fa; b; c; d; fa; fb; fc; fdg. Moreover,

the use of minus-normalization can lead to considerable growth of derivations.

Some results on minus-normalization are proved in Norgela [124].

In the modern terminology, we can say that minus-normalization gives an

incomplete (but terminating) algorithm for simultaneous rigid E-uni�cation

discussed in Section 5.

For free variable tableaux, more practical way of instantiating variables is

the introduction of uni�cation in inference rules, for example branch closure

rules considered in subsequent sections. Fitting [65] writes

It occurred independently to several people that free variables could

be used instead, in a way that gave an important role to uni�cation.

Results considered in this section provided the proof-theoretic basis for

further research in sequent calculi with equality. Further research introduced

methods based on simultaneous rigid E-uni�cation and variants of rigid pa-

ramodulation considered in Sections 6 and 7.
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5 Rigid E-uni�cation

In Section 3 we considered the free variable version TK of semantic tableaux

(in fact, without equality). In this section we consider the problem of in-

stantiating free variable semantic tableaux with equality which gives rise to

simultaneous rigid E-uni�cation introduced by Gallier, Raatz and Snyder

[72]. In Section 5.1 we de�ne simultaneous rigid E-uni�cation and show how

it arises in semantic tableaux with equality. In Section 5.2 we consider some

properties of simultaneous rigid E-uni�cation.

5.1 Simultaneous rigid E-uni�cation

The actual problem in the tableau-based theorem proving with equality, as

established by Theorem 3.1, is the problem of �nding a substitution that

makes all tableau branches closed. The problem of �nding such a substitu-

tion, together with Theorem 3.4, leads to simultaneous rigid E-uni�cation.

Simultaneous rigid E-uni�cation arises after we �xed, according to Theo-

rem 3.4, a literal s 6� t or two literals A;:B on every branch of a tableau.

Let us give formal de�nitions.

◮ A rigid equation is an expression of the form E `

8

s � t, where E

is a �nite set of equations and s; t are terms. The set E is called the

left-hand side of this rigid equation, and s � t is called its right-hand

side.

◮ A solution to such a rigid equation is any substitution � such that

E� ` s� � t�. A rigid equation is solvable if it has a solution.

◮ The rigid E-uni�cation problem is the problem of determining whether

a given rigid equation is solvable.

In other words, � is a solution to a rigid equation E `

8

s � t if and only if

the set E� [ fs� 6� t�g is inconsistent.

◮ A system of rigid equation is any �nite set of rigid equations;

◮ A solution to a system R of rigid equations is any substitution which

is a solution to every rigid equation in R;
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◮ The simultaneous rigid E-uni�cation problem is the problem of deter-

mining whether a given system of rigid equations possesses a solution.

In Example 3.3, to close all branches in the tableau, we had to �nd a sub-

stitution � such that the following two multisets of literals are inconsistent:

fa � b; g(x; u; v)� 6� g(y; fc; fd)�g;

fc � d; g(u; x; y)� 6� g(v; fa; fb)�g:

(11)

This (simultaneous) inconsistency problem can be expressed through the

system of two rigid equations:

a � b `

8

g(x; u; v) � g(y; fc; fd);

c � d `

8

g(u; x; y) � g(v; fa; fb):

(12)

This system of rigid equations has one solution [x 7! fa; y 7! fb; u 7! fc; v 7!

fd]. In order to check it, we should verify

a � b ` g(fa; fc; fd) � g(fb; fc; fd);

c � d ` g(fc; fa; fb) � g(fd; fa; fb):

In general, there can be more than one system of rigid equations, each of

whom expressing that all branches in a tableau are closed. For example, for

the tableau

T a � b; F b � c; F a � x j T P (x); F P (b)

we can construct two systems of rigid equations expressing its inconsistency:

a � b `

8

b � c

`

8

x � b

and

a � b `

8

a � x

`

8

x � b

Simultaneous rigid E-uni�cation was introduced in Gallier, Raatz and

Snyder [72] who hoped that the problem is decidable. The terminology

\simultaneous rigid E-uni�cation" can be explained as follows. The word

\rigid" is introduced to distinguish rigid E-uni�cation from E-uni�cation.

The latter problem can be formulated as follows. Given a (�nite) set of equa-

tions E = fs

1

� t

1

; : : : ; s

n

� t

n

g and the equation s � t, �nd a substitution

� such that 8(s

1

� t

1

); : : : ; 8(s

n

� t

n

) ` s� � t�. For rigid E-uni�cation, we

50



try to �nd a substitution � such that ` 8(s

1

� � t

1

� ^ : : : ^ s

n

� � t

n

� � s� �

t�).

In E-uni�cation, all variables in the equations s

i

� t

i

are treated as

universal, while all variables in rigid equations are rigid : if we substitute a

term for a variable in any part of a rigid equation, we must substitute it in

the whole rigid equation. The word \simultaneous" means that we have to

�nd a simultaneous solution to several rigid equations.

Consider an example rigid equation x �y � y �x `

8

a � (b �a) � (a � b) �a. It

has no solutions. However, we have 8x8y(x � y � y �x) ` a � (b � a) � (a � b) � a,

and hence the terms a � (b � a) and (a � b) � a are E-uni�able with respect to

the equality theory E = fx � y � y � xg.

Surprisingly, rigid variables in the context of resolution theorem proving

have been used much earlier by Chang [34] and Chang and Lee [95] in their

V -resolution and V -paramodulation rules. Chang and Lee tried to use rigid

variables in order to capture Prawitz's procedure by resolution and to formal-

ize the idea of reasoning with bounded resources. Later, V -paramodulation

have been described as rigid paramodulation by Plaisted [129]. We consider

resolution-based theorem proving with rigid variables in Section 7.3.

5.2 Undecidability and other properties of simultane-

ous rigid E-uni�cation

Gallier, Raatz and Snyder [72] introduced simultaneous rigid E-uni�cation

and asked whether this problem is decidable. Several papers published in

1988{1992 [71, 69, 70, 68, 82] described faulty proofs of the decidability. Fi-

nally, in 1995 the problem was proved to be undecidable in Degtyarev and

Voronkov [52] by reduction of monadic semi-uni�cation whose undecidabil-

ity was proved by Baaz [5]. More comprehensive proofs of the undecidability

appeared in Degtyarev and Voronkov [51, 57] by reduction of second-order

uni�cation whose undecidability was proved by Goldfarb [80] and in Degt-

yarev and Voronkov [56] by reduction of tenth Hilbert's problem. We shall

brie
y explain the ideas of the undecidability proof of Degtyarev and Voron-

kov [51, 57] and consider further results on simultaneous rigid E-uni�cation

below.

This undecidability proof is also interesting because it gives an encoding

of second-order uni�cation by simultaneous rigid E-uni�cation. We shall

present second-order uni�cation here informally, for more detail see Goldfarb
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[80] or Degtyarev and Voronkov [51, 57]. Second-order uni�cation can be

considered as a formalization of application of substitutions to terms.

Second-order uni�cation di�ers from ordinary uni�cation by the use of

second-order variables. A second-order variable x may occur in terms in the

form x(t

1

; : : : ; t

n

). Second-order substitutions substitute for such variables

�-terms of the form �w

1

: : : w

n

:t, where t is any �rst-order term. The appli-

cation of the substitution [x 7! �w

1

: : : w

n

:t] to the term x(t

1

; : : : ; t

n

) yields

the term t[w

1

7! t

1

; : : : ; w

n

7! t

n

]. Ordinary �rst-order variables can be

considered as second-order variables of 0 arguments.

An example of a second-order uni�cation problem is f(z(y(a))) � z(y(b)).

By introduction of new variables, any such problem can be reduced to a set of

equations of the form x(t

1

; : : : ; t

n

) � t, where n � 0 and t; t

1

; : : : ; t

n

are �rst-

order terms. For example, the second-order equation f(z(y(a))) � z(y(b))

can be reduced to the following set of equations:

fy(a) � u

1

; z(u

1

) � u

2

; y(b) � u

3

; z(u

3

) � f(u

2

)g:

Consider the following second-order equation

x(y; g(y)) � f(g(z); a; y): (13)

We will be interested in its ground solutions, i.e. in solutions � such that

x�; y�; z� are ground terms. We also assume that we are looking for its solu-

tions in the signature ff; g; a; bg. Among ground solutions to this equation

are the following:

[x 7! �w

1

w

2

:f(g(b); a; b); y 7! b; z 7! b]; (14)

[x 7! �w

1

w

2

:f(w

2

; a; w

1

); y 7! b; z 7! b]; (15)

[x 7! �w

1

w

2

:f(w

2

; w

1

; a); y 7! a; z 7! a]; (16)

[x 7! �w

1

w

2

:f(w

1

; a; g(b)); y 7! g(b); z 7! b]: (17)

In order to encode second-order uni�cation, one can use the following

properties of simultaneous rigid E-uni�cation (Degtyarev and Voronkov [51,

57]). First, one can express the property of being a ground term of a given

signature G having at least one constant c. Let t be any term. Introduce the

following rigid equation:
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Gr(t;G) ⇋ ff(c; : : : ; c) � c j f 2 Gg `

8

t � c:

We have

Lemma 5.1 A substitution � is a solution to Gr(t;G) if and only if t� is a

ground term of the signature G.

In a similar way, one can represent all regular sets (Goubault [82], Plaisted

[129] and Veanes [148]).

Second, simultaneous rigid E-uni�cation can represent application of

substitutions. We shall temporarily use the substitution notation [c

1

7!

t

1

; : : : ; c

n

7! t

n

], where c

i

are constants, to denote the operation of the si-

multaneous replacement of all occurrences of c

i

by t

i

. Representation of

substitutions is based on the following property of equational logic:

Lemma 5.2 Let c

1

; : : : ; c

n

be pairwise di�erent constants and t

1

; : : : ; t

n

be

�rst order terms such that c

i

does not occur in t

j

for all i; j 2 f1; : : : ; ng.

Then c

1

� t

1

; : : : ; c

n

� t

n

` s

1

� s

2

if and only if s

1

[c

1

7! t

1

; : : : ; c

n

7! t

n

] =

s

2

[c

1

7! t

1

; : : : ; c

n

7! t

n

].

This lemma and Lemma 5.1 are enough to represent second-order uni�ca-

tion. Indeed, consider any second-order equation of the form x(t

1

; : : : ; t

n

) � t

in a signature G. Let c

1

; : : : ; c

n

be new constants. Consider be the following

system R of rigid equations:

Gr(t

1

;G);

� � �

Gr(t

n

;G);

Gr(t;G);

Gr(x;G [ fc

1

; : : : ; c

n

g);

c

1

� t

1

; : : : ; c

n

� t

n

`

8

x � t:

Let � be any substitution. Consider when � solves this system of rigid equa-

tions. By Lemma 5.1, all terms t

1

�; : : : ; t

n

�; t� are ground terms in the

signature G, and x� is a ground term in G [ fc

1

; : : : ; c

n

g. Since c

1

; : : : ; c

n

do not occur in t

1

�; : : : ; t

n

�; t�, we can apply Lemma 5.2 to the last rigid

equation in R, obtaining

x�[c

1

7! t

1

�; : : : ; c

n

7! t

n

�] = t�:
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Let � = [x

1

7! s

1

; : : : ; x

m

7! s

m

; x 7! s]. It is easy to see that � is a solution

toR if and only if the substitution [x

1

7! s

1

; : : : ; x

m

7! s

m

; x 7! �c

1

: : : c

n

:s] is

a solution to x(t

1

; : : : ; t

n

) � t. Thus, we can encode second-order uni�cation

in simultaneous rigid E-uni�cation in a natural way.

If we apply this encoding to second order equation (13), we obtain the

following set of rigid equations:

f(a; a; a) � a; g(a) � a; b � a `

8

y � a;

f(a; a; a) � a; g(a) � a; b � a `

8

z � a;

f(a; a; a) � a; g(a) � a; b � a; c

1

� a; c

2

� a `

8

x � a;

c

1

� y; c

2

� g(y) `

8

x � f(g(z); a; y):

Some solutions to this system of rigid equations are

[x 7! f(g(b); a; b); y 7! b; z 7! b];

[x 7! f(c

2

; a; c

1

); y 7! b; z 7! b];

[x 7! f(c

2

; c

1

; a); y 7! a; z 7! a];

[x 7! f(c

1

; a; g(b)); y 7! g(b); z 7! b]:

The reader can compare them with solutions (14){(17) of the original second-

order equation. Other relations between second-order uni�cation and simul-

taneous rigid E-uni�cation are discussed in Veanes [151].

Although the undecidability result for simultaneous rigid E-uni�cation

seems to diminish the value of this notion, it has some other applications.

In [69] Gallier et.al. noted that \rigid E-uni�cation and Girard's linear logic

[78] share the same spirit". The further development of results concerning

simultaneous rigid E-uni�cation has shown its close connections to a remark-

able number of problems in logic with equality. Let us brie
y review some

of these results.

The undecidability of simultaneous rigid E-uni�cation implies the unde-

cidability of the following problems:

1. 9

�

-fragment of intuitionistic logic with equality , and also the prenex

fragment of intuitionistic logic with equality (Degtyarev and Voronkov

[56]). This result is interesting because both these fragments for intu-

itionistic logic without equality are decidable and PSPACE-complete

(Degtyarev and Voronkov [53], Voronkov [157]).

2. the Herbrand skeleton problem (in the terminology of Voda and Komara

[152]) is the following series of decision problems, for every natural
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number n. Given a formula 9�x'(�x), do there exist sequences of terms

�

t

1

; : : : ;

�

t

n

such that the formula '(

�

t

1

) _ : : : _ '(

�

t

n

) is provable. This

problem naturally arises from the Herbrand theorem: a formula 9�x'(�x)

is provable if and only if there exists a natural number n and sequences

of terms

�

t

1

; : : : ;

�

t

n

such that the formula '(

�

t

1

)_ : : :_'(

�

t

n

) is provable.

3. skeleton instantiation problem (also considered in Section 9): given a

formula and a derivation skeleton, is there a derivation of this formula

with this skeleton.

and some similar problems (see Degtyarev, Gurevich and Voronkov [43], Vo-

ronkov [161].

The undecidability of simultaneous rigid E-uni�cation posed a problem

of its replacement by other techniques. These techniques will be considered

in Sections 6 and 7. However, in some cases automated reasoning with si-

multaneous rigid E-uni�cation is still possible, because of the decidability

of some its fragments. In fact, the (un)decidability of simultaneous rigid E-

uni�cation depends on the signature F . We formulate some results related

to special cases of simultaneous rigid E-uni�cation:

1. Gallier et.al. [71] proved the decidability and NP-completeness of rigid

E-uni�cation. Although it is an interesting result by itself, it does not

contribute much to automated reasoning problems because practical

problems usually give rise to the simultaneous case.

2. Degtyarev, Matiyasevich and Voronkov [45] note that the function-free

fragment of simultaneous rigid E-uni�cation is NP -complete.

3. Degtyarev, Matiyasevich and Voronkov [45] prove the decidability of si-

multaneous rigid E-uni�cation in the language with one unary function

symbol and any number of constants (which implies the decidability of

all problems mentioned above for this language). The complexity of this

fragment is unknown since the proof uses a reduction to the Diophan-

tine problem for addition and divisibility (Beltyukov [24], Mart'janov

[105] and Lipshitz [99]) whose complexity is now known (Lipshitz [100]).

4. The decidability of simultaneous rigid E-uni�cation in the signature

F with only unary function symbols is an open problem. It is known

(Degtyarev, Matiyasevich and Voronkov [45]) that it is decidable in
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any such signature if and only if it is decidable in the signature with

two unary function symbols and any number of constants. In addition,

the word equation problem (Makanin [104]) has a simple reduction to

simultaneous rigid E-uni�cation in such signatures. (It is easy to show

such a reduction by modifying the encoding of second-order uni�cation

considered above to the case of unary function symbols.) Gurevich and

Voronkov [83, 84] proved that simultaneous rigid E-uni�cation in the

case of unary function symbols is equivalent to an extension of word

equations.

5. Simultaneous rigid E-uni�cation with ground left-hand sides is unde-

cidable (Plaisted [129]).

6. Veanes [149, 150] improved this results by showing that the simul-

taneous rigid E-uni�cation is undecidable even in the case of one bi-

nary function symbol, one constant, two variables and ground left-hand

sides.

7. Degtyarev et.al. [41, 42] proved that simultaneous rigid E-uni�cation

with one variable is decidable.

We do not give details and techniques used in these results because many

of them are quite nontrivial. For a more thorough discussion see Voronkov

[161]. An analysis of �rst-order theorem proving based on rigid variables may

be found in Voronkov [160].

5.3 Other works

The �rst procedure for rigid E-uni�cation described in Gallier et.al. [71] has

not been intended as an e�cient procedure for rigid E-uni�cation, but rather

as a proof of its NP-completeness. Later, several papers described other

algorithms for rigid E-uni�cation (Goubault [81], Beckert [18], Becher and

Petermann [17] and De Kogel [37]). These algorithms have been presented

as either more e�cient or more simple than the original algorithm of Gallier

et.al. The interest in papers on (non-simultaneous) rigid E-uni�cation has

been motivated by two reasons.

First, such algorithms were used in implementations of tableau provers

with equality (for example, Beckert [18], Petermann [127] and Beckert [21]).
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Unlike Gallier et.al.'s procedure, procedures of these papers use in�nite sets

of solutions or are non-terminating.

Second, for a long time there have been a hope to construct a decision

procedure for simultaneous rigid E-uni�cation by using �nite complete sets of

minimal solutions to rigid equations, maybe by changing the notion of a min-

imal solution. The undecidability result for simultaneous rigid E-uni�cation

has shown that this is not possible.

Moreover, it is hard to expect that there are decidable fragments of simul-

taneous rigid E-uni�cation with a reasonably low complexity bound, except

for the function-free fragment. Hence, such decision procedures are hardly

interesting for theorem proving in classical logic. However, such procedures

and a semi-decision procedure for simultaneous rigid E-uni�cation are of a

de�nite interest in connection with theorem proving in nonclassical predicate

logics with equality, as explained in Section 9.

There are papers which de�ne and study so-called mixed E-uni�cation

where some variables are treated as rigid and some as universal (Beckert [18,

20, 21]. It is proposed to apply it in the situation when there are \formulas

universal on a branch with respect to a variable".

Two main sources of references to results on rigidE-uni�cation are Veanes

[149] and Voronkov [161].
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6 Incomplete procedures for rigid E-uni�ca-

tion

In this chapter we describe an incomplete procedure for simultaneous rigid

E-uni�cation which is complete for theorem proving in �rst-order logic. This

procedure has been originally introduced in Degtyarev and Voronkov [58].

In this chapter all formulas are assumed to be skolemized, i.e., contain no

positive occurrences of 8 or negative occurrences of 9.

6.1 Gallier et.al.'s procedure: merits and problems

Gallier et.al. [71, 69, 70, 68] have shown how to use rigid E-uni�cation in

conjunction with equational matings. A corresponding formal description of

a procedure is given, for example in Gallier et.al. [70]. This procedure is

based on the following premises:

1. For every rigid equation there exists a �nite complete set of minimal

solutions. This set is �nite and can be computed by some terminating

algorithm.

2. For every solvable system S of rigid equations, some of its solutions can

be found incrementally (rigid-equation-wise) by a consecutive combi-

nation of �nite complete sets of solutions for components of S.

Unfortunately, the second premise happened to be false, as noted in Becher

and Petermann [17]. To illustrate Gallier et.al.'s procedure, we introduce one

de�nition. Let � be a tableau branch.

◮ The set of rigid equations on � is de�ned in the following way. A

rigid equation E `

8

s � t is on � if E = fs

0

� t

0

j (T s

0

� t

0

) 2 �g and

(F s � t) 2 �. (This de�nition is equivalent to the one given by Beckert

and H�aehnle [22].)

Consider again Example 3.3. Gallier et.al.'s procedure would select one

of the branches, for example the left one, and one rigid equation on that

branch. In our case, there are two such rigid equations: `

8

g(x; u; v) �

g(y; fc; fd) and a � b `

8

g(x; u; v) � g(y; fc; fd). These rigid equations

have the same complete set of minimal solutions consisting of one substitu-

tion [x 7! y; u 7! fc; v 7! fd]. According to the procedure, any substitution
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of the �nite complete set of solutions is applied to the whole tableau, and

the procedure is continued with the rest of the branches. It was asserted in

the above mentioned papers that such a procedure gives a decision procedure

for simultaneous rigid E-uni�cation. In other terms, if a tableau is substitu-

tively inconsistent, the procedure can make all branches closed without any

applications of tableau expansion rules. But in our case, after the applica-

tion of the substitution [x 7! y; u 7! fc; v 7! fd] to the tableau we obtain

the tableau which is not substitutively inconsistent any more. Thus, it can-

not now be closed without expansions. It means that the second premise of

Gallier et.al.' procedure is incorrect.

To close the tableau of this example, we need to consider a nonminimal

solution to the second equation a � b `

8

g(x; u; v) � g(y; fc; fd). If we

choose the solution [x 7! fa; y 7! fb; u 7! fc; v 7! fd] instead of a minimal

one [x 7! y; u 7! fc; v 7! fd], we would obtain a closed tableau. However,

when we do not restrict ourselves by a complete set of minimal solutions, we

lose termination.

We can note that any procedure that terminates for a given tableau

cannot check whether the tableau is substitutively inconsistent, due to the

undecidability of simultaneous rigid E-uni�cation.

All these considerations do not imply that the procedure is incomplete for

�rst-order logic with equality. Indeed, it is possible that after some additional

applications of tableau expansion rules the procedure will �nd a solution.

Using the language of matings, the solution can probably be found for some

(not necessarily minimal) ampli�cation.

Thus, Gallier et.al.'s procedure is an example of a tableau-based pro-

cedure for establishing provability in �rst-order logic with equality, which

uses an incomplete but terminating algorithm for simultaneous rigid E-

uni�cation. This procedure generalizes tableau-based algorithms for logic

with equality. Its main advantage is that substitutive inconsistency for the

whole tableau can be found by an incremental branch closure, where branches

are closed one by one. However, it is still unknown whether the Gallier et.al.'s

procedure is complete for �rst-order logic with equality.

The use of an incomplete procedure for (simultaneous) rigid E-uni�cation

in tableau-based methods has been circulated in the literature (see e.g. Pe-

termann [127] or Beckert [19]), especially after the �rst proof of the unde-

cidability of simultaneous rigid E-uni�cation (Degtyarev and Voronkov [52])

that appeared in May 1995. The question of the existence of such a strategy

was open for some time. In the next section we describe a calculus that gives

59



such a procedure.

6.2 An incomplete calculus for rigid E-uni�cation

We shall use the term \rigid basic superposition" to denote a \rigid" version

of basic superposition. We formalize rigid basic superposition using con-

straints that is close to the presentation of Nieuwenhuis and Rubio [123]. We

shall use ordering constraints as de�ned in Section 2.2.

Below we shall introduce an inference system BSE (Basic Superposition

with Equality Solution) for solving rigid equations. The provable objects of

BSE are constrained rigid equations. In this section we display constraints as

sets of atomic equality and inequality constraints, instead of a conjunction.

◮ A constrained rigid equation is a pair consisting of a rigid equation R

and a constraint C. Such a constrained rigid equation will be denoted

R � C.

◮ The calculus BSE consists of the following inference rules:

◮ Rigid basic (right and left) superposition rules are the following

inference rules:

E [ fs � tg `

8

u[s

0

] � v � C

E [ fs � tg `

8

u[t] � v � C [ fs � t; u[s

0

] � v; s = s

0

g

(rbrs)

and

E [ fs � t; u[s

0

] � vg `

8

e � C

E [ fs � t; u[t] � vg `

8

e � C [ fs � t; u[s

0

] � v; s = s

0

g

(rbls);

respectively.

◮ Rigid equality solution is the following inference rule:

E `

8

s � t � C

E `

8

s � s � C [ fs = tg

(reqs)

Application of all the rules is restricted to the following conditions:

1. The rigid equation at the conclusion of the rule is satis�able;
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2. In (reqs), s 6= t;

3. In the rigid basic superposition rules, the term s

0

is not a

variable;

4. In (rbls), u[t] 6= v.

◮ The calculus BSE is the logical calculus whose inference rules are

(rbls), (rbrs) and (reqs).

The basic restriction in BSE is formalized by representing most general

uni�ers through equality constraints. Condition 1 has two purposes. The

satis�ability of equations in constraints is needed to preserve correctness of

the method. The satis�ability of inequality constraints is needed to ensure

termination (Theorem 6.3 below). Condition 2 is needed to forbid in�nite

chains of repeated applications of (reqs). Conditions 3 and 4 are not essential,

they are added as a standard optimization used in paramodulation-based

methods.

◮ We denote by R � C ; R

0

� C

0

the fact that R

0

� C

0

is obtained from R � C

by an application of an inference rule of BSE. The symbol;

�

denotes

the re
exive and transitive closure of ;.

Consider an example derivation in BSE.

Example 6.1 Consider the rigid equation hx � a; ha � a; hb � fy `

8

y �

gfy. The ordering � is based on the precedence relation f �

F

h �

F

b �

F

a.

Under this ordering we have hb � a and fy � hb. The following is a BSE-

derivation for this rigid equation:

hx � a; ha � a; hb � fy `

8

y � gfy � ;

hx � a; ha � a; hb � fy `

8

y � ghb � ffy � hb; gfy � y; fy = fyg

(rbrs)

hx � a; ha � a; hb � fy `

8

y � ga

� ffy � hb; gfy � y; fy = fy; hx � a; ghb � y; hx = hbg

(rbrs)

hx � a; ha � a; hb � fy `

8

y � y

� ffy � hb; gfy � y; fy = fy; hx � a; ghb � y; hx = hb; y = gag

(reqs)

By using constraint simpli�cation, i.e. replacement of constraints by equiva-

lent \simpler" constraints we can rewrite this derivation as
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hx � a; ha � a; hb � fy `

8

y � gfy � ;

hx � a; ha � a; hb � fy `

8

y � ghb � ;

(rbrs)

hx � a; ha � a; hb � fy `

8

y � ga � fghb � y; x = bg

(rbrs)

hx � a; ha � a; hb � fy `

8

y � y � fx = b; y = gag

(reqs)

Soundness of BSE can be formulated in the following way:

Theorem 6.2 (Soundness of BSE) Let R � ; ;

�

E `

8

s � t � C. Then

every substitution satisfying C is a solution to R. In particular, R is solvable.

This theorem leads to the following de�nition.

◮ A constraint C is called an answer constraint for a rigid equation R if

for some rigid equation E `

8

s � s we have R � ;;

�

E `

8

s � s � C.

We note that BSE is an incomplete calculus for solving rigid equations.

It means that there are solvable rigid equations R that have no answer con-

straint. For instance, consider the rigid equation

5

x � a `

8

gx � x. It has

one solution [x 7! ga]. However, no inference rule of BSE is applicable to

this rigid equation.

Although the calculus BSE is incomplete, it has some pleasant termina-

tion properties:

Theorem 6.3 (Termination of BSE) For any constrained rigid equation

R � C, there exists a �nite number of derivations from R � C.

This property is due to the constraints: after some �nite number of steps

we shall not be able to apply any inference rule because the constraint in

the conclusion of any rule would be unsatis�able. Inequality constraints are

not needed for soundness or completeness of BSE. The pragmatics behind

inequality constraints is to ensure that the search for solutions to a rigid

equation is �nite. In addition, the use of ordering constraints prunes the

search space.

In [58] left rigid basic superposition has been formulated incorrectly in

the following way:

E [ fs � t; u[s

0

] � vg `

8

e � C

E [ fs � t; u[s

0

] � v; u[t] � vg `

8

e � C [ fs � t; u[s

0

] � v; s = s

0

g

(rbls)

5

Suggested by G.Becher (private communication).
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With this formulation, termination is not guaranteed as have been shown

in [59].

To illustrate this theorem, consider again Example 6.1. The rigid equation

of this example has an in�nite number of solutions including [x 7! a; y 7!

gh

n

a], for every natural number n. However, all possible BSE-derivations

starting with hx � a; ha � a; hb � fy `

8

y � gfy � ; give only two answer

constraints, one is

ffy � hb; gfy � y; fy = fy; hx � a; ghb � y; hx = hb; y = gag

shown in Example 6.1, another is ffy � hb; gfy � y; fy = fy; y = ghbg ob-

tained from the following derivation:

hx � a; ha � a; hb � fy `

8

y � gfy � ;

hx � a; ha � a; hb � fy `

8

y � ghb � ffy � hb; gfy � y; fy = fyg

(rbrs)

hx � a; ha � a; hb � fy `

8

y � y�

ffy � hb; gfy � y; fy = fy; y = ghbg

(reqs)

This answer constraint can be simpli�ed to fy = ghbg. There are some

other derivations with the same answer constraints, but only a �nite number.

Theorem 6.3 yields

Theorem 6.4 Any rigid equation has a �nite number of answer constraints.

There is an algorithm giving by any rigid equation R the set of all answer

constraints for R.

6.3 Answer constraints and the tableau method

In this section we consider how to use the system BSE for theorem proving

by the tableau method. Since we only consider skolemized formulas, we have

no �-rules in tableau calculi.

We extend the notion of answer constraints to tableau branches. Let �

be such a branch.

◮ A constraint C is a answer constraint for � if C is an answer constraint

for some rigid equation on �.

By Theorem 6.4, we obtain
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Theorem 6.5 Any tableau branch has a �nite number of answer constraints.

There is an algorithm giving by any tableau branch � the set of all answer

constraints for �.

Note that every substitution satisfying an answer constraint for � is a sub-

stitution closing �.

The following theorem asserts soundness and completeness of the tableau

method with answer constraints (Degtyarev and Voronkov [58]):

Theorem 6.6 Let ' be a sentence. Then ' is provable in �rst-order logic

with equality if and only if there is a tableau T obtained from F ' by tableau

expansion rules with the following property. Let �

1

; : : : ;�

n

be all branches

of T . Then there exist answer constraints C

1

; : : : ; C

n

for �

1

; : : : ;�

n

, respec-

tively, such that C

1

[ : : : [ C

n

is satis�able.

Note that if the constraint C

1

[ : : : [ C

n

is satis�able, then there exists a

substitution � satisfying this constraint. Since � satis�es each C

i

, it closes all

branches of the tableau.

Example 6.7 To illustrate this theorem, consider again the tableau of Ex-

ample 3.3. The ordering � is based on the precedence g �

F

f �

F

a �

F

b �

F

c �

F

d.

There is one rigid equation on each branch of the tableau:

a � b `

8

g(x; u; v) � g(y; fc; fd); (18)

c � d `

8

g(u; x; y) � g(v; fa; fb): (19)

Rigid basic superposition is applicable to none of these rigid equations. Rigid

equation (18) has one answer constraint fg(x; u; v) = g(y; fc; fd)g obtained

by the following application of the rigid equality solution rule:

a � b `

8

g(x; u; v) � g(y; fc; fd) � ;

a � b `

8

g(x; u; v) � g(x; u; v) � fg(x; u; v) = g(y; fc; fd)g

(reqs)

Similarly, rigid equation (19) has one answer constraint

fg(u; x; y) = g(v; fa; fb)g:
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The union of these constraints is

fg(x; u; v) = g(y; fc; fd); g(u; x; y) = g(v; fa; fb)g;

and it is inconsistent. Thus, our method �nd no solution for this substitu-

tively inconsistent tableau. After more tableau expansion steps we obtain a

tableau whose atomic part is the following:

T a � b T c � d

F g(x

1

; u

1

; v

1

) � g(y

1

; fc; fd) F g(u

1

; x

1

; y

1

) � g(v

1

; fa; fb)

T a � b T c � d

F g(x

2

; u

2

; v

2

) � g(y

2

; fc; fd)

F g(u

2

; x

2

; y

2

) � g(v

2

; fa; fb)

T c � dT a � b

F g(u

3

; x

3

; y

3

) � g(v

3

; fa; fb)

F g(x

3

; u

3

; v

3

) � g(y

3

; fc; fd)

It has four branches. The multisets of literals on the branches are

S

1

= fa � b; g(x

1

; u

1

; v

1

) 6� g(y

1

; fc; fd); g(x

2

; u

2

; v

2

) 6� g(y

2

; fc; fd)g;

S

2

= fa � b; c � d; g(x

1

; u

1

; v

1

) 6� g(y

1

; fc; fd); g(u

2

; x

2

; y

2

) 6� g(v

2

; fa; fb)g;

S

3

= fa � b; c � d; g(u

1

; x

1

; y

1

) 6� g(v

1

; fa; fb); g(x

3

; u

3

; v

3

) 6� g(y

3

; fc; fd)g;

S

4

= fc � d; g(u

1

; x

1

; y

1

) 6� g(v

1

; fa; fb); g(u

3

; x

3

; y

3

) 6� g(v

3

; fa; fb)g:

Consider the following rigid equations R

1

{R

4

on the branches S

1

{S

4

, re-

spectively:

R

1

= a � b `

8

g(x

2

; u

2

; v

2

) � g(y

2

; fc; fd);

R

2

= a � b; c � d `

8

g(x

1

; u

1

; v

1

) � g(y

1

; fc; fd);

R

3

= a � b; c � d `

8

g(u

1

; x

1

; y

1

) � g(v

1

; fa; fb);

R

4

= c � d `

8

g(u

3

; x

3

; y

3

) � g(v

3

; fa; fb):

Apply the following BSE-derivations to R

1

{R

4

:

a � b `

8

g(x

2

; u

2

; v

2

) � g(y

2

; fc; fd) � ;

a � b `

8

g(x

2

; u

2

; v

2

) � g(x

2

; u

2

; v

2

) � fg(x

2

; u

2

; v

2

) = g(y

2

; fc; fd)g

(reqs)
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a � b; c � d `

8

g(x

1

; u

1

; v

1

) � g(y

1

; fc; fd) � ;

a � b; c � d `

8

g(x

1

; u

1

; v

1

) � g(y

1

; fd; fd)

� fc � d; g(y

1

; fc; fd) � g(x

1

; u

1

; v

1

); c = cg

(rbrs)

a � b; c � d `

8

g(x

1

; u

1

; v

1

) � g(x

1

; u

1

; v

1

)

�fc � d; g(y

1

; fc; fd) � g(x

1

; u

1

; v

1

);

c = c; g(x

1

; u

1

; v

1

) = g(y

1

; fd; fd)g

(reqs)

a � b; c � d `

8

g(u

1

; x

1

; y

1

) � g(v

1

; fa; fb) � ;

a � b; c � d `

8

g(u

1

; x

1

; y

1

) � g(v

1

; fb; fb)

� fa � b; g(v

1

; fa; fb) � g(u

1

; x

1

; y

1

); a = ag

(rbrs)

a � b; c � d `

8

g(u

1

; x

1

; y

1

) � g(u

1

; x

1

; y

1

)

�fa � b; g(v

1

; fa; fb) � g(u

1

; x

1

; y

1

);

a = a; g(u

1

; x

1

; y

1

) = g(v

1

; fb; fb)g

(reqs)

c � d `

8

g(u

3

; x

3

; y

3

) � g(v

3

; fa; fb) � ;

c � d `

8

g(u

3

; x

3

; y

3

) � g(u

3

; x

3

; y

3

) � fg(u

3

; x

3

; y

3

) = g(v

3

; fa; fb)g

(reqs)

The union of the answer constraints of these derivations is

fg(x

2

; u

2

; v

2

) = g(y

2

; fc; fd);

c � d; g(y

1

; fc; fd) � g(x

1

; u

1

; v

1

); c = c; g(x

1

; u

1

; v

1

) = g(y

1

; fd; fd);

a � b; a = a; g(v

1

; fa; fb) � g(u

1

; x

1

; y

1

); g(u

1

; x

1

; y

1

) = g(v

1

; fb; fb);

g(u

3

; x

3

; y

3

) = g(v

3

; fa; fb)g:

It is easy to check that the following substitution makes all branches closed:

[x

1

7! fb; y

1

7! fb; u

1

7! fd; v

1

7! fd; x

2

7! b; y

2

7! b;

u

2

7! fc; v

2

7! fd; u

3

7! d; v

3

7! d; x

3

7! fa; y

3

7! fb]:

Hence, this constraint is satis�able.
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7 Sequent-based calculi and paramodulation

In order to construct a tableau-based free-variable system with equality, in

Section 5 we used the way which can be characterized as total theory reason-

ing (Stickel [146]). Indeed, branch closure (or closure of the whole tableau)

has been represented as one derivation step. This step included the detec-

tion of a literal set which is inconsistent in the equality theory. In contrast

with this approach, the ground version LK

=

of tableaux with equality is,

in the same terminology, an example of partial theory reasoning . In LK

=

,

the search for inconsistency of a sequent in the equality theory is realized

through a sequence of derivation steps, mainly the application of the rule

(�) of replacement of equals by equals. A sequence of applications of this

rule is intended to give a syntactically inconsistent sequent, i.e. a sequent

inconsistent in the empty theory.

Within the resolution framework, paramodulation has been de�ned as a

generalization of replacement of equals by equals. For free variable tableau-

based systems such rules have �rst been formulated by Loveland [101] in the

context of model elimination and by Fitting [64] in the context of tableaux

by the name of the mgu tableau replacement rule. Characterizing this rule

Fitting writes:

It was necessary to modify the tableau system with equality by in-

troducing free variables in order to get a version suitable for imple-

mentation. We must do a similar thing with the resolution system.

The result is a variation of what is known in the literature as para-

modulation : : :

In this chapter all formulas are assumed to be skolemized.

7.1 Fitting's tableau paramodulation

Since paramodulation has appeared before and is a generally accepted term,

we shall call the mgu tableau replacement rule simply tableau paramodulation.

◮ Tableau paramodulation is the following inference rule:

�

1

; X A[s

0

]; T s � t j : : : j �

n

(�

1

; X A[s

0

]; T s � t; X A[t] j : : : j �

n

)mgu(s; s

0

)

(tpar)

where A is an atomic formula.
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In the tableau paramodulation rule, the substitution mgu(s; s

0

) is applied to

the whole tableau, i.e. it is \global". Free variables in tableaux are treated

rigidly, as placeholders for terms, or unknown parameters, but not as uni-

versally quanti�ed variables.

Besides the tableau paramodulation rule, the system of Fitting for equa-

tional logic includes the following two inference rules.

◮ Free variable tableau re
exivity of Fitting [64] is the following inference

rule:

�

1

j : : : j �

n

�

1

; T x � x j : : : j �

n

◮ Tableau function re
exivity of Fitting [64] is the following inference

rule:

�

1

j : : : j �

n

�

1

; T f(x

1

; : : : ; x

n

) � f(x

1

; : : : ; x

n

) j : : : j �

n

It is easy to see that instead of the last two rules one can change the initial

tableau for proving a formula � from F � to

fT 8�x(f(�x) � f(�x)) j f 2 Fg; T 8x(x � x); F �

Below we shall consider some di�culties in removing the function re
ex-

ivity rule from Fitting's system.

◮ Fitting's free variable tableau system TK

=

for logic with equality con-

sists of the rules of TK plus the tableau paramodulation rule, free

variable tableau re
exivity rule and the tableau function re
exivity

rule.

6

This system is complete:

Theorem 7.1 Let � be a closed formula. The following conditions are equiv-

alent:

6

An inessential di�erence between our formulation of Fitting's system and Fitting's

formulation of [64], as well as of [66] is that we remove closed branches from the tableau

while in the system of [64] one can close the same branch several times. Also, Fitting does

not give a name to his system, we call it here TK

=

for convenience.
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1. � is provable in �rst-order logic with equality;

2. there is a derivation of the empty tableau from the tableau F � in TK

=

.

The system TK

=

has all disadvantages of the early paramodulation rule

of Robinson and Wos [134]:

1. Function re
exivity rule is used;

2. Paramodulation into variables is allowed;

3. Increasing applications of paramodulation are allowed (for example, x

can be rewritten to fx using an equation x � fx.

As a consequence, for a given tableau expansion there may be an in�nite

sequence of paramodulations, either due to the use of function re
exivity or

due to the use of increasing applications of paramodulation.

Fitting uses partial theory reasoning for adding equality to free-variable

tableaux. He extended the tableau calculus TK by simple rules for equality.

However, his scheme of proof-search is, in fact, based on �nding all solu-

tions for simultaneous rigid E-uni�cation. Fitting's completeness theorem is

formulated in the way similar to Theorem 3.1 and leads to a proof-search

strategy consisting of two parts. In the �rst part a tableau is constructed

using tableau expansion rules. In the second part, equality rules and branch

closure rules are applied with the purpose of closing the tableau. The sys-

tem TK

=

has the following very strong property (a reformulation of Lifting

Lemma of [64], page 220).

Theorem 7.2 If a tableau T is substitutively inconsistent, then there is

derivation of the empty tableau from T in TK

=

not using tableau expansion

rules.

Unlike TK, the system TK

=

may have in�nite derivations without tableau

expansion rules, i.e. the proof-search for a given tableau expansion may be

nonterminating. It is not possible to restrict paramodulation in TK

=

to ob-

tain a system S which satis�es Theorem 7.2 and has the termination property

for the subsystem of S without tableau expansion rules: any such system can

be used as a decision procedure for simultaneous rigid E-uni�cation. More-

over, if we drop function re
exivity, the resulting system would not satisfy

Theorem 7.2:
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Example 7.3 Consider the tableau of Example 3.3. Its atomic part has the

form

T a � b; F g(x; u; v) � g(y; fc; fd) j T c � d; F g(u; x; y) � g(v; fa; fb):

This tableau is substitutively inconsistent. However, we cannot derive the

empty tableau from it without the use of tableau function re
exivity.

Plaisted [129] described a tableau system which is complete, does not use

function re
exivity and has the termination property for the subsystem with-

out tableau expansion rules but uses a new tableau factoring rule. Degtyarev

and Voronkov [58] described a complete system obtained from the TK

=

by

dropping tableau function re
exivity and imposing several restrictions on

paramodulation. The restrictions ensure the termination property. In par-

ticular, results of Degtyarev and Voronkov [58] imply that TK

=

is complete

without function re
exivity. These results are described below.

An attempt to improve Fitting's tableau paramodulation was made in

Beckert and H�ahnle [22]. In that paper a restricted form of paramodulation

is introduced in which \it is not necessary to apply equalities to other equali-

ties" and function re
exivity is not used. This method is nonterminating for

a given tableau expansion. In addition, despite the claim of the complete-

ness, the method is incomplete. For example, as noted in Degtyarev and

Voronkov [58], the method cannot prove the formula 9x(a � b ^ g(fa; fb) �

h(fa; fb) � g(x; x) � h(x; x)).

7.2 Tableau basic superposition

Here we give a calculus introduced in Degtyarev and Voronkov [58]. This

calculus imposes the following restrictions on paramodulation:

1. no function re
exivity is needed;

2. paramodulation into variables is not allowed;

3. orderings are used so that there are no increasing applications of para-

modulation;

4. basic restriction on paramodulation allows one to prohibit paramodu-

lation into nonvariable terms introduced by uni�cation.
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We shall introduce the logical calculus TBSE (Tableau Basic Superpo-

sition with Equality Solution) which is an adaptation of the calculus BSE

of Section 6.2 to tableaux. The provable objects of BSE are constrained

tableaux.

◮ A constrained tableau is a pair consisting of a tableau T and a constraint

C. Such a constrained tableau will be denoted T � C.

In this section we display constraints as sets of atomic equality and inequality

constraints, instead of a conjunction.

In this section we assume that all rules of TK are modi�ed for constraint

tableaux such that the tableau expansion rules do not change the constraint.

For example, one of the �-rules is changed to

�

1

; T ' _  j : : : j �

n

� C

�

1

; T ' j �

1

; T  j : : : j �

n

� C

(�);

and the rule (abc) is changed to

�

1

; T A; F B j �

2

j : : : j �

n

� C

�

2

j : : : j �

n

� C [ fA = Bg

(abc);

The calculus TBSE consists of the following inference rules.

◮ Tableau basic superposition is the following inference rule:

�

1

; T s � t; X u[s

0

] � v j : : : j �

n

� C

�

1

; T s � t; X u[t] � v j : : : j �

n

� C [ fs � t; u[s

0

] � v; s = s

0

g

(tbs);

where

1. The constraint at the conclusion of the rule is satis�able;

2. The signed formula X u[t] � v does not occur in �

1

;

3. The term s

0

is not a variable.

◮ Tableau equality solution is the following inference rule:

�

1

; F s � t j : : : j �

n

� C

�

2

j : : : j �

n

� C [ fs = tg

(teqs)

where C [ fs = tg is satis�able.
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◮ The calculus TBSE is the logical calculus whose inference rules are

(tbs), (teqs) and all rules of TK.

Theorem 7.4 (Soundness and completeness of TBSE) Let � be a for-

mula. It is provable in �rst-order logic with equality if and only if there is a

derivation from the constrained tableau F � � ; of a constraint tableau of the

form # � C.

This logical system has a pleasant termination property:

Theorem 7.5 (Termination of TBSE) For every constrained tableau T �

C there is only a �nite number of derivations from T � C not using tableau

expansion rules.

This means that for a given ampli�cation we cannot have in�nite search.

In�nite search without expansion steps is possible in Fitting's system.

To illustrate the connection between the tableau basic superposition rules

and rules of TBSE, we reconsider the tableau of Example 3.3. On the branch

containing the literal g(x

1

; u

1

; v

1

) 6� g(y

1

; fc; fd) and the equation c � d, we

can apply rigid basic superposition that adds g(x

1

; u

1

; v

1

) 6� g(y

1

; fd; fd) to

the branch. Similarly, we can apply rigid basic superposition to the branch

containing g(u

1

; x

1

; y

1

) 6� g(v

1

; fa; fb) and a � b, obtaining g(u

1

; x

1

; y

1

) 6�

g(v

1

; fb; fb). This results in the following tableau displayed in the tree-like

form (we only show the atomic formulas in the tableau):

T a � b T c � d

F g(x

1

; u

1

; v

1

) � g(y

1

; fc; fd) F g(u

1

; x

1

; y

1

) � g(v

1

; fa; fb)

T a � b T c � d

F g(x

2

; u

2

; v

2

) � g(y

2

; fc; fd)

F g(u

2

; x

2

; y

2

) � g(v

2

; fa; fb)

F g(x

1

; u

1

; v

1

) � g(y

1

; fd; fd)

T c � dT a � b

F g(u

3

; x

3

; y

3

) � g(v

3

; fa; fb)

F g(x

3

; u

3

; v

3

) � g(y

3

; fc; fd)

F g(u

1

; x

1

; y

1

) � g(v

1

; fb; fb)
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After four application of the tableau equality solution rules all branches of

this tableau become closed. The resulting constraint of this derivation is the

same as the union of the answer constraints shown at the end of Section 6.3.

7.3 Rigid variables in resolution theorem proving

In Section 3.1 we have de�ned the notion of substitutive inconsistency for

branches and tableaux. Originally, this notion has been introduced by Chang

[34] and Chang and Lee [95] for sets of clauses.

◮ A �nite set or a multiset of clauses S is called substitutively incon-

sistent if there is a substitution � such that the formula

V

C2S

C� is

inconsistent.

Later, Plaisted [129] called substitutive inconsistency rigid Eq-unsatis�abili-

ty. For establishing substitutive inconsistency, Chang and Lee used so-called

V -resolution [34] with V -paramodulation [95], where V stands for \variable-

constrained". Following Becher and Petermann [17], instead of \variable-

constrained" we shall use more accepted words \rigid resolution" and \rigid

paramodulation" for V -resolution and V -paramodulation.

Rigid resolution (respectively, paramodulation) is a \rigid" variant of res-

olution (respectively, paramodulation). In these inference rules, all variables

are treated \rigidly", as unknown parameters while in the ordinary resolu-

tion and paramodulation rules variables are treated as universally quanti�ed.

Hence, similar to tableaux, we shall formulate these inference rules as work-

ing on multisets of clauses. As usual, for a set or a multiset of clauses S and

a clause C we shall write S;C instead of S [ fCg.

◮ The calculus RRP consists of the following four rules:

◮ rigid resolution rule:

S;A _ C

1

;:A

0

_ C

2

(S;A _ C

1

;:A

0

_ C

2

; C

1

_ C

2

)mgu(A;A

0

)

(rres);

◮ rigid factoring rule:

S; L _ L

0

_ C

(S; L _ C)mgu(L; L

0

)

(rfac);
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◮ rigid re
exivity rule:

S; s 6� t _ C

(S;C)mgu(s; t)

(rre
);

◮ rigid paramodulation rule:

S; L[s

0

] _ C

1

; s � t _ C

2

(S; L[s

0

] _ C

1

; s � t _ C

2

; L[t] _ C

1

_ C

2

)mgu(s; s

0

)

(rpar):

The goal is to derive a multiset of clauses containing the empty clause 2.

The calculusRRP is complete for checking substitutive inconsistency in logic

without equality.

7

For logic with equality, completeness of RRP for check-

ing substitutive inconsistency can be proved with the additional function

re
exivity rule, similar to the (tfr) rule for tableaux:

S

S; f(x

1

; : : : ; x

n

) � f(x

1

; : : : ; x

n

)

(rfr);

where f is a function symbol occurring in S of arity n > 0 and x

1

; : : : ; x

n

are new variables. Instead of this rule we can use

S

S[x 7! f(x

1

; : : : ; x

n

)]:

We have

Theorem 7.6 Let S be a �nite multiset of clauses. Then the following

conditions are equivalent:

1. S is substitutively inconsistent;

2. there is a multiset of clauses S

0

such that S

0

is derivable from S in

RRP+ (rfr) and 2 2 S

0

.

Following [58] we demonstrate that RRP is incomplete for checking sub-

stitutive inconsistency. This example is a translation of Example 7.3 to

7

Chang and Lee [95] assert without proof a theorem which implies completeness of

RRP for logic with equality which is not true as we show later.
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clausal form. In fact, it encodes substitutive inconsistency of the tableau

from that example via a multiset of clauses.

a � b _ c � d

a � b _ g(u; x; y) 6� g(v; fa; fb)

c � d _ g(x; u; v) 6� g(y; fc; fd)

g(x; u; v) 6� g(y; fc; fd)_ g(u; x; y) 6� g(v; fa; fb)

This multiset of clauses is substitutively inconsistent. The only substitution

making this multiset inconsistent is � � [x 7! fa; y 7! fb; u 7! fc; v 7! fd].

The reader can check that any application of an inference rule of RRP to

this multiset of clauses gives a substitution incompatible with �.

In the calculus RRP the rigid paramodulation rule is unrestricted: there

are no ordering restrictions and paramodulation into variables is allowed

8

.

7.4 From resolution to tableaux and matings

Several papers compared resolution with connections (matings), for example

Bibel [28], Eder [62, 63], Mints [116], Baumgartner and Furbach [15] and

Avron [4]. In particular, Eder [62] has shown \how a resolution refutation

can be transformed to a complementary connected matrix, thus yielding a

connection derivation of a given matrix". Under this translation, the connec-

tion calculus had to be augmented with a factoring (factorization) rule: \In

cases where resolution steps are combined with factorization steps we have

to introduce factorization links in addition to the connections".

Plaisted [129] uses a similar technique to translate \rigid resolution and

paramodulation" into the connection proofs using the following idea. Let S

be a multiset of clauses. Plaisted calls an ampli�cation of S a multiset T

of one or more variants of clauses in S with variables renamed so that each

variable appears in at most one clause in T . (The same notion has been used

in V -resolution of Chang and Lee [95] by the name of \alleged substitutively

unsatis�able set".) For large enough T , substitutive inconsistency of T is

equivalent to the inconsistency of S. Then the obtained rigid refutation

is translated into so-called path paramodulation over the multiset of paths

through T . This technique is, in fact, identical to the technique used by

8

Plaisted [129] shows incompleteness of ordered rigid paramodulation and notes that

this incompleteness result may be not true for unrestricted rigid paramodulation. Thus,

this example improves the result of Plaisted [129].
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Eder [63]. For example, Plaisted's \path correspondence" was used by Eder

as \shortening of a path". Final results of Plaisted are also similar to the

results of Eder: the tableau system of Plaisted contains in addition to the

standard tableau rules a factoring rule.

As a consequence, this method does not allow one to close the tableau

\branch-wise" as it is done in the procedure of Gallier et.al. or in the calculus

BSE of Section 6. In other words, path paramodulation of Plaisted does

not allow branch-wise computation of solutions to rigid E-uni�cation for

separate branches. Nevertheless, this technique gives some substitute for

tableau basic superposition described here, because path paramodulation

terminates for a given tableau expansion. Unlike tableau basic superposition,

the termination of path paramodulation is due to the fact that all literals

involved in paramodulation are deleted from their path.
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8 Equality elimination

In all sequent-based free-variable methods, proof-search comprises two kinds

of operations. Operations (or inferences rules) of the �rst kind construct

a tree of sequents, matrix or tableau using suitable expansion rules. The

second kind of operations (not always formalized as inference rules) tries to

close leaf sequents in the tree, paths in the matrix or branches in the tableau

using suitable substitutions.

Despite di�erences among these methods, they have a common disad-

vantage: \globality" of the second kind of operations. Maslov, Mints and

Orevkov [112] characterized such methods (tableau, matings and model elim-

ination) as global , and methods like resolution or the inverse method as local .

We quote [112]:

: : : Following the idea it is not the proof we get at �rst but some

intermediate object | prededuction; after that we verify the possibil-

ity of turning the su�ciently complicated predeductions into correct

deductions (and this amount of work is generally speaking useless for

the further steps if the given prededuction cannot still be turned into

a correct deduction and have to be built over). This is connected

�rst of all with the \globality" of work with the predeductions. That

is why more perspective are apparently the methods enabling us to

combine the unpreciseness of the values of variables and \local in-

dependence" of work (i.e. the using of a relatively small part of

deduction at the given stage of work and independence of this work

from the remaining parts of the deduction).

Consider several examples. In the MGU replacement rule of Fitting [64]

the substitution produced by uni�cation is applied to the whole tableau.

In equational matings (Gallier et.al. [73, 69]) the substitution is global for

all paths in a matrix. In tableau basic superposition of Section 7.2 the

constraint is global for the whole tableau and every application of rigid basic

superposition on any branch changes the constraint and thus in
uences all

other branches.

In this chapter we describe the equality elimination method which allows

us to localize equality reasoning so that we obtain a partially local sequent-

based method (for tableaux or matings) or a completely local sequent-based

method (for the inverse method). This method is based on extending sequent-
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based provers by a bottom-up equation solver using basic superposition. So-

lutions to equations are generated by this solver and used to close branches

of a tableau, paths of a matrix or to generate axioms for the inverse method.

The equation solution is even more restricted by the use of orderings, basic

simpli�cation and subsumption.

The equality elimination method was originally introduced in Degtyarev

and Voronkov [50] as a method of handling equality in logic programs. Later,

it has been applied to the inverse method in Degtyarev and Voronkov [48]

and to matings and semantic tableaux in Degtyarev and Voronkov [49, 54].

Applications of equality elimination to the tableau method and to the inverse

method are based on a common characterization of provability in terms of

solution clauses described in various forms in the rest of this section. This

characterization can be considered as a computationally improved version of

the Herbrand theorem. However, the resulting calculi for the inverse method

and for the tableau method are quite di�erent because the inverse method is

local while the tableau method is global.

8.1 Theoretical basis for equality elimination

For the rest of this section we assume that � denotes a closed formula in

the skolem negation normal form to be proved (the \goal"). We assume

that all di�erent occurrences of quanti�ers in � bind di�erent variables. For

example, � cannot have the form 9xA _ 9xB. We shall identify subformulas

of � and their superformulas with their occurrences in �. For example, in the

formula � of the form A^ (A_B) the second occurrence of A is considered a

subformula of the occurrence of (A_B), but the �rst occurrence of A is not.

In order to de�ne a more e�cient sequent-based calculus, we shall only

deal with some subformulas of � called conjunctive subformulas.

◮ An (occurrence of a) subformula ' of � is called conjunctive if it is an

occurrence in a subformula ' ^  or in  ^ '.

In fact, conjunctive subformulas of � are equivalent to �-subformulas.

◮ We call a formula ' a superformula of a formula  if  is a subformula

of '.

◮ Let ' be a subformula of �. A conjunctive superformula of ' in � is

any superformula  of ' that is a conjunctive subformula of �.
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◮ The least conjunctive superformula of ' in � is the conjunctive super-

formula  of ' in � such that any other conjunctive superformula of '

is a superformula of  .

Note that any formula having a conjunctive superformula has the unique least

conjunctive superformula. We also note that if ' is a formula and  is its least

conjunctive superformula, then ' `  . This partially explains the need for

introducing least conjunctive superformulas. There are deterministic chains

of inferences in sequent systems consisting of �- and 
-rules. For example,

�; F '

�; F ' _  

(�)

�; F 9x(' _  )

(
)

By restricting ourselves to conjunctive superformulas only, we eliminate these

deterministic chains, making them in one step

9

.

Since we �x the goal formula �, we shall speak about the least conjunctive

superformula of 'meaning the least conjunctive superformula of ' in �. Least

conjunctive superformulas are illustrated in Table 1 (ignore for a moment the

third column of the table).

We can enumerate all conjunctive subformulas �

1

; : : : ; �

n

of �, for example

in the order of their occurrences in �. Thus we can unambiguously use \the

kth conjunctive (sub)formula" �

k

of �.

Let A

1

; : : : ;A

n

be predicate symbols not occurring in �.

◮ We say that the atomic formula A

k

(x

1

; : : : ; x

m

) is the �-name of a

subformula ' of � if

1. the least conjunctive superformula of ' is �

k

;

9

This simple but powerful idea of restricting to conjunctive superformulas (see Voron-

kov [155]) has been described in the form of a sequent calculus in Voronkov [154] and

implemented in the theorem prover described in Voronkov [153] and in a theorem prover

for intuitionistic logic implemented by Tammet [147]. In the framework of tableau theo-

rem proving, several papers used permutabilities of inference rules in sequent calculi (see

e.g. Shankar [141]). In fact, the least conjunctive superformula of ' is a superformula  

of ' provable from ' and such that all inference rules applied in the proof of  from '

are permutable with all other rules. The use of conjunctive superformulas allows us to

get rid of non-conjunctive subformulas before the proof-search, unlike the dynamic use

of permutabilities as in Shankar [141]. The use of conjunctive superformulas also covers

all applications of universal formulas in the tableau frameworks proposed in Beckert and

R. H�ahnle [22].
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Subformula least conjunctive superformula set of �-names

(9x(F (x) ^ (B(x) _ 9yC(x; y))) ^ 9zD(z)) _E no ;

9x(F (x) ^ (B(x) _ 9yC(x; y))) ^ 9zD(z) no ;

9x(F (x) ^ (B(x) _ 9yC(x; y))) 9x(F (x) ^ (B(x) _ 9yC(x; y))) fA

1

g

F (x) ^ (B(x) _ 9yC(x; y)) 9x(F (x) ^ (B(x) _ 9yC(x; y))) fA

1

g

F (x) F (x) fA

2

(x)g

B(x) _ 9yC(x; y) B(x) _ 9yC(x; y) fA

3

(x)g

B(x) B(x) _ 9yC(x; y) fA

3

(x)g

9yC(x; y) B(x) _ 9yC(x; y) fA

3

(x)g

C(x; y) B(x) _ 9yC(x; y) fA

3

(x)g

9zD(z) 9zD(z) fA

4

g

D(z) 9zD(z) fA

4

g

E no ;

Table 1: Least conjunctive superformulas and sets of �-names of subformulas of the formula � = (9x(F (x)^

(B(x) _ 9yC(x; y))) ^ 9zD(z)) _ E

8
0



2. x

1

; : : : ; x

m

are all free variables of �

k

in the order of their occur-

rences in �

k

.

If a �-name of a formula ' exists, then it is unique. Note that di�erent

formulas may have the same �-names. Also note that some subformulas of

� do not have �-names (those who do not have a conjunctive superformula).

We can use the set of �-names of a subformula. The set of �-names of a

formula ' is either ; or a singleton fA

k

(x

1

; : : : ; x

m

)g. Table 1 illustrates

sets of �-names.

Consider another example giving us the idea of an algorithm for assigning

�-names. We shall use this example for the illustration of all methods of this

section.

Example 8.1 (�-names) Consider the formula of Example 1.3

9xyuv((a � b � g(x; u; v) � g(y; fc; fd)) ^

(c � d � g(u; x; y) � g(v; fa; fb))):

Its negation normal form is

� = 9xyuv((a 6� b _ g(x; u; v) � g(y; fc; fd)) ^

(c 6� d _ g(u; x; y) � g(v; fa; fb))):

The only conjunctive subformulas of � are the subformulas a 6� b_g(x; u; v) �

g(y; fc; fd) and c 6� d_ g(u; x; y) � g(v; fa; fb). Thus, we can introduce the

following �-names:

1. A

1

(x; u; v; y) for all subformulas of a 6� b _ g(x; u; v) � g(y; fc; fd);

2. A

2

(u; x; y; v) for all subformulas of c 6� d _ g(u; x; y) � g(v; fa; fb).

All other formulas have no �-names since they have no least conjunctive

superformula.

In Section 7 we formalized basic superposition using ordering constraints.

Here we shall formalize it via closures used e.g. in Bachmair et.al. [13].

◮ A closure is a pair C � �, where C is a clause and � is a substitution.

Such a closure semantically corresponds to the clause C�.
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◮ Two closures C

1

� �

1

and C

2

� �

2

are called variants if C

1

is a variant of

C

2

and C

1

�

1

is a variant of C

2

�

2

.

We shall identify variants.

The equality elimination method is based on transformations of closures

which try to eliminate equality from them (hence the name \equality elimi-

nation"). The equality elimination procedure begins with the so-called initial

closures and uses a basic superposition calculus described below.

◮ Initial closures are generated according to one of the three rules:

1. whenever a literal s 6� t occurs in � and C is the set of �-names

of this occurrence of s 6� t, the closure s � t; C � " is an initial

closure;

2. whenever the literal s � t occurs in � and C is the set of �-names

of this occurrence of s � t, the closure s 6� t; C � " is an initial

closure;

3. let literals P (s

1

; : : : ; s

n

) and :P (t

1

; : : : ; t

n

) occur in � and C

1

; C

2

are their sets of �-names. Let the substitution � rename variables

such that variables of C

1

� and C

2

are disjoint. Then the closure

s

1

� 6� t

1

; : : : ; s

n

� 6� t

n

; C

1

�; C

2

� " is an initial closure.

Example 8.2 (Initial closures) Let us continue Example 8.1. The for-

mula � of that example has no predicate symbols di�erent from �. Thus,

the last case of the de�nition of initial closures is not applicable. The �rst

two cases show how to associate an initial closure with every equality literal

in �. Applying them, we obtain the following four initial closures:

1 a � b;A

1

(x; u; v; y) � "

2 g(x; u; v) 6� g(y; fc; fd);A

1

(x; u; v; y) � "

3 c � d;A

2

(u; x; y; v) � "

4 g(u; x; y) 6� g(v; fa; fb);A

2

(u; x; y; v) � "

We introduce several inference rules on closures de�ning a variant of basic

superposition. We assume that premises of rules have disjoint variables which

can be achieved by renaming variables.

◮ Basic (right and left) superposition rules are the following inference

rules:
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s � t; C � �

1

u[s

0

] � v;D � �

2

u[t] � v; C;D � �

1

�

2

�

(brs)

s � t; C � �

1

u[s

0

] 6� v;D � �

2

u[t] 6� v; C;D � �

1

�

2

�

(bls)

where

1. � is a most general uni�er of s�

1

and s

0

�

2

;

2. t�

1

� 6� s�

1

� and v�

2

� 6� u[s

0

]�

2

�;

3. s

0

is not a variable;

4. (for left superposition only) u[s

0

] 6� v is the leftmost disequation

in the second premise

10

.

◮ Equality solution is the following inference rule:

s 6� t; C � �

C � �mgu(s�; t�)

(eqs)

where s 6� t is the leftmost disequation in the premise.

◮ BS

�

is the inference system whose axioms are initial closures and whose

inference rules are (bls), (brs) and (eqs).

◮ We call a solution clause is any clause C� such that

1. C � � is derivable in BS

�

;

2. C does not contain equality.

Let L

1

; : : : ; L

n

be a solution clause. By replacing �-names to correspond-

ing conjunctive subformulas, we obtain a multiset of formulas '

1

; : : : ; '

n

which we informally call the formula image of the solution clause.

Theorem 8.3 The following conditions are equivalent:

1. � is provable in �rst-order logic with equality;

10

According to our de�nitions, a clause is a multiset of literals, so the use of the leftmost

disequation is not quite correct, but this restriction can easily be formalized using the

selection mechanism (Bachmair et.al. [13]).
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2. There exist solution clauses C

1

; : : : ; C

m

such that � is provable in the

logical system whose axioms are the formula images of C

1

; : : : ; C

m

and

whose inference rules are rules of IK

�

except for (Ax).

Thus, after obtaining a suitable set of solution clauses, we can reduce prov-

ability in logic with equality to provability in logic without equality and with

axioms of a very special form. In subsequent sections, we shall present two

reformulations of this theorem which will be directly applicable to the tableau

method and to the inverse method.

We illustrate solution clauses by continuing Example 8.2.

Example 8.4 (Solution clauses) Let us continue Example 8.1. The func-

tion signature for this example is F = fa; b; c; d; f; gg. Consider the lexi-

cographic path ordering � induced by the precedence relation a �

F

b �

F

c �

F

d �

F

f �

F

g. In this ordering, we have a � b and c � d. Repeatedly

applying all possible inference rules of BS

�

to the closures of Example 8.2,

we obtain the following closures. The derivations are presented in the linear

format, instead of tree-like derivations. In each line, the right column pro-

vides the information about the inference rule applied to obtain the closure

at that line and the premises of the application of the inference rule.

5: A

1

(x; u; v; y) � [y 7! x; u 7! fc; v 7! fd] (eqs); 2

6: A

2

(u; x; y; v) � [v 7! u; x 7! fa; y 7! fb] (eqs); 4

7: A

1

(x

1

; u

1

; v

1

; y

1

); g(u

2

; x

2

; y

2

) 6� g(v

2

; fb; fb);

A

2

(u

2

; x

2

; y

2

; v

2

) � " (bls); 1; 4

8: A

2

(u

1

; x

1

; y

1

; v

1

); g(x

2

; u

2

; v

2

) 6� g(y

2

; fd; fd);

A

1

(x

2

; u

2

; v

2

; y

2

) � " (bls); 3; 2

9: A

1

(x

1

; u

1

; v

1

; y

1

);A

2

(u

2

; x

2

; y

2

; v

2

)

� [v

2

7! u

2

; x

2

7! fb; y

2

7! fb] (eqs); 7

10: A

2

(u

1

; x

1

; y

1

; v

1

);A

1

(x

2

; u

2

; v

2

; y

2

)

� [y

2

7! x

2

; u

2

7! fd; v

2

7! fd] (eqs); 8

No further applications of the inference rules of BS

�

are possible. Thus,

we obtain the following four solutions clauses obtained from closures 5,6,9,

and 10, respectively:
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5

0

A

1

(x; fc; fd; x)

6

0

A

2

(u; fa; fb; u)

9

0

A

1

(x

1

; u

1

; v

1

; y

1

);A

2

(u

2

; fb; fb; u

2

)

10

0

A

2

(u

1

; x

1

; y

1

; v

1

);A

1

(x

2

; fd; fd; x

2

)

In general, there may be an in�nite number of solution clauses.

8.2 Equality elimination for semantic tableaux

In the previous section we have introduced �-names in order to deal with

occurrences of subformulas instead of subformulas themselves. In this section,

we modify the free-variable tableau calculus to deal with �-names instead of

formulas. The new tableaux will be called �-tableaux.

◮ A �-branch is any �nite multiset of atoms of the form A

k

(t

1

; : : : ; t

m

)

such that A

k

(x

1

; : : : ; x

m

) is a �-name of some subformula of �.

◮ A �-tableau is any �nite multiset fC

1

; : : : ; C

n

g of �-branches, denoted

by C

1

j : : : j C

n

.

Our calculus for �-tableaux uses subset uni�cation.

◮ A substitution � is called a subset uni�er of a clause C

1

against a clause

C

2

if C

1

� � C

2

�.

◮ A subset uni�er of C

1

against C

2

is called a minimal if it is minimal

w.r.t. � among all subset uni�ers of C

1

against C

2

.

Subset-uni�cation has been earlier used in P-deduction of Demolombe [60]

and in SLO-resolution by the name of �-subsumption in Minker, Rajasekar

and Lobo [115]. Subset-uni�ability is NP-complete [47]. Some other proper-

ties of subset uni�cation are discussed in Degtyarev and Voronkov [47].

On �-tableaux, we shall introduce a calculus called T

�

which consists of

two inference rules: tableau expansion and branch closure.

◮ Let C

1

; C

2

and C be the sets of �-names of ';  and '^ , where '^ 

is a subformula of �. Then the following is a �-tableau expansion rule

D

1

j D

2

j : : : j D

m

(C

1

; D

1

j C

2

; D

1

j D

2

j : : : j D

m

)�

(te

�

)
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where � is a minimal subset uni�er of C against D

1

. We assume that

the variables of the premise are disjoint from the variables of C;C

1

; C

2

which can be achieved by renaming variables in the tableau.

This rule can be described in a more simple (but less compact) form,

when we consider its two cases depending on the number of elements in C.

There are two possibilities: C is either ; or a singleton multiset fA

i

(�x)g. As

for C

1

and C

2

, they are nonempty since ' and  are conjunctive subformulas

of ' ^  . Thus, C

1

= fA

j

(�y)g and C

2

= fA

k

(�z)g.

1. If C = ;, then the rule (te

�

) becomes

D

1

j D

2

j : : : j D

m

D

1

;A

j

(�y) j D

1

;A

k

(�z) j D

2

j : : : j D

m

(te

�

)

2. If C = fA

i

(�x)g, then the rule (te

�

) becomes

D

1

;A

i

(

�

t) j D

2

j : : : j D

m

D

1

;A

j

(�y)� j D

1

;A

k

(�z)� j D

2

j : : : j D

m

(te

�

)

where � = [�x 7!

�

t].

This rule corresponds to the �-rule

�

�

1

j �

2

of Smullian [144] modi�ed for �-branches.

◮ Let C be any solution clause. Then the following is a �-branch closure

rule

C

1

j C

2

j : : : j C

m

(C

2

j : : : j C

m

)�

(bc

�

)

where � is a minimal subset-uni�er of C against C

1

. We assume that

variables of the tableau are disjoint from the variables of C which can

be achieved by renaming variables in C.

◮ The calculus T

�

is the calculus whose axiom is the tableau consisting

of one branch 2 and whose inference rules are (te

�

) and (bc

�

).
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Due to the use of least conjunctive superformulas, we do not need any ana-

logues of �- or 
-rules in T

�

. The �-tableau expansion rule is an analogue of

the �-rule. The calculus T

�

was introduced in Degtyarev and Voronkov [54]

in a slightly di�erent form where both closures and �-tableaux were derivable

objects. In fact, the calculus T

�

of [54] is the union of T

�

of this paper and

BS

�

.

Theorem 8.5 (Equality elimination, �-tableau formulation) The fol-

lowing conditions are equivalent:

1. � is provable in �rst-order logic with equality;

2. the empty tableau # is derivable in T

�

.

This theorem can also be reformulated as a re�nement of Theorem 3.1

(Herbrand's theorem for free variable tableaux):

Theorem 8.6 The following conditions are equivalent:

1. � is provable in �rst-order logic with equality;

2. there is a �-tableau T constructed from 2 by applications of the �-

tableau expansion rule and a substitution � such that every branch in

T � contains an instance of a solution clause.

Theorem 3.1 just asserted that we have to search for a substitution making

all branches inconsistent, which leads to simultaneous rigid E-uni�cation.

Theorem 8.6 contains a more constructive statement: branches can be closed

by instances of solution clauses.

Let us illustrate equality elimination for tableaux.

Example 8.7 Consider again Examples 8.1 and 8.4. For the formula � of

these examples, we get the following �-tableau expansion rule:

D

1

j D

2

j : : : j D

m

A

1

(x; u; v; y); D

1

j A

2

(u; x; y; v); D

1

j D

2

j : : : j D

m

(te

�

)

where x; y; u; v are variables not occurring in the premise of this tableau.

For the branch closure rules, we shall need solution clauses 5

0

; 6

0

; 9

0

and

10

0

of Example 8.4. The derivation is as follows:
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1: 2

2: A

1

(x

0

; u

0

; v

0

; y

0

) j A

2

(u

0

; x

0

; y

0

; v

0

) (te

�

); 1

3: A

1

(x

0

; u

0

; v

0

; y

0

);A

1

(x

1

; u

1

; v

1

; y

1

) j

A

1

(x

0

; u

0

; v

0

; y

0

);A

2

(u

1

; x

1

; y

1

; v

1

) j A

2

(u

0

; x

0

; y

0

; v

0

)

(te

�

); 2

4: A

1

(x

0

; u

0

; v

0

; y

0

);A

2

(fc; x

1

; x

1

; fd) j A

2

(u

0

; x

0

; y

0

; v

0

) (bc

�

); 3

5: A

2

(fd; u

0

; u

0

; fd) (bc

�

); 4

6: A

2

(fd; u

0

; u

0

; fd);A

1

(x

2

; u

2

; v

2

; y

2

) j

A

2

(fd; u

0

; u

0

; fd);A

2

(u

2

; x

2

; y

2

; v

2

) (te

�

); 5

7: A

2

(fd; fb; fb; fd);A

2

(u

2

; x

2

; y

2

; v

2

) (bc

�

); 6

8: # (bc

�

); 7

Here the branch closure rules used to obtain tableaux 4; 5; 7; 8 have been

applied using solution clauses 5

0

; 10

0

; 9

0

; 6

0

, respectively.

A similar idea: combination of proof-search in tableaux and a bottom-

up equality saturation of the original formula, is used in Moser, Lynch, and

Steinbach [118] for constructing a model elimination tableau with re�ned

paramodulation. The main di�erence between the two approaches is that

the elimination of equality in the tableau part in [118] is partial but not

total. This requires to introduce in the tableau part relaxed paramodulation

of Snyder and Lynch [145] and even come back to lazy paramodulation (Gal-

lier and Snyder [74]) dropping top uni�cation from relaxed paramodulation.

Comparing the two forms of paramodulation Snyder and Lynch [145] write:

\Our original formulation of RPC (relaxed paramodulation calculus) used

the form of lazy paramodulation from [74], but clearly the re�nement to top

uni�cation is superior, since it restricts the number of inferences and concep-

tually it clari�es the dividing line between uni�cation and completely lazy

uni�cation".

8.3 Equality elimination for the inverse method

Equality elimination for the inverse method is based on the same charac-

terization of provability in terms of solution clauses as that for the tableau

method (Theorem 8.6). However, the resulting calculi for the inverse method

and for the tableau method are quite di�erent because the inverse method is

local while the tableau method is global. Among other inference rules, the

inverse method uses the factoring rule that is absent in the tableau method.

In a certain sense, equality elimination for tableaux and the inverse method
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are dual to each other which re
ects the duality between bottom-up and

top-down reasoning.

We shall formulate the inverse method in the form of a logical calculi I

�

over �-clauses.

◮ A �-clause is any �nite multiset of atoms of the form A

k

(t

1

; : : : ; t

m

)

such that A

k

(x

1

; : : : ; x

m

) is a �-name of some subformula of �.

The de�nition of �-clauses is the same as that of �-branches. We use �-

clauses to stress, �rst, that they do not belong to particular tableaux and

second, that the calculus of �-clauses is similar to the resolution calculus.

The calculus I

�

consists of two inference rules: the conjunction rule and the

factoring rule.

◮ Let C

1

; C

2

and C be the sets of �-names of ';  and '^ , where '^ 

is a subformula of � and D

1

; D

2

be clauses. Let �x be all variables of

' ^  . Then the following is a �-conjunction rule

D

1

; C

1

[�x 7! �s] D

2

; C

2

[�x 7!

�

t]

(D

1

; D

2

; C[�x 7! �s])mgu(�s;

�

t)

(^

�

)

◮ The following is a factoring rule

C;A;B

(C;A)mgu(A;B)

(fac)

◮ The calculus I

�

is the calculus whose axioms are solution clauses and

whose inference rules are (^

�

) and (fac).

Theorem 8.8 The following conditions are equivalent:

1. � is provable in �rst-order logic with equality;

2. the empty clause 2 is derivable in I

�

.

Example 8.9 Consider again Examples 8.1 and 8.4. For the formula � of

these examples, we get the following conjunction rule:

D

1

;A

1

(s

x

; s

u

; s

v

; s

y

) D

2

;A

2

(t

u

; t

x

; t

y

; t

v

)

(D

1

; D

2

)mgu(hs

x

; s

y

; s

u

; s

v

i; ht

x

; t

y

; t

u

; t

v

i)

(^

�

)
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We start with solution clauses 5

0

; 6

0

; 9

0

and 10

0

of Example 8.4. The deriva-

tion is as follows:

5

0

: A

1

(x; fc; fd; x)

6

0

: A

2

(u; fa; fb; u)

9

0

: A

1

(x

1

; u

1

; v

1

; y

1

);A

2

(u

2

; fb; fb; u

2

)

10

0

: A

2

(u

3

; x

3

; y

3

; v

3

);A

1

(x

4

; fd; fd; x

4

)

1: A

1

(x

5

; u

5

; v

5

; y

5

);A

2

(u

6

; x

6

; y

6

; v

6

) (^

�

); 9

0

; 10

0

2: A

1

(x

7

; u

7

; v

7

; y

7

) (^

�

); 5

0

; 1

3: 2 (^

�

); 6

0

; 2

Note that the same derivation is obtained by positive hyperresolution,

when we replace the �-conjunction rule of this example by the clause

:A

1

(x; u; v; y);:A

2

(u; x; y; v):

Deduction in the calculus BS

�

can be improved by redundancy deletion.

Besides tautology deletion, we can use such deletion strategies as basic sub-

sumption, basic simpli�cation, and basic blocking (Bachmair et.al. [12, 13]).

Application of arbitrary simpli�cation in the basic setting may yield in-

completeness, as we can see from the following example taken from Degtyarev

[40]. Let S consists of 3 closures

1: f

1

x � f

2

x � "

2: f

3

c � c � "

3: f

1

f

3

y 6� f

2

c � ":

We use any reduction ordering such that f

1

x � f

2

x. This set of closures is

inconsistent, and there is a derivation of the empty closure from 1{3 by basic

superposition. We can simplify closure 3 by 1 obtaining

4: f

2

x 6� f

2

c � [x 7! f

3

y]:

It is easy to see that it is impossible to derive the empty closure from 1; 2; 4

by basic supeprosition.

If we use basic simpli�cation instead, the simpli�cation would give the

closure

4: f

2

f

3

y 6� f

2

c � ":
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The applications of equality elimination for logic programs (Degtyarev

and Voronkov [50]), to the inverse method (Degtyarev and Voronkov [48])

and to semantic tableaux (Degtyarev and Voronkov [49, 54]) can be consid-

ered as a transformation of a set of clauses with equality into a set of clauses

without equality. However, all these applications share the same problem:

the transformation itself and the resulting set of clauses without equality

can, in general, be in�nite (since there may be an in�nite number of so-

lution clauses). In order to cope with problem, in Degtyarev, Koval and

Voronkov [44] and Degtyarev and Voronkov [55] we introduce a new infer-

ence rule: the so-called basic folding for logic programs with equality. By

introduction of new predicate symbols encoding partially solved equations

we ensure termination of the equality elimination procedure, thus allowing

one to obtain elegant �nite programs without equality from equational logic

programs. Moreover, the resulting program without equality can sometimes

give a unique solution from an in�nite number of solutions to the original

program. The basic folding is a promising approach in the area of machine

learning because it gives us a possibility to automatically discover new no-

tions and to reformulate a logical theory in terms of the new notions.

The essential di�erence between basic folding and the Brand's modi�-

cation method [33] is that we try to solve all equations in the bodies by

specialized applications of equality rules: basic superposition and equality

solution. It allows us to automatically \subsume" the axioms of symmetry

and transitivity, and also to essentially decrease the number of logical conse-

quences due to the use of orderings. According to the Brand's method, these

axioms must be explicitly applied to all positive occurrences of the predicate

�. In [55] we show that basic folding may give a considerably simpler set

of clauses: in an example of that paper the basic folding generates a set

of clauses having a �nite SLD-tree, while Brand's transformation generates

a logic program with an in�nite SLD-tree. However, the basic folding is

currently only de�ned for sets of Horn clauses.
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9 Equality reasoning in nonclassical logics

Equality handling in nonclassical logics is more problematic than in the clas-

sical one. Whereas problems in handling equality in tableaux for classical

logic have been caused by the presence of rigid variables and do not ap-

pear in resolution-based theorem proving, the picture for nonclassical logics

is entirely di�erent. In this section we demonstrate that handling equal-

ity in intuitionistic logic necessarily requires the use of simultaneous rigid

E-uni�cation. We also demonstrate that the same is true for some formal-

izations of modal logics with equality.

9.1 Intuitionistic logic with equality

The material of this section is mainly based on Voronkov [159, 156].

For technical reasons, in this section we change the de�nition of a sequent.

◮ A sequent is an expression �! �, where �, � are multisets of formulas

and � contains at most one formula. � (respectively �) is called the

antecedent (respectively, the succedent) of this sequent.

The condition on the succedent to contain one formula is essential and leads

to intuitionistic logic instead of classical.

Thus obtained sequent calculus LJ

=

for intuitionistic logic with equality

is shown in Figure 12. This calculus derives intuitionistic sequents. In fact,

the rules of LJ

=

are precisely the rules of LK

=

adapted to meet the new

de�nition of sequents.

This paper is not intended to serve as an introduction to intuitionistic

logic, so we shall only assert some most essential properties of LJ

=

needed

to understand the problems arising in handling equality. Regular derivations

in LJ

=

are de�ned in the same way as for LK

=

(page 17).

As in the case with LK

=

, regular derivations are enough:

Theorem 9.1 Any sequent derivable in LJ

=

has a regular derivation.

Two examples of derivations in LJ

=

of the formula

8x(x � a _ x � b � 9y(f(x; y) � b)) � 9u9v9w(f(f(u; v); w) � b)
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�; A;�! A

(Ax)

�! t�t

(re
)

�[x 7! t]; s�t! �[x 7! t]

�[x 7! s]; s�t! �[x 7! s]

(�)

�; ';  ;�! �

�; ' ^  ;�! �

(^ !)

�! ' �!  

�! ' ^  

(! ^)

�; ';�! � �;  ! �

�; ' _  ;�! �

(_ !)

�! '

�! ' _  

(! _

1

)

�!  

�! ' _  

(! _

2

)

�;  ;�! � �; ' �  ;�! '

�; ' �  ;�! �

(�!)

';�!  

�! ' �  

(!�)

�;:'! '

�;:';�!

(: !)

';�!

�! :'

(! :)

�; '[x 7! t]; 8x';�! �

�; 8x';�! �

(8 !)

�! '[x 7! y]

�! 8x'

(! 8)

�; '[x 7! y]! �

�; 9x'! �

(9 !)

�! '[x 7! t]

�! 9x'

(! 9)

The rules (! 8) and (9 !) satisfy the standard eigenvariable conditions.

Figure 12: Calculus LJ

=
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In this example, we denote by ' the formula 8x(x�a _ x�b � 9y(f(x; y)�b)). We also denote by � � � some

irrelevant parts of the sequents.

f(a; y)�b; f(b; z)�b; '! f(b; z)�f(b; z)

(re
)

f(a; y)�b; f(b; z)�b; '! f(b; z)�b

(�)

f(a; y)�b; f(b; z)�b; '! f(f(a; y); z)�b

(�)

f(a; y)�b; f(b; z)�b; '! 9w(f(f(a; y); w)�b)

(! 9)

f(a; y)�b;9y(f(b; y)�b); '! 9w(f(f(a; y); w)�b)

(9 !)

� � � ! b�b

(re
)

� � � ! b�a _ b�b

(! _

2

)

f(a; y)�b; b�a _ b�b � 9y(f(b; y)�b); '! 9w(f(f(a; y); w)�b)

(�!)

f(a; y)�b; '! 9w(f(f(a; y); w)�b)

(8 !)

f(a; y)�b; '! 9v9w(f(f(a; v); w)�b)

(! 9)

9y(f(a; y)�b); '! 9v9w(f(f(a; v); w)�b)

(9 !)

� � � ! a�a

(re
)

� � � ! a�a _ a�b

(! _

1

)

a�a _ a�b � 9y(f(a; y)�b); '! 9v9w(f(f(a; v); w)�b)

(�!)

'! 9v9w(f(f(a; v); w)�b)

(8 !)

'! 9u9v9w(f(f(u; v); w)�b)

(! 9)

! ' � 9u9v9w(f(f(u; v); w)�b)

(!�)

Figure 13: A regular derivation in LJ

=

9
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In this example, we denote by ' the formula 8x(x�a _ x�b � 9y(f(x; y)�b)). We also denote by � � � some

irrelevant parts of the sequents.

f(a; y)�b; f(b; z)�b; '! b�b

(re
)

f(a; y)�b; f(b; z)�b; '! f(b; z)�b

(�)

f(a; y)�b; f(b; z)�b; '! 9w(f(b; w)�b)

(! 9)

f(a; y)�b;9y(f(b; y)�b); '! 9w(f(b; w)�b)

(9 !)

� � � ! b�b

(re
)

� � � ! b�a _ b�b

(! _

2

)

f(a; y)�b; b�a _ b�b � 9y(f(b; y)�b); '! 9w(f(b; w)�b)

(�!)

f(a; y)�b; '! 9w(f(b; w)�b)

(8 !)

f(a; y)�b; '! 9w(f(f(a; y); w)�b)

(�)

f(a; y)�b; '! 9v9w(f(f(a; v); w)�b)

(! 9)

9y(f(a; y)�b); '! 9v9w(f(f(a; v); w)�b)

(9 !)

� � � ! a�a

(re
)

� � � ! a�a _ a�b

(! _

1

)

a�a _ a�b � 9y(f(a; y)�b); '! 9v9w(f(f(a; v); w)�b)

(�!)

'! 9v9w(f(f(a; v); w)�b)

(8 !)

'! 9u9v9w(f(f(u; v); w)�b)

(! 9)

! ' � 9u9v9w(f(f(u; v); w)�b)

(!�)

Figure 14: An irregular derivation in LJ

=
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are given in Figures 13 and 14 . The �rst derivation is regular while the

second is not regular.

Unlike LK

=

, the calculus LJ

=

has the explicit de�nability property which

can be expressed by

Theorem 9.2 A sequent ! 9x' is derivable in LJ

=

if and only if there is

a term t such that ! '[x 7! t] is derivable in LJ

=

.

Finally, in LJ

=

we cannot get rid of �-rules, since there are no analogues

of skolemization.

9.2 Simultaneous rigid E-uni�cation is inevitable

We introduce one technical notion.

◮ An inference rule is called invertible if the derivability of the conclusion

of the rule implies the derivability of all premises of the rule.

All rules in LK

=

are invertible, while LJ

=

has some non-invertible rules.

All the methods considered in this paper which are complete for �rst-order

classical logic with equality do not work for intuitionistic logic. The �rst

thing we can note is that simultaneous rigid E-uni�cation is representable in

intuitionistic logic in the following way.

Consider any system R of rigid equations de�ned by

R ⇋

s

11

�t

11

: : : s

1n

1

�t

1n

1

`

8

s

0

1

�t

0

1

.

.

.

.

.

.

.

.

.

s

k1

�t

k1

: : : s

kn

k

�t

kn

k

`

8

s

0

k

�t

0

k

(20)

Let x

1

; : : : ; x

m

be all variables occurring in R. De�ne the formulas  

R

and

'

R

as follows:

 

R

⇋ (s

11

�t

11

^ : : : ^ s

1n

1

�t

1n

1

� s

0

1

�t

0

1

) ^

: : : ^

(s

k1

�t

k1

^ : : : ^ s

kn

k

�t

kn

k

� s

0

k

�t

0

k

)

(21)

'

R

⇋ 9x

1

: : :9x

m

 

R

(22)
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By considering all possible derivations of '

R

in LJ

=

, or by using Theorem 9.2,

it is easy to see that '

R

is derivable in LJ

=

if and only if there is a substitution

� such that the formula  

R

� is derivable in LJ

=

. Using the fact that the rules

(! ^), (!�) and (^ !) are invertible we can prove that  

R

� is derivable

in LJ

=

if and only if for all j 2 f1; : : : ; kg the sequent

s

j1

� � t

j1

�; : : : ; s

jn

j

� � t

jn

j

� ! s

0

j

� � t

0

j

�

is derivable in LJ

=

. Derivability of such sequents in LJ

=

is equivalent to

their derivability in LK

=

. Hence,  is provable if and only if � is a solution

to R. This consideration prove the following theorem (Voronkov [156, 159]):

Theorem 9.3 Simultaneous rigid E-uni�ability is polynomial-time redu-

cible to derivability in LJ

=

.

Thus, unlike classical logic, handling simultaneous rigid E-uni�cation is in-

evitable in any automated reasoning system for intuitionistic logic with equal-

ity.

9.3 Automated reasoning modulo simultaneous rigid

E-uni�cation

We established that any complete system of automated reasoning for in-

tuitionistic logic gives us a semi-decision algorithm for simultaneous rigid

E-uni�cation. In this section, we show how one can design semi-decision

algorithms for LJ

=

modulo simultaneous rigid E-uni�cation. This means

that we assume that a semi-decision procedure P for simultaneous rigid E-

uni�cation is given and we try to give a general semi-decision procedure for

LJ

=

which may call P from time to time. The idea of such a procedure can

already be found in equational matings by Gallier et.al. [72, 71, 70]. However,

for intuitionistic logic we have to elaborate several things due to the existence

of non-invertible rules and to the presence of �-rules. Due to non-invertible

rules, we shall use derivation skeletons instead of tableaux or matrices. We

shall also built-in simultaneous rigid E-uni�cation directly into the calculus

by means of constraints. (These constraints are di�erent from the equaliyt

and equality constraints we have considered so far.) The exposition here

mainly follows [156].

◮ A derivation skeleton is a tree such that
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1. its nodes are labelled by the names of inference rules in LJ

=

,

except for (�);

2. the number of parents of a node labelled by a name of an inference

rule is equal to the number of the premises in such a rule in LJ

=

;

3. all nodes labelled by antecedent rules or (Ax) are additionally

labelled by a natural number.

The natural number in an antecedent rule or in an axiom (Ax) represents the

index of the main formula (counting from 0) of this rule in the antecedent

of the conclusion of the rule. In other words, this number is the number

of formulas in � in the corresponding rules of LJ

=

(Figure 12). We always

display the number as an index.

◮ The skeleton of a derivation � is obtained from � by removing all

sequents and all applications of rules (�), and by adding corresponding

indices for antecedent rules and axioms (Ax).

We display derivation skeletons as derivations with omitted sequents, nodes

are denoted by horizontal bars with labels displayed to the right of the bar.

For example, both derivations shown in Figures 13 and 14 have the same

skeleton

(re
)

(! 9)

(9 !)

1

(re
)

(! _

2

)

(�!)

1

(8 !)

1

(! 9)

(9 !)

0

(re
)

(! _

1

)

(�!)

0

(8 !)

0

(! 9)

(!�)

Derivation skeletons are abstractions of derivations that encode informa-

tion about the structures of derivations. They abstract from the following

information:
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1. instantiation of variables in quanti�er rules;

2. the order of applications of the equality rules (�) and (�).

A problem similar to the existence of equational mating in terminology

of Gallier [70] is the following

◮ skeleton instantiation problem: given a sequent S and a skeleton S,

does there exist a derivation of S in LJ

=

with the skeleton S.

For formulas without equality this problem is decidable in polynomial-

time [158]. For formulas with equality the skeleton instantiation problem is

undecidable. In fact, we have (Voronkov [156]):

Theorem 9.4 Simultaneous rigid E-uni�ability is polynomial-time equiva-

lent to the skeleton instantiation problem.

A more precise formulation of this statement with respect to signatures may

be found in [161].

9.3.1 Constraints

As in the case with classical tableaux, we have to make a step from LJ

=

to

a free variable calculus. As it has been show above, handling simultaneous

rigid E-uni�cation is inevitable for free-variable versions of LJ

=

. What we

shall do here is to introduce simultaneous rigid E-uni�cation directly in the

calculus in the form of constraints. This trick is similar to the introduction

of constraints in the tableau calculus made in Section 7.2, but the notion of

a constraint will be di�erent. Here, constraints will encode the information

on possible instantiations of skeletons to real derivations.

Based on the constraints, we de�ne the constraint calculus LJ

=

c

. This

calculus can be used for de�ning sequent style proof procedures for intu-

itionistic logic with equality. The proof procedures based on LJ

=

c

consist of

two parts: the construction of a derivation skeleton and the constraint sat-

isfaction part. The constraint to be satis�ed is computed from the skeleton

of a derivation. The construction of a skeleton can also be considered as a

sequence of applications of tableau expansion rules.

◮ Constraints are de�ned inductively as follows:
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1. > is a constraint;

2. For any terms t; t

1

; : : : ; t

n

, t 6� ft

1

; : : : ; t

n

g is a constraint;

3. Any rigid equation s

1

�t

1

; : : : ; s

n

�t

n

`

8

s�t is a constraint;

4. If C

1

; C

2

are constraints, then C

1

^ C

2

is a constraint;

5. If C is a constraint, x is variable, then 9xC is a constraint.

Constraints can be regarded as �rst order formulas using the atomic formulas

>, t 6� ft

1

; : : : ; t

n

g and E `

8

s�t such that : : : 6� f: : :g and : : : `

8

: : : are

considered as a family of predicate symbols of arbitrary arities. Then, we

can speak about

◮ the set vars(C) of free variables of a constraint C.

Constraints describe the domain of substitutions. If a constraint C is true on

a substitution � we say that � satis�es C:

◮ The notion a substitution � satis�es the constraint C, denoted � j= C,

is de�ned inductively as follows:

1. � j= > for every substitution �;

2. � j= E `

8

s�t if � is a solution to the rigid equation E `

8

s�t;

3. � j= t 6� ft

1

; : : : ; t

n

g if t� is a variable and t� does not occur in

t

1

�; : : : ; t

n

�;

4. � j= C

1

^ C

2

if � j= C

1

and � j= C

2

;

5. � j= 9xC if there is a substitution � such that � j= C and y� = y�

for every variable y di�erent from x.

◮ Constraints C

1

and C

2

are equivalent if for every substitution � we have

� j= C

1

if and only if � j= C

2

.

◮ A constraint C is satis�able if there is a substitution � satisfying C.
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9.3.2 Free variable calculus LJ

=

c

In this section we introduce the calculus LJ

=

c

of constrained sequents. Before

giving its inference rules, we introduce the following notation.

◮ For a multiset of formulas �, denote by �

�

the multiset of formulas

fs � t j s � t 2 �g.

The calculus LJ

=

c

deals with constraint sequents:

◮ a constrained sequent is an expression S � C where S is a sequent and

C is a constraint;

◮ the constraint calculus LJ

=

c

of constrained sequents is shown in Fig-

ure 15.

The notion of a skeleton for LJ

=

c

-derivations is similar to that of LJ

=

-

derivations.

Consider two examples of derivations in LJ

=

c

. In both examples we derive

the same formula as in Figures 13 and 14 , augmented with some constraint.

In the �rst example, the constraint is unsatis�able. As in Figures 13 and 14

, we denote by ' the formula 8x(x�a _ x�b � 9y(f(x; y)�b)).

'! f(f(u; v); w)�b� `

8

f(f(u; v); w)�b

(�)

'! 9w(f(f(u; v); w)�b) � 9w(`

8

f(f(u; v); w)�b)

(! 9)

'! 9v9w(f(f(u; v); w)�b) � 9v9w(`

8

f(f(u; v); w)�b)

(! 9)

'! 9u9v9w(f(f(u; v); w)�b) � 9u9v9w(`

8

f(f(u; v); w)�b)

(! 9)

! ' � 9u9v9w(f(f(u; v); w)�b) � 9u9v9w(`

8

f(f(u; v); w)�b)

(!�)

The resulting constraint 9u9v9w(`

8

f(f(u; v); w)�b) of this derivation is

evidently unsatis�able.

Another derivation of this formula has the same skeleton as that of Fig-

ures 13 and 14 and is shown in Figure 16.

Here the constraints C

1

{C

12

are as follows:
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�; A;�! A � �

�

[�

�

`

8

s

1

� t

1

^ : : : ^ �

�

[�

�

`

8

s

n

� t

n

(Ax)

�! t�t � �

�

`

8

s�t

(re
)

�; ';  ;�! � � C

�; ' ^  ;�! � � C

(^ !)

�! ' � C

1

�!  � C

2

�! ' ^  � C

1

^ C

2

(! ^)

�; ';�! � � C

1

�;  ! � � C

2

�; ' _  ;�! � � C

1

^ C

2

(_ !)

�! ' � C

�! ' _  � C

(! _

1

)

�!  � C

�! ' _  � C

(! _

2

)

�;  ;�! � � C

1

�; ' �  ;�! ' � C

2

�; ' �  ;�! � � C

1

^ C

2

(�!)

';�!  � C

�! ' �  � C

(!�)

�! ' � C

�;:';�! �C

(: !)

';�! �C

�! :' � C

(! :)

�; '[x 7! y]; 8x';�! � � C

�; 8x';�! � � 9yC

(8 !)

�! '[x 7! y] � C

�! 8x' � 9y(y 6� fv

1

; : : : ; v

n

g ^ C)

(! 8)

�; '[x 7! y]! � � C

�; 9x'! � � 9y(y 6� fv

1

; : : : ; v

n

g ^ C)

(9 !)

�! '[x 7! y] � C

�! 9x' � 9yC

(! 9)

In the rule (Ax), A is a predicate symbol di�erent from equality. In the rules

(8 !){(! 9) the variable y has no free occurrences in the sequent in the

conclusion of the rules. In the rule (! 8), v

1

; : : : ; v

n

are all free variables of

�; 8x'. In the rule (9 !), v

1

; : : : ; v

n

are all free variables of �; 9x';�.

Figure 15: Calculus LJ

=

c

102



f(x

1

; y

1

)�b; f(x

2

; y

2

)�b; '! f(f(u; v); w)�b � C

1

(�)

f(x

1

; y

1

)�b; f(x

2

; y

2

)�b; '! 9w(f(f(u; v); w)�b) � C

2

(! 9)

f(x

1

; y

1

)�b; 9y(f(x

2

; y)�b); '! 9w(f(f(u; v); w)�b) � C

4

(9 !)

� � � ! x

2

�b � C

3

(�)

� � � ! x

2

�a _ x

2

�b � C

3

(! _

2

)

f(x

1

; y

1

)�b; x

2

�a _ x

2

�b � 9y(f(x

2

; y)�b); '! 9w(f(f(u; v); w)�b) � C

5

(�!)

(8 !)

f(x

1

; y

1

)�b; '! 9w(f(f(u; v); w)�b) � C

6

f(x

1

; y

1

)�b; '! 9v9w(f(f(u; v); w)�b) � C

7

(! 9)

9y(f(x

1

; y)�b); '! 9v9w(f(f(u; v); w)�b) � C

9

(9 !)

� � � ! x

1

�a � C

8

(�)

� � � ! x

1

�a _ x

1

�b � C

8

(! _

1

)

x

1

�a _ x

1

�b � 9y(f(x

1

; y)�b); '! 9v9w(f(f(u; v); w)�b) � C

10

(�!)

'! 9v9w(f(f(u; v); w)�b) � C

11

(8 !)

'! 9u9v9w(f(f(u; v); w)�b) � C

12

(! 9)

! ' � 9u9v9w(f(f(u; v); w)�b) � C

12

(!�)

Figure 16: A derivation in LJ

=
c
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C

1

⇋ f(x

1

; y

1

)�b; f(x

2

; y

2

)�b `

8

f(f(u; v); w)�b

C

2

⇋ 9w(f(x

1

; y

1

)�b; f(x

2

; y

2

)�b `

8

f(f(u; v); w)�b)

C

3

⇋ f(x

1

; y

1

)�b `

8

x

2

�b

C

4

⇋ 9y

2

(y

2

6� fx

1

; y

1

; x

2

; u; vg ^

9w(f(x

1

; y

1

)�b; f(x

2

; y

2

)�b `

8

f(f(u; v); w)�b))

C

5

⇋ C

4

^ C

3

C

6

⇋ 9x

2

(C

4

^ C

3

)

C

7

⇋ 9v9x

2

(C

4

^ C

3

)

C

8

⇋ `

8

x

1

�a

C

9

⇋ 9y

1

(y

1

6� fx

1

; ug ^ 9v9x

2

(C

4

^ C

3

))

C

10

⇋ 9y

1

(y

1

6� fx

1

; ug ^ 9v9x

2

(C

4

^ C

3

))^ `

8

x

1

�a

C

11

⇋ 9x

1

(9y

1

(y

1

6� fx

1

; ug ^ 9v9x

2

(C

4

^ C

3

))^ `

8

x

1

�a)

C

12

⇋ 9u9x

1

(9y

1

(y

1

6� fx

1

; ug ^ 9v9x

2

(C

4

^ C

3

))^ `

8

x

1

�a)

The resulting constraint C

12

of this derivation is satis�able. To establish

this, we �rst note that C

12

is satis�able if and only if such is the following

constraint C obtained from C

12

be removing all quanti�ers:

f(x

1

; y

1

)�b; f(x

2

; y

2

)�b `

8

f(f(u; v); w)�b ^

f(x

1

; y

1

)�b `

8

x

2

�b ^

y

2

6� fx

1

; y

1

; x

2

; u; vg ^

`

8

x

1

�a ^

y

1

6� fx

1

; ug

This quanti�er-free constraint is satis�ed by the substitution [u 7! a; x

1

7!

a; v 7! y

1

; x

2

7! b; w 7! y

2

]. Note that this substitutions was used for variable

instantiation in 
-rules in the derivation of Figures 13 and 14 .

The correspondence of this derivation in LJ

=

c

to the derivation in LJ

=

is

not coincidental: derivations in LJ

=

c

characterize all derivations in LJ

=

with

a given skeleton in the following way:

Theorem 9.5 Let � ! ' be a sequent, � be a substitution and S be a

skeleton. Then the following conditions are equivalent:

1. there is a derivation of �� ! '� in LJ

=

with the skeleton S;

2. there is a constraint C and a derivation of � ! ' � C in LJ

=

c

with the

skeleton S such that � j= C.
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This statement also gives us the completeness of LJ

=

c

:

Theorem 9.6 (completeness of LJ

=

c

) Let S be a closed sequent. Then S

is derivable in LJ

=

if and only if there is a satis�able constraint C such that

S � C is derivable in LJ

=

c

.

Note that the set of constraints C such that S �C is derivable in LJ

=

c

with

a skeleton S is uniquely de�ned by the skeleton S up to renaming of bound

variables. Thus, the proof-search in intuitionistic logic can be considered as

consisting of two parts: constructing a skeleton and the constraint satisfac-

tion. This is similar to the matrix characterization of provability for classical

logic.

The skeleton instantiation problem is undecidable which causes doubts

about the e�ciency of such procedures. In classical logic, there are many

complete methods for reasoning with equality which do not use simultaneous

rigid E-uni�cation. However, for intuitionistic logic, because of simple reduc-

tion of simultaneous rigid E-uni�ability to the derivability problem, handling

of simultaneous rigid E-uni�cation is inevitable for designing a complete pro-

cedure. In addition, some special cases of simultaneous rigid E-uni�cation

are decidable [45] (for example, the function-free case is NP-complete) which

allows us to use decision procedures for these fragments.

9.4 Modal logics with equality

There is no uniform viewpoint on the use of quanti�cation in modal logics.

Neither is there a uniform viewpoint on the use of equality. The survey

Garson [75] contains some material on this topic. Without going into many

detail, we show that the above considerations about intuitionistic logic can as

well be applied to some formalizations of various modal logics. Readers not

familiar with modal logics can skip this section. We consider modal logics

for which equality is axiomatized by the rules (re
) and (�), like for LK

=

or LJ

=

. As an example, we take S4

=

.

We shall use the following notation. For any multiset of formulas �,

◮ 2� (respectively, }�) denotes the multiset of formulas f2' j ' 2 �g

(respectively, f}' j ' 2 �g).

◮ The sequent calculus S4

=

for modal logic with equality is obtained from

LK

=

by adding the following inference rules:
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�; T '

�; T 2'

(�)

T �; F �; F '

�; T 2�; F }�; F 2'

(�)

T �; F �; T '

�; T 2�; F }�; T }'

(�)

�; F '

�; F }'

(�)

Consider again any system R of rigid equations of the from (20) and the

formula  

R

of the form (21) (see page 96). Let ' ⇋ 9x

1

: : : 9x

m

2 

R

. Any

derivation of ' in S4

=

has the following form, for a suitable substitution �:

.

.

.

F  

R

�

9

=

;

derivation of  

R

�

�; F 2 

R

�

(�)

.

.

.

F 9x

1

: : :9x

m

2 

R

9

>

>

>

>

=

>

>

>

>

;

derivation using only 
-rules

Again, such a derivation exists if and only if � is a solution to R. Thus,

nearly every result asserted above for LJ

=

, can be reformulated in a suitable

way for S4

=

.

The necessity of handling simultaneous rigid E-uni�cation will arise in

almost any logic whose semantics is based on possible worlds. The same

trick that we used for modal logics above can, for instance, be made for some

temporal logics.
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