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Abstract—Designing robots that learn by themselves to
perform complex real-world tasks is a still-open challenge
for the field of Robotics and Artificial Intelligence. In this
paper we present the robot learning problem as a lifelong
problem, in which a robot faces a collection of tasks over
its entire lifetime. Such a scenario provides the oppor-
tunity to gather general-purpose knowledge that transfers
across tasks. We illustrate a particular learning mechanism,
explanation-based neural network learning, that transfers
knowledge between related tasks via neural network action
models. The learning approach is illustrated using a mobile
robot, equipped with visual, ultrasonic and laser sensors.
In less than 10 minutes operation time, the robot is able to
learn to navigate to a marked target object in a natural office
environment.

I. INTRODUCTION

Throughout the last decades, the field of robotics has produced a
large variety of approaches for the control of complex physical
manipulators. Despite significant progress in virtually all as-
pects of robotics science, most of today’s robots are specialized
to perform a narrow set of tasks in a very particular kind of envi-
ronment. Most robots employ specialized controllers that have
been carefully designed by hand, using extensive knowledge
of the robot, its environment and its task. If one is interested
in building autonomous multi-purpose robots, such approaches
face some serious bottlenecks.

� Knowledge bottleneck. Designing a robot controller re-
quires prior knowledge about the robot, its environment and
the tasks it is to perform. Some of the knowledge is usually
easy to obtain (like the kinematic properties of the robot),
but other knowledge might be very hard to obtain (like cer-
tain aspects of the robot dynamics, or the characteristics of
the robot’s sensors). Moreover, certain knowledge (like the
particular configuration of the environment, or the particular
task one wants a robot to do) might not be accessible at all at
the design-time of the robot.

� Engineering bottleneck. Making domain knowledge
computer-accessible, i.e., hand-coding explicit models of

robot hardware, sensors and environments, has often been
found to require tremendous amounts of programming time.
As robotic hardware becomes increasingly more complex,
and robots are to become more reactive in more complex and
less predictable environments, the task of hand-coding a robot
controller will become more and more a cost-dominating fac-
tor in the design of robots.

� Tractability bottleneck. Even if the robot, its environment
and its goals can be modeled in sufficient detail, generating
control for a general-purpose device has often been found to
be of enormous computational complexity (e.g., [18]). More-
over, the computational complexity often increases drastically
with the complexity of the mechanical device.

Machine learning aims to overcome these limitations, by en-
abling a robot to collect its knowledge on-the-fly, through real-
world experimentation. If a robot is placed in a novel, unknown
environment, or faced with a novel task for which no a priori
solution is known, a robot that learns can collect new experi-
ences, acquire new skills, and eventually perform new tasks all
by itself. For example, in [5] a robot manipulator is described
which learns to insert a peg in a hole without prior knowl-
edge regarding the manipulator or the hole. Maes and Brooks
[8] successfully applied learning techniques to coordinating leg
motion for an insect-like robot. Their approach, too, operates in
the absence of a model of the dynamics of the system. Learning
techniques have frequently come to bear in situations where the
physical world is extremely hard to model by hand (e.g., the
characteristics of noisy sensors). For example, Pomerleau de-
scribes a computer system that learns to steer a vehicle driving
at 55mph on public highways, based on input sensor data from a
video camera [15]. Learning techniques have also successfully
been applied to speed-up robot control, by observing the statis-
tical regularities of “typical” situations (like typical robot and
environment configurations), and compiling more compact con-
trollers for the frequently encountered. For example, Mitchell
[11] describes an approach in which a mobile robot becomes in-
creasingly reactive, by using observations to compile fast rules
out of a database of domain knowledge.

However, there is a principle shortcoming in most of to date’s
rigorous learning approaches. Most of the robot control learning



Figure 1: Episode and Q-networks inQ-Learning.

approaches focus on learning to achieve single, isolated perfor-
mance tasks. If one is interested in learning with a minimum
amount of initial knowledge, as is often the case in approaches
to robot learning, such approaches have a critical limiting factor:
the number of training examples required for successful gener-
alization. The more complex the task at hand and the lesser is
known about the problem beforehand, the more training data
is necessary to achieve the task. In many robotics domains,
the collection of training data is an expensive undertaking due
to the slowness of robotics hardware. Hence, it does not sur-
prise that the time required for real-world experimentation has
frequently been found to be the limiting factor that prevents rig-
orous machine learning techniques from being truly successful
in robotics.

The task of learning from scratch can be significantly simpli-
fied by considering robots that face whole collections of control
learning problems over their entire lifetime. In such a lifelong
robot learning scenario [27], learning tasks are related in that
they all play in the same environment, and that they involve the
the same robot hardware. Lifelong learning scenarios open the
opportunity for the transfer of knowledge across tasks. Complex
tasks, which might require huge amounts of training data when
faced in isolation, can conceivably be achieved much faster if a
robot manages to exploit previously learned knowledge. For ex-
ample, a lifelong learning robot might acquire general-purpose
knowledge about itself and its environment, or acquire gener-
ally useful skills that can be applied in the context of multiple
tasks. Such functions, once learned, can be applied to speed up
learning in new tasks. Hence, a lifelong learning perspective,
as proposed in this paper, promises to reduce the number of
training examples required for successful learning, and hence
to scale machine learning technology to more complex robot
scenarios.

In this paper we will present one particular candidate approach
to the lifelong learning problem: The explanation-based neural
network learning algorithm (EBNN) [13, 26, 27]. EBNN uses a
hybrid learning strategy to generalize training data. On the one
hand, it allows to learn functions inductively from scratch, just
like neural network Backpropagation [17]. On the other hand,
EBNN also allows to learn task-independent domain knowledge,

which applies to multiple tasks. More specifically, in the robot
control learning scenarios studied in this paper, domain knowl-
edge is represented by neural network action models, which
model the effect of the robot’s actions. These models are in-
dependent of the particular control learning task at hand, and
they are acquired over the lifetime of the robot. When learn-
ing control, they are used to analyze observations, in order to
generalize better to unseen situations.

Since in this paper we are interested in learning robot control,
we will describe EBNN in the context of Q-Learning [28]. Q-
Learning is a popular method for learning to select actions from
delayed and sparse reward. To illustrate the appropriateness
of the EBNN learning mechanism for robotics problems, we
will describe experimental results obtained in an indoor mobile
robot navigation domain.

II. LEARNING CONTROL

Q-Learning [28] is a reinforcement learning technique that has
frequently been applied to robot control. The goal of Q-
Learning is to learn a policy for generating whole action se-
quences, which maximize an externally given reward function.
In general, the reward may be delayed and/or sparse, adding a
significant degree of complexity to the learning problem. For
example, in the robot navigation experiments reported here, re-
ward is only received upon reaching a particular goal position,
or upon total failure (i.e., loosing a target object out of sight, as
described in Sect. IV.). The goal of learning, thus, is to construct
a reactive controller that carries the robot to its goal position in
as few steps as possible.

Q-Learning works as follows. Let S be the set of all possible
robot percepts. For simplicity, let us assume that at any (dis-
crete) point in time, the agent can observe the complete state
of the world1, denoted by s2S. Based on this observation, the
learner then picks an action a (from a set of actions A). As a
result, the world state changes. In addition, the learner receives
a scalar reward value, denoted by r(s; a) (or rt, if we refer to

1This restrictive assumption is frequently referred to as the Markov assump-
tion. See [2, 7, 10, 22] for approaches to reinforcement learning in partially
observable worlds.



Figure 2: EBNN. General-purpose action models are used to derive slope information for training examples.

the expected reward at a certain time t), which measures its cur-
rent performance. Throughout this paper we will assume that
reward will exclusively be received upon reaching a designated
goal location, or upon total failure, respectively.

Formally, in Q-Learning one seeks to find an action policy
�:s�!a, i.e., a mapping from environment states s to actions
a, which, when applied for action selection, maximize the cu-
mulative discounted future reward

R =
1X
t=t0


t�t0 rt: (1)

Here 
 (with 0�
�1) is a discount factor that favors rewards
reaped sooner in time. Notice that actions may impact re-
ward many time steps later. Hence, in order to learn to pick
reward-maximizing actions, one has to solve a temporal credit
assignment problem.

The key of Q-Learning is to learn a value function for pick-
ing actions. A value function, denoted by Q:S�A�!<, maps
robot percepts s2S and actions a2A to scalar “utility” values.
In the ideal case, Q(s; a) is, after learning, the maximum cumu-
lative, discounted reward one can expect upon executing action
a in state s (cf. Eq. (1)). Hence, Q ranks actions according
to their reward: The larger the expected cumulative reward for
picking action a at state s, the larger its value Q(s; a). Q, once
learned, allows to generate optimal actions by greedily picking
the action which maximizes Q for the current state s:

�(s) = argmax
â2A

Q(s; â)

Initially, all values Q(s; a) are set to zero. During learning
values are refined incrementally, using the following recursive
update procedure. Suppose the robot just executed a whole ac-
tion sequence which, starting at some initial state s1, led to a
final reward r(sT ; aT ). Such an episode is shown in Fig. 1. For
all time steps t within this episode, Q(st; at) is then updated
through mixture of the values of subsequent observation-action
pairs, up to the final value at the end of the episode. The exact
update equation, combined with a modified temporal differenc-

ing rule [24], is:

Q
target(st; at) =

8>>>>>><
>>>>>>:

+100 if at final action, robot reached goal
�100 if at final action, robot failed


 �

h
(1��) � max

a action
Q(st+1; a)

+� � Qtarget(st+1; at+1)
�

otherwise

(2)

Here � (0���1) is a gain parameter, trading off the recur-
sive component and the non-recursive component in the update
equation. If �=0, update equation (2) estimates the value of
picking action a at state s by both the observed immediate re-
ward r(s; a), and the best achievable value at the subsequent
states. Notice if Q(s; a) is represented by a lookup-table, the
Q-Learning rule has been shown to converge to a value function
that yields optimal policies (under certain conditionsconcerning
the environment, the exploration scheme and the learning rate)
[6, 28]. In the experiments reported in this paper, the number of
actions is finite, and Q is represented by neural networks Qa,
one for each action a2A.

III. EXPLANATION-BASED NEURAL NETWORK LEARNING

Q-Learning learns individual policies independently, ignoring
the opportunity for the transfer of knowledge across different
tasks. An important aspect of successful approaches to the life-
long learning problem is the ability to transfer knowledge to
related tasks. In this section we will describe the explanation-
based neural network learning algorithm (EBNN), which uses
task-independent knowledge to bias generalization when learn-
ing robot control. Notice that the EBNN algorithm is a general
learning algorithm, albeit the fact that EBNN is described in
the context of Q-Learning. A more detailed description can be
found in [26, 27].

In order to transfer knowledge, EBNN learns general-purpose
predictive action models. Action models, denoted by
M :S�A�!A, model the effect of the robots actions. In
EBNN, these models are represented using artificial neural net-
works, which are trained with observed state transitions using
the Backpropagation algorithm [17] (or EBNN itself). Once



Figure 3: Fitting values and slopes in EBNN: Let f be the target function for which three examples hx1; f(x1)i, hx2; f(x2)i,
and hx3; f(x3)i are known. Based on these points the learner might generate the hypothesis g. If the slopes (tangents) are also
known, the learner can do much better: h.

trained, they are used to analyze observed episodes using the
following three-step procedure:

1. Explain. An explanation is a post-facto prediction of an
observed episode. More specifically, when explaining an
episode, action models are employed to predict each state st
from the previously observed state action tuple (st�1; at�1),
as illustrated in Fig. 2.

2. Analyze. The explanation is now analyzed in order to ex-
tract the slopes of the target Q function. More specifically,
consider the update rule (2). The slope of the target output,
Qtarget(st; at), with respect to its input st is governed by:

rst
Q

target(st; at) =

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

@r(M(s; at))

@s

����
st

if at final action


 �

"
(1��)

@Q(s; at+1)

@s

����
st+1

+

� � rst+1Q
target(st+1; at+1)

#
�
@M(s; at)

@s

����
st

otherwise

(3)

If both Q and M are correct, Eq. (3) can be viewed as the
derivative of Eq. (2) with respect to s with fixed actions. The
auxiliary derivatives @M(s;at)

@s
and @Q(s;at+1)

@s
are obtained by

computing the first derivative of the neural network function
which, since neural networks are differentiable functions, is
straightforward to obtain. Hence, for each target value of the
form h(st; at);Q

target(st; at)i obtained via Eq. (3), EBNN
finds the slope of the target function Q at (st; at), denoted
by rstQ

target(st; at). This slope vector informs the learner
about the sensitivity ofQwith respect to infinitesimal changes
in st. Clearly, action models M play an integral part in the
extraction of slopes.

3. Learn. Once the slopes of the target function are known, one
can generalize better by incorporating them into the training

procedure, as depicted in Fig. 3. In EBNN both the target
values Qtarget(st; at) and the target slopes rstQ

target(st; at)
are used to refine the weights of the target networks. Hence,
a combined error function

E =
X

patterns

Evalue + � �Eslope

is minimized, which takes both value error, Evalue, and slope
error, Eslope, weighted by a gain parameter � into account.
Target values are fitted using the Backpropagation algorithm
[17]. Target slopes are fitted using the Tangent-Prop algo-
rithm, which is an analogue of Backpropagation for fitting
slopes [20].

Clearly, slopes extracted by EBNN can be wrong. This is
because they are computed using artificial neural networks,
which themselves are constructed from training examples.
Consequently, target slopes can mislead the generalization.
EBNN provides a simple but effective mechanism to recover
from malicious slopes. Whenever a model is used for pre-
dicting the next state, EBNN measures its root mean square
prediction error, denoted by �t, which is obtained by com-
paring the real state with the model prediction. This error
indicates the correctness of the action model, and hence the
accuracy of the slopes. Consequently, it is used to weight
the slope information when refining the weights of the target
network. More specifically, the weighting factor of the tth
slope, �t, when refining the weights, is governed by

�t =
T�1Y
�=t

�
1�

��

�max

�

Here �t is the RMS error of the model M at (st; at), and �max

is an appropriate normalization factor such that 0��t��max.
When refining the weights of theQ-network, the learning rate
for the tth slope is multiplied with�t. This mechanism, which
is called LOB*, has empirically been found to be important
for successfully learning from weak action models [26].

Notice that EBNN employs a neural network version of
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explanation-based learning [4, 12]. To summarize, EBNN em-
ploys action models to analyze training episodes, and to derive
slopes that are used for generalizing these episodes. These
slopes generalize training instances in input space, since they
indicate how small changes will affect the target function, Q.
They are extracted from general-purpose action models, which
is acquired and used over the entire lifetime of the robot. Hence,
in a lifelong learning context, EBNN transfers knowledge by
virtue of its action models.

IV. RESULTS IN A ROBOT NAVIGATION DOMAIN

In this section we will present empirical results obtained in a
mobile robot navigation domain. Xavier2, the robot at hand, is
shown in Fig. 4. It is equipped with a ring of 24 sonar sen-
sors, a laser light-stripper (range finder), and a color camera
mounted on a pan/tilt unit. Sonar sensors return approximate
echo distances, along with noise. The laser light-stripper mea-
sures distances more accurately, but its perceptual field is limited
to a small range in front of the robot. The task of the robot was
to learn to navigate to a specifically marked target location in a
natural laboratory environment. In some experiments, the loca-
tion of the marker was fixed throughout the course of learning,
in others it was moved across the laboratory and only kept fixed
for the duration of a single training episode. Sometimes parts
of the environment were blocked by obstacles. The marker was
detected using a visual object tracking routine that recognized
and tracked the marker in real-time, making heavily use of the
robot’s pan/tilt unit. Every 3 seconds the robot could chose one
of seven possible actions, ranging from sharp turns to straight
motion. In order to avoid collisions, the robot employed a pre-
coded obstacle avoidance routine. Whenever the projected path
of the robot was blocked by an obstacle, the robot decelerated
and, if necessary, changed its motion direction (regardless of
the commanded action). Xavier was operated continuously in
real-time. Each learning episode corresponded to a sequence of
actions which started at a random initial positionand terminated
either when the robot lost sight of the target object, for which it
was penalized, or when it halted in front of the marker, in which
case it was rewarded. Penalty/reward was only given at the end
of an episode, and Q-Learning with EBNN was employed to
determine optimal action policies.

In our implementation, percepts were mapped into a 46-
dimensional perceptual space, comprising 24 logarithmically
scaled sonar distance measurements, 10 locally averaged laser
distance scans, and an array of 12 camera values that indi-
cated the horizontal angle of the marker position relative to the
robot. Hence, each action model mapped 46 sensor values to
46 sensor predictions (15 hidden units), plus a prediction for the
immediate reward. The models were learned beforehand using

2Xavier has been built by and is property of Carnegie Mellon University,
Pittsburgh, USA.

Figure 4: The CMU Xavier robot.

the Backpropagation training procedure, employing a cross-
validation scheme to prevent over-fitting the data. Initially, we
used a training corpus of approximately 800 randomly gener-
ated training examples, which was gradually increased through
the course of this research to 3,000 examples, taken from some
700 episodes. These trainingexamples were distributed roughly
equally among the seven action model networks. In all our ex-
periments the action models were trained first, prior to learning
Q, and frozen during learning control. When training the Q
networks (46 input, eight hidden and one output unit), we ex-
plicitly memorized all training data, and used a replay technique
similar to “experience replay” described in [7]. This procedure
memorizes all past experiences explicitly. After each learning
episode, it re-estimates the target values of the Q function by
recursively replaying past episodes, as if they had just been ob-
served. Experience replay makes extensive use of the training
instances, hence allowing for more accurate evaluations of the
minimum requirements on data volume. In all our experiments
the update parameter 
 was set to 0:9, and � was set to 0:7,
which was empirically found to work best. We performed a
total of seven complete learning experiments, each consisting
of 25-40 episodes.

In order to evaluate the importance of the action models for
rapid learning in a lifelong learning setting, we ran two sets
of experiments: one in which no prior knowledge was avail-
able, and one where Xavier had access to the pre-trained action
models. One of the experiments is summarized in Fig. 6. In
this figure, we visualized several learning episodes viewed from
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Figure 5: Prediction and slopes. A neural network action model predicts sensations and reward for the next time step. The large
matrix displays the output-input slopes of the network. White boxes refer to negative and black boxes to positive values. Box
sizes indicate absolute magnitudes. Notice the bulk of positive gradients along the main diagonal, and the cross-dependencies
between different sensors.

a bird eye’s view, using a sonar map techniques described in
[27]. In all cases Xavier learned to navigate to a static target
location in less than 19 episodes (with action models) and 24
episodes (without action models). Each episode was between
two and eleven actions in length. It consistently learned to navi-
gate to arbitrary target locations (which was required in five out
of seven experiments) always in less than 25 (35, respectively)
episodes. The reader should notice the small number of training
examples required to learn this task. Although the robot faced
a high-dimensional sensation space, it always managed to learn
the task in less than 10 minutes of robot operation time, and,
on average, less than 20 training examples per Q-network. Of
course, the training time does not include the time for collecting
the training data of the action models. Almost all training ex-
amples for the action models, however, were obtained as a side
effect when experimenting with the robot.

When testing our approach, we also confronted Xavier with sit-
uations which were not part of its training experience, as shown
in Fig. 7. In one case, we kept the location of the marker fixed
and moved it only in the testing phase. In a second experiment,
we blocked the robot’s path by large obstacles, even though
it had not experienced obstacles during training. It was here
that the presence of appropriate action models was most im-
portant. While without prior knowledge the robot consistently

failed to approach the marker under these new conditions, it
reliably (>90%) managed this task when it was trained with the
help of the action model networks. Obviously, this is because
in EBNN the action models provides a knowledgeable bias for
generalization to unseen situations.

V. CONCLUSION

In this paper we have described an approach to the lifelong robot
learning problem, based on Q-Learning and EBNN. We have
empirically illustrated rapid learning capabilities in a mobile
robot navigation domain, demonstrating the appropriateness of
Q-Learning and EBNN for robot navigation with unstructured,
high-dimensional perceptual spaces.

The reader should notice that others have studies the transfer of
knowledge. For example, in the context of reinforcement learn-
ing, models have been successfully employed for the transfer
of knowledge via planning [9, 25] or replay [7]. Others pro-
posed hierarchical approaches, in which the building blocks,
once learned, can be applied to multiple tasks [3, 7, 21]. A
third way for the transfer of knowledge is concerned with the
construction of better internal representations, which improve
generalization across multiple tasks [1, 16, 19, 23]. While this
list is clearly incomplete, it nevertheless illustrates the impor-
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episode 1 episode 2 episode 6

episode 18 episode 19 episode 20

Figure 6: Learning navigation. Traces of three early and three late episodes are shown. Each diagram shows a two-dimensional
occupancy maps of the world, which have been constructed based on sonar information. Bright regions indicate free-space and
dark regions indicate the presence of obstacles. Note that the location of the target object (marked by a cross) is held constant in
this experiment.

Figure 7: Testing navigation. After training, the location of the target object was moved. In some experiments, the path of the
robot was also blocked by obstacles. Unlike plain inductive neural network learning, EBNN almost always manages these cases
successfully.

tance for transferring knowledge for scaling machine learning
to more complex domains [27].

From a lifelong learning perspective, much of the work pre-
sented in this paper is preliminary. While we have not yet
studied robot control in the context of multiple tasks in prac-
tice, in experiments described here and elsewhere [13, 26, 27]
we consistently found that EBNN outperforms pure inductive
neural network learning, which does not employ background
knowledge and hence learns from scratch. In a related paper we
have illustrated superior generalization due to EBNN in a robot
perception task [14]. Learning mechanisms that allows for the

effective knowledge transfer, like EBNN, is a necessary prereq-
uisite for successful approaches to the lifelong robot learning
problem.
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