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Application of Simple Numerical Techniques for Increasing the 
Efficiency of a Forward-In-Time Shallow Water Code on a Sphere 

J.M. Reisner and C.-Y.J. Kao 
Los Alamos National Laboratory 

Los Alamos, NM 87545 

Atmospheric motions contain signals such as gravity waves and/or sound 
waves which usually have little influence on the actual weather. These signals 
do however have an effect on atmospheric models which predict the weather, the 
signals require the use of small time steps for numerical stability. Two explicit 
numerical techniques, time-splitting and temporal averaging, are described in 
this paper which help increase the efficiency of atmospheric models which contain 
fast signals. An interesting aspect of this work is that these techniques are being 
applied within the framework of a fully forward-in-time model. This is in contrast 
to findings by other researchers who have noted that the use of forward-in-time 
schemes in conjunction with time-splitting leads to numerical instabilities. In 
addition to demonstrating that the method is efficient, we will illustrate that 
the approach produces a solution which suffers from less dissipative errors than 
the original model. Additional features of the approach is that it does not suffer 
from temporal splitting errors and as such the method is fully second-order in 
time and space. Because the approach is explicit, no difficulties exist with its 
implementation on parallel architectures. The model is written in fortran 90 and 
runs on the CM5. 
1. Introduction 

capable of simulating shallow water flows on a rotating sphere are described. 
The original fully explicit model is based on Eulerian spatial differencing and 
nonoscillatory forward-in-time (NFT) temporal differencing. Finite difference 
methods have advantages over spectral methods when implemented on massively 
parallel computers with distributed memory because the computations are localized 
in space. However finite difference methods have more restrictive time step 
constraints and so computational efficiency becomes an important issue. The 
current model is explicit in time, and its computational time step is limited by 
the largest Courant number, Q! = cg with c being either a flow velocity or a 
wave speed, At is the time step, and Ax is a grid increment, on the mesh. Since 
the fastest wave speed is that of gravity waves (for atmospheric flows the Courant 
number, ag, associated with the fastest gravity wave is usually at least 4 times 
bigger than the Courant number, aa, associated with the fastest flow velocity on 
the mesh), and is uniform over the mesh, the largest Courant number is associated 
with the smallest cell dimensions. In the typical latitude-longitude mesh, these 
smallest dimensions are found in the cells nearest the poles. 

There are several strategies available to increase the time step and thus 
improve the computational efficiency of a spherical finite difference model. 
For example, techniques such as the reduced grid or semi-implicit method 

In this paper numerical techniques for increasing the efficiency of a model 



have been shown to improve the efficiency (Reisner et al. 1996) of the code; 
however, one group of techniques which have not been previously investigated 
are explicit techniques, such as time-split schemes and/or schemes employing 
temporal averaging. Unlike the semi-implicit approach, no elliptic solver need be 
implemented when explicit techniques are employed and hence explicit methods are 
ideally suited for parallel type machines. As will later be shown, efficiency gained 
from employing the explicit techniques is the result of computing relatively costly 
second-order advective procedures less frequently than that is required in the fully 
explicit model. Another important feature of these techniques is that they can be 
easily applied in model frameworks, such as an isentropic framework (Reisner and 
Smolarkiewicz 1994), where semi-implicit methods cannot be readily implemented 
due to the difficulty of solving a nonlinear elliptic equation (Piotr Smolarkiewicz, 
personal communication). And even if the elliptic equation can be solved, the 
resulting discretized equation may not necessarily produce positive values of layer 
thicknesses during a simulation. 

Though explicit methods may be the only technique available in some cases 
to increase the efficiency of a code, atmospheric scientists have been reluctant to 
employ explicit techniques in forward-in-time models due to a stability analysis 
conducted by Skamarock and Klemp (1992, hereinafter referred to its SK) who 
found that when the split-explicit approach is used in the framework of forward- 
in-time differencing, computational instabilities arise-preventing the method from 
being applied in this framework. While the authors do not dispute the findings 
of SK, by incorporating the advective component of the continuity equation into 
the splitting procedure computational instabilities appear to be no longer excited 
(Janjic 1979). Presumably, the implicit diffusion associated with forward-in- 
time advective procedures leads to a stabilization of the scheme. Also, unlike the 
method proposed by SK, no explicit filtering is required in order to stabilize the 
time-split scheme and the scheme can be written in conservative form. 

But, as will be discussed in the next section, the original splitting technique 
had several weaknesses. To overcome these limitations we implemented the concept 
of temporal averaging into our model. Recent work by Nadiga et al. (1996) has 
shown the use of a temporally averaged low-order predictive, fast mode-resolving 
solution in a final high-order long time step update as an effective strategy for 
alleviating time step restrictions in problems of multiple time scales, where the 
primary interest is in the slow-time behavior of the system. The method of 
temporal averaging employed is similar to that proposed by Madala (1981), except 
he applied the method to a scheme employing leapfrog temporal differencing. The 
combination of splitting and temporal averaging is in our opinion, “the best way”, 
in which to increase both the efficiency and accuracy of a fully forward-in-time 
model. In the next two sections, the original model and the modified model will be 
described. Results for one test problem from the suite of test problems described 
by Williamson et al. (1992) will next be presented. The last section will give a 
summary of our work. 



2. Original Shallow-Water Model 

The equations expressing conservation of mass and momentum for a shallow 
fluid on a rotating sphere are as follows: 

+V.(v@)=O, 
aG@ 
at 

+ V (vQ,) = GR,, aGQx 
at 

aGQy + V 0 (vQy) = G 4 ,  at 
where G = h,h,, and h, and h, represent the metric coefficients of the general 
orthogonal coordinate system, @ = H - Ho is the thickness of the fluid with H and 
Ho denoting the height of the free surface and the height of the bottom, v = GX 
is the horizontal velocity vector, and Q = (auh,, h h , )  is the momentum vector. 
The right-hand-side forcings are 

where g is the acceleration of gravity and f is the Coriolis parameter. 

The integration in time of the discretized approximations to (1) is represented 
as follows 

( 3 4  
n+1/2 @a+' = IMPDATA(@?, ~ l ~ ~ ~ / ~ ~ ~ ,  Gi) 

where the basic element of (3) is the nonoscillatory forward-in-time algorithm 
MPDATA (Smolarkiewicz and Grabowski 1990), and ~ij--/ae~ < 2a,. The Courant 
numbers are updated by either using linear extrapolation or nonlinear interpolation 
(Smolarkiewicz and Margolin 1993). Of note, in (3b) and (3c) the forces are 
intergrated along a trajectory (Smolarkiewicz and Margolin 1993) to ensure a fully 
second-order approximation to (1). For a complete description of the steps required 
to update (3) see Smolarkiewicz and Margolin (1993). 

The use of two-time-level integration schemes is a departure for Eulerian 
global atmospheric models where three-time-level or leapfrog schemes are 



traditionally used. However two-time-level schemes are widely preferred in most 
other fields of computational fluid dynamics. Some of the advantages of NFT 
schemes include a larger computational time step, reduced memory usage, and 
less numerical dispersion. In addition, the nonoscillatory property is crucial 
for preserving the sign of the layer thickness and of thermodynamic scalars, 
and further controls the nonlinear stability of the computations. The model is 
implemented on a rotating sphere, and allows for arbitrary bottom topography as 
well as a free surface on top of the layer. 

The model has been ported to the CM-5. It runs in data parallel mode, with 
the horizontal dimensions being spread across processors. In a typical problem, the 
speed (measured in Megaflops) depends on problem size. For 32 nodes, a problem 
with a 64x128 mesh yields performance equivalent to 0.5 CRAY YMP processors, 
whereas a problem with 256x512 nodes runs at a speed equivalent to 1.5 CRAY 
YMP processors. 

3. Modified Shallow-Water Model 
Our original splitting technique leads to the following set of discretized 

equations 
n+1/2 Q$+' = MPDATA(Q,Y, aifllaeI, Gi) 

with 2ag 5 a i - ~ - ~ / 2 ~ ~  < a,. Depending on the ratio, n, = 2, a chosen number, n, 
with n, < n,, of iterations of the following 

are usually conducted, with ~ ~ , i f ~ / 2 ~ ~  < 2ag and the superscript in (4c)-(4e) 
denoting that advancement in time is occurring within the iterations of the 
subcycle. Thus, in the temporal advancement of (4) the momentum fields due to 
advection procedures, (4a) and (4b), are only updated once per large time step; 
whereas, assuming a temporal splitting error, the layer thickness due to advective 
procedures, (4c), and the momentum fields due to the associated forces, (4d) and 
(4e), are typically updated several times within the iterations of the subcycle. 

Though the modified code is about twice as fast as the original code, several 
problems do exist with the above approach. First, a costly higher order advective 
routine is used in the subcycle; second, the forcing terms are only treated to first- 
order; and third, a splitting error is inherently present in (4). A simple way of 
circumventing these problems is to use the concept of temporal averaging (Nagida 
et al. 1996 and Madala 1981) to filter out small-scale noise found within the as's 



and the forcing terms. Additionally, instead of employing a two-pass version of 
MPDATA within (4), an efficient one-pass version of MPDATA or DONOR 
can be used, in what will be subsequently labeled as a predictor step, to obtain 
the filtered quantities. Once predicted, the first-order quantities can be used in the 
following correct or step 

n -n+1/2 @a+' = MPDATA(@i , ( Y ~ ~ ~ , ~ ~ ~ ,  Gi) ( 5 4  

Gi) ( 5 4  QyY" = MPDATA(Qyi , ( ~ ~ f ~ / ~ ~ ~  , Gi) + DONOR(R;+1/2, 0.5dif1,2er, 
n -n+1/2 n+1/2 

where the bar quantities are calculated by the following 

with $J representing either as or the forcing terms calculated in the predictor step 
and the DONOR cell step in (5)  being required to ensure second-order accuracy 
of the forcing terms (Smolarkiewicz and Margolin 1993). Hence, not only does 
our approach eliminate the problems found using'the simple splitting technique 
but allows for more flexibility as well. For example, within the predictor step a 
non-conservative advective procedure such as semi-lagrangian or upwind could be 
used to obtain the average quantities for use in the conservative corrector step. It 
may even be possible to employ a three-time level scheme in the predictor step. 
Also, note that splitting is not required in the predictor step, we have chosen to 
use splitting in the predictor step only for numerical efficiency. We have not yet 
conducted a stability analysis of the current scheme, but numerical analysis of 
the linearized form of the scheme (Nadiga et al. 1996) in which only temporal 
averaging is present suggests that as long as d is somewhat less than suggested 
by linear stability analysis of a multi-dimensional upwind advective procedure 
the scheme is stable. The extent to which d is restricted is a rather complicated 
formula which depends on both ns and n,. 

4. Model Setup and Results 
Shallow water is a useful testbed for evaluating and comparing numerical 

methods that can be extended to fully three-dimensional global circulation models 
(GCMs). As previously mentioned, shallow water layers can be stacked, and 
with the addition of a hydrostatic equation and slight recoding of (1)-(2), can be 
extended to model fully three-dimensional flows (cf. Bleck, 1984). Such models 
are termed isentropic in meteorology. As part of DOE'S CHAMMP program, 
Williamson et al. (1992) have published a suite of seven test problems for shallow 
water. One of these, the Rossby Haurwitz (RH) wave is particularly challenging, 
since it represents an almost steady state flow that is a delicate balance of large 
and small spatial scales. (When the free surface is replaced by a rigid lid, the 



solution is an exact steady state.) The RH wave is also interesting because it 
represents the advection of a wave which may be significantly damped if low-order 
forward-in-time methods are used (Smolarkiewicz and Margolin, 1993). 

A grid resolution of 2.8" is used in the simulation of the RH wave. This 
resolution allows for a time step of 40 s to be used in (4c)-(4e) with a time step 
of 600s being chosen for use in the corrector and in (4a)-(4b). The resulting 
maximum aa and ag were approximately 0.2 and 1.0 respectively. Of note, the 
large time step could have been increased to achieve an aa x 0.7, but linear 
stability analysis suggests that the small step would need to be decreased in order 
for the scheme to be stable. Regardless, the time step being used in advective 
procedures of the modified model is still an order of magnitude larger than that 
used in the original model. Hence, less numerical dissipation of the RW wave 
should occur in the simulation employing the modified scheme. Because analytic 
solutions are not known for the RH wave, we have run high resolution simulations 
as a standard for comparing the results from the original model against the 
modified model. All simulations were run for a period of 7 days. 

Since visual differences between the reduced grid and nonreduced grid are 
not large, and the solutions have been published elsewhere (Smolarkiewicz and 
Margolin 1993, Fig. 2), we show only the La error measure (see Fig. 1) with 
respect to the height of the shallow fluid as a function of time for the original and 
modified model. The La error measure demonstrates that the buildup of errors 
associated with numerical dissipation is, as expected, more severe in the simulation 
which employed the smaller time step. In addition to being more accurate the 
total CPU time used by the modified model is about one-third of the original 
model. For the specified value of ns the increase in efficiency is independent of grid 
resolution. 
5. Summary 

A combination of splitting and temporal averaging has been shown to increase 
both the efficiency and accuracy of a global shallow-water code employing forward- 
in-time differencing. Unlike existing split-explicit schemes, such as proposed by 
SK, the current scheme is fully second-order in time and space and does not suffer 
from splitting errors. The scheme requires little additional coding logic with only a 
slight reworking of the main routine being required for implementation. Being that 
the code is explicit and employs finite-difference techniques, parallelization of the 
code is trivial. Likewise, the method can easily be incorporated into the framework 
of the reduced grid. We believe the combination of the two approaches is a usefull 
framework for for general circulation models of the atmosphere and ocean based on 
finite difference approximations. 



As discussed in SK a time-split scheme which works in a hydrostatic 
framework should as well work in a nonhydrostatic framework and vica versa. 
Indeed we have extended the technique to a nonhydrostatic compressible 
framework and found it works as well. Currently we are investigating techniques 
to efficiently split out vertically propagating sound waves. This will allow us to 
extend the nonhydrostatic model to global scales. 
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Fig. 1 Time evolution of the Lz error measure for the model codguration 
with 2.8" resolution for the Rossby-Haurwitz wave. 
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