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Abstract 

J.A. Bergstra et al. 

This chapter provides an overview of the addition of various forms of iteration, i.e., recur­
sive operations, to process algebra. Of these operations, (the original, binary version of) the 
Kleene star is considered most basic, and an equational axiomatisation of its combination with 
basic process algebra is explained in detail. 

The focus on iteration in process algebra raised interest in a number of variations of the 
Kleene star operation, of which an overview, including various completeness and expressivity 
results, is presented. Though most of these variations concern regular (iterative) operations, 
also the combination of process algebra and some non-regular operations is discussed, leading 
to undecidability and stronger expressivity results. Finally, some attention is paid to the inter­
play between iteration and the special process algebra constants representing the silent step 
and the empty process. 
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1. Introduction 

In process algebra, a (potentially) infinite process is usually represented as the solution of 
a system of guarded recursive equations, and proof theory and verification tend to focus 
on reasoning about such recursive systems. Although specification and verification of con­
cunent processes defined in this way serve their purposes well, recursive operations give a 
more direct representation and are easier to comprehend. The Kleene star * can be consid­
ered as the most fundamental recursive operation. In process algebra, the defining equation 
for the binary Kleene star reads 

x*y=x·(x*y)+y 

where · models sequential composition and + models non-deterministic choice (. binds 
stronger than + ). In terms of operational semantics, the process x * y chooses between x 
and y, and upon termination of x has this choice again. For example, the expression a* b 
for atomic actions a and b can be depicted by 

b 

where J expresses successful termination. This chapter discusses the Kleene star in the 
setting of process algebra, and considers some derived recursive operations, with a focus 
on axiomatisations and expressiveness hierarchies. 

In the summer of 1951, S.C. Kleene was supported by the RAND Corporation, lead­
ing to Research Memorandum "Representation of Events in Nerve Nets and Finite Au­
tomata" [52]. The material in that paper, based on the fundamental paper [59], 1 was repub­
lished under the same title five years later [53]. ln this seminal work, Kleene introduced the 
binary operation * for describing 'regular events'. He defined regular expressions, which 
correspond to finite automata, and gave algebraic transformation rules for these, notably 

E*F=E(E*F)vF 

( E* F being the iterate of E on F). Kleene noted the correspondence with conventions of 
algebra, treating E v Fas the analogue of E + F, and E Fas the product of E and F. 

In 1958, Copi, Elgot, and Wright [30] showed interest in the results from [53]. However, 
they judged Kleene's theorems on analysis2 and synthesis3 obscured both by the complex­
ity of his basic concepts and by the nature of the elements used in his nets. They introduced 

1 Kleene judged the theory for nerve nets with circles in [59] (McCulloch and Pitts, 1943) to be obscure, and 

proceeded independently. He came up with "regular events" and the major correspondence results in automata 

theory. 
2 Theorem 5. stating that finite automata model regular events. 
3 Theorem 3, stating that each regular event can be described by a finite automaton ("nerve net"). 
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simpler and stronger nets (in a sense weakening Kleene 's synthesis res~lt, but stating. that 
this '"brings the essential nature of the result into sharper focus"), and simpler operat10ns. 
In particular they introduced a unary * operation 

"[ ... ]because the operation Kleene uses seems "essentially" singulary and because the 
singulary operation simplifies the algebra of regular events. It should be noted that the 
singulary and binary star operations are interdefinable." [30, p. 195] 

This contradicts Kleene's original argument in [52, p. 50] that the length of an event is at 
least one, and that for this reason he did not define £* as a unary operation. 

Four years later. Redko [69] proved that there does not exist a sound and complete finite 
eq1wtional axiomatisation for regular expressions. (This proof was simplified and corrected 
by Pilling; see [31, Chapter l l].) In 1966, Salomaa [70] presented a sound and complete fi­
nite axiomatisation for regular expressions, with as basic ingredient an implicational axiom 
dating back to Arden [9], namely (in process algebra notation): 

x = (y · x) +;: =? x = y*;: 

if y does not have the so-called empty word property. According to Kozen [57], this last 
property is not algebraic, in the sense that it is not preserved under action refinement; he 
proposed two alternative implicational axioms that do not have this drawback. Krob [58] 
settled two conjectures by Conway [31 ], to obtain an infinite sound and complete equa­
tional axiomatisation for regular expressions. Bloom and Esik [25] developed an alterna­
tive infinite equational axiomatisation for regular expressions, within the framework of 
iteration theories. 

In l 984, Milner [62] was the first to consider the unary Kleene star in process alge­
bra. modulo strong bisimu/ation equivalence [66]. In contrast with regular expressions, 
this setting is not sufficiently expressive to describe all regular (i.e., finite-state) processes. 
Moreover. the merge operator x II y [60] that executes its two arguments in parallel, and 
which is fundamental to process algebra, cannot always be eliminated from process terms 
in the presence of the Kleene star. Milner presented an axiomatisation for the unary Kleene 
star in strong bisimulation semantics, being a subset of Salomaa's axiomatisation, and 
asked whether his axiomatisation is complete. Fokkink [39] solved this question for no­
exit iteration x* 8, where the special constant 8, called deadlock, does not exhibit any be­
haviour; since 8 blocks the exit. x*8 executes x infinitely often. Bloom, Esik, and Taub­
ner [26] presented a complete axiomatisation for regular synchronisation trees modulo 
strong bisimulation equivalence, within the framework of iteration theories. Milner also 
asked for a characterisation of those recursive specifications that can be described modulo 
strong bisimulation semantics in process algebra with the unary Kleene star. Bosscher [28] 
solved this question in the absence of the deadlock. The two questions by Milner in their 
full generality remain unsolved. 

The unary Kleene star naturally gives rise to the empty process [74], which does not 
combine well with the merge operator. Therefore, Bergstra, Bethke, and Ponse [ 16, 17] 
returned in 1993 to the binary version x* y of the Kleene star in process algebra, naming 
the operator after its discoverer. Traeger [73] introduced a process specification language 
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with iteration, in which he introduced a striking axiom for the binary Kleene star, here 
presented in process algebra notation: 

x*(y · ( (x + y)*z) + z) = (x + y)*z. 

Fokkink and Zantema [38,44] gave an affirmative answer to an open question from [17], 
namely, that the defining axiom and Troeger's axiom for the binary Kleene star, together 
with 

x*(y · z) = (x*y) · z 

and the five standard axioms on+ and· for basic process algebra [19], provide an equa­
tional characterisation of strong bisimulation equivalence. 

Corradini, De Nicola, and Labella studied the unary Kleene star in the presence of dead­
lock modulo resource bisimulation equivalence. In [32,33] they presented a complete ax­
iomatisation based on Kozen's conditional axioms. In [34] they came up with a complete 
equational axiomatisation including Troeger's axiom. 

Aceto, Fokkink, and Ing6lfsd6ttir [4] proved that a whole range of process semantics 
coarser than strong bisimulation do not allow a finite equational characterisation of the 
binary Kleene star. Furthermore, Sewell [72] showed that there does not exist a finite equa­
tional characterisation of the binary Kleene star modulo strong bisimulation equivalence in 
the presence of the deadlock 8, due to the fact that (ak)* 8 is strongly bi similar to a* 8 for 
positive integers k. 

Several variations of the binary Kleene star were introduced, to obtain particular desir­
able properties. 
• In order to increase the expressive power of the binary Kleene star in strong bisim­

ulation semantics, Bergstra, Bethke, and Ponse [ 16] proposed multi-exit iteration 
(x1, ... , Xk)*(y1, ... , yk) for positive integers k, with as defining equation 

Aceto and Fokkink [ l] presented an axiomatic characterisation of multi-exit iteration in 
basic process algebra, modulo strong bisimulation equivalence. 

• Prefix iteration (similar to the delay operation from Hennessy [51]) is obtained by re­
stricting the left-hand side of the binary Kleene star to atomic actions. Aceto, Fokkink, 
and Ing6lfsd6ttir [5,36] presented finite equational characterisations of prefix iteration 
in basic CCS [60], modulo a whole range of process semantics. 

• String iteration [7] is obtained by restricting the left-hand side of the binary Kleene 
star to non-empty finite strings of atomic actions. Aceto and Groote [7] presented an 
equational characterisation of string iteration in basic CCS, modulo strong bisimulation 
equivalence. 

• Bergstra, Bethke, and Ponse [ 16] introduced flat iteration, which is obtained by restrict­
ing the left-hand side of the binary Kleene star to sums of atomic actions. Unlike the 
binary Kleene star, the merge operator can be eliminated from process terms in the 
presence of flat iteration. In [48], van Glabbeek presented a complete finite equational 
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characterisation of flat iteration in basic CCS extended with the silent step r [60], mod­
ulo four rooted weak bisimulation semantics that take into account the silent nature of 
the special constant r (identifying xr and x ). 
This chapter also concerns expressivity of (subsystems ot) the algebra of communicat­

ing processes (ACP) [ 19] extended with the constant r and abstraction operators [20], and 
enriched with the binary Kleene star or variants thereof. The r, which represents a silent 
step, in combination with abstraction operators, which rename actions into r, enables one 
to abstract from internal behaviour. In weaker semantics that identify xr and x, each reg­
ular process can be specified in ACPr (i.e., ACP with abstraction) and the binary Kleene 
star, using only handshaking (i.e., two-party communication) [22] and some auxiliary ac­
tions. Furthermore, in such a semantics, each computable process can be specified in ACPr 
with abstraction and a single recursive, non-regular operation, using only handshaking and 
some auxiliary actions. 

This chapter is set up as follows. Section 2 introduces the preliminaries. Section 3 con­
tains an exposition on axiomatisations for the binary Kleene star, while Section 4 dis­
cusses axiomatisations for related iterative operations. Section 5 compares the expressivity 
of these iterative operations, and Section 6 studies the expressivity of some non-regular 
recursive operations. Finally, Section 7 touches upon topics such as fairness and the empty 
process. 

2. Preliminaries: Axioms and operational semantics 

In this section we recall various process algebra axiom systems, structural operational se­
mantics, behavioural equivalences, and recursive specifications. For a detailed introduction 
to these matters see, e.g., Baeten and Weijland [15]. 

2.1. ACP-based systems 

Let A be a finite set of atomic actions a, h, c, .. . , and let 8 be a constant not in A. We 
write A,s for A U { 8}. Let furthermore _ I _ : A0 x Aa --.. A 0 be a communication function 
that is commutative, 

associative, 

a I (b I c) =(a I b) I c for all a, b, c E As, 

and that satisfies 8 I a = 8 for all a E As. The communication function I will be used to 
define communication actions: in the case that a I b = c E A, the simultaneous execution of 
actions a and b results in communication action c. The actions in A and the communication 
function I can be regarded as parameters of the process algebra axiom systems that are 
presented below. 
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The process algebraic framework ACP(A. I. r) stands for a particular signature over 

fixed A and communication function I. and a set of axioms over this signature. Let P 
denote the set of process terms over this signature: 

sorts: A 

p 

operations: +: P x P ~ P 

-:PxP~P 

ll:P x P~P 

U_:PxP~P 

l:PxP~P 

oH:P~P 

L/ :P~ p 

constants: 8 E P 

TEP 

(the given, finite set of atomic actions), 

(the set of process terms; A s;: P), 

(non-deterministic choice or sum), 

(sequential composition), 

(merge, parallel composition), 

(left merge), 

(communication merge, extending the given 
communication function), 

(encapsulation, H s;: A), 

(abstraction, I ~ A), 

(deadlock), 

(silent step). 

Intuitively, an action a represents indivisible behaviour, 8 represents inaction, and r rep­

resents invisible internal behaviour. Moreover, P + Q executes either P or Q, P · Q first 

executes P and at its successful termination proceeds to execute Q, and P II Q executes P 

and Q in parallel allowing communication of actions from P and Q. The operators P u_ Q 

and P I Q both capture part of the behaviour of P II Q: P u_ Q takes its first transition 

from P, while the first transition of P I Q is a communication of actions from P and Q. 

Finally, in Off ( P) all actions from H in P are blocked, while in r, (P) all actions from I 

in P are renamed into r. 
We take · to be the operation that binds strongest, and + the one that binds weakest. As 

usual in algebra, we tend to write xv instead of x · y. For 0 E { +, ., II. I} we will assume 

that expressions Po 0 · · · 0 P11 associate to the right. Furthermore, fork ~ 1 we define xk+ 1 

as x · xk, and x 1 as x. 

In Table 1 the axioms of the system ACP(A, I, r) are collected. Note that + and · are 

associative, and that+ is moreover commutative and idempotent. In the case that 

a I (b I c) = 8 for all a, b, c EA, 

while I itself defines a communication, we speak of handshaking. We will study the fol­

lowing subsystems of ACP(A, I, r): 
• BPA(A). The signature of BPA(A) contains the elements of A, non-deterministic choice, 

and sequential composition. The axioms of BPA(A) are (Al )-(AS). 

• BPA0 (A). The signature of BPAs(A) is the signature of BPA(A) extended with the dead­

lock. The axioms of BPA0(A) are (Al)-(A7). 
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Table I 
The axioms for ACP(A, I. r), where a. b E A,1,. and H. I c; A 

(All 
(A2J 
(A3) 
(A4) 

(A5) 
(A6) 
(A7J 
(Cl) 

(C2J 
(C3l 
(CM!) 
(CM2) 
(CM3) 
(CM-ll 
(CM5) 
(CM6) 
lCM7J 
(CM8J 
(CM9) 
(01) 
(02) 

(03) 

(04) 

(Bll 
(Till 

!T12J 
(Tl3) 

(TI..)) 

x+y=y+x 
x+(y+:) = (x+y)+: 

x+x = x 
(X + y)z = XZ + YZ 

(xy)z = x(yz) 
x +Ii= x 

DX = 8 
alb = bla 

(a I b) I c = a I <b I cl 
Ii [a = 8 

x llY = (x lL y+y lL x)+x IY 
a lL x = ax 

ax lL y = a(x II )') 
(X + _r) ll_ Z = X IJ.. : + Y IJ.. Z 

ax I b = (a I b)x 
a I bx = (a I b)x 

ax I /Jy = (a I b)(x II y) 

<x + y) I z = x I:+ y I z 
xl<y+:J = x[y+xlz 

iJ11(a) =a ifa 1' H 
iJH (a) = o if a EH 

ii11<x+y) = ii11(x)+i1f!(V) 

i)f!(Xy) = Ofi(X)il11(y) 

XT = X 

r / (a) = a if a rfc I 
r1(a)=r ifaE/ 

r1<x+y) = r1(x)+r1(y) 
r1(xy) = r1(x)r1(.V) 

• PA(A). The signature of PA(A) is the signature of BPA(A) extended with the merge 
and left merge. The axioms of PA(A) are (Al)-(A5), (CM2)-(CM4) (with a ranging 
over A), and 

(MI J x 11 y = x 1L y + y 1L x. 

• PA,1(A). The signature of PA8 (A) is the signature of PA(A) extended with the dead­
lock. The axioms of PA(A) are (Al)-(A7), (Ml), and (CM2)-(CM4) (with a ranging 
over A.,1 ). 

• ACP( A, I). The signature of ACP( A, I) is the signature of ACP( A, I. T) without the silent 
step and abstraction operators. The axioms of ACP(A, ll are (A I )-(A 7 ), (CF I )-(CF2), 
(CMl)-(CM9), and (DI )-(04) (with a, b ranging over Ax). 

We note that in PA(A) and PA,l(A), commutativity of the merge (x II y = y II x) can be 
derived from axioms (Al) and (Ml). 

The binary equality relation = on process terms induced by an axiom system is obtained 
by taking all closed instantiations of axioms, and closing it under equivalence (i.e., under 
reflexivity, symmetry, and transitivity) and under contexts. 
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2.2. Transition rules and operational semantics 

We define a structural operational semantics in the style of Plotkin [68], to relate each 
process term to a labelled transition system. Then we define strong bisimulation as an 
equivalence between labelled transition systems, which carries over to process terms. The 
operational semantics and strong bisimulation are used in the proofs on axiomatisations in 
Sections 3 and 4, and on classification results in Section 5. 

A labelled transition system (LTS) is a tuple (S, { ~, ~ JI a E A}, s), where 

S is a set of states, 
~ for a E A is a binary relation between states, 
~ J for a E A is a unary predicate on states, 
s E S is the initial state. 

Expressions s ~ s' and s ~ J are called transitions. 

Intuitively, s ~ s' denotes that from states one can evolve to states' by the execution 
of action a, while s ~ J denotes that from state s one can terminate successfully by the 
execution of action a (J is pronounced "tick"). 

Consider one of the process algebra axiom systems BPA(A) - ACP(A, I. r), and let P 
represent all process terms given by its signature. We want to relate each process term 
in P to a labelled transition system. We take the process terms in P as the set of states, 
and the atomic actions in A as the set of labels. (Note that atomic actions can denote both 
states and labels.) Exploiting the syntactic structure of process terms, the transition rela­
tions ~ and ~ J for a E A are defined by means of inductive proof rules called tran­
sition rules ~. Validity of the premises in S, under a certain substitution, implies validity 
of the conclusion c under the same substitution. 

The transition rules in Table 2 define the labelled transition system associated to a pro­
cess term in ACP(A, I, r). The signature and parameters of P (possibly including a com­
munication function I) determine which transition rules are appropriate. For example, the 
last two transition rules for II (i.e., with x II yin the left-hand sides of their conclusions) are 
not relevant for PA8(A). Note that the deadlock 8 has no outgoing transitions. The labelled 
transition system related to process term P has P itself as initial state. Often we will write 
simply P for the labelled transition system related to P. 

Intuitively, strong bisimulation relates two states if the LTSs rooted at these states have 
the same branching structure. This semantics does not take into account the silent nature 
ofr. 

DEFINITION 2.2.1 (Strong bisimulation). A strong bisimulation is a binary, symmetric 
relation R over the set of states that satisfies 

Two states P and Qare strongly bisimilar, notation P ±r Q, if there exists a strong bisim­
ulation relation R with P R Q. 



342 J.A. Bergstra et al. 

Table 2 
Transition rules for ACP(A.1, r), where a, b E Ar, H, I£ A 

a -E!...+ J, a E Ar 

" r x----> x 

.t + y -E!...+ x' 

" r X-->X 

x 11 y -E!...+ x' 11 y 

x ~ x' y _.!:_.,. y' 

xll.v~x'lly' 
x ~ J y _.!:_.,. y' 

xlly~y' 

x ~ x' y _.!:_.,. y' 

x ly~x' 11.v' 

x~x' 

a I y----> y 

x + y-E!...+ y' 
a r x--+x 

xy~x'y 

y~y' 

x 11 y -E!...+ x 11 .v' 

if a I b EA 

if a I b EA 

<I I x----> x 

x 1L y -E!...+ x' 11 y 

x ~ J y _.!:_.,. y' 

xly~y' 

ifalf.H 

x~x' 
if a El 

r1 (x) _!_-. !/ (x') 

" r x --7- x 
if a~ I 

TJ (x) -E!...+ !/ (x') 

THEOREM 2.2.2. 

x~J 

x+y-E!...+J 
x -E!...+ J 

a xy--+y 

x~J 

xlly-E!...+y 

x -E!...+ J _.!:_.,. y J 
xlly~J 

x ~ x' y _.!:_.,. J 
xlly~x' 

x -E!...+ J 
xll_y~y 

y~J 

x+y~J 

y~J 

x 11 .v -E!...+ x 

if a I b EA 

if a I b EA 

X -E!...+ X I Y _.!:_.,. .j X ~ J _Y _.!:_.,. J 
xly~x' 
x~.j 

iJH(X)~ J 
x -E!...+ .j 

<1(x)-.!...+ .j 

x~J 

<1 (x) -E!...+ J 

ifa If. H 

if a EI 

if a~ I 

( l) (Equivalence) It is not hard to see that strong bisimulation is an equivalence relation 
over ACP(A, I). 

(2) (Congruence) Strong bisimulation equivalence is a congruence relation up to 

ACP(A, I), meaning that Po fr Qo and Pi fr Qi implies Po + Pi fr Qo + Qi. 

PoP1 fr QoQ1. Po II Pi fr Qo II Qi. Po lL P1 fr Qo lL Q1. Po I Pi fr Qo I Qi. 
and BH (Po) fr8H (Qo). This follows from the fact that the transition rules in Table 2 
are in path format; see [14,43,50] or Chapter 3 [6] in this handbook. 

(3) (Soundness) Up to and including ACP(A, j), all axiom systems are sound with re­
spect to strong bisimilation equivalence, meaning that P = Q implies P fr Q. Since 
strong bisimulation is a congruence, soundness follows from the fact that all closed 
instantiations of axioms in ACP(A, I) are valid in strong bisimulation semantics. 

(4) (Completeness) Up to and including ACP(A, !), all axiom systems are complete with 
respect to strong bisimilation equivalence, meaning that P fr Q implies P = Q; see, 
e.g., [15,42]. 
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We proceed to define some more semantic equivalence relations on states in a labelled 
transition system that do not take into account the silent nature of r. These definitions use 
the following notions, assuming an underlying LTS. 

Let P ~ Q for a E A* denote that state P can evolve to state Q by the execution 
of the sequence of actions a. This binary relation on states is defined as follows (with e 
denoting the empty string): 

- P~P; 

P~Q Q~R 

P~R 
P~Q Q~J 

P~J 
A string a E A* is a trace of P if P~ Q for some state Q or P~ J. 

DEFINITION 2.2.3 (Substate). Q is a substate of P if P~ Q for some a EA*. Q is a 
proper substate of P if P~ Q for some er EA*\ {e}. 

DEFINITION 2.2.4 (Ready simulation). A simulation is a binary relation Rover the set of 
states that satisfies: 

PR Q /\ P ~ P' ~ ::JQ'(Q ~ Q' /\ P'R Q'), 

PRQ/\P~J~ Q~J. 

A simulation Risa ready simulation if whenever PR Q and a is a trace of Q, then a is a 
trace of P. 

Two states P and Qare simulation equivalent, notation P '::::.s Q, if P R1 Q and Q R2 P 
for simulations R1 and R2. 

Two states P and Qare ready simulation equivalent, notation P '::::.Rs Q, if P R1 Q and 
Q R1 P for ready simulations R1 and 'R-2. 

DEFINITION 2.2.5 (Language equivalence). Two states P and Qare language equivalent, 
notation P :=.L Q, iffor each trace P~ J there is a trace Q~ J, and vice versa. 

DEFINITION 2.2.6 (Trace equivalence). Two states P and Q are trace equivalent, nota­
tion P :=.7 Q, if they give rise to the same set of traces. 

In [ 45], van Glabbeek gave a comparison of a wide range of behavioural equivalences 
and preorders (i.e., relations that are in general not symmetric) that do not take into ac­
count the silent nature of r. Apart from the equivalence relation discussed above, he stud­
ied completed trace preorder and a variety of decorated trace preorders, which are based 
on decorated versions of traces. These preorders are coarser than strong bisimulation and 
ready simulation, but more refined than language and trace equivalence. In Section 4.3, 
prefix iteration is axiomatized with respect to some of the decorated trace preorders. The 
reader is referred to [ 45] for the definitions of these preorders. 
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Four standard semantic equivalences that take into account the silent nature of T (and 
that constitute congruence relations over ACP(A, I, r)) are rooted branching bisimula­
tion (49], rooted delay bisimulation [61], rooted 17-bisimulation [ 13], and rooted weak 
bisimulation [63). Of these four semantics, rooted branching bisimulation constitutes the 
finest relation, while rooted weak bisimulation constitutes the coarsest relation. In all four 
semantics the axiom (B 1) (i.e., xr = x) is valid, and that is all that is needed for the ex­
pressivity results concerning ACP(A, I, r) discussed in this chapter. In [47], van Glabbeek 
gave a comparison of a wide range of process semantics that take into account the silent 
nature of r. 

2.3. Recursive specifications 

Although iterative operations are recursive by nature, we will use recursive specifications 
and associated notions to prove some of the results concerning these operations. 

DEFINITION 2.3.1 (Recursion). We assume a set of recursion variables {X j I j E J} for 
some index set J. A recursive specification E is a set of recursive equations X j = Tj for 
j E J, where Tj is an ACP(A, I, r)-term in which the recursion variables Xi for i E J may 
occur. 

Given some process semantics, processes Pj (for j E J) form a solution of E if sub­
stitution of Pj for X j in the recursive equations of E yields equations that hold in this 
semantics. 

If a recursive specification has solutions, then these solutions are often referred to by the 
names of the corresponding recursion variables in E. Table 3 presents the transition rules 
for recursive specifications. 

If for instance E = {X = aX +b}, then X ~ X by the first transition rule, and X ~ .j 
by the second transition rule. 

Recursive specifications need not have unique solutions in any reasonable process se­
mantics, examples being {X = X} and {X = T X). The following two definitions are suffi­
cient to remedy this imperfection. 

DEFINITION 2.3.2 (r-Guardedness). Let P be an expression containing a recursion vari­
able X. 

An occurrence of X in P is r-guardedif P has a subexpression a Q where a E Ar and Q 
contains this occurrence of X. 

Table 3 
Transition rules for recursion 

T~x' 

X~x' 
if X =TEE 

T~.j 
if X=T EE 

X~J 
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A recursive specification E = {X; = T; I j E J} is r-guarded if by repeatedly substi­
tuting T1 expressions for occunences of X_;, and by applying axioms of ACP(A, I. r), one 
can obtain the situation that all occunences of recursion variables in right-hand sides of 
recursive equations are r-guarded. 

DEFINITION 2.3.3 (r-Convergence). A recursive specification E = {Xj = TJ I j E J} is 

r-convergent if X J ~ P (for j E J) implies that there is no infinite r-trace P --4 P' -2+ 
P"--4 ···. 

Recursive specifications that are r-guarded and r-convergent have a unique solution 
modulo any reasonable process semantics. The existence of a solution underlies the sound­
ness of the recursive definition principle [11]. We proceed to introduce the recursive spec­
ification principle (RSP), discussed in for instance [21, 11 ]. This principle states that the 
recursive specification E = { X J = T; I j E J} has at most one solution per recursion vari­
able, modulo the process semantics under consideration. 

(RSP) 
Y.i = T; {Yi/ xi I i E J l for j E J 

Xk =Yk 
(fork E 1) 

(RSP) is sound with respect to the process equivalences mentioned thus far, provided E is 
both r-convergentand r-guarded. Note that (RSP) is not sound with respect to the recursive 
specifications {X = X} and {X = r X}. 

DEFINITION 2. 3 .4 (Regular process). A process P is regular if P is bisimilar to a process 
r1 ( Q) where Q is a solution for a recursion variable in a finite recursive specification 

IX;= ta;,_; X_; + {3; Ii= 1, ... , n I· 
.1=1 

where C'ii.J and fJ; are finite sums of actions in A (the empty sum representing 8). 

3. Axiomatisation of the binary Kleene star 

In Section I we introduced the binary Kleene star (BKS), notation *· This operation is 
defined by the equation 

x*y =x(x*y) + y. 

This section considers its finite equational axiomatisation in strong bisimulation semantics, 
and presents a negative result on the finite equational axiomatisability of BKS in a variety 
of other process semantics. 
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3.1. Preliminaries 

BPA*(A) is obtained by extending BPA(A) with BKS. Bergstra, Bethke, and Ponse [17] 
introduced an axiomatisation for BPA *(A) modulo strong bisimulation equivalence, which 
consists of axioms (Al)-(AS) for BPA(A), extended with the axioms (BKSl)-(BKS) for 
BKS in Table 4. The axiom (BKS3) stems from Troeger [73]. 

In order to provide process terms over BPA *(A) with an operational semantics, we in­
troduce transition rules for BKS. The transition rules for BKS in Table 5 express that x* y 
repeatedly executes x until it executes y. Together with the transition rules for BPA(A) in 
Table 2 they provide labelled transition systems to process terms over BPA *(A). Note that 
by the first two transition rules in Table 5, a state P can have itself as a proper substate. 
For example, a*b --5!..+ a*b. 

The transition rules for BKS are in path format [14,50]. Hence, strong bisimulation 
equivalence is a congruence with respect to BPA*(A); see [43] or Chapter 3 [6] in this 
handbook. Furthermore, its axiomatisation is sound for BPA *(A) modulo strong bisim­
ulation equivalence. Since strong bisimulation equivalence is a congruence, this can be 
verified by checking soundness for each axiom separately. It can be easily shown that the 
BKS axioms are valid in strong bisimulation. 

Fokkink and Zantema [ 44] proved that the axiomatisation for BPA *(A) is complete mod­
ulo strong bisimulation equivalence. Their proof is based on a term rewriting analysis (see, 
e.g., [ 10]), in a quest to reduce bisimilar process terms to the same ground normal form, 
which does not reduce any further. Since this aim cannot be fulfilled for BKS, this op­
erator is replaced by an operator representing x(x*y), and the BKS axioms are adopted 
to fit this new operator. Those axioms are turned into conditional rewrite rules, which are 
applied modulo associativity and commutativity of the + (see, e.g., [67]). Knuth-Bendix 
completion [54] is applied to make the conditional rewrite system weakly confluent. Ter­
mination of the resulting conditional term rewriting system is obtained by means of the 
technique of semantic labelling from Zantema [75]. Hence, each process term is provably 
equal to a normal form. Finally, a careful case analysis learns that if two normal forms are 
strongly bisimilar, then they are syntactically equal modulo associativity and commutativ­
ity of the +. This observation yields the desired completeness result. 

Table4 
Axioms for BKS 

(BKSI) x(x*y)+y=x*y 
(BKSZ) x*(yz) = (x*y)z 
(BKS3) x*(y((x + y)*zl+ z) = (x + y)*z 

Table 5 
Transition rules for BKS 

x~x' x~J ll I y--> y 

x*y--E...+ x'(x*y) x•y--E...+ x*y x*y .....E....+ y' 

y~J 

x*y~J 
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An alternative completeness proof was proposed in [38], based on induction on the struc­
ture of process terms. That proof method is more general, and was later on applied to obtain 
completeness results for axiomatisations of iteration operations in [ 1,34,39]. In the light of 
the generic applicability of this proof method and the significance of the completeness 
result in the realm of this chapter, we present the proof from [38] in some detail. 

Following Milner [64] (see also [ 46]), the latter proof strategy can also be used to derive 
w-completeness of the axiomatisation for BPA *(A). That is, if P and Q are open terms 
over BPA *(A), which may contain variables, and if a ( P) = a ( Q) holds for all closed in­
stantiations a, then P = Q can be derived from the axioms. Often, w-completeness can be 
proved by providing variables with an operational semantics, such that P ±±- Q holds with 
respect to this new operational semantics if and only if a ( P) ±±-a ( Q) holds for all closed 
instantiations a with respect to the original operational semantics. In [38], completeness 
of the axiomatisation for BPA * (A) modulo bisimulation equivalence is derived for open 
terms, which immediately implies w-completeness of the axiomatisation. Here, we present 
the proof from [38] for closed (instead of open) terms. The reader is referred to [38] for a 
proof of w-completeness. (The motivation to refrain from this generalisation here is clarity 
of presentation; we prefer to work in an unambiguous semantic framework throughout this 
chapter.) 

3.2. Completeness 

We note that each process term over BPA *(A) has only finitely many substates. In the 
sequel, process terms are considered modulo associativity and commutativity of the +, 
and we write P =Ac Q if P and Q can be equated by axioms (Al) and (A2). As usual, 
L,;'= 1 Pi represents P1 + · · · + P11 • We take care to avoid empty sums (where L.?= 1 P; + Q 
is not considered empty and equals Q). 

For each process term P, its collection of possible transitions is non-empty and finite, 

say { P ~ P; I i = I, ... , m} U { P ~ ,,j I j = l, ... , n}. We call 

m 11 

I>iP;+ .L>j 
i=l j=l 

the HN F-e> .. pansion of P (Head Normal Form expansion, cf. [ 15 ]). The process terms ai P; 
and b J are the summands of P. 

LEMMA 3.2.1. Each process term is provably equal to its HNF-expansion. 

PROOF. Straightforward, by structural induction, using (A4 ), (AS), and (BKS I). D 

Process terms in BPA *(A) are normed, which means that they are able to terminate 
in finitely many transitions. The norm [ 121 of a process yields the length of the shortest 
termination trace of this process. Norm can be defined inductively by 

lal =I, 
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IP+ QI = min{IPI, IQ!}, 

IPQI = !PI+ IQL 

IP*QI =!QI. 

We note that strongly bisimilar processes have the same norm. The following lemma, due 
to Caucal [29], is typical for normed processes. 

LEMMA 3.2.2. Let P Q fr RS. By symmetry we may assume I QI (IS!. We can distinguish 
two cases: 
• either P fr R and Q fr S; 
• or there is a proper substate P' of P such that P fr RP' and P' Q fr S. 

PROOF. This lemma follows from the following Facts A and B. 

FACT A. If PQ fr RS and I QI (IS!, then either Q fr S, or there is a proper substate P' 
of P such that P' Q fr S. 

PROOF. We prove Fact A by induction on IPJ. First, let I PI= I. Then P ~ J for some 
a, so PQ ~ Q. Since PQ fr RS, and IR'SI >!Si~ IQI for all substates R' of R, it 
follows that R ~ J and Q fr S. Then we are done. 

Next, suppose we have proved the case for IPI ( n, and let I PI= n +I. Then there is a 
P' with I P'I = n and P ~ P', which implies PQ ~ P' Q. Since PQ fr RS, we have 
two options: 

(l) R ~ J and P' Q fr S. Then we are done. 
(2) R ~ R' and P' Q fr R' S. Since I P'I = n, induction yields either Q fr Sor P" Q fr 

S for a proper substate P" of P'. Again, we are done. 
This concludes the proof of Fact A. D 

FACT B. If PQ fr RQ, then P fr R. 

PROOF. Define a binary relation B on process terms by TB U iff T Q fr U Q. We show 
that B constitutes a strong bisimulation relation between P and R. 
• Since fr is symmetric, so is B. 
• P Q fr R Q, so P B R. 
• Suppose T BU and T ~ J. Then TQ ~ Q. Since TQ fr UQ, and IU'QI > Q for 

all substates U' of U, it follows that U Q ~ Q. In other words, U ~ J. 
• Suppose TB U and T ~ T'. Then TQ ~ T' Q. Since TQ fr U Q, and I QI< IT' QI, 

it follows that there is a transition U ~ U' with T' Q fr U' Q. Hence, T' B U'. 
This concludes the proof of Fact B. o 

Finally, we show that Facts A and B together prove the lemma. Let P Q fr R S with 
IQ I ( I SI. According to Fact A we can distinguish two cases. 
• Q fr S. Then PQ fr RS fr RQ, so Fact B yields P fr R. 
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• P' Q ft S for some proper substate P' of P. Then P Q ft R S ft RP' Q, so Fact B yields 
P±:t-RP'. D 

We construct a set IBl of basic terms, such that each process term is provably equal to a 
basic term. The completeness theorem is proved by showing that strongly bisimilar basic 
terms are provably equal. 

(x + y)z ~ xz + yz, 

(xy)z ~ x(yz), 

(x*y)z ~ x*(yz). 

The term rewriting system above consists of directions of the axioms (A4), (A5), and 
(BKS2), pointing from left to right. Its rewrite rules are to be interpreted modulo associa­
tivity and commutativity of the+. The term rewriting system is terminating, meaning that 
there are no infinite reductions. This follows from the following weight function w in the 
natural numbers: 

w(a) = 2, 

w(P + Q) = w(P) + w(Q), 

w(PQ) = w(P) 2w(Q), 

w(P* Q) = w(P) + w( Q). 

It is not hard to see that if P reduces to Q in one or more rewrite steps, then w( P) > w( Q). 
Since the ordering on the natural numbers is well-founded, we conclude that the term 
rewriting system is terminating. Let Gr denote the collection of ground normal forms, i.e., 
the collection of process terms that cannot be reduced by any of the three rewrite rules. 
Since the term rewriting system is terminating, and since its rewrite rules are directions of 
axioms, it follows that each process term is provably equal to a process term in G. The 
elements in <G are defined by: 

P ::=a IP+ PI aP IP* P. 

Gr is not yet our desired set of basic terms, due to the fact that there exist process terms 
in Gr which have a substate outside G. We give an example. 

EXAMPLE 3.2.3. Let A= {a, b, c}. Clearly, (a*b)*c E Gr, and 

(a*b)*c ~ (a*b)((a*b)*c). 

The substate (a*b)((a*b)*c) is not in Gr, because the third rewrite rule in R. reduces this 
process term to a*(b((a*b)*c)). 
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In order to overcome this complication, we introduce the following collection of process 
terms: 

IHI= { P* Q, P' (P* Q) I P* Q E G and P' is a proper substate of P}. 

We define an equivalence relation ;::: on IHI by putting P' ( P* Q) ;::: P* Q for proper sub­
states P' of P, and taking the reflexive, symmetric, transitive closure of;:::. 

The set IIB of basic terms is the union of G and IHI. 

LEMMA 3.2.4. If PE lB and P ~ P'. then P' E lIB. 

PROOF. By induction on the structure of P. 
If P E IHI\ G, then it is of the form Q' (Q* R) for some Q* R E G. So P' is of the form 

either Q* R or Q" ( Q* R) for some proper substate Q" of Q'. In both cases, P' E lIB. 
If P E G, then it is of the form Li a; Q; + L,1 Rj SJ + Lk bk. where the Q;, RJ, and 

Sj are in G. So P' is of the form Q;, R'j SJ, R'i (Rj SJ ), or Sj, which are all basic terms (in 
the last case, this follows by structural induction). D 

The L-value [44] of a process term is defined by 

L(P) = max{ I P'l I P' proper substate of P}. 

L(P) < L(P Q) and L(P) < L(P* Q), because for each proper substate P' of P, P' Q is a 
proper substate of P Q and P' (P* Q) is a proper substate of P* Q. Since norm is preserved 
under strong bisimulation, it follows that the same holds for L-value; i.e., if P ±!" Q then 
L(P) = L(Q). 

We define an ordering-< on JIB as follows: 
• P-< Q if L(P) < L(Q); 
• P -< Q if Pisa substate of Q but Q is not a substate of P; 
• if P-< Q and Q-< R, then P-< R. 
Note that if P, Q E IHI with P;::: Q, then P and Q have the same proper substates, and so 
L ( P) = L ( Q). These observations imply that the ordering -< on JIB respects the equivalence 
~ on IHI, that is, if P ~ Q -< R ~ S, then P -< S. 

LEMMA 3.2.5. -<is a well-founded ordering on IIB. 

PROOF. If P is a substate of Q, then all proper substates of P are proper substates of Q, 
so L(P) :( L(Q). Hence, if P-< Q then L(P) :(; L(Q). 

Assume, toward a contradiction, that there exists an infinite backward chain ... -< P2 -< 
P1 -<Po. Since L(Pn+I) :( L(P11 ) for all n EN, there is an N such that L(P11 ) = L( PN) 
for all n > N. Since P11 -< PN for n > N, it follows that P11 is a substate of PN for n > N. 
Each process term has only finitely many substates, so there are m, n > N with n > m and 
Pn =Ac Pm. Then Pn -f. Pm. so we have found a contradiction. Hence, -< is well-founded. 
0 
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In the proofs of the next two lemmas, we need a weight function g in the natural num­
bers, which is defined inductively by 

g(a) = 0, 

g(P + Q) = max{g(P), g( Q)}, 

g(PQ) = max{g(P), g(Q)}, 

g(P* Q) = max{g(P), g( Q) +I}. 

It is not hard to see, by structural induction, that if P -...!.!.+ P', then g(P) ;;:;: g(P'). 

LEMMA 3.2.6. Let P*Q E Jill. If Q' is a proper substate of Q, then Q'-< P* Q. 

PROOF. Q' is a substate of Q, so g( Q') ~ g(Q) < g(P* Q), which implies that P* Q 
cannot be a sub state of Q'. On the other hand, Q' is a substate of P* Q, so Q' -< P* Q. o 

LEMMA 3.2.7. If PE JIB and P-...!.!.+ P', then either P'-< P, or P, P' E IHI and P ~ P'. 

PROOF. This lemma follows from the following Facts A and B. 

FACT A. If P E JIB and P-...!.!.+ P', then either P' E IHI or P' has smaller size than P. 

PROOF. We prove Fact A by induction on the structure of P. Let 

P =Ac :La;Q; + LRjSj + Lbk. 
j k 

Since P -...!.!.+ P', P' is of one of the following forms. 
• P' =Ac Q; for some i. Then P' has smaller size than P. 
• P' =Ac R'. (R"': S1·) or P' =Ac R*: S1· for some j. Then P' E IHI. 

J ./ J . 

• S,; ~ P' for some j. Then induction yields that either P' E IHI, or P' has smaller size 
than S J, which in turn has smaller size than P. 

This concludes the proof of Fact A. D 

FACT B. If PE IHI and P ~ P', then either g(P) > g(P'), or P' E IHI and P ~ P'. 

PROOF. Since PE IHI, either P =Ac Q'(Q* R) or P =Ac Q* R for some Q and R. Hence, 
P' =Ac Q"(Q* R), P' =Ac Q* R, or P' =Ac R' for a proper substate R' of R. In the first 
two cases P' E IHI and P ~ P', and in the last case g(P') = g(R') ~ g(R) < g( Q* R) = 
g(P). This concludes the proof of Fact B. D 

Finally, we show that Facts A and B together prove the lemma. Let P -...!.!.+ P' with 
P' -f. P; we prove that P, P' E IHI and P ~ P'. 



352 J.A. Bergstra et al. 

Since P' is a substate of P and P' f. P, P is a substate of P'. So there exists a sequence 
of transitions 

Po ~ P1 ~ · · · ~ Pn (n ~ 1) 

where Po =Ac P, P1 =Ac P', and Pn =Ac P. 
Suppose Pk 1. lHl for all k. Then according to Fact A, Pk+ 1 has smaller size than Pk 

fork= 0, ... , n - 1, so Pn has smaller size than Po. This contradicts Po =Ac P =Ac Pn. 
Hence, P1 E lHI for some l. 

Since each Pk is a substate of each Pk'• g(Pk) must be the same for all k. Then it follows 
from Fact B, together with P1 E JHI, that Pk E lHl for all k and Po ~ P1 ~ · · · ~ P11 • O 

Now we are ready to prove the desired completeness result for BPA *(A). 

THEOREM 3.2.8. (Al)-(A5), (BKS1)-(BKS3) is complete for BPA*(A) modulo strong 
bisimulation equivalence. 

PROOF. Each process term is provably equal to a basic term, so it is sufficient to show 
that strongly bisimilar basic terms are provably equal. Assume P, Q E JIB with P ±t- Q; we 
show that P = Q, by induction on the ordering-<. To be precise, we assume that we have 
already dealt with strongly bisimilar pairs R, SE JIB with R -< P and S-< Q, or R-< P and 
S ~ Q, or R ~ P and S -< Q. 

First, assume that P or Q is not in JHI, say P 1. lHI. By the induction hypothesis, together 
with Lemma 3.2.7, for all transitions P 4 P' and Q 4 Q' with P' ±t- Q' we have 
P = Q. Since P ±t- Q, axiom (A3) can be used to adapt the HNF-expansions of P and Q 
to the form 

m n tn II 

P =Lai Pi+ Lbj, 
i=l j=I i=l j=l 

where Pi= Qi for i = 1, ... , m. Hence, P = Q. 
Next, assume P, Q E JHI. We distinguish three cases. 
(1) Let P =Ac R* Sand Q =Ac T*U. We prove R* S = T*U. 

We spell out the HNF-expansions of R and T: 

where the Ri and the Tj are of the form either a V or a. 
Since R* S fr T* U, each Ri (R* S) for i E I is strongly bi similar either to Tj ( T * U) 
for a j E J or to a summand of U. We distinguish these two cases. 
(a) Ri(R* S) ±t-Tj (T*U) fora j E J. Then Ri (R* S) tr Tj (R* S), so by Lemma 3.2.2 

Ri ±:t T;. 
(b) Ri(R* S) fr aU' for a transition U ~ U'. 
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Thus, l can be divided into the following, not necessarily disjoint, subsets: 

lo = { i E I I 3} E J ( R1 tl T; J l-
l 1={iElI3U ~ U' (R;(R*S) tlaU'J}. 

Similarly, J can be divided: 

Jo= {JEll3iEl(T;tlR;)). 

J1 = {i E J 135 ~ S 1(T;(T*U) ±±aS')}. 

If both /1 and 11 are non-empty, then U" tl R* S for a proper substate U" of U, and 
S" ±±' T*U for a propersubstate S" of S, and so U" tl S". By Lemma 3.2.6, S"-< 
R* Sand U"-< T*U. so induction yields R* S = U" = S" = T*U, and we are done. 
Hence, we may assume that either / 1 or 11 is empty, say J1 = 0. We proceed to 
derive 

L R; (R* S) + S = U. (1) 

i El1 

We show that each summand at the left-hand side of the equality sign is provably 
equal to a summand of U, and vice versa. 
• By definition of !1, for each R;(R*S) with i E /1 there is a summand aU' of 

U such that R;(R*S) ±±aU'. By Lemma 3.2.6 U'-< T*U, so induction yields 
R;(R*S) =aU'. 

• Consider a summand a S' of S. Since R* S tl T* U and 11 = 0, it follows that a S' 
is strongly bisimilar to a summand a U' of U, so induction yields a S' =a U'. 

• Finally, summands a of S correspond with summands a of U. 
• By the converse arguments it follows that each summand of U is provably equal 

to a summand at the left-hand side of the equality sign. 
This concludes the derivation of (I). 
Since J1 = 0, it follows that Jo =F 0, so lo =F 0. By the definitions of lo and Jo= J, 
each R; with i E Jo is strongly bisimilar to a T; with j E l, and vice versa. Since 
L(R;) (; L(R) < L(R*S). induction yields R; = Tj. Hence, 

(2) 

Finally, we derive 

= (L,R; + L,R;)*s 
1E/o l E 11 

R*S 
iA3J 

( L R;) * ( L R; (R* S) + S) 
1E/o 1E/1 

iBKSJJ.IAJJ 
= 

(I ).(2) 
T*U. 
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(2) Let P =Ac R'(R* S) and Q =Ac T*U. We prove R' (R* S) = T*U. 
JUI= IT*UI = JR'(R*S)J) 2 implies that U does not have atomic summands, 
so its HNF-expansion is of the form L; a; U;. Since R' ( R* S) ±± T* U, each U; 
is strongly bisimilar to R* S or to R" (R* S) for a proper substate R" of R'. 
According to Lemma 3.2.6 U; -< T* U, so induction yields U; = R* S or U; = 
R" ( R* S). This holds for all i, so U = Li a; U; = V ( R* S) for some process 
term V. Then R'(R*S) ±± T*U ±± (T*V)(R*S), so Lemma 3.2.2 implies R' ±± 
T* V. Since L(R') < L(R' (R* S)), induction yields R' = T* V. Hence, R' (R* S) = 

(T*V)(R*S) (B~2l T*(V(R*S)) = T*U. 
(3) Let P =Ac R'(R* S) and Q =Ac T'(T*U). We prove R'(R* S) = T'(T*U). 

By symmetry we may assume I R* SI ::;;: I T*UI. Lemma 3.2.2 distinguishes two pos­
sible cases. 
e R' ±± T' and R* S ±± T* U. Since L(R') < L(R' (R* S)), induction yields R' = T 1 , 

and case (I) applied to R* S tl T* U yields R* S = T* U. Hence, R' (R* S) = 
T'(T*U). 

• R' tl T' R" and R" ( R* S) ±± T* U for a proper substate R" of R'. Since 
L(R') < L(R'(R*S)), induction yields R' = T'R". Furthermore, case (I) 
applied to R"(R*S) ±± T*U yields R"(R*S) T*U. Hence, R'(R*S) = 

(T' R")(R* S) (B~S21 T' (R" (R* S)) = T' (T*U). 

This finishes the derivation of P = Q. D 

3.3. lrredundancy of the axioms 

Fokkink [38] showed that each of the BKS axioms is essential for the obtained complete­
ness result. 

THEOREM 3.3.1. !Jone of the BKS axioms is skipped from (Al )-(AS), (BKSI )-(BKS3), 
then this axiomatisation is no longer complete for BPA *(A) modulo strong bi.simulation 
equivalence. 

PROOF. We apply a standard technique for proving that an equation e cannot be derived 
from an equational theory£, which prescribes to define a model for E in which e is not 
valid. 

In order to show that (BKS 1) cannot be derived from (A I )-(AS), (BKS2), (BKS3), we 
define an interpretation function</> of open terms in the natural numbers: 

</>(a) = 0, 

</>(x) = 0, 

</>(P + Q) = max{</>(P),</>(Q)}, 

</>(PQ) = </>(P), 

</>(P*Q) = max{</>(P) + 1,</>(Q) + l}. 
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It is easy to see that this interpretation is a model for (A I )-(AS), (BKS2), (BKS3 ). How­

ever, cj>(a(a*a) +a)= 0, while qy(a*a) =I. Hence. a(a*a) +a= a*a cannot be derived 

from (A I HAS), (BKS2), (BKS3). 

In order to show that (BKS2) cannot be derived from (Al )-(AS), (BKS l ), (BKS3) we 

define an interpretation function if; of open tenns in the natural numbers: 

ij;(a) = 0, 

ij;(x) = 0, 

ij;(P + Q) = max{ij;(P), 1/r(Q)}, 

1/r(PQ) = 1/r(Q). 

ij;(P*Q) = max{ifr(P) +I, 1/r(Q)). 

It is easy to see that this interpretation is a model for (Al )-(AS), (BKS l ), (BKS3). How­

ever, ij;((a*a)a) = 1/r(a) = 0, while ifr(a*(aa)) = max{ifr(a) + 1, ij;(aa)) = l. Hence, 

(a*a)a = a*(aa) cannot be derived from (Al)-(AS), (BKSl), (BKS3). 

In order to show that (BKS3) cannot be derived from (Al)-(AS), (BKSl), (BKS2), we 

define an interpretation function 1J of open terms in sets of natural numbers: 

17(a) = 0, 

l](X) = 0, 

ry(P+Q) = 17(P)U17(Q), 

17(PQ) = ry(P) U 17(Q), 

17(P*Q) = 17(P) U 17(Q) U {IPI}. 

It is easy to see that this interpretation is a model for (A 1)-(AS), (BKS I), (BKS2). How­

ever, 17((aa)*(a((aa + a)*a) +a))= {laal, laa +al}= {I, 2) while l]((aa + a)*a) = 

{ laa +a I}= {I}. Hence, (aa)*(a((aa + a)*a) +a)= (aa + a)*a cannot be derived from 

(A I HAS), (BKS I), (BKS2). D 

3.4. Negative results 

In contrast with the positive result on the finite equational axiomatisability of BPA *(A) 

modulo strong bisimulation equivalence, Aceto, Fokkink, and Ing61fsd6ttir [4] showed that 

BPA *(A) is not finitely based modulo any process semantics in between ready simulation 

(see Definition 2.2.4) and language equivalence (see Definition 2.2.S). In the case of a 

singleton alphabet, this answered a problem in regular languages raised by Salomaa in [71 ]; 

see [3]. Crvenkovic, Dolinka, and Esik [3Sl provided a more elegant answer to the latter 

question. 
Ready simulation and language equivalence constitute congruence relations over 

BPA *(A) (in the case of language equivalence this follows from the fact that the transition 

rules for BPA *(A) are in L cool format [40]). Process semantics in the linear/branching 
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time spectrum [45] that are finer than language equivalence and coarser than ready sim­
ulation, and which constitute congruence relations over BPA *(A), are failure semantics, 
ready semantics, failure trace semantics, and ready trace semantics. 

The result above follows from the existence of an infinite set of equations that cannot all 
be proved by means of any finite set of equations that is sound modulo language equiva­
lence. This family of equations consists of 

E.n a*(a11 ) + (a 11 )*(a + · · · +a11 ) = (a 11 )*(a + ·· · +a11 ) 

for n :;::: I, where a is some action. Ready simulation is the finest semantics in the lin­
ear/branching time spectrum in which the E.n are sound. Note that for n > l, none of the 
equations E.n is sound in strong bisimulation equivalence. 

Given a finite set of equations that is sound with respect to language equivalence, Aceto, 
Fokkink, and lng6lfsd6ttir construct a model Ap for these equations in which equation 
E.p fails, for some prime number p. The model that is used for this purpose is based on 
an adaptation of a construction due to Conway [31], who used it to obtain a new proof of 
a theorem, originally due to Redko [69], saying that BPA *(A) is not finitely based modulo 
language equivalence. 

Let a be an action. For p a prime number, the carrier A,, of the algebra A,, consists of 
non-empty formal sums of a0, a 1, ••• , aP- 1, together with the formal symbol a*, that is, 

{ I>i 10 C I~ {O, ... , p - I}} U {a*}. 
1E/ 

The syntax of A,, contains three more operators, which are semantic counterparts of the 
binary function symbols in BPA *(A). In order to avoid confusion, circled symbols denote 
the operators in the algebra Ap: $, 0, and® represent the semantic counterparts of+, ·, 
and *· respectively. Table 6 presents an axiomatisation for Ap. 

Process terms over BPA*(A) are mapped to A,, as expected: every action in A is mapped 
to the symbol a 1, while+, ·,and* are mapped to$, 0. and®, respectively. For a process 

Table 6 
Axiomatisation for the algebra Ap 

a*Eax =a* 
x Ef)a* = a* 

I>; EfJ I>j = I: ah 
iEI jEJ hE/UJ 

a*Ox =a* 
xOa* =a* 

I:a;OLaj = 
iE/ jEJ hE\U+.i> mod p[(i.j)E/ xJ} 

'"' { v if x = a 0 
x~ y = . 

a* otherwise 
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term P, the denotation of P in the algebra Ap is represented by Ap[P]. We note that 
equation E.p fails in Ap. Namely, 

p-l 

A,, [a*(aP) + (a")*(a +···+a")] =a* i= L:>; = Ap [(aP)*(a +···+a")]. 
i=O 

The following theorem is the key to the nonaxiomatisability result from [4]. 

THEOREM 3.4. l. For every finite set [ of equations that are sound with respect to '.::::.L, 

there exists a prime number p such that all equations in [ are valid in Ap. 

COROLLARY 3.4.2. No congruence relation over BPA*(A) that is included in '.::::.L and 
satisfies E.n for all n ~ I has a complete finite equational axiomatisation. 

A process semantics that is coarser than language equivalence is trace equivalence '.::::.T, 

where two process terms are considered equivalent if they give rise to the same (not nec­
essarily terminating) traces (see Definition 2.2.6). If I A I > I, then trace equivalence is not 
a congruence relation over BPA(A); e.g., a+ aa '.::::.r aa, but (a+ aa)b i:-T aab. However, 
if the set A of actions is a singleton {a}, then trace equivalence constitutes a congruence 
relation over BPA *(A). In contrast with their negative results on the finite axiomatisability 
of BPA *(A) modulo process semantics between ready simulation and language equiva­
lence, Aceto, Fokkink, and Ing6lfsd6ttir showed that BPA * ( {a}) modulo trace equivalence 
is axiomatized completely by the five axioms for BPA( {a}) together with the three axioms 
in Table 7. 

THEOREM 3.4.3. (Al)-(A5), (TI )-(T3) is complete for BPA *({a}) modulo trace equiva­
lence. 

3.5. Extensions ofBPA *(A) 

The signature of BPAj(A) is obtained by extending BPA0(A) with BKS. Its axioms are 
those of BPA *(A) and of BPA0 (A), i.e., (Al)-(A 7) in Table 1 for BPA.s (A), and (BKS1)­
(BKS3) for BKS. Sewell [72] showed that there does not exist a complete equational ax-

Table 7 
Axioms for trace equivalence (A= {a}) 

(Tl) x + (y*~) = a*a 
(T2) x + xy = xy 

(T3) xy = yx 
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Table 8 
Axioms for BKS with encapsulation and abstraction 

(BKS4) il11(x*y) = iJ11(x)*ilH(Y) 

(BKS5) T1(x*y) = r1(x)*r1(y) 

iomatisation for BPA1CA) modulo strong bisimulation equivalence. This motivates the in­
troduction of the implicational axiom 

(RSP*) 
x = yx + z 

x =y*::: 

It remains an open question, dating back to Milner [62], whether (Al)-(A7), (BKSl), 
(RSP*) is complete modulo strong bisimulation equivalence. We note that (BKS2) and 
(BKS3) can be derived from this axiomatisation. 

The signature of PA*(A) is obtained by extending PA(A) with BKS. The axioms of 
PA *(A) are those of PA(A) and (BKSl )-(BKS3). The system PA8(A) can be extended in a 
similar way to PA;t(A). The system ACP* (A, I) is defined by inclusion of (BKS1)-(BKS4); 
see Table 8. Note that (BKS4) can be derived using (RSP*). Finally, ACP*(A, I, r) is 
obtained by inclusion into ACP(A, I, r) of (BKSl )-(BKSS); see Table 8. Note that (RSP*) 
is not sound for ACP* (A, I, r); e.g., 

r=rr+o, 

but r = r* 8 is not a desirable identity in any process semantics. 

4. Axiomatisations of other iterative operations 

This section considers four restricted versions and one generalised version of BKS. We 
discuss the different advantages of each of these operators, and formulate various axioma­
tisations and completeness results. 

4.1. Axiomatisation of no-exit iteration 

No-exit iteration (NEI) x"' is bisimilar to x*o. No-exit iteration can be used to formally 
describe programs that repeat a certain procedure without end. Many communication pro­
tocols can be expressed, and shown con-ect, using no-exit iteration. An explanation is that 
(concurrent) components of such protocols often peii'orm repetitive behaviour in the fol­
lowing style (receive/process/send-repetition): 

( )

[JJ 

L r; (d) P s; (d) 
dED 

or ( )

(J) 

I: ri (d) P .\'j (d) + Q , 
dED 
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Table 9 
Axioms for NE! 

(NEll) 

(RSP'") 

xw =x(xw) 

x =yx 
x=yo> 

Tahle 10 
Transition rules for NE! 

ll , 
x---+ x x~J ----

359 

where Q handles an exceptional situation. A standard example in process algebra is the 
altenzating bit protocol (see, e.g., [2 I]), specified as the concunent execution of four com­
ponents, each of which can be specified in the style above. Further examples of this speci­
fication and verification style can be found in (18,76]. 

Table 9 presents two axioms for NEI. (NEii) is its defining axiom, while (RSP'°) is an 
adaptation of (RSP*). The axiomatisations for BPAw(A) and BPAX'(A) are obtained by 
extendingBPA(A) and BPAs(A) with (NEii) and (RSP"'). 

In order to provide process terms over BPA'.;'(A) with an operational semantics, we 
introduce transition rules for NEL Together with the transition rules for BPA(A) in Table 2 
they provide labelled transition systems to process terms over BPA'.('(A). 

The transition rules for NEI are in path format. Hence, strong bisimulation equivalence 
is a congruence with respect to BPA8' (A). Furthermore, its axiomatisation is sound for 
BPA8' (A) modulo strong bisimulation equivalence. Since strong bisimulation equivalence 
is a congruence, this can be verified by checking soundness for each axiom separately. It 
is easily verified that (NEil) and (RSP"') are indeed sound modulo strong bisimulation 
equivalence. 

The following two completeness results for no-exit iteration originate from [39]. Their 
proofs, which are omitted here, are based on the proof strategy from (38]. 

THEOREM 4.1.1. (Al )-(AS), (NEII ), (RSP"') is complete for BPA'"(A) modulo strong 
bisimulation equivalence. 

THEOREM 4.1.2. (Al)-(A7), (NEil), (RSP"') is complete for BPA~'(A) modulo strong 
bisimulation equivalence. 

The observation by Sewell [72] that there does not exist a complete finite equational 
axiomatisation for BPA!(A) modulo strong bisimulation equivalence, is based on the fact 
that a"' is strongly bisimilar to (ak )"' for k ;;:: 1. This argument can be copied to con­
clude that there do not exist complete finite equational axiomatisations for BPA"' (A) and 
BPA~"(A). Hence, the implicational axiom (RSP"') is irredundant. It is not difficult to see 
that axiom (NEI 1) is inedundant as well. 

4.2. Axiomatisation of multi-exit iteration 

Milner [62] noted that not every regular process can be described in BPA *(A), up to strong 
bisimulation equivalence. The limited expressive power of BKS was highlighted in [ 16], 
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Table II 
Axioms for MEI 

J.A. Bergstra et al. 

(MEii) X\ ((x2 •...• XkoX\ l*<n .... 'Yko yi)) +YI = (.q,. .. 'xk)*(.v1 •...• Ykl 

(ME12) ((x1, ... , xk )*Cv1 •... , Yk))Z = (x1 •... , Xk)*(y1 z •...• YkZ) 

(MEl3) (zo. x2, ... 'Xk )*Cv1 + ZI ((x2, .. ., Xko zo + ZJ )*(y2 •...• Yk· YI)). Y2· ... 'Yk) 

= (zo +z1. x2, ... • xk)*(y1 .... , Ykl 

(ME14) (zo. Z\. x2' ... 'Xk )*(Yi' z2 ((x2,. .. 'Xk. zo<z I + z2 ))* (y2, .. ., Yko YI)), Y2· ...• Ykl 
= (zo(z 1 + z2), x2 ..... Xk )* (y1, .... Yk) 

(MEI5) ((XJ • ... ,Xk)e)*(<.v1 .... ,yk)e) = (XJ, .•. ,xiJ*(y\, ..• ,y!J 

where it was shown that the process described by the recursive specification 

X1 = aX2 +a, 

X2 = aX1 +b, 

cannot be expressed in BPA *(A) modulo strong bisimulation equivalence. See Section 5 
for more information on the expressive power of iterative operators. 

Bergstra, Bethke, and Pense [16] introduced multi-exit iteration (MEI) as a more ex­
pressive variant of iteration. For every k ~ 1, and process terms Pi and Qi ( 1 :::;; i :::;; k), the 
process term (P1, ... , Pk)* ( Q 1, ... , Qk) denotes a solution to the recursion variable X 1 in 
the recursive specification 

Xk-1 = Pk-1Xk + Qk-1, 

Xk = PkX1 + Qk. 

Aceto and Fokkink [l] introduced the axiom system BPA111r*(A), which is obtained by 
adding the MEI axioms (MEI1)-(MEI5) in Table 11 to BPA(A). The first three MEI ax­
ioms are adaptations of the three BKS axioms. The last two MEI axioms relate process 
terms of distinct exit degrees. (MEI4) is the multiplicative counterpart of (MEI3), while 
(MEIS) enables to reduce repetitive patterns at the left- and right-hand side of MEI. 

In order to provide process terms over BPAme*(A) with an operational semantics, we 
introduce transition rules for MEI. Together with the transition rules for BPA(A) in Table 2 
they provide labelled transition systems to process terms over BPA'1"'*(A). 

The transition rules for MEI are in path format. Hence, strong bisimulation equivalence 
is a congruence with respect to BPN"e*(A). Furthermore, its axiomatisation is sound for 
BPA111e*(A) modulo strong bisimulation equivalence. Since strong bisimulation equiva­
lence is a congruence, this can be verified by checking soundness for each axiom sep­
arately. It is easily verified that (MEil ), (MEI2), and (MEIS) are sound modulo strong 
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Table 12 

Transition rules for MEI 

(/ , 
Xj~XI 

(XJ, · ·, .q)*(y1, ···,Yd~ (X> ... , Xk, Xj )*(y2, · · ·, Yk· YI) 

YI ~y~ YI ~J 
(x1, · ·, xk)*(y1, ... , Ykl ~ .v; (.q, .. ,xk)*(y1, ... ,yk) ~ .,/ 
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bi simulation equivalence. See [ l] for a detailed proof that (MEI3) and (MEI4) are sound 
modulo strong bisimulation equivalence. 

In [ l] it is proved that the axiomatisation BPA""'*(A) is complete for BPA""'*(A) modulo 
strong bisimulation equivalence. The completeness proof, which is omitted here, is based 
on the proof strategy from [38]. 

THEOREM 4.2.1. (Al)-(A5), (MEii )-(MEI5) is complete for BPA'""*(A) modulo strong 

bisimulation equivalence. 

4.3. Axiomatisation o,f prefix iteration 

Prefix iteration (PI) [36] is a variation of BKS, obtained by restricting its first argument to 
single atomic actions. The advantage of PI over BKS is twofold: 

( 1) PI can be axiomatized in a setting with prefix multiplication of CCS [63], which 
is obtained from sequential composition by restricting its first argument to single 
atomic actions; 

(2) PI allows a complete equational axiomatisation modulo strong bisimulation equiva­
lence in the presence of the deadlock 8. 

We note that, in general, sequential composition can be restricted to prefix multiplication 
without loss of expressivity. 

BPA~'* (A) consists of BPA(A), with sequential composition xy restricted to prefix mul­
ti plication ax from CCS, extended with PI. Table 13 presents a collection of axioms for PI. 
First of all, (PI I )-(Pl2) from [36] axiomatize PI with respect to strong bisimulation. 

THEOREM 4.3 .1. (A 1 )-(A3 ), (A6 ), (PI I )-(Pl2) is complete for BPAf* (A) modulo strong 

bisimulation equivalence. 

The remaining equations and inequalities in Table 13 originate from Aceto, Fokkink, 
and Ing6lfsd6ttir [5], who proved completeness results for PI in a variety of behavioural 
equivalences and preorders in the linear/branching time spectrum [ 45]. These axiomati­
sations for BPAf*(A) all incorporate axioms (Al)-(A3), (A6) for BPAB(A) with prefix 
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Table 13 
Axioms for PI 

(PI!) 

(P!2) 

(CT!) 
(PCTI) 
(PCT2l 

(LI) 

(PLll 

(Sl) 

(RSI) 
(PRS!) 

J.A. Bergstra et al. 

a(a*x)+x = a*x 
a*(a*x) = a* x 

a(x + y) = ax + ay 
a*(x+y) = a*x+a*y 

a*(ax) = a(a*x) 

ao = fj 

a*8 = !i 

x ,,::: x + y 

ax ,,:; ax +ay 
a*x ,,::: a*(x+ay) 

a(bx+by+v) ( a(bx+v)+a(hv+w) (Rll 
(PRil 
(PR2l 

a(a*(bx +by+ v)) ,,::: a(a*(bx + v)) + a(a*(by + w)) 

a*(bx +by+ v+a(hy+w)) ,,:; a*(bx + v +a(by + w)) +by 

(Fl) 
(PFl) 
(PF2) 
(PF3) 

a(x+y),,::: ax+a(y+z) 
a(a*(x + y)) ,,::: a(a*x) + a(a*(y + z)) 

a(a*x) ,,::: a*(a(x + y)) 

a*(x+y+a(y+z)),,::: a*(x+a(y+z))+y 

multiplication, standard axioms from the literature for BPA8(A) modulo the behavioural 
equivalence in question, and (PI I )-(Pl2) for PI. 

(PCT! )-(PCT2) axiomatize PI with respect to completed trace equivalence. 

THEOREM 4.3.2. (Al)-(A3), (A6), (PI1)-(Pl2), (CT!), (PCTl )-(PCT2) is complete for 
BPAr* (A) modulo completed trace equivalence. 

(PLl), in cooperation with (PCTl )-(PCT2), axiomatize PI with respect to language 
equivalence. 

THEOREM4.3.3. (Al)-(A3), (A6), (Pll)-(PI2), (CT!), (PCT1)-(PCT2), (Ll), (PLl), is 
complete for BPAr* (A) modulo language equivalence. 

No extra axioms are needed for PI modulo simulation preorder. 

THEOREM 4.3.4. (Al)-(A3), (A6), (Pll)-(Pl2}, (SI) is complete for BPAf*CA) modulo 
simulation preorder. 

(PRS I) axiomatizes PI with respect to ready simulation preorder. 

THEOREM 4.3.5. (Al )-(A3), (A6), (PI1)-(PI2), (RSI), (PRSl) iscompletejorBPAf*cA) 
modulo ready simulation preorder. 



Table 14 
Axioms for SI 

Process algebra with recursive operations 

(SA5) WJ (u•2x) = (w1 w2Jx 

(SI!) w(w*x) +x = w*x 
(Sl2) w*(w*x) = w*x 
(SI3) (w 11 )*8 = u•*8 
(Sl4) a((wa)*8J == (aw)*li 
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(PR 1 )-(PR2 ), in cooperation with (PRS I), axiomatize PI with respect to readies pre­
order. 

THEOREM 4.3.6. (Al )-(A3), (A6), (Pll )-(Pl2), (RS l ), (Rl ), (RS 1 ), (PRl )-(PR2) is com­

plete for BPA~'* (A) modulo readies preorder. 

It is still an open question whether there exists a complete axiornatisation for BPA~'* (A) 
modulo failures preorder. Aceto, Fokkink, and Ing6lfsd6ttir conjectured that (PFl )-(PF3), 
in cooperation with (PRS 1 ), are sufficient to axiomatize PI with respect to failures preorder. 

CONJECTURE 4.3.7. (Al)-(A3), (A6), (Pll)-(Pl2), (FI), (PRSl), (PF1HPF3) is com­
plete for BPA~'* (A) modulo failures preorder. 

To the best of our knowledge, axioms for PI with respect to ready trace preorder and 
failure trace preorder have not yet been formulated. 

4.4. Axiomatisation of string iteration 

String iteration (SI) [7] is a variation of PI, in which the first argument of iteration is al­
lowed to contain non-empty finite strings of atomic actions. Aceto and Groote [7] extended 
the axiomatisation for PI in strong bisimulation to SI. Like PI, and unlike BKS, SI allows 
an equational axiomatisation modulo strong bisimulation equivalence in the presence of 
the deadlock o. 

BPA;\* (A) consists of BPA(A), with sequential composition xy restricted to string multi­

plication w y, extended with SI. Table 13 presents two axioms for SI in strong bisimulation. 
In Table 13, w ranges over the collection A+ of non-empty strings of atomic actions. 

THEOREM 4.4. l. (Al)-(A3), (SAS), (A6). (Sll)-(Sl4) is complete for BPA;l*(A) modulo 

strong hisimulation equivalence. 

4.5. Axiomatisation of flat iteration 

In general, the merge operator cannot be eliminated from process terms with BKS. There­
fore Bergstra, Bethke, and Ponse [16] introducedflat iteration (FI), which is obtained by 
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Tahle 15 
Axioms for FI 

.I.A. Bergstra et al. 

(FA4) (a+ f3)x = ax + f3x 

(FBIJ ar =a 
(FB2) a(x + ry) = a(x + ry) + ay 

(Fii) a*(/3((a + f3)*x) + x) = (a+ f3)*x 

(Fl2) 8*x = x 

restricting the left-hand side of BKS to sums of atomic actions. Similarly, fiat multipli­
cation is obtained by restricting the left-hand side of sequential composition to sums of 
atomic actions. The transition rules for these operators are simply the transition rules for 
BKS and sequential composition with the left-hand sides restricted to sums of atomic ac­
tions. BPA{* (A) is obtained by adding FI to BPAs (A) and restricting sequential composi­
tion to fiat multiplication. The merge can be eliminated from process terms that contain FI. 
For example, typically, (a*b) II (c* d) is strongly bisimilar to 

(a+c+a lcl*((d+a ld)(a*b)+(b+b I c)(c*d) +b Id). 

For a detailed discussion on this expressivity claim the reader is referred to Section 5.2. 
In [ 48], van Glabbeek presented complete axiomatisations for BPA{ * (A) extended with 

the silent step r, modulo four rooted bisimulation semantics that take into account the 
silent nature of r: rooted branching bisimulation, rooted delay bisimulation, rooted 17-
bisimulation and rooted weak bisimulation. Of these four equivalences, rooted branching 
bisimulation constitutes the finest relation, while rooted weak bisimulation constitutes the 
coarsest relation; rooted delay bisimulation and rooted 11-bisimulation are incomparable. 
All four equivalences constitute congruence relations over BPA;{r* (A) (in the case of rooted 
branching bisimulation equivalence this follows from the fact that the transition rules for 
BPAfr* (A) are in RBB safe format [41]). The axiomatisations for FI are adaptations of 
axiomatisations introduced by Aceto, Fokkink, van Glabbeek, and Ing6lfsd6ttir [8,37,21 
for PI. 

Table 15 presents adaptations to prefix multiplication of axiom (A4) and of two standard 
axioms (B 1 )-(82) for r. Furthermore, (Fil) is an adaptation of (BKS3) to FI, while (FI2) 
expresses the interplay of FI with the deadlock 8. In the axioms, a and f3 range over sums 
of atomic actions (the empty sum representing 8). Note that the defining equation of FI, 

fi*x = /J({i*x) +x 

can be derived from (Fll) by taking a to be 8. 
Table 16 presents axioms for the interplay of FI with the silent step r, modulo the four 

aforementioned equivalence relations. (FT!) is an instantiation of Koomen 'sfair abstrac­
tion rule (KFAR) [55, 11 l for rooted branching and 17-bisimulation, while (FT4) serves this 
same purpose for rooted delay and weak bisimulation. In [48], van Glabbeek proved com­
pleteness for BPA;(r* (A) with respect to rooted branching bisimulation; see Theorem 4.5. l. 
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Table 16 
Axioms for FI with the silent step 

(Ffl) (a+ r)* x = a*x + r(a*x) 
(Ff2) a(/3*(r(/3*(x + y)) +x)) = a({J*(x + y)) 
(Ff3) a*(x + ry) = a*(x + ry +ay) 
(Ff4) (a+ r)*x = r(a* x) 
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The complete axiomatisations for BPAf~* (A) modulo rooted delay, TJ-, and weak bisimu­
lation equivalence can then be obtained from the complete axiomatisation modulo rooted 
branching bisimulation equivalence, using a reduction technique from van Glabbeek and 
Weijland [49]; see Theorems 4.5.2, 4.5.3, and 4.5.4. 

THEOREM 4.5. I. (Al)-(A3), (FA4), (A6)-(A7), (FBI), (Fll)-(Fl2), (FTl)-(FT2) is com­

plete for BPA{~* (A) modulo rooted branching bisimulation equivalence. 

THEOREM 4.5.2. (Al)-(A3), (FA4), (A6)-(A7), (FBI), (Fll)-(Fl2), (FT4) is complete 

for BPA{~* (A) modulo rooted delay bisimulation equivalence. 

THEOREM 4.5 .3. (Al )-(A3), (FA4), (A6)-(A 7), (FB l)-(FB2), (Fil)-(Fl2), (FT1)-(FT3) 

is complete for BPA{~* (A) modulo rooted TJ-bisimulation equivalence. 

THEOREM 4.5 .4. (Al )-(A3), (FA4), (A6)-(A 7), (FB 1)-(FB2), (Fil )-(Fl2), (FT3)-(FT4) 

is complete for BPA{r* (A) modulo rooted weak bisimulation equivalence. 

5. Expressivity results 

This section concerns expressivity of process algebra with recursive operations, to cate­
gorize what can be specified with the various recursive operations. Of course, answers to 
these questions depend on the particular process semantics one adopts. 

5.1. Expressivity of the binary Kleene star 

In [ 17], Bergstra, Bethke, and Ponse showed that the expressivity of systems with BKS 
can be analyzed by establishing properties of cycles in labelled transition systems. These 
results were strengthened by Boselie [27]. We recall these results, and first introduce some 
further terminology. A state Q is a successor of state P if P -4 Q. A cycle is a sequence 
of distinct states (Po, ... , Pn) such that Pi+t is a successor of Pi for i = 0, ... , n - I 
and Po is a successor of P11 • An action a is an exit action of state P if P -4 J. We use = 
to denote that two terms are syntactically the same. 

LEMMA 5 .1.1. Let C be a cycle in a labelled transition system associated to a process 
term over ACP*(A, I, r). Then Chas one of the following forms.for n EN: 
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(i) C=(PoQ,P1Q, ... ,P,,Q); 
(ii) C = (P* Q, Pi (P* Q), ... , P11 (P*Q)), or any cyclic permutation thereof, 

(iii) C=(Po II Qo,P1 II Q1, ... ,P11 II Q11); 
(iv) C=(BH(Po),BH(P1), ... ,aH(P11)). 

PROOF. Let C =(Co, ... , C,, ). We apply case distinction on Co. Clearly Co is not a single 
atomic action, and as +. lL , I do not occur as the first operation in right-hand sides of 
conclusions of transition rules, it follows that Co =fa Po Q for o E { +, lL , I}. 

Suppose Co= RS. If Sis not a state in C, then C = (RS, R1 S, ... , R11 S), which corre­
sponds to case (i).If Sis a state in C, then S~ RS for some a EA*. It is not hard to 
see that only the first transition rule for BKS can give rise to a transition T ~ T' where 
Tisa proper subterm of T'. Hence, Sis of the form P* Q, and the first transition in the 
sequence S~ RS is invoked by the first transition rule for BKS. This yields form (ii). 

Suppose Co= R* S. Analogous to the case Co= RS, we see that C is of form (ii). 
Suppose Co= R II S. As R II Sis not a substate of R or S, it follows from the transition 

rules of the merge that C must be of form (iii). 
Suppose Co = a H ( R). Since only the first transition rule for a H can have been used, it 

follows that C is of form (iv). D 

Lemma 5. I. I can be used to derive further properties of cycles. 

LEMMA 5.1.2. Let C be a cycle in a labelled transition system associated to a process 
term over BPA8(A). Then there is at most one state P in C that has a successor Q such 
that P is not a proper substate of Q. 

PROOF. As C belongs to a process term over BPA8(A), it must be of the form (i) or (ii) in 
Lemma 5.1.1. We apply induction with respect to the size of C. 

Suppose C = (PoQ, ... , P11 Q). By induction, the cycle (Po, ... , P11 ) contains at most 
one state P; that has a successor R such that P; is not a proper substate of R. This implies 
that P; Q is the only state in C that may have a successor S such that Pi Q is not a proper 
substate of S. 

Suppose C = (P*Q, Pi (P*Q), ... , Pn(P*Q)), or any cyclic permutation thereof. Then 
P* Q is the only state in C that may have a successor R such that P* Q is not a proper 
substate of R. o 

LEMMA 5.1.3. Let C be a cycle in a labelled transition system associated to a process 
term over PA8(A). If there is a state in C with an exit action, then every other state in C 
has only successors in C. 

PROOF. As C belongs to a process term over PA8 (A), this cycle must be of the form (i), 
(ii), or (iii) in Lemma 5.1.1. 

Suppose C = (Po Q, ... , Pn Q). Then none of the states in C has an exit action. 
Suppose C = (P* Q, Pi (P*Q), ... , P11 (P* Q)), or any cyclic permutation thereof. Then 

P* Q is the only state in C that may have an exit action, and the other states in C have only 
successors in C. 
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Suppose C =(Po II Qo, .... P11 II Q11 ). Since the communication merge is excluded from 
PA! (A), none of the states in C has an exit action. o 

LEMMA 5 .1.4. let C be a cycle in a labelled transition system associated to a process 
term over ACP* (A, I). Then there is at most one state in C with an exit action. 

PROOF. As C belongs to a process term over ACP*(A, !), this cycle must be of the form (i), 
(ii), (iii), or (iv) in Lemma 5.1.1. We apply induction with respect to the size of C. 

Suppose C = (PoQ, ... , P11 Q). Then none of the states in Chas an exit action. 
Suppose C = (P* Q, P1 (P* Q), ... , P11 (P* Q) ), or any cyclic permutation thereof. Then 

P* Q is the only state in C that may have an exit action. 
Suppose C = (Po II Qu, ... , P11 II Q11). Assume Pi II Qi and Pj II Q; both have an exit 

action. Then by induction P; II Qi represent the same state, soi= j. 
Suppose C = (3H(Po), ... , aH (P11 )). By induction, the cycle (Po, ... , P11 ) contains at 

most one state Pi that has an exit action. So afl (P;) is the only state in C that may have an 
exit action. D 

We have the following expressivity hierarchy for process algebra with BKS. 

THEOREM 5.1.5. 

BPA!(A) ~ PA~(A) ~ ACP*(A, ll ! ACP*(A, I, r) 

k 
where -< means "less expressive than, provided A contains at least k actions" modulo 
strong bisimulation equivalence. except for the last inequality, which requires the presence 
of r and soundness of (BI) (i.e., xr = x). ff' one does not restrict to handshaking, 

I 
PA;i(A)-< ACP*(A, I). 

The same inclusions hold in the absence of 8. 

I I . 
PROOF. BPA*(A)-< PA*(A) and BPA;i(A)-< PAs(A). Consider the PA*(A) process term 
P = (aa)*a II a, which can be depicted as follows: 
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where 

abbreviates (aa)*a, 
2 abbreviates a((aa)*a), 

3 abbreviates a((aa)*a) II a, and 
4 abbreviates a. 

According to Lemma 5.1.2, P cannot be specified in BPA;l'(A). Namely, the states P and 3 
are not strongly bisimilar and form a cycle, while both states have a successor from which 
one cannot return to this (nor to any strongly bisimilar) cycle. 

PA:l'(A) ~ ACP*(A, I), where i = 1 in a setting without handshaking and i = 2 other­
wise. Take P as in the previous case, and let a I a be defined (either as a, thus no handshak­
ing, or as b =f. a). Then on top of the picture above, the labelled transition system associated 

P . h f 11 . . . p ala I p 11la 2 cl 3 11la l A d. to contams t e o owmg trans1t10ns: ---+ v, ---+ , an ---+ . ccor mg to 
Lemma 5.1.3, P cannot be specified in PA! (A). Namely, the states P and 3 are not strongly 
bisimilar and form a cycle, while P has an exit action and 3 has a successor from which 
one cannot return to this (nor to any strongly bisimilar) cycle. 

4 
ACP* (A, !) -< ACP* (A, I, r). Take the recursive specification 

X1 = aX2 +a, 

X2 = aaX1 +a. 

Assume auxiliary actions b, c, and d, with c I c ~ b and d I d ~1 b the only communica­
tions defined. Let the process tenn P be defined by: 

P = T[b)oa1c.dJ((a(ad+ac)+ac)QllR), 

Q = (c(a(a(ad+ac)+ac)))*d, 

R = (dc)*cd. 

It can be derived from the axioms of ACP* (A, I) together with (RSP) and (B l) that 
P = X1. Hence, X1 is expressible in ACP*(A, l.r) modulo process semantics that re­
spect (B l). According to Lemma 5. l.4, X 1 cannot be specified in ACP*(A, I. r) modulo 
strong bisimulation equivalence, even if r is allowed to occur in A as a non-silent action. 
Namely, X 1 and X 2 are not strongly bisimilar and form a cycle, while both X 1 and X 2 
have an exit action. o 

It is an open question whether ACP*(A, I)~ ACP*(A, j, r) holds. 
The following theorem emphasizes the expressive power of ACP* (A, I, r). 

THEOREM 5.1.6. For each regular process P there is a finite extension Aexi of A such 
that P can be expressed in ACP*(A"x1, I, r), even if one restricts to handshaking and the 
actions in A are not subject to communication. 
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PROOF. P is a solution for the recursion variable X 1 in a recursive specification Xi = 
L'f=I a;.jX .i + f3i for i = 1, ... , n, where ai.j and /Ji are finite sums of actions or 8. 

Define A ext as the extension of A with the following 2n + 3 fresh atomic actions: 

in, rj, Sj (j =0, ... ,11). 

Let r.i I Sj ~ in (for j = 0, ... , 11) be the only communications defined (so we have 
handshaking, and the actions in A are not subject to communication). Furthermore, let 

def . 
H = {rj, .1·1 I 1 = 0, ... , n}, and let 

We derive 

Hence, 

Gi 

Q 

M 

II 

abbreviate L a1.jSJ + /Jiso for i = 1, ... , n, 

abbreviate 
1(~i_>;G 1) * ro, 

J=I 

abbreviate (trjSj)* (roso). 
J=I 

II 

= 2:.::a;.jaHc1·1Q II M) + f31aH(soQ II M) 
j=l 

II 

= 2:.::a1.jinau(Q II siM)+f31inil11(Q II so) 
j=l 

II 

= Lai.j ininiJ11(GjQ II M) + f>1 in in. 
i=l 

T{i11} 0 il11 (Gj Q II M) = L a;,j T{f11} 0 af! (G j Q II M) + /31. 
j=I 

Consequently, Tlfnl o iJ11(Gi Q II M) satisfies the recursive equation for X; (for i = 
1, .. ., n ). By (RSP) it follows that X 1 =<tin) o 'Ju (G 1 Q II M). D 
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5.2. Expressivity of multi-exit iteration 

We first note that in the extension of BPAi1(A) with multi-exit iteration one cannot describe 
all regular processes modulo strong bisimulation equivalence. For example, the process 
described by 

X = aY+az. 

Y=aZ+a, 

Z = aX+aa, 

cannot be expressed, as from the state X the two non-bisimilar exits a and aa can be 
reached in a single step. 

In [ l) it was shown that for every k ~ 1 there is a process over a single action that can be 
specified using (k + 1)-exit iteration, but not using h-exit iteration with h ~ k. We proceed 
to sketch their argumentation. Fork ~ 1, BPA111 e*( >;,_kl (A) denotes the set of process terms 
over BPA"re*(A) that only use h-exit iteration with h ~ k. 

The set of termination options of a process term P over BPA""'*(A), is the smallest 
collection of process terms satisfying: 
• if P ~ J, then a is a tennination option of P; 
• if P ~ Q and Q does not contain occurrences of MEI, then a Q is a termination option 

of P. 

LEMMA 5.2.1. let C be a cycle in a labelled transition system associated to a process 
term over BPAme * (~ k)(A). Then C contains at most k states with distinct, non-empty 
sets of termination options. 

PROOF. Let C = (Co, ... , C11 ). We apply structural induction on Co. Clearly Co is not a 
single atomic action, and as + does not occur as the first operation in right-hand sides of 
conclusions of transition rules, it follows that Co is not of the form P + Q. 

( 1) Co = Po Qo. There are two possibilities. 
(a) Qo is not a state in C. Then there is a cycle (Po, ... , P11 ) such that C; = P; Q0 for 

i=O, ... ,n. 
If Qo contains occurrences of MEI, then all states in C have an empty set of termi­
nation options. 
If Qo does not contain occurrences of MEI, then the set of termination options of 
C; (for i = 0, ... , n) is 

{ R Qo I R is a termination option of P;}. 

The inductive hypothesis yields that there are at most k process terms P; with dis­
tinct, non-empty sets of tennination options. Hence, there are at most k states in C 
with distinct, non-empty sets of termination options. 

(b) Qo is a state C1 in C. By induction there are at most k states in the cycle 
(C1, ... , Cn, Co, ... , C1-1) with distinct, non-empty sets of termination options. So 
the same holds for C. 
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(2) Co= (P1, .... hl*(Q1, .. ., Q1i ). where h ~ k. 
Clearly, substates of the Q; cannot be in C. Thus the only states in C with possibly 

non-empty sets of termination options are 

for i = 1, ... , h. 0 

PROOF. Let a E A. It suffices to show that the (k + I )-exit iteration term 

*( J k+I) (n, a . ... , a) a. er, .... a 

cannot be specified in BPA111"*( ~k) (A) modulo strong bisimulation equivalence. This fol­
lows from Lemma 5.2.1. because this process term induces a cycle that traverses the pro­
cess term 

( )*( i k+I i-1) a, ... ,a a , ... ,a ,a, ... ~a , 

which has {a; } as set of termination options, for i = I , .... k + I . Clear I y, a i fra i if i =!= j. 

0 

5.3. Expressivity of string iteration 

In this section it is shown that for every k ?; 1 there is a process over a single action that 
can be specified by SI using a string of length k + 1, but not by SI using strings of length 
at most k. For k ~ 1, BPA'*1 ~kl (A) denotes the set of process terms over BPA'* (A) that 
only use strings of length at most k. 

LEMMA S. 3 .1. Let C be a cycle in a labelled transition system associated to a process 
term over BPA''*( ~kl (A). Then C contains at most k distinct states. 

PROOF. Let C =(Co, ... , C11 ). We apply structural induction on Co. Clearly Co is not a 
single atomic action, and as +does not occur as the first operation in right-hand sides of 
conclusions of transition rules, it follows that Co is not of the form P + Q. 

(1) Co=wP. 
Clearly, P is a state C1 in C. By induction there are at most k distinct states in the 
cycle (C1, ... , C 11 , Co, ... , C1-1 ). So the same holds for C. 

(2) Co=:(a1···a1i)*P,whereh~k. 

Clearly, substates of P cannot be in C. Thus the only distinct states in C are 

(a;+1 · .. a1i)((a1 ···a11)*P) (fori = 1, ... ,h). D 
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THEOREM 5.3.2. BPA"*<:>;kl(A) ~ BPA'*(<>;k+lJ(A)for k ~ 1. 

PROOF. Let a E A. It suffices to show that the (k + 1 )-string iteration term 

cannot be specified by a process term over BPA"*<:>;k)(A) modulo strong bisimulation 
equivalence. This follows from Lemma 5.3.1, because the process term above induces a 
cycle that traverses the k + 1 non-bisimilar process terms ai ((ak+ 1) *a) for i = 0, ... , k. O 

5.4. Expressivity of fiat iteration 

This section presents some expressivity results on FI from [16]. BPAl*(A), BPA{*<A), 
PAf*(A), and ACPf*(A, J) are obtained by adding FI to BPA(A), BPA0(A), PA(A), and 
ACP(A, !), respectively, and restricting sequential composition to flat multiplication. 

As stated below, restricting sequential composition to prefix multiplication gives no loss 
of expressivity. Flat iterative basic terms over BPA'*(A) are defined by the BNF grammar 

P ::=a IP+ P laP la*P 

where a EA and a is an atomic sum. Flat iterative basic terms over BPA{* (A) are defined 
by adding 8 to the BNF grammar. 

LEMMA 5 .4.1. Each process term over BPA *(A) [BPA;;'(A)] with BKS restricted to FI is 

bisimilar to a.flat iterative basic term over BPAf*(A) [BPA{* (A)]. 

PROOF. By structural induction, using the axioms of BPA0 (A) and those in Table 15. O 

With respect to expressivity of systems with FI in strong bisimulation semantics we have 
the following results. 

THEOREM 5.4.2. 
· I /' I 

(l) BPAi *(A)-< BPA *(A) and BPA;s *(A)-< BPA;;'(A), 
(2) BPAf*(A) is as expressive as PAf*(A), and 
(3) BPA{*(A) is as expressive as ACPf*(A, J). 

PROOF. Fact (1) is trivially true, as FI does not give rise to cycles of length greater than 
one. For example, the process term (aa)*a over BPA *(A), which has a cycle of length two, 

cannot be expressed in BPA{ *(A) modulo strong bisimulation equivalence. 
We proceed to present the proof of Fact (2). Fact (3) can be proved in a similar fashion. 
From Lemma 5.4.l it follows that BPAf* (A) is as expressive as PAf'* (A) if all pro­

cess terms P II Q and P ll.. Q with P and Q flat iterative basic terms are expressible in 
BPA1*(A). Expressibility of P II Q and P ll.. Qin BPAl*(A) can be proved in parallel, 
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using induction on the size of such terms. We focus on the case P II Q; the case P lL Q 
can be dealt with in a similar fashion. We consider three cases, depending on whether P 
and Q are of the form a* R. 

(1) Let P =a* Rand Q = {3* S. Then we derive (using commutativity of II in PA *(A)) 

P II Q =(a+ f3)( P 11 Q) + R lL Q + S lL P. 

The process terms R lL Q and S lL P have sizes smaller than P II Q, so by induction they 
can be expressed in BPAf*(A), say by U and V, respectively. By (RSP*), 

P II Q =(a+ f3l*(U + V) 

so P II Q is expressible in BPAf*(A). 
(2) Let P =Ac L; a7 R; +Li a1S1 + Lk bk (with P not of the form a* R) and Q = 

f3* T. Then we derive · 

P II Q = {J(P II Ql+T lL P+ La;(Ca7Ri) II Q)+ La1<S1 II Q) 
i .i 

The process terms T lL P, (a7 R;) II Q, and Si II Q have sizes smaller than P II Q, so 
by induction they can be expressed in BPAf*(A), say by U, Vi, and W;, respectively. By 
(RSP*), 

p II Q = fJ* ( u + L Cii Vi + L Gj Wj + L bk Q) 
I j k 

so P II Q is expressible in BPAf*(A). 
(3) Let P =Ac Lia; Ri + LjaJSJ + Lk bk (with P not of the form a* R) and Q =Ac 

Li f37 Tr + L 111 Cm U111 + Ln d11 (with Q not of the form f3*T). Then we derive 

P II Q = Lai(Ca7 R;) II Q) + La1(Sj II Q) + LhkQ 
j k 

/II n 

The process terms (a7 Ri) II Q, Si II Q, <f37 T1) II P, and U111 II P have sizes smaller than 
P II Q, so by induction they can be expressed in BPAl*(A). Hence, P II Q is expressible 
in BPAf*(A). 

Owing to commutativity of the merge, the three cases above cover all possible forms 
of P II Q. So we conclude that P II Q is expressible in BPAf*(A). D 
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Note that parts in general process terms over BPAf*(A) [BPA{ *(A)] cannot be equated 

to process terms over PAf*(A) [ACPf*(A, !)]. If one of the arguments of II specifies a 
cycle, this occurrence of II cannot be eliminated with the axioms provided. 

6. Non-regular recursive operations 

With each of the recursive operations discussed before, one can define at most a regular 
process. In this section we consider some operations with which non-regular processes 
can be described. A typical example of a non-regular process is a stack over a finite data 
type. In [ 17], Bergstra, Bethke, and Ponse introduced the recursive, non-regular nesting 
operation U, defined by 

More recently, in [23,24], Bergstra and Ponse introduced two other non-regular, recursive 
operations, the back and forth operation, notation!::::;:, defined by 

(BF) x'=>y =x((x!:::;y)y) + y, 

and the push-down operation, notation $, defined by 

The transition rules for these operations are as expected. As an example, consider the 
process terms a'"b, a=> b, and a$b, of which the labelled transition systems are illustrated 
below: 

atb 
b 

J a!=+b 
b 

J 

al 
b 

r a al l" h 
(ajb) a (a!:::;b) b 

al 
b 

la al rb 
((aab)a)a ___,.. a2 ....... b 2 ((a-+b)b)b ___,.. b 

The three operations give rise to variants of RSP*: 

x = y(xy) + z 

x =yUz 

x=y(xz)+z 

X = Y!:::;Z 

a$b 
h J 

/Jllll 
(a$b) 

"il" 
(a$b) 2(a$b) 
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x=y(xx)+z 

x = ySz 

375 

It is easily seen that these three operations are non-regular, and it can be argued that they 
are the most simple candidates for obtaining a binary, non-regular recursive operation. Let 
<> E {ti, '::::::;,$).Adding<> to the signature of ACP(A, I), and its defining axiom to those 
of ACP(A, J), yields the system ACP0 (A, J). In the same way, we define ACP*0 (A, J) as 
the extension of ACP* (A, I) with <>. It is an open question whether the resulting axioma­
tisations with the corresponding RSP variant are complete modulo strong bisimulation 
equivalence. 

In [23,24 ], the following results were recorded. 
• Adding abstraction to ACP0 (A, J) with <> E {U, <:::::;, $) and A sufficiently large yields 

universal expressivity modulo process semantics that respect (B 1 ).4 (Note that BKS 
need not be available.) 

• For<> E {ti, <:::::;,$}and A sufficiently large, ACP*O(A, [)has an undecidable theory. The 
point is that one can encode register machine computability in a systematic way, and 
reduce recursive inseparability to provable equality in the initial algebra of ACP*0 (A, [). 

In [ 17], it was proved that a stack over a finite data type can be defined with the operations 
of ACP with abstraction and handshaking communication, with the help of a finite number 
of auxiliary actions and of the operations * and U. With two stacks and a regular control 
process, a Turing machine can be specified in process algebra; see [ 11 ]. As a consequence, 
each computable process can be specified in this setting. Bergstra and Ponse (23,24] proved 
that adding only one of U. $,or'::::::; to ACP(A, [, r) yields a setting in which regular pro­
cesses and stacks can be defined, and therefore each computable process. In this section 
we sketch the argumentation for the $-case of these results. This case is more simple and 
direct than the other two cases. 

In the forthcoming expressiveness proofs, strong bisimilarity of process terms is derived 
from the axioms. For clarity of presentation, in these derivations we assume the presence 
of axioms for commutativity and associativity of the merge. However, the axiomatic deriv­
ability of the expressiveness results can also be obtained without these axioms. 

6.1. Process aliebra with a push-down operation 

s We first show that each regular process can be specified in ACP' (A,[, r) modulo process 
semantics that respect (BI), provided A is sufficiently large. This is the first cornerstone 
of the universal expressivity result for ACPS (A, f, r). 

THEOREM 6.1.1. For each regular process P there is a .finite extension A""1 of A such 
that P can be expressed in ACP$(Aex1, [, r), even if one restricts to handshaking and the 
actions in A are not subject to communication. 

PROOF. P is a solution for the recursion variable X 1 in a recursive specification X; = 
L'J=I (a;,jXj) + {3; for i =I, ... ,n, where a;.j and {3; are finite sums of actions or 8. 
4 In the case of rooted weak bi simulation semantics, the resulting theory can be judged expressively complete, 
as all semi-computable processes that initially are finitely branching can be expressed; see [24]. 
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Define A rxi as the extension of A with the following 2n + 3 fresh atomic actions: 

in, r; , Sj (j = 0, ... , n). 

Let ri I SJ ~-in (for j = 0, ... , n) be the only communications defined (so we have 
handshaking, and the actions in A are not subject to communication). Furthermore, let 

dcf . 0 } d I H = { r J, SJ I 1 = , ... , n , an et 

F; abbreviate (tai.JSJ)+{J; fori=l, ... ,n, 
J=i 

( 

ll )$ 
K abbreviate L r j Fj ro, 

J=1 

( 

II )$ 
M abbreviate L:;rJSJ so. 

J=i 

Then X 1 = ru11 1 o Off (F1 K II M). This can be shown with the help of the infinite recursive 
specification 

Obviously, X; is a solution for each Y; (k) (i = 1, ... , 11, k E N). So by (RSP) it suffices to 
show that ru111 o OH(F;K II M) is a solution for Y;(O). We show this by first omitting the 
ru111-application. Fork EN we derive 

au(F;Kk+I II Mk+I) = (ta;.;au(s;Kk+I II M"+ 1)) 

J=i 

+ {J;au(Kk+I II Mk+ 1) 

( t O'.i,j in au ( Kk+I II Sj Mk+2)) + {3; ink+ I 
.1=1 

( ta;.; ininau(F;Kk+2 II Mk+2)) + /i; ink+ 1. 
J=i 

Hence, applying axioms (B l) and (Tll )-(Tl4 ), we find for each k E N 
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So Tiinl o a H ( F; Kk+ 1 II Mk+ 1) satisfies the recursive equation for Y; (k). 0 

A basic, auxiliary process used in the following proofs is the counter C displayed below, 
with actions a (add one), b (subtract one), c (test zero), and d (remove the counter): 

d 

c vafr, J 

(asb)C 

This process can be recognized as a register, i.e., a memory location for a natural number 
with unbounded capacity and restricted access as modelled by the specific actions. Using 
BKS and push-down, the counter C can be defined by 

The following result states that C can be defined without BKS, at cost of five auxiliary 
actions. In the next section we shall define a stack using two counters and a regular control 
process. 

LEMMA 6.1.2. Let A~- {a, b, c, d}. The counter (a(a 5b) + c)*d can be defined in 
ACP$(An1, J, r) with JA ext\ Al= 5, even if one restricts to handshaking and the actions 
in A are not subject to communication. 

PROOF. Define A ext as the extension of A with the following five fresh atomic actions: 

in, Yj,Sj ()=0,J). 

Let r.i I Sj '~in (for j = 0, l) be the only communications defined (so we have handshak­
ing, and the actions in A are not subject to communication). Furthermore, let 

P abbreviate 
Q abbreviate 
R abbreviate 

(a((hJ) + c)s1 + d, 

(ri P/"ro, 
(r1s1)$so. 

Then it follows with (RSP) that (a(a$b) + c)*d = T[i11} 0 air; .1; [i=ll 11( p Q II R). 0 
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6.2. Expressing a stack 

We provide recursive specifications of a stack over a finite data type in ACP$ (A ext, I, r), 
with the help of a regular control process and two counters. Let D = { d 1 , ... , dN} for some 
N ~ 1 be a finite set of data elements, ranged over by d. Let furthermore D* be the set 
of finite strings over D, ranged over by a, and let s denote the empty string. The stack 
S(s) over D with empty-testing and termination option is defined by the infinite recursive 
specification 

S(e) ~ (t, '(dj )S(dj)) + s(empty)S(e)+ '(sto ), 

S(da) ~ (t,'(dj )S(djda)) + s(d)S(o), 

Here the contents of the stack is represented by the argument of S: S (du) is the stack 
that contains da with d on top. Action r( d;) (receive d;) models the push of di onto the 
stack, and action s(d;) (send d;) represents deletion of di from the stack. Action s(empty) 
models empty-testing of the (empty) stack, and action r (stop) models termination of the 
(empty) stack. A non-terminating or non-empty-testing stack over D can be obtained by 
leaving out the concerning summand. In case N = 1 (D = {di}), the recursive equations 
above specify a counter: the stack contents then models the counter value. 

The following theorem is the second (and last) cornerstone of the universal expressivity 
result for ACP$(A, I, r). 

THEOREM 6.2.1. Each stack over a finite data type D with actions from A can be ex­
pressed in ACP$ (A ext, I. r) with A ext a finite extension of A, even if one restricts to hand­
shaking and the actions in A are not subject to communication. 

PROOF. Let a stack S(s) be given as described above. Without loss of generality, assume 
D = { d 1, •.. , dN} for some N > 1 (if N = 1, then a counter does the job). Our approach is 
to encode the contents of the stack, i.e., elements from D*, by natural numbers according 
to the following GMel numbering '·' : D* -+ N: 

This encoding is a bijection with inverse decode : N -+ D* (let * denote concatenation of 
strings): 

Is 
<lef n-N 

decode(n) = dN * decode( --w-) 
d d d ( n-(nmodN)) 

(n mod N) * eco e N 

if n = 0, 
if n =I= 0, n mod N = 0, 

otherwise. 
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For example, if N = 3, then 'd3d1 d2' = 24 and decode(32) = d2d1 d_, E (d1, d1, d3}*. 
Next, we define two counters to specify S(e) in ACP$(A"'1 , I, r): 

with add-action a j, subtract-action b.i, zero-testing CJ, and stop-action d. i, all in A ext \ A. 
We shall use the following abbreviations (for n E N): 

C (0) ~r C- . .I .I 

dcf _ s-
C (n +I)= (a····b·)C(n) . .I .I .I .I 

We further define a regular control process X, with actions ai, bj, CJ, d.i E A exr \ A and 
those of the stack. In combination with the Cj, the process X"' is used to define S(c). Note 
that the coding discussed above does not occur explicitly in this recursive specification. 

and for k = 1, ... , N: 

Xk = (tr(d1)Push1) +s(dk)Popk, 
J=I 

Pushk = (Shift 1to2)a}(N Shift 2 to l)Xk, 

Popk = b~ ( ~ Shift 1 to 2) Test,, 

Shift 1to2 = (b1a2)*c1 

NShift2tol = (b2a~)*q 

1 . . (bN )* N Shift l to 2 = 1 a2 c1 

(shift the contents of C1 to C2), 

(shift the N-fold of C2 to C 1 ), 

(shift the number of N-folds of C1 to C2), 

Test,. = b2a 1Test1 + c2 X, (determine whether the stack is empty, 

Test1 = h2a1 Test2+QX1 or which D-element is on top), 

Test2 = b2a 1 Test3 + c:. X 2, 

Let I for j =I, 2 be defined on (A"'1 \ A) 2 by a.i I Oj = h.i I bi= CJ I Cj =di I dj =in E 

A"'' \ A, and let H = {a;, a.i, b.i , b j, CJ , c.i , dj, d.i I j = I, 2}. We show that 



380 J.A. Bergstra et al. 

behaves as S(&), the empty stack: 

T{i 11 ) oilH(X, II C1(0) II C2(0)) 

= (tr(d_;)r{in} o ilH(a{ X_; II C1(0) II C2(0))) 
;=l 

+ s(empty)T(in) o ilH ( XE II C1 (0) II C2 (0)) 

+r(stop)r{in) oilH(d1d2 II C1(0) II C2(0)) 

= (t r(d_; )ri+I T{i1l} a il11 (Xj II C1 (j) II C2(0) )) 
1=1 

+ s(empty)ru11 1 o ilu (X, II C1 (0) II C:. (0)) 

+r(stop)rr 

~ (t,'(dJh1;,,1oa"(xi11 c,< 'ai'l 11 C2(Dl)) 

+ s(empty)ru11 1 o ilu ( X, II C 1 (0) II C2 (0)) + r (stop). (3) 

We are done if T(ill} o ilH(Xj II C1 ( 'dirr') II C2(0)) behaves as S(d;a) for some a ED*. 
We prove this by first omitting the T(in)-operation, and analyzing the behaviour of ilH (X i II 
C1 ( 'd1a') II C:.(0)). This analysis is arranged in a graphical style in Figure l, where 
P ___::...,. Q represents the statement P =a Q for some a E A, P ~ Q represents P =a Q, 
and branching represents an application of +. So the uppermost expression in Figure l 
with its arrows and resulting expressions represents the obviously derivable equation 

il11(X; 11C1('dia')11 C2(0)) = (t.r(dklilu(Pushk 11 C1('dia'l II C:.(0))) 

+s(dJ)il11(Pop1 II C1 ( 'd1a') II C2(0)). 

By the axiom (B 1 ), identity (3) above, and the derivation displayed in Figure 1 it follows 
that 

satisfy the recursive equations for S(s) and S(d1rr), respectively (j = l, ... , Nanda E 
D*). By (RSP) it follows that 

S(s) = T(i11l o ilu(X, II C1 II C2). 

By Theorem 6.1.1 and Lemma 6.1.2 it follows that once D is fixed, X, and hence the empty 
stack S(s) can be expressed in ACP$ (A''x', I, r) with handshaking for some A""' 2 A. o 
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aH(Pushk II C1( 'd1a') II Cz(O)) aH(Popi II C1 ( 'd1a') II C2(0)) 

j (b1lb1)i 

381 

j Shift I to 2 ro~u,;canom 
aH<a1N Shift 2 to IXk II C1(0l II C2( 'd1a')) 

j (aila1lk 

aH( iv Shift I to 2Test, II C1 (N · 'a') II C2(0)) 

j iv Shift I to 2 comm 's 

aH(N Shift 2 to IXk II C1 (kl II C2( 'd1a'Jl aH (Testp II C1 (0) II C2( 'O" ')) 

N Shift 2 to l comm's ··-·. --·--·-·-·--·1-·-···---·--- ···-·-·-·--· i a = e or a = dk v I '-------- ----~:::3<h2lh2)< 
c2lc2 _ ~a1la1))N-'v' 

aH(XE II C1(0) II C2(0)) aH(TestN II C1(N · 'v') II C2(k)) 

j ((h2lb2Ha1 la1 ))k 

aH (Testk II c, ( 'dkv') II Cz(O)) 

Bae ten, Bergstra, and Kl op [ 11] showed that Turing machines can be specified in process 
algebra by means of two stacks and a regular control process. In view of Theorem 6.2.1, 
this yields that ACP$(A, I, r) is universally expressive; see [241 for details. 

6.3. Undecidability results 

We now sketch the undecidability result mentioned above for ACP*$(A, I). The idea is that 
in this signature one can 'implement' register machine computability in the following way. 

(I) Registers (counters) have a straightforward definition in ACP*$(A, I), namely 
(a(a$b) + c)*d (cf. Section 6.1). 

(2) Starting from a universal programming language for two-register machines ( cf. Min­
sky in [65]), one can define a process algebraic representation of each program in 
BPA *(A) (using a third register for UO, and a fourth one as "program-line counter"). 
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(3) Defining encapsulation in an appropriate way. this yields for any computable func­
tion f: N ___,.Na process term P and a computable function g: N ~ N \ {O} such 
that the equation 

can be derived from the axioms for ACP*$(A, I) if and only if f (n) is defined, and 
the left-hand side equals an infinite in-trace otherwise. Here in is the result of a 
communication between the program (process term) P and the registers. 

Now let Wei. We 2 be recursively inseparable sets, and let f: N ___,. N be the partial recursive 
function defined by 

(
0 

f (11) = 1 
undefined 

ifn E We 1 , 

ifn E W,,1 , 

otherwise. 

Choose Pas described in item (3) above, and let P;, P~ and P1 (n), P2 (n) be defined by 

P( = P(s}d3)(s2_d2)(sf d1 )(sJdo), 

P~ = P(sj d3)(s]. d1)(sf d1 )( (so(s<~co))* do). 

P;(n) = B11(P/ II Co(n) II C1 II C2 11 C3) U =I, 2). 

Then we find 

W f( ) 0 P ( ) P ( ) (= 1-.11 g<nl+4). n E e 1 =? n = =? 1 n = '2 n 

n E We2 =?f(n)=1 =? P1(n) #- P2(n) (inglnl+S =j:. in~\lil+6 ). 

As to the latter implication: assume otherwise, i.e., irl = i1i+ 1 for some k ;;:, 1. Then by 
Lemma 2.2.2. ink tl ink+ 1, which clearly is a contradiction. 

Thus, decidability of P1 (n) = P2(11) provides a recursive separation of We 1 and We2 , 

which is contradictory. All details and a more precise explanation can be found in [24]. 
A similar proof strategy can be applied for ACP*"(A, I) and ACP*~ (A,\), where counter­
like processes are used instead. 

7. Special constants 

This section provides some last comments on two particular constants. First we shortly 
consider the silent step r in relation to fairness, dealing with infinite r-traces ( cf. Defini­
tion 2.3.3 and Theorems 4.5.1-4.5.4). Finally, we briefly discuss the empty process in the 
context of iteration. 
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7.1. Silent step and fairness 

Due to the character of r, one would want to be able to abstract from infinite sequences of 
r steps. Depending on the kind of process semantics adopted, different solutions have been 
found. In the case of rooted branching bisimulation, with next to (B 1) the extra axiom 

(B2) x(r(y + z) + y) =x(y + z) 

a general solution is provided by Koomen 's fair abstraction rule [55,11]. For each n and 
each set of equations, there is a version KFAR;; that is valid in rooted branching bisimula­
tion. For example, the axiom KFAR1{ reads as follows: 

X=ix+y (iE/) 

rrJ(x) = rr1 (y) 

(so the infinite r sequence induced by ix is reduced to a single r step). By definition 
of BKS we now have an immediate representation of the process in the premise of KFARt, 
namely i*y. Henceforth we can represent KFARt by the law 

rr1 (i*y) = rr1 (y) (i E /). 

Given the distribution law 

(BKS5) r1(x*y) = r1(x)*r1(y) 

(see Table 8), we can even represent KFARt simply by 

(FIR1{) r(r*x) = rx. 

(taking x for r1 (y)), where FIR abbreviates Fair Iteration Rule. 

EXAMPLE 7 .1 . 1. A particular consequence of F !Rf is the case where x as above is re­
placed by r x: 

r*(rx)=rx, (4) 

F/Rb 
the proof of which is trivial: r*(rx) = r(r*(rx)) + rx = 1 rrx + r x = rx. 

As a small example of the use of F!Rf consider a statistic experiment which models the 
tossing of a coin until head comes up (cf. [15]). This process can be described by: 

(throw tail)* throw head. 

for actions throw, tail, and head. We assume that the probability of tossing heads 
is larger than 0. Thus we exclude the infinite trace that alternately executes throw and 

tail. Abstracting from just the two atomic actions in I~- {throw, tail}, F!Rf yields 

r!((throw tail)*throwhead) = rhead. 
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First, observe rt( throw tail)= r. Then, using (4), it easily follows that 

r1((throw tail)*throwhead) = rhead. 

This expresses that head eventually comes up, and thus excludes the infinite sequence of 
r-steps present in r1 ((throw tai l)*throw head). 

7.2. Empty process 

Let the symbol c: denote the empty process, introduced as a unit for sequential composition 
by Koymans and Vrancken in [56] (see also [15,74]). Obvious as c: may be (being a unit 
for · ), its introduction is non trivial because at the same time it must be a unit for II as 
well. In the design of BPA, PA, ACP and related axiom systems, it has proved useful to 
study versions of the theory, both with and without E. Just for this reason the star operation 
with its (original) defining equation as given by Kleene in [53] was introduced in process 
algebra. 

Taking y = E in x*y, one obtains x*E which satisfies 

x*c=x(x*c:)+c:. (5) 

The unary operation _*c is a plausible candidate for the unary version of Kleene's star 
operation in process algebra. Moreover, taking x = 8 in (5) implies that 8* E = t: (by the 
identities 8x = 8 and 8 + x = x ), and hence that _ * c: cannot be used in a setting with­
out having E available as a separate process (once 8 is accepted as one). So with E. the 
interdefinability of the unary and the binary star, noted in [30], is preserved. 

Milner [62] formulated an axiomatisation for the unary Kleene star in BPA with dead­
lock and empty process, modulo strong bisimulation equivalence. It remains an open ques­
tion whether this axiomatisation is complete. Fokkink showed that Milner's axiomatisation 
adapted to no-exit iteration (NEI, see Section 4.1) is complete modulo strong bisimulation 
equivalence, in the presence of empty process. 

A particular consequence of Milner's axiomatisation is (in our notation, using binary 
Kleene star) 

c:*x =x, 

which seems a natural identity. Turning to the non-regular operations (see Section 6), the 
identity c~ x = x seems as natural. The other two non-regular operations, i.e., the push­
down $ and the back and forth operation ~.have a more surprising effect when combined 
with£. Using recursive specifications we find that ES a is a solution of the recursive equation 

X=X 2 +a, 

and c:'=+ a is a solution of 

X=Xa+a. 
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Both these recursive specifications are easily associated with infinitely branching pro­
cesses. The (unguarded) specification X = X a + a occurs in [ 15] as an example speci­
fication that has two distinct solutions: I:;"= 1 a; and a'"+ I:;~ 1 a;. The transition rules for 
recursive specifications (see Table 3) as well as those for :::::; yield the first solution. The 
interplay of recursive operations with empty process is apparently nontrivial and deserves 
further study. 
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