
CHAPTERS

Process Algebra with Recursive Operations

Jan A. Bergstra2·3 , Wan Fokkink 1, Alban PonseU
1 CW/, Kruislaan 413, /098 SJ Amsterdam, The Netherlands

http://www. cwi.11/

2 Utrecht University, Department of Phi/osoph.1~ Heidelberg/mm R, 3584 CS Utrecht, The Ni!ther/ands

http://11·Hw.phi!.L1u.nl/eng/home.html

University ofAmsterdam, Programming Research Gmup, Kruis/mm 403, !098 SJ Amsterdam,

The N<'lherlands

http://ww>1:s1·ience.u1·a.11//researchlprog

E-mails: janb@science.uva.nl, wan@cwi.nl, alban@science.um.nl

Contents
1. Introduction

2. Preliminaries: Axioms and operational semantics

2.1. ACP-based systems ..

2.2. Transition rules and operational semantics

2.3. Recursive specifications

3. Axiomatisation of the binary Kleene star

3.1. Preliminaries .
3.2. Completeness

3.3. lrredundancy of the axioms .

3.4. Negative results
3.5. Extensions ofBPA*(A) .. .

4. Axiomatisations of other iterative operations

4.1. Axiomatisation of no-exit iteration .

4.2. Axiomatisation of multi-exit iteration

4.3. Axiomatisation of prefix iteration

4.4. Axiomatisation of string iteration

4.5. Axiomatisation of flat iteration .

5. Expressivity results
5 .1. Expressivity of the binary Kleene star

5.2. Expressivity of multi-exit iteration .

5.3. Expressivity of string iteration

5.4. Expressivity of flat iteration ..

6. Non-regular recursive operations
6. I . Process algebra with a push-down operation

HANDBOOK OF PROCESS ALGEBRA

Edited by Jan A. Bergstra, Alban Ponse and Scott A. Smolka

© 2001 Elsevier Science B.V. All rights reserved

333

335
338
338
341
344
345
346
347
354
355
357
358
358
359
361
363
363
365
365
370
371
372

374
375

334

6.2. Expressing a stack .
6J. Undecidahility results .

7. Special constants ..
7. I. Silent step and fairness
7 .2. Empty process .

Acknowledgements .
References ..
Subject index

Abstract

J.A. Bergstra et al.

This chapter provides an overview of the addition of various forms of iteration, i.e., recur­
sive operations, to process algebra. Of these operations, (the original, binary version of) the
Kleene star is considered most basic, and an equational axiomatisation of its combination with
basic process algebra is explained in detail.

The focus on iteration in process algebra raised interest in a number of variations of the
Kleene star operation, of which an overview, including various completeness and expressivity
results, is presented. Though most of these variations concern regular (iterative) operations,
also the combination of process algebra and some non-regular operations is discussed, leading
to undecidability and stronger expressivity results. Finally, some attention is paid to the inter­
play between iteration and the special process algebra constants representing the silent step
and the empty process.

378
381
382
383
384
385
385
388

Process algebra with recursive operatio11s 335

1. Introduction

In process algebra, a (potentially) infinite process is usually represented as the solution of
a system of guarded recursive equations, and proof theory and verification tend to focus
on reasoning about such recursive systems. Although specification and verification of con­
cunent processes defined in this way serve their purposes well, recursive operations give a
more direct representation and are easier to comprehend. The Kleene star * can be consid­
ered as the most fundamental recursive operation. In process algebra, the defining equation
for the binary Kleene star reads

x*y=x·(x*y)+y

where · models sequential composition and + models non-deterministic choice (. binds
stronger than +). In terms of operational semantics, the process x * y chooses between x
and y, and upon termination of x has this choice again. For example, the expression a* b
for atomic actions a and b can be depicted by

b

where J expresses successful termination. This chapter discusses the Kleene star in the
setting of process algebra, and considers some derived recursive operations, with a focus
on axiomatisations and expressiveness hierarchies.

In the summer of 1951, S.C. Kleene was supported by the RAND Corporation, lead­
ing to Research Memorandum "Representation of Events in Nerve Nets and Finite Au­
tomata" [52]. The material in that paper, based on the fundamental paper [59], 1 was repub­
lished under the same title five years later [53]. ln this seminal work, Kleene introduced the
binary operation * for describing 'regular events'. He defined regular expressions, which
correspond to finite automata, and gave algebraic transformation rules for these, notably

E*F=E(E*F)vF

(E* F being the iterate of E on F). Kleene noted the correspondence with conventions of
algebra, treating E v Fas the analogue of E + F, and E Fas the product of E and F.

In 1958, Copi, Elgot, and Wright [30] showed interest in the results from [53]. However,
they judged Kleene's theorems on analysis2 and synthesis3 obscured both by the complex­
ity of his basic concepts and by the nature of the elements used in his nets. They introduced

1 Kleene judged the theory for nerve nets with circles in [59] (McCulloch and Pitts, 1943) to be obscure, and

proceeded independently. He came up with "regular events" and the major correspondence results in automata

theory.
2 Theorem 5. stating that finite automata model regular events.
3 Theorem 3, stating that each regular event can be described by a finite automaton ("nerve net").

336 J.A. Bergstra et al.

simpler and stronger nets (in a sense weakening Kleene 's synthesis res~lt, but stating. that
this '"brings the essential nature of the result into sharper focus"), and simpler operat10ns.
In particular they introduced a unary * operation

"[...]because the operation Kleene uses seems "essentially" singulary and because the
singulary operation simplifies the algebra of regular events. It should be noted that the
singulary and binary star operations are interdefinable." [30, p. 195]

This contradicts Kleene's original argument in [52, p. 50] that the length of an event is at
least one, and that for this reason he did not define £* as a unary operation.

Four years later. Redko [69] proved that there does not exist a sound and complete finite
eq1wtional axiomatisation for regular expressions. (This proof was simplified and corrected
by Pilling; see [31, Chapter l l].) In 1966, Salomaa [70] presented a sound and complete fi­
nite axiomatisation for regular expressions, with as basic ingredient an implicational axiom
dating back to Arden [9], namely (in process algebra notation):

x = (y · x) +;: =? x = y*;:

if y does not have the so-called empty word property. According to Kozen [57], this last
property is not algebraic, in the sense that it is not preserved under action refinement; he
proposed two alternative implicational axioms that do not have this drawback. Krob [58]
settled two conjectures by Conway [31], to obtain an infinite sound and complete equa­
tional axiomatisation for regular expressions. Bloom and Esik [25] developed an alterna­
tive infinite equational axiomatisation for regular expressions, within the framework of
iteration theories.

In l 984, Milner [62] was the first to consider the unary Kleene star in process alge­
bra. modulo strong bisimu/ation equivalence [66]. In contrast with regular expressions,
this setting is not sufficiently expressive to describe all regular (i.e., finite-state) processes.
Moreover. the merge operator x II y [60] that executes its two arguments in parallel, and
which is fundamental to process algebra, cannot always be eliminated from process terms
in the presence of the Kleene star. Milner presented an axiomatisation for the unary Kleene
star in strong bisimulation semantics, being a subset of Salomaa's axiomatisation, and
asked whether his axiomatisation is complete. Fokkink [39] solved this question for no­
exit iteration x* 8, where the special constant 8, called deadlock, does not exhibit any be­
haviour; since 8 blocks the exit. x*8 executes x infinitely often. Bloom, Esik, and Taub­
ner [26] presented a complete axiomatisation for regular synchronisation trees modulo
strong bisimulation equivalence, within the framework of iteration theories. Milner also
asked for a characterisation of those recursive specifications that can be described modulo
strong bisimulation semantics in process algebra with the unary Kleene star. Bosscher [28]
solved this question in the absence of the deadlock. The two questions by Milner in their
full generality remain unsolved.

The unary Kleene star naturally gives rise to the empty process [74], which does not
combine well with the merge operator. Therefore, Bergstra, Bethke, and Ponse [16, 17]
returned in 1993 to the binary version x* y of the Kleene star in process algebra, naming
the operator after its discoverer. Traeger [73] introduced a process specification language

Process algebra with recursive operations 337

with iteration, in which he introduced a striking axiom for the binary Kleene star, here
presented in process algebra notation:

x*(y · ((x + y)*z) + z) = (x + y)*z.

Fokkink and Zantema [38,44] gave an affirmative answer to an open question from [17],
namely, that the defining axiom and Troeger's axiom for the binary Kleene star, together
with

x*(y · z) = (x*y) · z

and the five standard axioms on+ and· for basic process algebra [19], provide an equa­
tional characterisation of strong bisimulation equivalence.

Corradini, De Nicola, and Labella studied the unary Kleene star in the presence of dead­
lock modulo resource bisimulation equivalence. In [32,33] they presented a complete ax­
iomatisation based on Kozen's conditional axioms. In [34] they came up with a complete
equational axiomatisation including Troeger's axiom.

Aceto, Fokkink, and Ing6lfsd6ttir [4] proved that a whole range of process semantics
coarser than strong bisimulation do not allow a finite equational characterisation of the
binary Kleene star. Furthermore, Sewell [72] showed that there does not exist a finite equa­
tional characterisation of the binary Kleene star modulo strong bisimulation equivalence in
the presence of the deadlock 8, due to the fact that (ak)* 8 is strongly bi similar to a* 8 for
positive integers k.

Several variations of the binary Kleene star were introduced, to obtain particular desir­
able properties.
• In order to increase the expressive power of the binary Kleene star in strong bisim­

ulation semantics, Bergstra, Bethke, and Ponse [16] proposed multi-exit iteration
(x1, ... , Xk)*(y1, ... , yk) for positive integers k, with as defining equation

Aceto and Fokkink [l] presented an axiomatic characterisation of multi-exit iteration in
basic process algebra, modulo strong bisimulation equivalence.

• Prefix iteration (similar to the delay operation from Hennessy [51]) is obtained by re­
stricting the left-hand side of the binary Kleene star to atomic actions. Aceto, Fokkink,
and Ing6lfsd6ttir [5,36] presented finite equational characterisations of prefix iteration
in basic CCS [60], modulo a whole range of process semantics.

• String iteration [7] is obtained by restricting the left-hand side of the binary Kleene
star to non-empty finite strings of atomic actions. Aceto and Groote [7] presented an
equational characterisation of string iteration in basic CCS, modulo strong bisimulation
equivalence.

• Bergstra, Bethke, and Ponse [16] introduced flat iteration, which is obtained by restrict­
ing the left-hand side of the binary Kleene star to sums of atomic actions. Unlike the
binary Kleene star, the merge operator can be eliminated from process terms in the
presence of flat iteration. In [48], van Glabbeek presented a complete finite equational

338 J.A. Bergstra et al.

characterisation of flat iteration in basic CCS extended with the silent step r [60], mod­
ulo four rooted weak bisimulation semantics that take into account the silent nature of
the special constant r (identifying xr and x).
This chapter also concerns expressivity of (subsystems ot) the algebra of communicat­

ing processes (ACP) [19] extended with the constant r and abstraction operators [20], and
enriched with the binary Kleene star or variants thereof. The r, which represents a silent
step, in combination with abstraction operators, which rename actions into r, enables one
to abstract from internal behaviour. In weaker semantics that identify xr and x, each reg­
ular process can be specified in ACPr (i.e., ACP with abstraction) and the binary Kleene
star, using only handshaking (i.e., two-party communication) [22] and some auxiliary ac­
tions. Furthermore, in such a semantics, each computable process can be specified in ACPr
with abstraction and a single recursive, non-regular operation, using only handshaking and
some auxiliary actions.

This chapter is set up as follows. Section 2 introduces the preliminaries. Section 3 con­
tains an exposition on axiomatisations for the binary Kleene star, while Section 4 dis­
cusses axiomatisations for related iterative operations. Section 5 compares the expressivity
of these iterative operations, and Section 6 studies the expressivity of some non-regular
recursive operations. Finally, Section 7 touches upon topics such as fairness and the empty
process.

2. Preliminaries: Axioms and operational semantics

In this section we recall various process algebra axiom systems, structural operational se­
mantics, behavioural equivalences, and recursive specifications. For a detailed introduction
to these matters see, e.g., Baeten and Weijland [15].

2.1. ACP-based systems

Let A be a finite set of atomic actions a, h, c, .. . , and let 8 be a constant not in A. We
write A,s for A U { 8}. Let furthermore _ I _ : A0 x Aa --.. A 0 be a communication function
that is commutative,

associative,

a I (b I c) =(a I b) I c for all a, b, c E As,

and that satisfies 8 I a = 8 for all a E As. The communication function I will be used to
define communication actions: in the case that a I b = c E A, the simultaneous execution of
actions a and b results in communication action c. The actions in A and the communication
function I can be regarded as parameters of the process algebra axiom systems that are
presented below.

Process algebra with recursive operations 339

The process algebraic framework ACP(A. I. r) stands for a particular signature over

fixed A and communication function I. and a set of axioms over this signature. Let P
denote the set of process terms over this signature:

sorts: A

p

operations: +: P x P ~ P

-:PxP~P

ll:P x P~P

U_:PxP~P

l:PxP~P

oH:P~P

L/ :P~ p

constants: 8 E P

TEP

(the given, finite set of atomic actions),

(the set of process terms; A s;: P),

(non-deterministic choice or sum),

(sequential composition),

(merge, parallel composition),

(left merge),

(communication merge, extending the given
communication function),

(encapsulation, H s;: A),

(abstraction, I ~ A),

(deadlock),

(silent step).

Intuitively, an action a represents indivisible behaviour, 8 represents inaction, and r rep­

resents invisible internal behaviour. Moreover, P + Q executes either P or Q, P · Q first

executes P and at its successful termination proceeds to execute Q, and P II Q executes P

and Q in parallel allowing communication of actions from P and Q. The operators P u_ Q

and P I Q both capture part of the behaviour of P II Q: P u_ Q takes its first transition

from P, while the first transition of P I Q is a communication of actions from P and Q.

Finally, in Off (P) all actions from H in P are blocked, while in r, (P) all actions from I

in P are renamed into r.
We take · to be the operation that binds strongest, and + the one that binds weakest. As

usual in algebra, we tend to write xv instead of x · y. For 0 E { +, ., II. I} we will assume

that expressions Po 0 · · · 0 P11 associate to the right. Furthermore, fork ~ 1 we define xk+ 1

as x · xk, and x 1 as x.

In Table 1 the axioms of the system ACP(A, I, r) are collected. Note that + and · are

associative, and that+ is moreover commutative and idempotent. In the case that

a I (b I c) = 8 for all a, b, c EA,

while I itself defines a communication, we speak of handshaking. We will study the fol­

lowing subsystems of ACP(A, I, r):
• BPA(A). The signature of BPA(A) contains the elements of A, non-deterministic choice,

and sequential composition. The axioms of BPA(A) are (Al)-(AS).

• BPA0 (A). The signature of BPAs(A) is the signature of BPA(A) extended with the dead­

lock. The axioms of BPA0(A) are (Al)-(A7).

340 J.A. Bergstra et al.

Table I
The axioms for ACP(A, I. r), where a. b E A,1,. and H. I c; A

(All
(A2J
(A3)
(A4)

(A5)
(A6)
(A7J
(Cl)

(C2J
(C3l
(CM!)
(CM2)
(CM3)
(CM-ll
(CM5)
(CM6)
lCM7J
(CM8J
(CM9)
(01)
(02)

(03)

(04)

(Bll
(Till

!T12J
(Tl3)

(TI..))

x+y=y+x
x+(y+:) = (x+y)+:

x+x = x
(X + y)z = XZ + YZ

(xy)z = x(yz)
x +Ii= x

DX = 8
alb = bla

(a I b) I c = a I <b I cl
Ii [a = 8

x llY = (x lL y+y lL x)+x IY
a lL x = ax

ax lL y = a(x II)')
(X + _r) ll_ Z = X IJ.. : + Y IJ.. Z

ax I b = (a I b)x
a I bx = (a I b)x

ax I /Jy = (a I b)(x II y)

<x + y) I z = x I:+ y I z
xl<y+:J = x[y+xlz

iJ11(a) =a ifa 1' H
iJH (a) = o if a EH

ii11<x+y) = ii11(x)+i1f!(V)

i)f!(Xy) = Ofi(X)il11(y)

XT = X

r / (a) = a if a rfc I
r1(a)=r ifaE/

r1<x+y) = r1(x)+r1(y)
r1(xy) = r1(x)r1(.V)

• PA(A). The signature of PA(A) is the signature of BPA(A) extended with the merge
and left merge. The axioms of PA(A) are (Al)-(A5), (CM2)-(CM4) (with a ranging
over A), and

(MI J x 11 y = x 1L y + y 1L x.

• PA,1(A). The signature of PA8 (A) is the signature of PA(A) extended with the dead­
lock. The axioms of PA(A) are (Al)-(A7), (Ml), and (CM2)-(CM4) (with a ranging
over A.,1).

• ACP(A, I). The signature of ACP(A, I) is the signature of ACP(A, I. T) without the silent
step and abstraction operators. The axioms of ACP(A, ll are (A I)-(A 7), (CF I)-(CF2),
(CMl)-(CM9), and (DI)-(04) (with a, b ranging over Ax).

We note that in PA(A) and PA,l(A), commutativity of the merge (x II y = y II x) can be
derived from axioms (Al) and (Ml).

The binary equality relation = on process terms induced by an axiom system is obtained
by taking all closed instantiations of axioms, and closing it under equivalence (i.e., under
reflexivity, symmetry, and transitivity) and under contexts.

Process algebra with recursive operations 341

2.2. Transition rules and operational semantics

We define a structural operational semantics in the style of Plotkin [68], to relate each
process term to a labelled transition system. Then we define strong bisimulation as an
equivalence between labelled transition systems, which carries over to process terms. The
operational semantics and strong bisimulation are used in the proofs on axiomatisations in
Sections 3 and 4, and on classification results in Section 5.

A labelled transition system (LTS) is a tuple (S, { ~, ~ JI a E A}, s), where

S is a set of states,
~ for a E A is a binary relation between states,
~ J for a E A is a unary predicate on states,
s E S is the initial state.

Expressions s ~ s' and s ~ J are called transitions.

Intuitively, s ~ s' denotes that from states one can evolve to states' by the execution
of action a, while s ~ J denotes that from state s one can terminate successfully by the
execution of action a (J is pronounced "tick").

Consider one of the process algebra axiom systems BPA(A) - ACP(A, I. r), and let P
represent all process terms given by its signature. We want to relate each process term
in P to a labelled transition system. We take the process terms in P as the set of states,
and the atomic actions in A as the set of labels. (Note that atomic actions can denote both
states and labels.) Exploiting the syntactic structure of process terms, the transition rela­
tions ~ and ~ J for a E A are defined by means of inductive proof rules called tran­
sition rules ~. Validity of the premises in S, under a certain substitution, implies validity
of the conclusion c under the same substitution.

The transition rules in Table 2 define the labelled transition system associated to a pro­
cess term in ACP(A, I, r). The signature and parameters of P (possibly including a com­
munication function I) determine which transition rules are appropriate. For example, the
last two transition rules for II (i.e., with x II yin the left-hand sides of their conclusions) are
not relevant for PA8(A). Note that the deadlock 8 has no outgoing transitions. The labelled
transition system related to process term P has P itself as initial state. Often we will write
simply P for the labelled transition system related to P.

Intuitively, strong bisimulation relates two states if the LTSs rooted at these states have
the same branching structure. This semantics does not take into account the silent nature
ofr.

DEFINITION 2.2.1 (Strong bisimulation). A strong bisimulation is a binary, symmetric
relation R over the set of states that satisfies

Two states P and Qare strongly bisimilar, notation P ±r Q, if there exists a strong bisim­
ulation relation R with P R Q.

342 J.A. Bergstra et al.

Table 2
Transition rules for ACP(A.1, r), where a, b E Ar, H, I£ A

a -E!...+ J, a E Ar

" r x----> x

.t + y -E!...+ x'

" r X-->X

x 11 y -E!...+ x' 11 y

x ~ x' y _.!:_.,. y'

xll.v~x'lly'
x ~ J y _.!:_.,. y'

xlly~y'

x ~ x' y _.!:_.,. y'

x ly~x' 11.v'

x~x'

a I y----> y

x + y-E!...+ y'
a r x--+x

xy~x'y

y~y'

x 11 y -E!...+ x 11 .v'

if a I b EA

if a I b EA

<I I x----> x

x 1L y -E!...+ x' 11 y

x ~ J y _.!:_.,. y'

xly~y'

ifalf.H

x~x'
if a El

r1 (x) _!_-. !/ (x')

" r x --7- x
if a~ I

TJ (x) -E!...+ !/ (x')

THEOREM 2.2.2.

x~J

x+y-E!...+J
x -E!...+ J

a xy--+y

x~J

xlly-E!...+y

x -E!...+ J _.!:_.,. y J
xlly~J

x ~ x' y _.!:_.,. J
xlly~x'

x -E!...+ J
xll_y~y

y~J

x+y~J

y~J

x 11 .v -E!...+ x

if a I b EA

if a I b EA

X -E!...+ X I Y _.!:_.,. .j X ~ J _Y _.!:_.,. J
xly~x'
x~.j

iJH(X)~ J
x -E!...+ .j

<1(x)-.!...+ .j

x~J

<1 (x) -E!...+ J

ifa If. H

if a EI

if a~ I

(l) (Equivalence) It is not hard to see that strong bisimulation is an equivalence relation
over ACP(A, I).

(2) (Congruence) Strong bisimulation equivalence is a congruence relation up to

ACP(A, I), meaning that Po fr Qo and Pi fr Qi implies Po + Pi fr Qo + Qi.

PoP1 fr QoQ1. Po II Pi fr Qo II Qi. Po lL P1 fr Qo lL Q1. Po I Pi fr Qo I Qi.
and BH (Po) fr8H (Qo). This follows from the fact that the transition rules in Table 2
are in path format; see [14,43,50] or Chapter 3 [6] in this handbook.

(3) (Soundness) Up to and including ACP(A, j), all axiom systems are sound with re­
spect to strong bisimilation equivalence, meaning that P = Q implies P fr Q. Since
strong bisimulation is a congruence, soundness follows from the fact that all closed
instantiations of axioms in ACP(A, I) are valid in strong bisimulation semantics.

(4) (Completeness) Up to and including ACP(A, !), all axiom systems are complete with
respect to strong bisimilation equivalence, meaning that P fr Q implies P = Q; see,
e.g., [15,42].

Process algebra with recursive operations 343

We proceed to define some more semantic equivalence relations on states in a labelled
transition system that do not take into account the silent nature of r. These definitions use
the following notions, assuming an underlying LTS.

Let P ~ Q for a E A* denote that state P can evolve to state Q by the execution
of the sequence of actions a. This binary relation on states is defined as follows (with e
denoting the empty string):

- P~P;

P~Q Q~R

P~R
P~Q Q~J

P~J
A string a E A* is a trace of P if P~ Q for some state Q or P~ J.

DEFINITION 2.2.3 (Substate). Q is a substate of P if P~ Q for some a EA*. Q is a
proper substate of P if P~ Q for some er EA*\ {e}.

DEFINITION 2.2.4 (Ready simulation). A simulation is a binary relation Rover the set of
states that satisfies:

PR Q /\ P ~ P' ~ ::JQ'(Q ~ Q' /\ P'R Q'),

PRQ/\P~J~ Q~J.

A simulation Risa ready simulation if whenever PR Q and a is a trace of Q, then a is a
trace of P.

Two states P and Qare simulation equivalent, notation P '::::.s Q, if P R1 Q and Q R2 P
for simulations R1 and R2.

Two states P and Qare ready simulation equivalent, notation P '::::.Rs Q, if P R1 Q and
Q R1 P for ready simulations R1 and 'R-2.

DEFINITION 2.2.5 (Language equivalence). Two states P and Qare language equivalent,
notation P :=.L Q, iffor each trace P~ J there is a trace Q~ J, and vice versa.

DEFINITION 2.2.6 (Trace equivalence). Two states P and Q are trace equivalent, nota­
tion P :=.7 Q, if they give rise to the same set of traces.

In [45], van Glabbeek gave a comparison of a wide range of behavioural equivalences
and preorders (i.e., relations that are in general not symmetric) that do not take into ac­
count the silent nature of r. Apart from the equivalence relation discussed above, he stud­
ied completed trace preorder and a variety of decorated trace preorders, which are based
on decorated versions of traces. These preorders are coarser than strong bisimulation and
ready simulation, but more refined than language and trace equivalence. In Section 4.3,
prefix iteration is axiomatized with respect to some of the decorated trace preorders. The
reader is referred to [45] for the definitions of these preorders.

344 J.A. Bergstra et al.

Four standard semantic equivalences that take into account the silent nature of T (and
that constitute congruence relations over ACP(A, I, r)) are rooted branching bisimula­
tion (49], rooted delay bisimulation [61], rooted 17-bisimulation [13], and rooted weak
bisimulation [63). Of these four semantics, rooted branching bisimulation constitutes the
finest relation, while rooted weak bisimulation constitutes the coarsest relation. In all four
semantics the axiom (B 1) (i.e., xr = x) is valid, and that is all that is needed for the ex­
pressivity results concerning ACP(A, I, r) discussed in this chapter. In [47], van Glabbeek
gave a comparison of a wide range of process semantics that take into account the silent
nature of r.

2.3. Recursive specifications

Although iterative operations are recursive by nature, we will use recursive specifications
and associated notions to prove some of the results concerning these operations.

DEFINITION 2.3.1 (Recursion). We assume a set of recursion variables {X j I j E J} for
some index set J. A recursive specification E is a set of recursive equations X j = Tj for
j E J, where Tj is an ACP(A, I, r)-term in which the recursion variables Xi for i E J may
occur.

Given some process semantics, processes Pj (for j E J) form a solution of E if sub­
stitution of Pj for X j in the recursive equations of E yields equations that hold in this
semantics.

If a recursive specification has solutions, then these solutions are often referred to by the
names of the corresponding recursion variables in E. Table 3 presents the transition rules
for recursive specifications.

If for instance E = {X = aX +b}, then X ~ X by the first transition rule, and X ~ .j
by the second transition rule.

Recursive specifications need not have unique solutions in any reasonable process se­
mantics, examples being {X = X} and {X = T X). The following two definitions are suffi­
cient to remedy this imperfection.

DEFINITION 2.3.2 (r-Guardedness). Let P be an expression containing a recursion vari­
able X.

An occurrence of X in P is r-guardedif P has a subexpression a Q where a E Ar and Q
contains this occurrence of X.

Table 3
Transition rules for recursion

T~x'

X~x'
if X =TEE

T~.j
if X=T EE

X~J

Process algebra with recursive operations 345

A recursive specification E = {X; = T; I j E J} is r-guarded if by repeatedly substi­
tuting T1 expressions for occunences of X_;, and by applying axioms of ACP(A, I. r), one
can obtain the situation that all occunences of recursion variables in right-hand sides of
recursive equations are r-guarded.

DEFINITION 2.3.3 (r-Convergence). A recursive specification E = {Xj = TJ I j E J} is

r-convergent if X J ~ P (for j E J) implies that there is no infinite r-trace P --4 P' -2+
P"--4 ···.

Recursive specifications that are r-guarded and r-convergent have a unique solution
modulo any reasonable process semantics. The existence of a solution underlies the sound­
ness of the recursive definition principle [11]. We proceed to introduce the recursive spec­
ification principle (RSP), discussed in for instance [21, 11]. This principle states that the
recursive specification E = { X J = T; I j E J} has at most one solution per recursion vari­
able, modulo the process semantics under consideration.

(RSP)
Y.i = T; {Yi/ xi I i E J l for j E J

Xk =Yk
(fork E 1)

(RSP) is sound with respect to the process equivalences mentioned thus far, provided E is
both r-convergentand r-guarded. Note that (RSP) is not sound with respect to the recursive
specifications {X = X} and {X = r X}.

DEFINITION 2. 3 .4 (Regular process). A process P is regular if P is bisimilar to a process
r1 (Q) where Q is a solution for a recursion variable in a finite recursive specification

IX;= ta;,_; X_; + {3; Ii= 1, ... , n I·
.1=1

where C'ii.J and fJ; are finite sums of actions in A (the empty sum representing 8).

3. Axiomatisation of the binary Kleene star

In Section I we introduced the binary Kleene star (BKS), notation *· This operation is
defined by the equation

x*y =x(x*y) + y.

This section considers its finite equational axiomatisation in strong bisimulation semantics,
and presents a negative result on the finite equational axiomatisability of BKS in a variety
of other process semantics.

346 J.A. Bergstra et al.

3.1. Preliminaries

BPA*(A) is obtained by extending BPA(A) with BKS. Bergstra, Bethke, and Ponse [17]
introduced an axiomatisation for BPA *(A) modulo strong bisimulation equivalence, which
consists of axioms (Al)-(AS) for BPA(A), extended with the axioms (BKSl)-(BKS) for
BKS in Table 4. The axiom (BKS3) stems from Troeger [73].

In order to provide process terms over BPA *(A) with an operational semantics, we in­
troduce transition rules for BKS. The transition rules for BKS in Table 5 express that x* y
repeatedly executes x until it executes y. Together with the transition rules for BPA(A) in
Table 2 they provide labelled transition systems to process terms over BPA *(A). Note that
by the first two transition rules in Table 5, a state P can have itself as a proper substate.
For example, a*b --5!..+ a*b.

The transition rules for BKS are in path format [14,50]. Hence, strong bisimulation
equivalence is a congruence with respect to BPA*(A); see [43] or Chapter 3 [6] in this
handbook. Furthermore, its axiomatisation is sound for BPA *(A) modulo strong bisim­
ulation equivalence. Since strong bisimulation equivalence is a congruence, this can be
verified by checking soundness for each axiom separately. It can be easily shown that the
BKS axioms are valid in strong bisimulation.

Fokkink and Zantema [44] proved that the axiomatisation for BPA *(A) is complete mod­
ulo strong bisimulation equivalence. Their proof is based on a term rewriting analysis (see,
e.g., [10]), in a quest to reduce bisimilar process terms to the same ground normal form,
which does not reduce any further. Since this aim cannot be fulfilled for BKS, this op­
erator is replaced by an operator representing x(x*y), and the BKS axioms are adopted
to fit this new operator. Those axioms are turned into conditional rewrite rules, which are
applied modulo associativity and commutativity of the + (see, e.g., [67]). Knuth-Bendix
completion [54] is applied to make the conditional rewrite system weakly confluent. Ter­
mination of the resulting conditional term rewriting system is obtained by means of the
technique of semantic labelling from Zantema [75]. Hence, each process term is provably
equal to a normal form. Finally, a careful case analysis learns that if two normal forms are
strongly bisimilar, then they are syntactically equal modulo associativity and commutativ­
ity of the +. This observation yields the desired completeness result.

Table4
Axioms for BKS

(BKSI) x(x*y)+y=x*y
(BKSZ) x*(yz) = (x*y)z
(BKS3) x*(y((x + y)*zl+ z) = (x + y)*z

Table 5
Transition rules for BKS

x~x' x~J ll I y--> y

x*y--E...+ x'(x*y) x•y--E...+ x*y x*yE....+ y'

y~J

x*y~J

Process algebra with recursive operations 347

An alternative completeness proof was proposed in [38], based on induction on the struc­
ture of process terms. That proof method is more general, and was later on applied to obtain
completeness results for axiomatisations of iteration operations in [1,34,39]. In the light of
the generic applicability of this proof method and the significance of the completeness
result in the realm of this chapter, we present the proof from [38] in some detail.

Following Milner [64] (see also [46]), the latter proof strategy can also be used to derive
w-completeness of the axiomatisation for BPA *(A). That is, if P and Q are open terms
over BPA *(A), which may contain variables, and if a (P) = a (Q) holds for all closed in­
stantiations a, then P = Q can be derived from the axioms. Often, w-completeness can be
proved by providing variables with an operational semantics, such that P ±±- Q holds with
respect to this new operational semantics if and only if a (P) ±±-a (Q) holds for all closed
instantiations a with respect to the original operational semantics. In [38], completeness
of the axiomatisation for BPA * (A) modulo bisimulation equivalence is derived for open
terms, which immediately implies w-completeness of the axiomatisation. Here, we present
the proof from [38] for closed (instead of open) terms. The reader is referred to [38] for a
proof of w-completeness. (The motivation to refrain from this generalisation here is clarity
of presentation; we prefer to work in an unambiguous semantic framework throughout this
chapter.)

3.2. Completeness

We note that each process term over BPA *(A) has only finitely many substates. In the
sequel, process terms are considered modulo associativity and commutativity of the +,
and we write P =Ac Q if P and Q can be equated by axioms (Al) and (A2). As usual,
L,;'= 1 Pi represents P1 + · · · + P11 • We take care to avoid empty sums (where L.?= 1 P; + Q
is not considered empty and equals Q).

For each process term P, its collection of possible transitions is non-empty and finite,

say { P ~ P; I i = I, ... , m} U { P ~ ,,j I j = l, ... , n}. We call

m 11

I>iP;+ .L>j
i=l j=l

the HN F-e> .. pansion of P (Head Normal Form expansion, cf. [15]). The process terms ai P;
and b J are the summands of P.

LEMMA 3.2.1. Each process term is provably equal to its HNF-expansion.

PROOF. Straightforward, by structural induction, using (A4), (AS), and (BKS I). D

Process terms in BPA *(A) are normed, which means that they are able to terminate
in finitely many transitions. The norm [121 of a process yields the length of the shortest
termination trace of this process. Norm can be defined inductively by

lal =I,

348 J.A. Bergstra et al.

IP+ QI = min{IPI, IQ!},

IPQI = !PI+ IQL

IP*QI =!QI.

We note that strongly bisimilar processes have the same norm. The following lemma, due
to Caucal [29], is typical for normed processes.

LEMMA 3.2.2. Let P Q fr RS. By symmetry we may assume I QI (IS!. We can distinguish
two cases:
• either P fr R and Q fr S;
• or there is a proper substate P' of P such that P fr RP' and P' Q fr S.

PROOF. This lemma follows from the following Facts A and B.

FACT A. If PQ fr RS and I QI (IS!, then either Q fr S, or there is a proper substate P'
of P such that P' Q fr S.

PROOF. We prove Fact A by induction on IPJ. First, let I PI= I. Then P ~ J for some
a, so PQ ~ Q. Since PQ fr RS, and IR'SI >!Si~ IQI for all substates R' of R, it
follows that R ~ J and Q fr S. Then we are done.

Next, suppose we have proved the case for IPI (n, and let I PI= n +I. Then there is a
P' with I P'I = n and P ~ P', which implies PQ ~ P' Q. Since PQ fr RS, we have
two options:

(l) R ~ J and P' Q fr S. Then we are done.
(2) R ~ R' and P' Q fr R' S. Since I P'I = n, induction yields either Q fr Sor P" Q fr

S for a proper substate P" of P'. Again, we are done.
This concludes the proof of Fact A. D

FACT B. If PQ fr RQ, then P fr R.

PROOF. Define a binary relation B on process terms by TB U iff T Q fr U Q. We show
that B constitutes a strong bisimulation relation between P and R.
• Since fr is symmetric, so is B.
• P Q fr R Q, so P B R.
• Suppose T BU and T ~ J. Then TQ ~ Q. Since TQ fr UQ, and IU'QI > Q for

all substates U' of U, it follows that U Q ~ Q. In other words, U ~ J.
• Suppose TB U and T ~ T'. Then TQ ~ T' Q. Since TQ fr U Q, and I QI< IT' QI,

it follows that there is a transition U ~ U' with T' Q fr U' Q. Hence, T' B U'.
This concludes the proof of Fact B. o

Finally, we show that Facts A and B together prove the lemma. Let P Q fr R S with
IQ I (I SI. According to Fact A we can distinguish two cases.
• Q fr S. Then PQ fr RS fr RQ, so Fact B yields P fr R.

Process algebra with recursive operations 349

• P' Q ft S for some proper substate P' of P. Then P Q ft R S ft RP' Q, so Fact B yields
P±:t-RP'. D

We construct a set IBl of basic terms, such that each process term is provably equal to a
basic term. The completeness theorem is proved by showing that strongly bisimilar basic
terms are provably equal.

(x + y)z ~ xz + yz,

(xy)z ~ x(yz),

(x*y)z ~ x*(yz).

The term rewriting system above consists of directions of the axioms (A4), (A5), and
(BKS2), pointing from left to right. Its rewrite rules are to be interpreted modulo associa­
tivity and commutativity of the+. The term rewriting system is terminating, meaning that
there are no infinite reductions. This follows from the following weight function w in the
natural numbers:

w(a) = 2,

w(P + Q) = w(P) + w(Q),

w(PQ) = w(P) 2w(Q),

w(P* Q) = w(P) + w(Q).

It is not hard to see that if P reduces to Q in one or more rewrite steps, then w(P) > w(Q).
Since the ordering on the natural numbers is well-founded, we conclude that the term
rewriting system is terminating. Let Gr denote the collection of ground normal forms, i.e.,
the collection of process terms that cannot be reduced by any of the three rewrite rules.
Since the term rewriting system is terminating, and since its rewrite rules are directions of
axioms, it follows that each process term is provably equal to a process term in G. The
elements in <G are defined by:

P ::=a IP+ PI aP IP* P.

Gr is not yet our desired set of basic terms, due to the fact that there exist process terms
in Gr which have a substate outside G. We give an example.

EXAMPLE 3.2.3. Let A= {a, b, c}. Clearly, (a*b)*c E Gr, and

(a*b)*c ~ (a*b)((a*b)*c).

The substate (a*b)((a*b)*c) is not in Gr, because the third rewrite rule in R. reduces this
process term to a*(b((a*b)*c)).

350 J.A. Bergstra et al.

In order to overcome this complication, we introduce the following collection of process
terms:

IHI= { P* Q, P' (P* Q) I P* Q E G and P' is a proper substate of P}.

We define an equivalence relation ;::: on IHI by putting P' (P* Q) ;::: P* Q for proper sub­
states P' of P, and taking the reflexive, symmetric, transitive closure of;:::.

The set IIB of basic terms is the union of G and IHI.

LEMMA 3.2.4. If PE lB and P ~ P'. then P' E lIB.

PROOF. By induction on the structure of P.
If P E IHI\ G, then it is of the form Q' (Q* R) for some Q* R E G. So P' is of the form

either Q* R or Q" (Q* R) for some proper substate Q" of Q'. In both cases, P' E lIB.
If P E G, then it is of the form Li a; Q; + L,1 Rj SJ + Lk bk. where the Q;, RJ, and

Sj are in G. So P' is of the form Q;, R'j SJ, R'i (Rj SJ), or Sj, which are all basic terms (in
the last case, this follows by structural induction). D

The L-value [44] of a process term is defined by

L(P) = max{ I P'l I P' proper substate of P}.

L(P) < L(P Q) and L(P) < L(P* Q), because for each proper substate P' of P, P' Q is a
proper substate of P Q and P' (P* Q) is a proper substate of P* Q. Since norm is preserved
under strong bisimulation, it follows that the same holds for L-value; i.e., if P ±!" Q then
L(P) = L(Q).

We define an ordering-< on JIB as follows:
• P-< Q if L(P) < L(Q);
• P -< Q if Pisa substate of Q but Q is not a substate of P;
• if P-< Q and Q-< R, then P-< R.
Note that if P, Q E IHI with P;::: Q, then P and Q have the same proper substates, and so
L (P) = L (Q). These observations imply that the ordering -< on JIB respects the equivalence
~ on IHI, that is, if P ~ Q -< R ~ S, then P -< S.

LEMMA 3.2.5. -<is a well-founded ordering on IIB.

PROOF. If P is a substate of Q, then all proper substates of P are proper substates of Q,
so L(P) :(L(Q). Hence, if P-< Q then L(P) :(; L(Q).

Assume, toward a contradiction, that there exists an infinite backward chain ... -< P2 -<
P1 -<Po. Since L(Pn+I) :(L(P11) for all n EN, there is an N such that L(P11) = L(PN)
for all n > N. Since P11 -< PN for n > N, it follows that P11 is a substate of PN for n > N.
Each process term has only finitely many substates, so there are m, n > N with n > m and
Pn =Ac Pm. Then Pn -f. Pm. so we have found a contradiction. Hence, -< is well-founded.
0

Process algebra with recursive operations 351

In the proofs of the next two lemmas, we need a weight function g in the natural num­
bers, which is defined inductively by

g(a) = 0,

g(P + Q) = max{g(P), g(Q)},

g(PQ) = max{g(P), g(Q)},

g(P* Q) = max{g(P), g(Q) +I}.

It is not hard to see, by structural induction, that if P -...!.!.+ P', then g(P) ;;:;: g(P').

LEMMA 3.2.6. Let P*Q E Jill. If Q' is a proper substate of Q, then Q'-< P* Q.

PROOF. Q' is a substate of Q, so g(Q') ~ g(Q) < g(P* Q), which implies that P* Q
cannot be a sub state of Q'. On the other hand, Q' is a substate of P* Q, so Q' -< P* Q. o

LEMMA 3.2.7. If PE JIB and P-...!.!.+ P', then either P'-< P, or P, P' E IHI and P ~ P'.

PROOF. This lemma follows from the following Facts A and B.

FACT A. If P E JIB and P-...!.!.+ P', then either P' E IHI or P' has smaller size than P.

PROOF. We prove Fact A by induction on the structure of P. Let

P =Ac :La;Q; + LRjSj + Lbk.
j k

Since P -...!.!.+ P', P' is of one of the following forms.
• P' =Ac Q; for some i. Then P' has smaller size than P.
• P' =Ac R'. (R"': S1·) or P' =Ac R*: S1· for some j. Then P' E IHI.

J ./ J .

• S,; ~ P' for some j. Then induction yields that either P' E IHI, or P' has smaller size
than S J, which in turn has smaller size than P.

This concludes the proof of Fact A. D

FACT B. If PE IHI and P ~ P', then either g(P) > g(P'), or P' E IHI and P ~ P'.

PROOF. Since PE IHI, either P =Ac Q'(Q* R) or P =Ac Q* R for some Q and R. Hence,
P' =Ac Q"(Q* R), P' =Ac Q* R, or P' =Ac R' for a proper substate R' of R. In the first
two cases P' E IHI and P ~ P', and in the last case g(P') = g(R') ~ g(R) < g(Q* R) =
g(P). This concludes the proof of Fact B. D

Finally, we show that Facts A and B together prove the lemma. Let P -...!.!.+ P' with
P' -f. P; we prove that P, P' E IHI and P ~ P'.

352 J.A. Bergstra et al.

Since P' is a substate of P and P' f. P, P is a substate of P'. So there exists a sequence
of transitions

Po ~ P1 ~ · · · ~ Pn (n ~ 1)

where Po =Ac P, P1 =Ac P', and Pn =Ac P.
Suppose Pk 1. lHl for all k. Then according to Fact A, Pk+ 1 has smaller size than Pk

fork= 0, ... , n - 1, so Pn has smaller size than Po. This contradicts Po =Ac P =Ac Pn.
Hence, P1 E lHI for some l.

Since each Pk is a substate of each Pk'• g(Pk) must be the same for all k. Then it follows
from Fact B, together with P1 E JHI, that Pk E lHl for all k and Po ~ P1 ~ · · · ~ P11 • O

Now we are ready to prove the desired completeness result for BPA *(A).

THEOREM 3.2.8. (Al)-(A5), (BKS1)-(BKS3) is complete for BPA*(A) modulo strong
bisimulation equivalence.

PROOF. Each process term is provably equal to a basic term, so it is sufficient to show
that strongly bisimilar basic terms are provably equal. Assume P, Q E JIB with P ±t- Q; we
show that P = Q, by induction on the ordering-<. To be precise, we assume that we have
already dealt with strongly bisimilar pairs R, SE JIB with R -< P and S-< Q, or R-< P and
S ~ Q, or R ~ P and S -< Q.

First, assume that P or Q is not in JHI, say P 1. lHI. By the induction hypothesis, together
with Lemma 3.2.7, for all transitions P 4 P' and Q 4 Q' with P' ±t- Q' we have
P = Q. Since P ±t- Q, axiom (A3) can be used to adapt the HNF-expansions of P and Q
to the form

m n tn II

P =Lai Pi+ Lbj,
i=l j=I i=l j=l

where Pi= Qi for i = 1, ... , m. Hence, P = Q.
Next, assume P, Q E JHI. We distinguish three cases.
(1) Let P =Ac R* Sand Q =Ac T*U. We prove R* S = T*U.

We spell out the HNF-expansions of R and T:

where the Ri and the Tj are of the form either a V or a.
Since R* S fr T* U, each Ri (R* S) for i E I is strongly bi similar either to Tj (T * U)
for a j E J or to a summand of U. We distinguish these two cases.
(a) Ri(R* S) ±t-Tj (T*U) fora j E J. Then Ri (R* S) tr Tj (R* S), so by Lemma 3.2.2

Ri ±:t T;.
(b) Ri(R* S) fr aU' for a transition U ~ U'.

Process algebra with recursive operations 353

Thus, l can be divided into the following, not necessarily disjoint, subsets:

lo = { i E I I 3} E J (R1 tl T; J l-
l 1={iElI3U ~ U' (R;(R*S) tlaU'J}.

Similarly, J can be divided:

Jo= {JEll3iEl(T;tlR;)).

J1 = {i E J 135 ~ S 1(T;(T*U) ±±aS')}.

If both /1 and 11 are non-empty, then U" tl R* S for a proper substate U" of U, and
S" ±±' T*U for a propersubstate S" of S, and so U" tl S". By Lemma 3.2.6, S"-<
R* Sand U"-< T*U. so induction yields R* S = U" = S" = T*U, and we are done.
Hence, we may assume that either / 1 or 11 is empty, say J1 = 0. We proceed to
derive

L R; (R* S) + S = U. (1)

i El1

We show that each summand at the left-hand side of the equality sign is provably
equal to a summand of U, and vice versa.
• By definition of !1, for each R;(R*S) with i E /1 there is a summand aU' of

U such that R;(R*S) ±±aU'. By Lemma 3.2.6 U'-< T*U, so induction yields
R;(R*S) =aU'.

• Consider a summand a S' of S. Since R* S tl T* U and 11 = 0, it follows that a S'
is strongly bisimilar to a summand a U' of U, so induction yields a S' =a U'.

• Finally, summands a of S correspond with summands a of U.
• By the converse arguments it follows that each summand of U is provably equal

to a summand at the left-hand side of the equality sign.
This concludes the derivation of (I).
Since J1 = 0, it follows that Jo =F 0, so lo =F 0. By the definitions of lo and Jo= J,
each R; with i E Jo is strongly bisimilar to a T; with j E l, and vice versa. Since
L(R;) (; L(R) < L(R*S). induction yields R; = Tj. Hence,

(2)

Finally, we derive

= (L,R; + L,R;)*s
1E/o l E 11

R*S
iA3J

(L R;) * (L R; (R* S) + S)
1E/o 1E/1

iBKSJJ.IAJJ
=

(I).(2)
T*U.

354 J.A. Bergstra et al.

(2) Let P =Ac R'(R* S) and Q =Ac T*U. We prove R' (R* S) = T*U.
JUI= IT*UI = JR'(R*S)J) 2 implies that U does not have atomic summands,
so its HNF-expansion is of the form L; a; U;. Since R' (R* S) ±± T* U, each U;
is strongly bisimilar to R* S or to R" (R* S) for a proper substate R" of R'.
According to Lemma 3.2.6 U; -< T* U, so induction yields U; = R* S or U; =
R" (R* S). This holds for all i, so U = Li a; U; = V (R* S) for some process
term V. Then R'(R*S) ±± T*U ±± (T*V)(R*S), so Lemma 3.2.2 implies R' ±±
T* V. Since L(R') < L(R' (R* S)), induction yields R' = T* V. Hence, R' (R* S) =

(T*V)(R*S) (B~2l T*(V(R*S)) = T*U.
(3) Let P =Ac R'(R* S) and Q =Ac T'(T*U). We prove R'(R* S) = T'(T*U).

By symmetry we may assume I R* SI ::;;: I T*UI. Lemma 3.2.2 distinguishes two pos­
sible cases.
e R' ±± T' and R* S ±± T* U. Since L(R') < L(R' (R* S)), induction yields R' = T 1 ,

and case (I) applied to R* S tl T* U yields R* S = T* U. Hence, R' (R* S) =
T'(T*U).

• R' tl T' R" and R" (R* S) ±± T* U for a proper substate R" of R'. Since
L(R') < L(R'(R*S)), induction yields R' = T'R". Furthermore, case (I)
applied to R"(R*S) ±± T*U yields R"(R*S) T*U. Hence, R'(R*S) =

(T' R")(R* S) (B~S21 T' (R" (R* S)) = T' (T*U).

This finishes the derivation of P = Q. D

3.3. lrredundancy of the axioms

Fokkink [38] showed that each of the BKS axioms is essential for the obtained complete­
ness result.

THEOREM 3.3.1. !Jone of the BKS axioms is skipped from (Al)-(AS), (BKSI)-(BKS3),
then this axiomatisation is no longer complete for BPA *(A) modulo strong bi.simulation
equivalence.

PROOF. We apply a standard technique for proving that an equation e cannot be derived
from an equational theory£, which prescribes to define a model for E in which e is not
valid.

In order to show that (BKS 1) cannot be derived from (A I)-(AS), (BKS2), (BKS3), we
define an interpretation function</> of open terms in the natural numbers:

</>(a) = 0,

</>(x) = 0,

</>(P + Q) = max{</>(P),</>(Q)},

</>(PQ) = </>(P),

</>(P*Q) = max{</>(P) + 1,</>(Q) + l}.

Process algebra with rernrsive operations 355

It is easy to see that this interpretation is a model for (A I)-(AS), (BKS2), (BKS3). How­

ever, cj>(a(a*a) +a)= 0, while qy(a*a) =I. Hence. a(a*a) +a= a*a cannot be derived

from (A I HAS), (BKS2), (BKS3).

In order to show that (BKS2) cannot be derived from (Al)-(AS), (BKS l), (BKS3) we

define an interpretation function if; of open tenns in the natural numbers:

ij;(a) = 0,

ij;(x) = 0,

ij;(P + Q) = max{ij;(P), 1/r(Q)},

1/r(PQ) = 1/r(Q).

ij;(P*Q) = max{ifr(P) +I, 1/r(Q)).

It is easy to see that this interpretation is a model for (Al)-(AS), (BKS l), (BKS3). How­

ever, ij;((a*a)a) = 1/r(a) = 0, while ifr(a*(aa)) = max{ifr(a) + 1, ij;(aa)) = l. Hence,

(a*a)a = a*(aa) cannot be derived from (Al)-(AS), (BKSl), (BKS3).

In order to show that (BKS3) cannot be derived from (Al)-(AS), (BKSl), (BKS2), we

define an interpretation function 1J of open terms in sets of natural numbers:

17(a) = 0,

l](X) = 0,

ry(P+Q) = 17(P)U17(Q),

17(PQ) = ry(P) U 17(Q),

17(P*Q) = 17(P) U 17(Q) U {IPI}.

It is easy to see that this interpretation is a model for (A 1)-(AS), (BKS I), (BKS2). How­

ever, 17((aa)*(a((aa + a)*a) +a))= {laal, laa +al}= {I, 2) while l]((aa + a)*a) =

{ laa +a I}= {I}. Hence, (aa)*(a((aa + a)*a) +a)= (aa + a)*a cannot be derived from

(A I HAS), (BKS I), (BKS2). D

3.4. Negative results

In contrast with the positive result on the finite equational axiomatisability of BPA *(A)

modulo strong bisimulation equivalence, Aceto, Fokkink, and Ing61fsd6ttir [4] showed that

BPA *(A) is not finitely based modulo any process semantics in between ready simulation

(see Definition 2.2.4) and language equivalence (see Definition 2.2.S). In the case of a

singleton alphabet, this answered a problem in regular languages raised by Salomaa in [71];

see [3]. Crvenkovic, Dolinka, and Esik [3Sl provided a more elegant answer to the latter

question.
Ready simulation and language equivalence constitute congruence relations over

BPA *(A) (in the case of language equivalence this follows from the fact that the transition

rules for BPA *(A) are in L cool format [40]). Process semantics in the linear/branching

356 J.A. Bergstra et al.

time spectrum [45] that are finer than language equivalence and coarser than ready sim­
ulation, and which constitute congruence relations over BPA *(A), are failure semantics,
ready semantics, failure trace semantics, and ready trace semantics.

The result above follows from the existence of an infinite set of equations that cannot all
be proved by means of any finite set of equations that is sound modulo language equiva­
lence. This family of equations consists of

E.n a*(a11) + (a 11)*(a + · · · +a11) = (a 11)*(a + ·· · +a11)

for n :;::: I, where a is some action. Ready simulation is the finest semantics in the lin­
ear/branching time spectrum in which the E.n are sound. Note that for n > l, none of the
equations E.n is sound in strong bisimulation equivalence.

Given a finite set of equations that is sound with respect to language equivalence, Aceto,
Fokkink, and lng6lfsd6ttir construct a model Ap for these equations in which equation
E.p fails, for some prime number p. The model that is used for this purpose is based on
an adaptation of a construction due to Conway [31], who used it to obtain a new proof of
a theorem, originally due to Redko [69], saying that BPA *(A) is not finitely based modulo
language equivalence.

Let a be an action. For p a prime number, the carrier A,, of the algebra A,, consists of
non-empty formal sums of a0, a 1, ••• , aP- 1, together with the formal symbol a*, that is,

{ I>i 10 C I~ {O, ... , p - I}} U {a*}.
1E/

The syntax of A,, contains three more operators, which are semantic counterparts of the
binary function symbols in BPA *(A). In order to avoid confusion, circled symbols denote
the operators in the algebra Ap: $, 0, and® represent the semantic counterparts of+, ·,
and *· respectively. Table 6 presents an axiomatisation for Ap.

Process terms over BPA*(A) are mapped to A,, as expected: every action in A is mapped
to the symbol a 1, while+, ·,and* are mapped to$, 0. and®, respectively. For a process

Table 6
Axiomatisation for the algebra Ap

a*Eax =a*
x Ef)a* = a*

I>; EfJ I>j = I: ah
iEI jEJ hE/UJ

a*Ox =a*
xOa* =a*

I:a;OLaj =
iE/ jEJ hE\U+.i> mod p[(i.j)E/ xJ}

'"' { v if x = a 0
x~ y = .

a* otherwise

Process algebra with recursive operations 357

term P, the denotation of P in the algebra Ap is represented by Ap[P]. We note that
equation E.p fails in Ap. Namely,

p-l

A,, [a*(aP) + (a")*(a +···+a")] =a* i= L:>; = Ap [(aP)*(a +···+a")].
i=O

The following theorem is the key to the nonaxiomatisability result from [4].

THEOREM 3.4. l. For every finite set [of equations that are sound with respect to '.::::.L,

there exists a prime number p such that all equations in [are valid in Ap.

COROLLARY 3.4.2. No congruence relation over BPA*(A) that is included in '.::::.L and
satisfies E.n for all n ~ I has a complete finite equational axiomatisation.

A process semantics that is coarser than language equivalence is trace equivalence '.::::.T,

where two process terms are considered equivalent if they give rise to the same (not nec­
essarily terminating) traces (see Definition 2.2.6). If I A I > I, then trace equivalence is not
a congruence relation over BPA(A); e.g., a+ aa '.::::.r aa, but (a+ aa)b i:-T aab. However,
if the set A of actions is a singleton {a}, then trace equivalence constitutes a congruence
relation over BPA *(A). In contrast with their negative results on the finite axiomatisability
of BPA *(A) modulo process semantics between ready simulation and language equiva­
lence, Aceto, Fokkink, and Ing6lfsd6ttir showed that BPA * ({a}) modulo trace equivalence
is axiomatized completely by the five axioms for BPA({a}) together with the three axioms
in Table 7.

THEOREM 3.4.3. (Al)-(A5), (TI)-(T3) is complete for BPA *({a}) modulo trace equiva­
lence.

3.5. Extensions ofBPA *(A)

The signature of BPAj(A) is obtained by extending BPA0(A) with BKS. Its axioms are
those of BPA *(A) and of BPA0 (A), i.e., (Al)-(A 7) in Table 1 for BPA.s (A), and (BKS1)­
(BKS3) for BKS. Sewell [72] showed that there does not exist a complete equational ax-

Table 7
Axioms for trace equivalence (A= {a})

(Tl) x + (y*~) = a*a
(T2) x + xy = xy

(T3) xy = yx

358 J.A. Bergstra et al.

Table 8
Axioms for BKS with encapsulation and abstraction

(BKS4) il11(x*y) = iJ11(x)*ilH(Y)

(BKS5) T1(x*y) = r1(x)*r1(y)

iomatisation for BPA1CA) modulo strong bisimulation equivalence. This motivates the in­
troduction of the implicational axiom

(RSP*)
x = yx + z

x =y*:::

It remains an open question, dating back to Milner [62], whether (Al)-(A7), (BKSl),
(RSP*) is complete modulo strong bisimulation equivalence. We note that (BKS2) and
(BKS3) can be derived from this axiomatisation.

The signature of PA*(A) is obtained by extending PA(A) with BKS. The axioms of
PA *(A) are those of PA(A) and (BKSl)-(BKS3). The system PA8(A) can be extended in a
similar way to PA;t(A). The system ACP* (A, I) is defined by inclusion of (BKS1)-(BKS4);
see Table 8. Note that (BKS4) can be derived using (RSP*). Finally, ACP*(A, I, r) is
obtained by inclusion into ACP(A, I, r) of (BKSl)-(BKSS); see Table 8. Note that (RSP*)
is not sound for ACP* (A, I, r); e.g.,

r=rr+o,

but r = r* 8 is not a desirable identity in any process semantics.

4. Axiomatisations of other iterative operations

This section considers four restricted versions and one generalised version of BKS. We
discuss the different advantages of each of these operators, and formulate various axioma­
tisations and completeness results.

4.1. Axiomatisation of no-exit iteration

No-exit iteration (NEI) x"' is bisimilar to x*o. No-exit iteration can be used to formally
describe programs that repeat a certain procedure without end. Many communication pro­
tocols can be expressed, and shown con-ect, using no-exit iteration. An explanation is that
(concurrent) components of such protocols often peii'orm repetitive behaviour in the fol­
lowing style (receive/process/send-repetition):

()

[JJ

L r; (d) P s; (d)
dED

or ()

(J)

I: ri (d) P .\'j (d) + Q ,
dED

Process algebra with recursive operations

Table 9
Axioms for NE!

(NEll)

(RSP'")

xw =x(xw)

x =yx
x=yo>

Tahle 10
Transition rules for NE!

ll ,
x---+ x x~J ----

359

where Q handles an exceptional situation. A standard example in process algebra is the
altenzating bit protocol (see, e.g., [2 I]), specified as the concunent execution of four com­
ponents, each of which can be specified in the style above. Further examples of this speci­
fication and verification style can be found in (18,76].

Table 9 presents two axioms for NEI. (NEii) is its defining axiom, while (RSP'°) is an
adaptation of (RSP*). The axiomatisations for BPAw(A) and BPAX'(A) are obtained by
extendingBPA(A) and BPAs(A) with (NEii) and (RSP"').

In order to provide process terms over BPA'.;'(A) with an operational semantics, we
introduce transition rules for NEL Together with the transition rules for BPA(A) in Table 2
they provide labelled transition systems to process terms over BPA'.('(A).

The transition rules for NEI are in path format. Hence, strong bisimulation equivalence
is a congruence with respect to BPA8' (A). Furthermore, its axiomatisation is sound for
BPA8' (A) modulo strong bisimulation equivalence. Since strong bisimulation equivalence
is a congruence, this can be verified by checking soundness for each axiom separately. It
is easily verified that (NEil) and (RSP"') are indeed sound modulo strong bisimulation
equivalence.

The following two completeness results for no-exit iteration originate from [39]. Their
proofs, which are omitted here, are based on the proof strategy from (38].

THEOREM 4.1.1. (Al)-(AS), (NEII), (RSP"') is complete for BPA'"(A) modulo strong
bisimulation equivalence.

THEOREM 4.1.2. (Al)-(A7), (NEil), (RSP"') is complete for BPA~'(A) modulo strong
bisimulation equivalence.

The observation by Sewell [72] that there does not exist a complete finite equational
axiomatisation for BPA!(A) modulo strong bisimulation equivalence, is based on the fact
that a"' is strongly bisimilar to (ak)"' for k ;;:: 1. This argument can be copied to con­
clude that there do not exist complete finite equational axiomatisations for BPA"' (A) and
BPA~"(A). Hence, the implicational axiom (RSP"') is irredundant. It is not difficult to see
that axiom (NEI 1) is inedundant as well.

4.2. Axiomatisation of multi-exit iteration

Milner [62] noted that not every regular process can be described in BPA *(A), up to strong
bisimulation equivalence. The limited expressive power of BKS was highlighted in [16],

360

Table II
Axioms for MEI

J.A. Bergstra et al.

(MEii) X\ ((x2 •...• XkoX\ l*<n 'Yko yi)) +YI = (.q,. .. 'xk)*(.v1 •...• Ykl

(ME12) ((x1, ... , xk)*Cv1 •... , Yk))Z = (x1 •... , Xk)*(y1 z •...• YkZ)

(MEl3) (zo. x2, ... 'Xk)*Cv1 + ZI ((x2, .. ., Xko zo + ZJ)*(y2 •...• Yk· YI)). Y2· ... 'Yk)

= (zo +z1. x2, ... • xk)*(y1 , Ykl

(ME14) (zo. Z\. x2' ... 'Xk)*(Yi' z2 ((x2,. .. 'Xk. zo<z I + z2))* (y2, .. ., Yko YI)), Y2· ...• Ykl
= (zo(z 1 + z2), x2 Xk)* (y1, Yk)

(MEI5) ((XJ • ... ,Xk)e)*(<.v1 ,yk)e) = (XJ, .•. ,xiJ*(y\, ..• ,y!J

where it was shown that the process described by the recursive specification

X1 = aX2 +a,

X2 = aX1 +b,

cannot be expressed in BPA *(A) modulo strong bisimulation equivalence. See Section 5
for more information on the expressive power of iterative operators.

Bergstra, Bethke, and Pense [16] introduced multi-exit iteration (MEI) as a more ex­
pressive variant of iteration. For every k ~ 1, and process terms Pi and Qi (1 :::;; i :::;; k), the
process term (P1, ... , Pk)* (Q 1, ... , Qk) denotes a solution to the recursion variable X 1 in
the recursive specification

Xk-1 = Pk-1Xk + Qk-1,

Xk = PkX1 + Qk.

Aceto and Fokkink [l] introduced the axiom system BPA111r*(A), which is obtained by
adding the MEI axioms (MEI1)-(MEI5) in Table 11 to BPA(A). The first three MEI ax­
ioms are adaptations of the three BKS axioms. The last two MEI axioms relate process
terms of distinct exit degrees. (MEI4) is the multiplicative counterpart of (MEI3), while
(MEIS) enables to reduce repetitive patterns at the left- and right-hand side of MEI.

In order to provide process terms over BPAme*(A) with an operational semantics, we
introduce transition rules for MEI. Together with the transition rules for BPA(A) in Table 2
they provide labelled transition systems to process terms over BPA'1"'*(A).

The transition rules for MEI are in path format. Hence, strong bisimulation equivalence
is a congruence with respect to BPN"e*(A). Furthermore, its axiomatisation is sound for
BPA111e*(A) modulo strong bisimulation equivalence. Since strong bisimulation equiva­
lence is a congruence, this can be verified by checking soundness for each axiom sep­
arately. It is easily verified that (MEil), (MEI2), and (MEIS) are sound modulo strong

Process algebra with recursive operations

Table 12

Transition rules for MEI

(/ ,
Xj~XI

(XJ, · ·, .q)*(y1, ···,Yd~ (X> ... , Xk, Xj)*(y2, · · ·, Yk· YI)

YI ~y~ YI ~J
(x1, · ·, xk)*(y1, ... , Ykl ~ .v; (.q, .. ,xk)*(y1, ... ,yk) ~ .,/

361

bi simulation equivalence. See [l] for a detailed proof that (MEI3) and (MEI4) are sound
modulo strong bisimulation equivalence.

In [l] it is proved that the axiomatisation BPA""'*(A) is complete for BPA""'*(A) modulo
strong bisimulation equivalence. The completeness proof, which is omitted here, is based
on the proof strategy from [38].

THEOREM 4.2.1. (Al)-(A5), (MEii)-(MEI5) is complete for BPA'""*(A) modulo strong

bisimulation equivalence.

4.3. Axiomatisation o,f prefix iteration

Prefix iteration (PI) [36] is a variation of BKS, obtained by restricting its first argument to
single atomic actions. The advantage of PI over BKS is twofold:

(1) PI can be axiomatized in a setting with prefix multiplication of CCS [63], which
is obtained from sequential composition by restricting its first argument to single
atomic actions;

(2) PI allows a complete equational axiomatisation modulo strong bisimulation equiva­
lence in the presence of the deadlock 8.

We note that, in general, sequential composition can be restricted to prefix multiplication
without loss of expressivity.

BPA~'* (A) consists of BPA(A), with sequential composition xy restricted to prefix mul­
ti plication ax from CCS, extended with PI. Table 13 presents a collection of axioms for PI.
First of all, (PI I)-(Pl2) from [36] axiomatize PI with respect to strong bisimulation.

THEOREM 4.3 .1. (A 1)-(A3), (A6), (PI I)-(Pl2) is complete for BPAf* (A) modulo strong

bisimulation equivalence.

The remaining equations and inequalities in Table 13 originate from Aceto, Fokkink,
and Ing6lfsd6ttir [5], who proved completeness results for PI in a variety of behavioural
equivalences and preorders in the linear/branching time spectrum [45]. These axiomati­
sations for BPAf*(A) all incorporate axioms (Al)-(A3), (A6) for BPAB(A) with prefix

362

Table 13
Axioms for PI

(PI!)

(P!2)

(CT!)
(PCTI)
(PCT2l

(LI)

(PLll

(Sl)

(RSI)
(PRS!)

J.A. Bergstra et al.

a(a*x)+x = a*x
a*(a*x) = a* x

a(x + y) = ax + ay
a*(x+y) = a*x+a*y

a*(ax) = a(a*x)

ao = fj

a*8 = !i

x ,,::: x + y

ax ,,:; ax +ay
a*x ,,::: a*(x+ay)

a(bx+by+v) (a(bx+v)+a(hv+w) (Rll
(PRil
(PR2l

a(a*(bx +by+ v)) ,,::: a(a*(bx + v)) + a(a*(by + w))

a*(bx +by+ v+a(hy+w)) ,,:; a*(bx + v +a(by + w)) +by

(Fl)
(PFl)
(PF2)
(PF3)

a(x+y),,::: ax+a(y+z)
a(a*(x + y)) ,,::: a(a*x) + a(a*(y + z))

a(a*x) ,,::: a*(a(x + y))

a*(x+y+a(y+z)),,::: a*(x+a(y+z))+y

multiplication, standard axioms from the literature for BPA8(A) modulo the behavioural
equivalence in question, and (PI I)-(Pl2) for PI.

(PCT!)-(PCT2) axiomatize PI with respect to completed trace equivalence.

THEOREM 4.3.2. (Al)-(A3), (A6), (PI1)-(Pl2), (CT!), (PCTl)-(PCT2) is complete for
BPAr* (A) modulo completed trace equivalence.

(PLl), in cooperation with (PCTl)-(PCT2), axiomatize PI with respect to language
equivalence.

THEOREM4.3.3. (Al)-(A3), (A6), (Pll)-(PI2), (CT!), (PCT1)-(PCT2), (Ll), (PLl), is
complete for BPAr* (A) modulo language equivalence.

No extra axioms are needed for PI modulo simulation preorder.

THEOREM 4.3.4. (Al)-(A3), (A6), (Pll)-(Pl2}, (SI) is complete for BPAf*CA) modulo
simulation preorder.

(PRS I) axiomatizes PI with respect to ready simulation preorder.

THEOREM 4.3.5. (Al)-(A3), (A6), (PI1)-(PI2), (RSI), (PRSl) iscompletejorBPAf*cA)
modulo ready simulation preorder.

Table 14
Axioms for SI

Process algebra with recursive operations

(SA5) WJ (u•2x) = (w1 w2Jx

(SI!) w(w*x) +x = w*x
(Sl2) w*(w*x) = w*x
(SI3) (w 11)*8 = u•*8
(Sl4) a((wa)*8J == (aw)*li

363

(PR 1)-(PR2), in cooperation with (PRS I), axiomatize PI with respect to readies pre­
order.

THEOREM 4.3.6. (Al)-(A3), (A6), (Pll)-(Pl2), (RS l), (Rl), (RS 1), (PRl)-(PR2) is com­

plete for BPA~'* (A) modulo readies preorder.

It is still an open question whether there exists a complete axiornatisation for BPA~'* (A)
modulo failures preorder. Aceto, Fokkink, and Ing6lfsd6ttir conjectured that (PFl)-(PF3),
in cooperation with (PRS 1), are sufficient to axiomatize PI with respect to failures preorder.

CONJECTURE 4.3.7. (Al)-(A3), (A6), (Pll)-(Pl2), (FI), (PRSl), (PF1HPF3) is com­
plete for BPA~'* (A) modulo failures preorder.

To the best of our knowledge, axioms for PI with respect to ready trace preorder and
failure trace preorder have not yet been formulated.

4.4. Axiomatisation of string iteration

String iteration (SI) [7] is a variation of PI, in which the first argument of iteration is al­
lowed to contain non-empty finite strings of atomic actions. Aceto and Groote [7] extended
the axiomatisation for PI in strong bisimulation to SI. Like PI, and unlike BKS, SI allows
an equational axiomatisation modulo strong bisimulation equivalence in the presence of
the deadlock o.

BPA;* (A) consists of BPA(A), with sequential composition xy restricted to string multi­

plication w y, extended with SI. Table 13 presents two axioms for SI in strong bisimulation.
In Table 13, w ranges over the collection A+ of non-empty strings of atomic actions.

THEOREM 4.4. l. (Al)-(A3), (SAS), (A6). (Sll)-(Sl4) is complete for BPA;l*(A) modulo

strong hisimulation equivalence.

4.5. Axiomatisation of flat iteration

In general, the merge operator cannot be eliminated from process terms with BKS. There­
fore Bergstra, Bethke, and Ponse [16] introducedflat iteration (FI), which is obtained by

364

Tahle 15
Axioms for FI

.I.A. Bergstra et al.

(FA4) (a+ f3)x = ax + f3x

(FBIJ ar =a
(FB2) a(x + ry) = a(x + ry) + ay

(Fii) a*(/3((a + f3)*x) + x) = (a+ f3)*x

(Fl2) 8*x = x

restricting the left-hand side of BKS to sums of atomic actions. Similarly, fiat multipli­
cation is obtained by restricting the left-hand side of sequential composition to sums of
atomic actions. The transition rules for these operators are simply the transition rules for
BKS and sequential composition with the left-hand sides restricted to sums of atomic ac­
tions. BPA{* (A) is obtained by adding FI to BPAs (A) and restricting sequential composi­
tion to fiat multiplication. The merge can be eliminated from process terms that contain FI.
For example, typically, (a*b) II (c* d) is strongly bisimilar to

(a+c+a lcl*((d+a ld)(a*b)+(b+b I c)(c*d) +b Id).

For a detailed discussion on this expressivity claim the reader is referred to Section 5.2.
In [48], van Glabbeek presented complete axiomatisations for BPA{ * (A) extended with

the silent step r, modulo four rooted bisimulation semantics that take into account the
silent nature of r: rooted branching bisimulation, rooted delay bisimulation, rooted 17-
bisimulation and rooted weak bisimulation. Of these four equivalences, rooted branching
bisimulation constitutes the finest relation, while rooted weak bisimulation constitutes the
coarsest relation; rooted delay bisimulation and rooted 11-bisimulation are incomparable.
All four equivalences constitute congruence relations over BPA;{r* (A) (in the case of rooted
branching bisimulation equivalence this follows from the fact that the transition rules for
BPAfr* (A) are in RBB safe format [41]). The axiomatisations for FI are adaptations of
axiomatisations introduced by Aceto, Fokkink, van Glabbeek, and Ing6lfsd6ttir [8,37,21
for PI.

Table 15 presents adaptations to prefix multiplication of axiom (A4) and of two standard
axioms (B 1)-(82) for r. Furthermore, (Fil) is an adaptation of (BKS3) to FI, while (FI2)
expresses the interplay of FI with the deadlock 8. In the axioms, a and f3 range over sums
of atomic actions (the empty sum representing 8). Note that the defining equation of FI,

fi*x = /J({i*x) +x

can be derived from (Fll) by taking a to be 8.
Table 16 presents axioms for the interplay of FI with the silent step r, modulo the four

aforementioned equivalence relations. (FT!) is an instantiation of Koomen 'sfair abstrac­
tion rule (KFAR) [55, 11 l for rooted branching and 17-bisimulation, while (FT4) serves this
same purpose for rooted delay and weak bisimulation. In [48], van Glabbeek proved com­
pleteness for BPA;(r* (A) with respect to rooted branching bisimulation; see Theorem 4.5. l.

Process algebra with recursive operations

Table 16
Axioms for FI with the silent step

(Ffl) (a+ r)* x = a*x + r(a*x)
(Ff2) a(/3*(r(/3*(x + y)) +x)) = a({J*(x + y))
(Ff3) a*(x + ry) = a*(x + ry +ay)
(Ff4) (a+ r)*x = r(a* x)

365

The complete axiomatisations for BPAf~* (A) modulo rooted delay, TJ-, and weak bisimu­
lation equivalence can then be obtained from the complete axiomatisation modulo rooted
branching bisimulation equivalence, using a reduction technique from van Glabbeek and
Weijland [49]; see Theorems 4.5.2, 4.5.3, and 4.5.4.

THEOREM 4.5. I. (Al)-(A3), (FA4), (A6)-(A7), (FBI), (Fll)-(Fl2), (FTl)-(FT2) is com­

plete for BPA{~* (A) modulo rooted branching bisimulation equivalence.

THEOREM 4.5.2. (Al)-(A3), (FA4), (A6)-(A7), (FBI), (Fll)-(Fl2), (FT4) is complete

for BPA{~* (A) modulo rooted delay bisimulation equivalence.

THEOREM 4.5 .3. (Al)-(A3), (FA4), (A6)-(A 7), (FB l)-(FB2), (Fil)-(Fl2), (FT1)-(FT3)

is complete for BPA{~* (A) modulo rooted TJ-bisimulation equivalence.

THEOREM 4.5 .4. (Al)-(A3), (FA4), (A6)-(A 7), (FB 1)-(FB2), (Fil)-(Fl2), (FT3)-(FT4)

is complete for BPA{r* (A) modulo rooted weak bisimulation equivalence.

5. Expressivity results

This section concerns expressivity of process algebra with recursive operations, to cate­
gorize what can be specified with the various recursive operations. Of course, answers to
these questions depend on the particular process semantics one adopts.

5.1. Expressivity of the binary Kleene star

In [17], Bergstra, Bethke, and Ponse showed that the expressivity of systems with BKS
can be analyzed by establishing properties of cycles in labelled transition systems. These
results were strengthened by Boselie [27]. We recall these results, and first introduce some
further terminology. A state Q is a successor of state P if P -4 Q. A cycle is a sequence
of distinct states (Po, ... , Pn) such that Pi+t is a successor of Pi for i = 0, ... , n - I
and Po is a successor of P11 • An action a is an exit action of state P if P -4 J. We use =
to denote that two terms are syntactically the same.

LEMMA 5 .1.1. Let C be a cycle in a labelled transition system associated to a process
term over ACP*(A, I, r). Then Chas one of the following forms.for n EN:

366 J.A. Bergstra et al.

(i) C=(PoQ,P1Q, ... ,P,,Q);
(ii) C = (P* Q, Pi (P* Q), ... , P11 (P*Q)), or any cyclic permutation thereof,

(iii) C=(Po II Qo,P1 II Q1, ... ,P11 II Q11);
(iv) C=(BH(Po),BH(P1), ... ,aH(P11)).

PROOF. Let C =(Co, ... , C,,). We apply case distinction on Co. Clearly Co is not a single
atomic action, and as +. lL , I do not occur as the first operation in right-hand sides of
conclusions of transition rules, it follows that Co =fa Po Q for o E { +, lL , I}.

Suppose Co= RS. If Sis not a state in C, then C = (RS, R1 S, ... , R11 S), which corre­
sponds to case (i).If Sis a state in C, then S~ RS for some a EA*. It is not hard to
see that only the first transition rule for BKS can give rise to a transition T ~ T' where
Tisa proper subterm of T'. Hence, Sis of the form P* Q, and the first transition in the
sequence S~ RS is invoked by the first transition rule for BKS. This yields form (ii).

Suppose Co= R* S. Analogous to the case Co= RS, we see that C is of form (ii).
Suppose Co= R II S. As R II Sis not a substate of R or S, it follows from the transition

rules of the merge that C must be of form (iii).
Suppose Co = a H (R). Since only the first transition rule for a H can have been used, it

follows that C is of form (iv). D

Lemma 5. I. I can be used to derive further properties of cycles.

LEMMA 5.1.2. Let C be a cycle in a labelled transition system associated to a process
term over BPA8(A). Then there is at most one state P in C that has a successor Q such
that P is not a proper substate of Q.

PROOF. As C belongs to a process term over BPA8(A), it must be of the form (i) or (ii) in
Lemma 5.1.1. We apply induction with respect to the size of C.

Suppose C = (PoQ, ... , P11 Q). By induction, the cycle (Po, ... , P11) contains at most
one state P; that has a successor R such that P; is not a proper substate of R. This implies
that P; Q is the only state in C that may have a successor S such that Pi Q is not a proper
substate of S.

Suppose C = (P*Q, Pi (P*Q), ... , Pn(P*Q)), or any cyclic permutation thereof. Then
P* Q is the only state in C that may have a successor R such that P* Q is not a proper
substate of R. o

LEMMA 5.1.3. Let C be a cycle in a labelled transition system associated to a process
term over PA8(A). If there is a state in C with an exit action, then every other state in C
has only successors in C.

PROOF. As C belongs to a process term over PA8 (A), this cycle must be of the form (i),
(ii), or (iii) in Lemma 5.1.1.

Suppose C = (Po Q, ... , Pn Q). Then none of the states in C has an exit action.
Suppose C = (P* Q, Pi (P*Q), ... , P11 (P* Q)), or any cyclic permutation thereof. Then

P* Q is the only state in C that may have an exit action, and the other states in C have only
successors in C.

Process algebra with recursive operations 367

Suppose C =(Po II Qo, P11 II Q11). Since the communication merge is excluded from
PA! (A), none of the states in C has an exit action. o

LEMMA 5 .1.4. let C be a cycle in a labelled transition system associated to a process
term over ACP* (A, I). Then there is at most one state in C with an exit action.

PROOF. As C belongs to a process term over ACP*(A, !), this cycle must be of the form (i),
(ii), (iii), or (iv) in Lemma 5.1.1. We apply induction with respect to the size of C.

Suppose C = (PoQ, ... , P11 Q). Then none of the states in Chas an exit action.
Suppose C = (P* Q, P1 (P* Q), ... , P11 (P* Q)), or any cyclic permutation thereof. Then

P* Q is the only state in C that may have an exit action.
Suppose C = (Po II Qu, ... , P11 II Q11). Assume Pi II Qi and Pj II Q; both have an exit

action. Then by induction P; II Qi represent the same state, soi= j.
Suppose C = (3H(Po), ... , aH (P11)). By induction, the cycle (Po, ... , P11) contains at

most one state Pi that has an exit action. So afl (P;) is the only state in C that may have an
exit action. D

We have the following expressivity hierarchy for process algebra with BKS.

THEOREM 5.1.5.

BPA!(A) ~ PA~(A) ~ ACP*(A, ll ! ACP*(A, I, r)

k
where -< means "less expressive than, provided A contains at least k actions" modulo
strong bisimulation equivalence. except for the last inequality, which requires the presence
of r and soundness of (BI) (i.e., xr = x). ff' one does not restrict to handshaking,

I
PA;i(A)-< ACP*(A, I).

The same inclusions hold in the absence of 8.

I I .
PROOF. BPA*(A)-< PA*(A) and BPA;i(A)-< PAs(A). Consider the PA*(A) process term
P = (aa)*a II a, which can be depicted as follows:

368 .I.A. Bergstra et al.

where

abbreviates (aa)*a,
2 abbreviates a((aa)*a),

3 abbreviates a((aa)*a) II a, and
4 abbreviates a.

According to Lemma 5.1.2, P cannot be specified in BPA;l'(A). Namely, the states P and 3
are not strongly bisimilar and form a cycle, while both states have a successor from which
one cannot return to this (nor to any strongly bisimilar) cycle.

PA:l'(A) ~ ACP*(A, I), where i = 1 in a setting without handshaking and i = 2 other­
wise. Take P as in the previous case, and let a I a be defined (either as a, thus no handshak­
ing, or as b =f. a). Then on top of the picture above, the labelled transition system associated

P . h f 11 . . . p ala I p 11la 2 cl 3 11la l A d. to contams t e o owmg trans1t10ns: ---+ v, ---+ , an ---+ . ccor mg to
Lemma 5.1.3, P cannot be specified in PA! (A). Namely, the states P and 3 are not strongly
bisimilar and form a cycle, while P has an exit action and 3 has a successor from which
one cannot return to this (nor to any strongly bisimilar) cycle.

4
ACP* (A, !) -< ACP* (A, I, r). Take the recursive specification

X1 = aX2 +a,

X2 = aaX1 +a.

Assume auxiliary actions b, c, and d, with c I c ~ b and d I d ~1 b the only communica­
tions defined. Let the process tenn P be defined by:

P = T[b)oa1c.dJ((a(ad+ac)+ac)QllR),

Q = (c(a(a(ad+ac)+ac)))*d,

R = (dc)*cd.

It can be derived from the axioms of ACP* (A, I) together with (RSP) and (B l) that
P = X1. Hence, X1 is expressible in ACP*(A, l.r) modulo process semantics that re­
spect (B l). According to Lemma 5. l.4, X 1 cannot be specified in ACP*(A, I. r) modulo
strong bisimulation equivalence, even if r is allowed to occur in A as a non-silent action.
Namely, X 1 and X 2 are not strongly bisimilar and form a cycle, while both X 1 and X 2
have an exit action. o

It is an open question whether ACP*(A, I)~ ACP*(A, j, r) holds.
The following theorem emphasizes the expressive power of ACP* (A, I, r).

THEOREM 5.1.6. For each regular process P there is a finite extension Aexi of A such
that P can be expressed in ACP*(A"x1, I, r), even if one restricts to handshaking and the
actions in A are not subject to communication.

Process algebra with recursive operations 369

PROOF. P is a solution for the recursion variable X 1 in a recursive specification Xi =
L'f=I a;.jX .i + f3i for i = 1, ... , n, where ai.j and /Ji are finite sums of actions or 8.

Define A ext as the extension of A with the following 2n + 3 fresh atomic actions:

in, rj, Sj (j =0, ... ,11).

Let r.i I Sj ~ in (for j = 0, ... , 11) be the only communications defined (so we have
handshaking, and the actions in A are not subject to communication). Furthermore, let

def .
H = {rj, .1·1 I 1 = 0, ... , n}, and let

We derive

Hence,

Gi

Q

M

II

abbreviate L a1.jSJ + /Jiso for i = 1, ... , n,

abbreviate
1(~i_>;G 1) * ro,

J=I

abbreviate (trjSj)* (roso).
J=I

II

= 2:.::a;.jaHc1·1Q II M) + f31aH(soQ II M)
j=l

II

= 2:.::a1.jinau(Q II siM)+f31inil11(Q II so)
j=l

II

= Lai.j ininiJ11(GjQ II M) + f>1 in in.
i=l

T{i11} 0 il11 (Gj Q II M) = L a;,j T{f11} 0 af! (G j Q II M) + /31.
j=I

Consequently, Tlfnl o iJ11(Gi Q II M) satisfies the recursive equation for X; (for i =
1, .. ., n). By (RSP) it follows that X 1 =<tin) o 'Ju (G 1 Q II M). D

370 I.A. Bergstra et al.

5.2. Expressivity of multi-exit iteration

We first note that in the extension of BPAi1(A) with multi-exit iteration one cannot describe
all regular processes modulo strong bisimulation equivalence. For example, the process
described by

X = aY+az.

Y=aZ+a,

Z = aX+aa,

cannot be expressed, as from the state X the two non-bisimilar exits a and aa can be
reached in a single step.

In [l) it was shown that for every k ~ 1 there is a process over a single action that can be
specified using (k + 1)-exit iteration, but not using h-exit iteration with h ~ k. We proceed
to sketch their argumentation. Fork ~ 1, BPA111 e*(>;,_kl (A) denotes the set of process terms
over BPA"re*(A) that only use h-exit iteration with h ~ k.

The set of termination options of a process term P over BPA""'*(A), is the smallest
collection of process terms satisfying:
• if P ~ J, then a is a tennination option of P;
• if P ~ Q and Q does not contain occurrences of MEI, then a Q is a termination option

of P.

LEMMA 5.2.1. let C be a cycle in a labelled transition system associated to a process
term over BPAme * (~ k)(A). Then C contains at most k states with distinct, non-empty
sets of termination options.

PROOF. Let C = (Co, ... , C11). We apply structural induction on Co. Clearly Co is not a
single atomic action, and as + does not occur as the first operation in right-hand sides of
conclusions of transition rules, it follows that Co is not of the form P + Q.

(1) Co = Po Qo. There are two possibilities.
(a) Qo is not a state in C. Then there is a cycle (Po, ... , P11) such that C; = P; Q0 for

i=O, ... ,n.
If Qo contains occurrences of MEI, then all states in C have an empty set of termi­
nation options.
If Qo does not contain occurrences of MEI, then the set of termination options of
C; (for i = 0, ... , n) is

{ R Qo I R is a termination option of P;}.

The inductive hypothesis yields that there are at most k process terms P; with dis­
tinct, non-empty sets of tennination options. Hence, there are at most k states in C
with distinct, non-empty sets of termination options.

(b) Qo is a state C1 in C. By induction there are at most k states in the cycle
(C1, ... , Cn, Co, ... , C1-1) with distinct, non-empty sets of termination options. So
the same holds for C.

Pmcess algebra with recursive operations 371

(2) Co= (P1, hl*(Q1, .. ., Q1i). where h ~ k.
Clearly, substates of the Q; cannot be in C. Thus the only states in C with possibly

non-empty sets of termination options are

for i = 1, ... , h. 0

PROOF. Let a E A. It suffices to show that the (k + I)-exit iteration term

*(J k+I) (n, a , a) a. er, a

cannot be specified in BPA111"*(~k) (A) modulo strong bisimulation equivalence. This fol­
lows from Lemma 5.2.1. because this process term induces a cycle that traverses the pro­
cess term

()*(i k+I i-1) a, ... ,a a , ... ,a ,a, ... ~a ,

which has {a; } as set of termination options, for i = I , k + I . Clear I y, a i fra i if i =!= j.

0

5.3. Expressivity of string iteration

In this section it is shown that for every k ?; 1 there is a process over a single action that
can be specified by SI using a string of length k + 1, but not by SI using strings of length
at most k. For k ~ 1, BPA'*1 ~kl (A) denotes the set of process terms over BPA'* (A) that
only use strings of length at most k.

LEMMA S. 3 .1. Let C be a cycle in a labelled transition system associated to a process
term over BPA''*(~kl (A). Then C contains at most k distinct states.

PROOF. Let C =(Co, ... , C11). We apply structural induction on Co. Clearly Co is not a
single atomic action, and as +does not occur as the first operation in right-hand sides of
conclusions of transition rules, it follows that Co is not of the form P + Q.

(1) Co=wP.
Clearly, P is a state C1 in C. By induction there are at most k distinct states in the
cycle (C1, ... , C 11 , Co, ... , C1-1). So the same holds for C.

(2) Co=:(a1···a1i)*P,whereh~k.

Clearly, substates of P cannot be in C. Thus the only distinct states in C are

(a;+1 · .. a1i)((a1 ···a11)*P) (fori = 1, ... ,h). D

372 J.A. Bergstra er al.

THEOREM 5.3.2. BPA"*<:>;kl(A) ~ BPA'*(<>;k+lJ(A)for k ~ 1.

PROOF. Let a E A. It suffices to show that the (k + 1)-string iteration term

cannot be specified by a process term over BPA"*<:>;k)(A) modulo strong bisimulation
equivalence. This follows from Lemma 5.3.1, because the process term above induces a
cycle that traverses the k + 1 non-bisimilar process terms ai ((ak+ 1) *a) for i = 0, ... , k. O

5.4. Expressivity of fiat iteration

This section presents some expressivity results on FI from [16]. BPAl*(A), BPA{*<A),
PAf*(A), and ACPf*(A, J) are obtained by adding FI to BPA(A), BPA0(A), PA(A), and
ACP(A, !), respectively, and restricting sequential composition to flat multiplication.

As stated below, restricting sequential composition to prefix multiplication gives no loss
of expressivity. Flat iterative basic terms over BPA'*(A) are defined by the BNF grammar

P ::=a IP+ P laP la*P

where a EA and a is an atomic sum. Flat iterative basic terms over BPA{* (A) are defined
by adding 8 to the BNF grammar.

LEMMA 5 .4.1. Each process term over BPA *(A) [BPA;;'(A)] with BKS restricted to FI is

bisimilar to a.flat iterative basic term over BPAf*(A) [BPA{* (A)].

PROOF. By structural induction, using the axioms of BPA0 (A) and those in Table 15. O

With respect to expressivity of systems with FI in strong bisimulation semantics we have
the following results.

THEOREM 5.4.2.
· I /' I

(l) BPAi *(A)-< BPA *(A) and BPA;s *(A)-< BPA;;'(A),
(2) BPAf*(A) is as expressive as PAf*(A), and
(3) BPA{*(A) is as expressive as ACPf*(A, J).

PROOF. Fact (1) is trivially true, as FI does not give rise to cycles of length greater than
one. For example, the process term (aa)*a over BPA *(A), which has a cycle of length two,

cannot be expressed in BPA{ *(A) modulo strong bisimulation equivalence.
We proceed to present the proof of Fact (2). Fact (3) can be proved in a similar fashion.
From Lemma 5.4.l it follows that BPAf* (A) is as expressive as PAf'* (A) if all pro­

cess terms P II Q and P ll.. Q with P and Q flat iterative basic terms are expressible in
BPA1*(A). Expressibility of P II Q and P ll.. Qin BPAl*(A) can be proved in parallel,

Process algebra vvith recursive operations 373

using induction on the size of such terms. We focus on the case P II Q; the case P lL Q
can be dealt with in a similar fashion. We consider three cases, depending on whether P
and Q are of the form a* R.

(1) Let P =a* Rand Q = {3* S. Then we derive (using commutativity of II in PA *(A))

P II Q =(a+ f3)(P 11 Q) + R lL Q + S lL P.

The process terms R lL Q and S lL P have sizes smaller than P II Q, so by induction they
can be expressed in BPAf*(A), say by U and V, respectively. By (RSP*),

P II Q =(a+ f3l*(U + V)

so P II Q is expressible in BPAf*(A).
(2) Let P =Ac L; a7 R; +Li a1S1 + Lk bk (with P not of the form a* R) and Q =

f3* T. Then we derive ·

P II Q = {J(P II Ql+T lL P+ La;(Ca7Ri) II Q)+ La1<S1 II Q)
i .i

The process terms T lL P, (a7 R;) II Q, and Si II Q have sizes smaller than P II Q, so
by induction they can be expressed in BPAf*(A), say by U, Vi, and W;, respectively. By
(RSP*),

p II Q = fJ* (u + L Cii Vi + L Gj Wj + L bk Q)
I j k

so P II Q is expressible in BPAf*(A).
(3) Let P =Ac Lia; Ri + LjaJSJ + Lk bk (with P not of the form a* R) and Q =Ac

Li f37 Tr + L 111 Cm U111 + Ln d11 (with Q not of the form f3*T). Then we derive

P II Q = Lai(Ca7 R;) II Q) + La1(Sj II Q) + LhkQ
j k

/II n

The process terms (a7 Ri) II Q, Si II Q, <f37 T1) II P, and U111 II P have sizes smaller than
P II Q, so by induction they can be expressed in BPAl*(A). Hence, P II Q is expressible
in BPAf*(A).

Owing to commutativity of the merge, the three cases above cover all possible forms
of P II Q. So we conclude that P II Q is expressible in BPAf*(A). D

374 J.A. Bergstra et al.

Note that parts in general process terms over BPAf*(A) [BPA{ *(A)] cannot be equated

to process terms over PAf*(A) [ACPf*(A, !)]. If one of the arguments of II specifies a
cycle, this occurrence of II cannot be eliminated with the axioms provided.

6. Non-regular recursive operations

With each of the recursive operations discussed before, one can define at most a regular
process. In this section we consider some operations with which non-regular processes
can be described. A typical example of a non-regular process is a stack over a finite data
type. In [17], Bergstra, Bethke, and Ponse introduced the recursive, non-regular nesting
operation U, defined by

More recently, in [23,24], Bergstra and Ponse introduced two other non-regular, recursive
operations, the back and forth operation, notation!::::;:, defined by

(BF) x'=>y =x((x!:::;y)y) + y,

and the push-down operation, notation $, defined by

The transition rules for these operations are as expected. As an example, consider the
process terms a'"b, a=> b, and a$b, of which the labelled transition systems are illustrated
below:

atb
b

J a!=+b
b

J

al
b

r a al l" h
(ajb) a (a!:::;b) b

al
b

la al rb
((aab)a)a ___,.. a2 b 2 ((a-+b)b)b ___,.. b

The three operations give rise to variants of RSP*:

x = y(xy) + z

x =yUz

x=y(xz)+z

X = Y!:::;Z

a$b
h J

/Jllll
(a$b)

"il"
(a$b) 2(a$b)

P1Vcess algebra with recursive operations

x=y(xx)+z

x = ySz

375

It is easily seen that these three operations are non-regular, and it can be argued that they
are the most simple candidates for obtaining a binary, non-regular recursive operation. Let
<> E {ti, '::::::;,$).Adding<> to the signature of ACP(A, I), and its defining axiom to those
of ACP(A, J), yields the system ACP0 (A, J). In the same way, we define ACP*0 (A, J) as
the extension of ACP* (A, I) with <>. It is an open question whether the resulting axioma­
tisations with the corresponding RSP variant are complete modulo strong bisimulation
equivalence.

In [23,24], the following results were recorded.
• Adding abstraction to ACP0 (A, J) with <> E {U, <:::::;, $) and A sufficiently large yields

universal expressivity modulo process semantics that respect (B 1).4 (Note that BKS
need not be available.)

• For<> E {ti, <:::::;,$}and A sufficiently large, ACP*O(A, [)has an undecidable theory. The
point is that one can encode register machine computability in a systematic way, and
reduce recursive inseparability to provable equality in the initial algebra of ACP*0 (A, [).

In [17], it was proved that a stack over a finite data type can be defined with the operations
of ACP with abstraction and handshaking communication, with the help of a finite number
of auxiliary actions and of the operations * and U. With two stacks and a regular control
process, a Turing machine can be specified in process algebra; see [11]. As a consequence,
each computable process can be specified in this setting. Bergstra and Ponse (23,24] proved
that adding only one of U. $,or'::::::; to ACP(A, [, r) yields a setting in which regular pro­
cesses and stacks can be defined, and therefore each computable process. In this section
we sketch the argumentation for the $-case of these results. This case is more simple and
direct than the other two cases.

In the forthcoming expressiveness proofs, strong bisimilarity of process terms is derived
from the axioms. For clarity of presentation, in these derivations we assume the presence
of axioms for commutativity and associativity of the merge. However, the axiomatic deriv­
ability of the expressiveness results can also be obtained without these axioms.

6.1. Process aliebra with a push-down operation

s We first show that each regular process can be specified in ACP' (A,[, r) modulo process
semantics that respect (BI), provided A is sufficiently large. This is the first cornerstone
of the universal expressivity result for ACPS (A, f, r).

THEOREM 6.1.1. For each regular process P there is a .finite extension A""1 of A such
that P can be expressed in ACP$(Aex1, [, r), even if one restricts to handshaking and the
actions in A are not subject to communication.

PROOF. P is a solution for the recursion variable X 1 in a recursive specification X; =
L'J=I (a;,jXj) + {3; for i =I, ... ,n, where a;.j and {3; are finite sums of actions or 8.
4 In the case of rooted weak bi simulation semantics, the resulting theory can be judged expressively complete,
as all semi-computable processes that initially are finitely branching can be expressed; see [24].

376 J.A. Bergstra et al.

Define A rxi as the extension of A with the following 2n + 3 fresh atomic actions:

in, r; , Sj (j = 0, ... , n).

Let ri I SJ ~-in (for j = 0, ... , n) be the only communications defined (so we have
handshaking, and the actions in A are not subject to communication). Furthermore, let

dcf . 0 } d I H = { r J, SJ I 1 = , ... , n , an et

F; abbreviate (tai.JSJ)+{J; fori=l, ... ,n,
J=i

(

ll)$
K abbreviate L r j Fj ro,

J=1

(

II)$
M abbreviate L:;rJSJ so.

J=i

Then X 1 = ru11 1 o Off (F1 K II M). This can be shown with the help of the infinite recursive
specification

Obviously, X; is a solution for each Y; (k) (i = 1, ... , 11, k E N). So by (RSP) it suffices to
show that ru111 o OH(F;K II M) is a solution for Y;(O). We show this by first omitting the
ru111-application. Fork EN we derive

au(F;Kk+I II Mk+I) = (ta;.;au(s;Kk+I II M"+ 1))

J=i

+ {J;au(Kk+I II Mk+ 1)

(t O'.i,j in au (Kk+I II Sj Mk+2)) + {3; ink+ I
.1=1

(ta;.; ininau(F;Kk+2 II Mk+2)) + /i; ink+ 1.
J=i

Hence, applying axioms (B l) and (Tll)-(Tl4), we find for each k E N

Process algebra with recursive operations 377

So Tiinl o a H (F; Kk+ 1 II Mk+ 1) satisfies the recursive equation for Y; (k). 0

A basic, auxiliary process used in the following proofs is the counter C displayed below,
with actions a (add one), b (subtract one), c (test zero), and d (remove the counter):

d

c vafr, J

(asb)C

This process can be recognized as a register, i.e., a memory location for a natural number
with unbounded capacity and restricted access as modelled by the specific actions. Using
BKS and push-down, the counter C can be defined by

The following result states that C can be defined without BKS, at cost of five auxiliary
actions. In the next section we shall define a stack using two counters and a regular control
process.

LEMMA 6.1.2. Let A~- {a, b, c, d}. The counter (a(a 5b) + c)*d can be defined in
ACP$(An1, J, r) with JA ext\ Al= 5, even if one restricts to handshaking and the actions
in A are not subject to communication.

PROOF. Define A ext as the extension of A with the following five fresh atomic actions:

in, Yj,Sj ()=0,J).

Let r.i I Sj '~in (for j = 0, l) be the only communications defined (so we have handshak­
ing, and the actions in A are not subject to communication). Furthermore, let

P abbreviate
Q abbreviate
R abbreviate

(a((hJ) + c)s1 + d,

(ri P/"ro,
(r1s1)$so.

Then it follows with (RSP) that (a(a$b) + c)*d = T[i11} 0 air; .1; [i=ll 11(p Q II R). 0

378 J.A. Bergstra et al.

6.2. Expressing a stack

We provide recursive specifications of a stack over a finite data type in ACP$ (A ext, I, r),
with the help of a regular control process and two counters. Let D = { d 1 , ... , dN} for some
N ~ 1 be a finite set of data elements, ranged over by d. Let furthermore D* be the set
of finite strings over D, ranged over by a, and let s denote the empty string. The stack
S(s) over D with empty-testing and termination option is defined by the infinite recursive
specification

S(e) ~ (t, '(dj)S(dj)) + s(empty)S(e)+ '(sto),

S(da) ~ (t,'(dj)S(djda)) + s(d)S(o),

Here the contents of the stack is represented by the argument of S: S (du) is the stack
that contains da with d on top. Action r(d;) (receive d;) models the push of di onto the
stack, and action s(d;) (send d;) represents deletion of di from the stack. Action s(empty)
models empty-testing of the (empty) stack, and action r (stop) models termination of the
(empty) stack. A non-terminating or non-empty-testing stack over D can be obtained by
leaving out the concerning summand. In case N = 1 (D = {di}), the recursive equations
above specify a counter: the stack contents then models the counter value.

The following theorem is the second (and last) cornerstone of the universal expressivity
result for ACP$(A, I, r).

THEOREM 6.2.1. Each stack over a finite data type D with actions from A can be ex­
pressed in ACP$ (A ext, I. r) with A ext a finite extension of A, even if one restricts to hand­
shaking and the actions in A are not subject to communication.

PROOF. Let a stack S(s) be given as described above. Without loss of generality, assume
D = { d 1, •.. , dN} for some N > 1 (if N = 1, then a counter does the job). Our approach is
to encode the contents of the stack, i.e., elements from D*, by natural numbers according
to the following GMel numbering '·' : D* -+ N:

This encoding is a bijection with inverse decode : N -+ D* (let * denote concatenation of
strings):

Is
<lef n-N

decode(n) = dN * decode(--w-)
d d d (n-(nmodN))

(n mod N) * eco e N

if n = 0,
if n =I= 0, n mod N = 0,

otherwise.

Process algebra with recursive operations 379

For example, if N = 3, then 'd3d1 d2' = 24 and decode(32) = d2d1 d_, E (d1, d1, d3}*.
Next, we define two counters to specify S(e) in ACP$(A"'1 , I, r):

with add-action a j, subtract-action b.i, zero-testing CJ, and stop-action d. i, all in A ext \ A.
We shall use the following abbreviations (for n E N):

C (0) ~r C- . .I .I

dcf _ s-
C (n +I)= (a····b·)C(n) . .I .I .I .I

We further define a regular control process X, with actions ai, bj, CJ, d.i E A exr \ A and
those of the stack. In combination with the Cj, the process X"' is used to define S(c). Note
that the coding discussed above does not occur explicitly in this recursive specification.

and for k = 1, ... , N:

Xk = (tr(d1)Push1) +s(dk)Popk,
J=I

Pushk = (Shift 1to2)a}(N Shift 2 to l)Xk,

Popk = b~ (~ Shift 1 to 2) Test,,

Shift 1to2 = (b1a2)*c1

NShift2tol = (b2a~)*q

1 . . (bN)* N Shift l to 2 = 1 a2 c1

(shift the contents of C1 to C2),

(shift the N-fold of C2 to C 1),

(shift the number of N-folds of C1 to C2),

Test,. = b2a 1Test1 + c2 X, (determine whether the stack is empty,

Test1 = h2a1 Test2+QX1 or which D-element is on top),

Test2 = b2a 1 Test3 + c:. X 2,

Let I for j =I, 2 be defined on (A"'1 \ A) 2 by a.i I Oj = h.i I bi= CJ I Cj =di I dj =in E

A"'' \ A, and let H = {a;, a.i, b.i , b j, CJ , c.i , dj, d.i I j = I, 2}. We show that

380 J.A. Bergstra et al.

behaves as S(&), the empty stack:

T{i 11) oilH(X, II C1(0) II C2(0))

= (tr(d_;)r{in} o ilH(a{ X_; II C1(0) II C2(0)))
;=l

+ s(empty)T(in) o ilH (XE II C1 (0) II C2 (0))

+r(stop)r{in) oilH(d1d2 II C1(0) II C2(0))

= (t r(d_;)ri+I T{i1l} a il11 (Xj II C1 (j) II C2(0)))
1=1

+ s(empty)ru11 1 o ilu (X, II C1 (0) II C:. (0))

+r(stop)rr

~ (t,'(dJh1;,,1oa"(xi11 c,< 'ai'l 11 C2(Dl))

+ s(empty)ru11 1 o ilu (X, II C 1 (0) II C2 (0)) + r (stop). (3)

We are done if T(ill} o ilH(Xj II C1 ('dirr') II C2(0)) behaves as S(d;a) for some a ED*.
We prove this by first omitting the T(in)-operation, and analyzing the behaviour of ilH (X i II
C1 ('d1a') II C:.(0)). This analysis is arranged in a graphical style in Figure l, where
P ___::...,. Q represents the statement P =a Q for some a E A, P ~ Q represents P =a Q,
and branching represents an application of +. So the uppermost expression in Figure l
with its arrows and resulting expressions represents the obviously derivable equation

il11(X; 11C1('dia')11 C2(0)) = (t.r(dklilu(Pushk 11 C1('dia'l II C:.(0)))

+s(dJ)il11(Pop1 II C1 ('d1a') II C2(0)).

By the axiom (B 1), identity (3) above, and the derivation displayed in Figure 1 it follows
that

satisfy the recursive equations for S(s) and S(d1rr), respectively (j = l, ... , Nanda E
D*). By (RSP) it follows that

S(s) = T(i11l o ilu(X, II C1 II C2).

By Theorem 6.1.1 and Lemma 6.1.2 it follows that once D is fixed, X, and hence the empty
stack S(s) can be expressed in ACP$ (A''x', I, r) with handshaking for some A""' 2 A. o

Process algebra with recursive operations

aH(Pushk II C1('d1a') II Cz(O)) aH(Popi II C1 ('d1a') II C2(0))

j (b1lb1)i

381

j Shift I to 2 ro~u,;canom
aH<a1N Shift 2 to IXk II C1(0l II C2('d1a'))

j (aila1lk

aH(iv Shift I to 2Test, II C1 (N · 'a') II C2(0))

j iv Shift I to 2 comm 's

aH(N Shift 2 to IXk II C1 (kl II C2('d1a'Jl aH (Testp II C1 (0) II C2('O" '))

N Shift 2 to l comm's ··-·. --·--·-·-·--·1-·-···---·--- ···-·-·-·--· i a = e or a = dk v I '-------- ----~:::3<h2lh2)<
c2lc2 _ ~a1la1))N-'v'

aH(XE II C1(0) II C2(0)) aH(TestN II C1(N · 'v') II C2(k))

j ((h2lb2Ha1 la1))k

aH (Testk II c, ('dkv') II Cz(O))

Bae ten, Bergstra, and Kl op [11] showed that Turing machines can be specified in process
algebra by means of two stacks and a regular control process. In view of Theorem 6.2.1,
this yields that ACP$(A, I, r) is universally expressive; see [241 for details.

6.3. Undecidability results

We now sketch the undecidability result mentioned above for ACP*$(A, I). The idea is that
in this signature one can 'implement' register machine computability in the following way.

(I) Registers (counters) have a straightforward definition in ACP*$(A, I), namely
(a(a$b) + c)*d (cf. Section 6.1).

(2) Starting from a universal programming language for two-register machines (cf. Min­
sky in [65]), one can define a process algebraic representation of each program in
BPA *(A) (using a third register for UO, and a fourth one as "program-line counter").

382 J.A. Bergstra et al.

(3) Defining encapsulation in an appropriate way. this yields for any computable func­
tion f: N ___,.Na process term P and a computable function g: N ~ N \ {O} such
that the equation

can be derived from the axioms for ACP*$(A, I) if and only if f (n) is defined, and
the left-hand side equals an infinite in-trace otherwise. Here in is the result of a
communication between the program (process term) P and the registers.

Now let Wei. We 2 be recursively inseparable sets, and let f: N ___,. N be the partial recursive
function defined by

(
0

f (11) = 1
undefined

ifn E We 1 ,

ifn E W,,1 ,

otherwise.

Choose Pas described in item (3) above, and let P;, P~ and P1 (n), P2 (n) be defined by

P(= P(s}d3)(s2_d2)(sf d1)(sJdo),

P~ = P(sj d3)(s]. d1)(sf d1)((so(s<~co))* do).

P;(n) = B11(P/ II Co(n) II C1 II C2 11 C3) U =I, 2).

Then we find

W f() 0 P () P () (= 1-.11 g<nl+4). n E e 1 =? n = =? 1 n = '2 n

n E We2 =?f(n)=1 =? P1(n) #- P2(n) (inglnl+S =j:. in~\lil+6).

As to the latter implication: assume otherwise, i.e., irl = i1i+ 1 for some k ;;:, 1. Then by
Lemma 2.2.2. ink tl ink+ 1, which clearly is a contradiction.

Thus, decidability of P1 (n) = P2(11) provides a recursive separation of We 1 and We2 ,

which is contradictory. All details and a more precise explanation can be found in [24].
A similar proof strategy can be applied for ACP*"(A, I) and ACP*~ (A,\), where counter­
like processes are used instead.

7. Special constants

This section provides some last comments on two particular constants. First we shortly
consider the silent step r in relation to fairness, dealing with infinite r-traces (cf. Defini­
tion 2.3.3 and Theorems 4.5.1-4.5.4). Finally, we briefly discuss the empty process in the
context of iteration.

Process algebra with recursive operations 383

7.1. Silent step and fairness

Due to the character of r, one would want to be able to abstract from infinite sequences of
r steps. Depending on the kind of process semantics adopted, different solutions have been
found. In the case of rooted branching bisimulation, with next to (B 1) the extra axiom

(B2) x(r(y + z) + y) =x(y + z)

a general solution is provided by Koomen 's fair abstraction rule [55,11]. For each n and
each set of equations, there is a version KFAR;; that is valid in rooted branching bisimula­
tion. For example, the axiom KFAR1{ reads as follows:

X=ix+y (iE/)

rrJ(x) = rr1 (y)

(so the infinite r sequence induced by ix is reduced to a single r step). By definition
of BKS we now have an immediate representation of the process in the premise of KFARt,
namely i*y. Henceforth we can represent KFARt by the law

rr1 (i*y) = rr1 (y) (i E /).

Given the distribution law

(BKS5) r1(x*y) = r1(x)*r1(y)

(see Table 8), we can even represent KFARt simply by

(FIR1{) r(r*x) = rx.

(taking x for r1 (y)), where FIR abbreviates Fair Iteration Rule.

EXAMPLE 7 .1 . 1. A particular consequence of F !Rf is the case where x as above is re­
placed by r x:

r*(rx)=rx, (4)

F/Rb
the proof of which is trivial: r*(rx) = r(r*(rx)) + rx = 1 rrx + r x = rx.

As a small example of the use of F!Rf consider a statistic experiment which models the
tossing of a coin until head comes up (cf. [15]). This process can be described by:

(throw tail)* throw head.

for actions throw, tail, and head. We assume that the probability of tossing heads
is larger than 0. Thus we exclude the infinite trace that alternately executes throw and

tail. Abstracting from just the two atomic actions in I~- {throw, tail}, F!Rf yields

r!((throw tail)*throwhead) = rhead.

384 J.A. Bergstra et al.

First, observe rt(throw tail)= r. Then, using (4), it easily follows that

r1((throw tail)*throwhead) = rhead.

This expresses that head eventually comes up, and thus excludes the infinite sequence of
r-steps present in r1 ((throw tai l)*throw head).

7.2. Empty process

Let the symbol c: denote the empty process, introduced as a unit for sequential composition
by Koymans and Vrancken in [56] (see also [15,74]). Obvious as c: may be (being a unit
for ·), its introduction is non trivial because at the same time it must be a unit for II as
well. In the design of BPA, PA, ACP and related axiom systems, it has proved useful to
study versions of the theory, both with and without E. Just for this reason the star operation
with its (original) defining equation as given by Kleene in [53] was introduced in process
algebra.

Taking y = E in x*y, one obtains x*E which satisfies

x*c=x(x*c:)+c:. (5)

The unary operation _*c is a plausible candidate for the unary version of Kleene's star
operation in process algebra. Moreover, taking x = 8 in (5) implies that 8* E = t: (by the
identities 8x = 8 and 8 + x = x), and hence that _ * c: cannot be used in a setting with­
out having E available as a separate process (once 8 is accepted as one). So with E. the
interdefinability of the unary and the binary star, noted in [30], is preserved.

Milner [62] formulated an axiomatisation for the unary Kleene star in BPA with dead­
lock and empty process, modulo strong bisimulation equivalence. It remains an open ques­
tion whether this axiomatisation is complete. Fokkink showed that Milner's axiomatisation
adapted to no-exit iteration (NEI, see Section 4.1) is complete modulo strong bisimulation
equivalence, in the presence of empty process.

A particular consequence of Milner's axiomatisation is (in our notation, using binary
Kleene star)

c:*x =x,

which seems a natural identity. Turning to the non-regular operations (see Section 6), the
identity c~ x = x seems as natural. The other two non-regular operations, i.e., the push­
down $ and the back and forth operation ~.have a more surprising effect when combined
with£. Using recursive specifications we find that ES a is a solution of the recursive equation

X=X 2 +a,

and c:'=+ a is a solution of

X=Xa+a.

Process algebra with recursive operations 385

Both these recursive specifications are easily associated with infinitely branching pro­
cesses. The (unguarded) specification X = X a + a occurs in [15] as an example speci­
fication that has two distinct solutions: I:;"= 1 a; and a'"+ I:;~ 1 a;. The transition rules for
recursive specifications (see Table 3) as well as those for :::::; yield the first solution. The
interplay of recursive operations with empty process is apparently nontrivial and deserves
further study.

Acknowledgements

We thank Faron Moller for providing useful comments.

References

[I I L. Aceto and W.J. Fokkink, An equarional a.xiomati::ationf(;r multi-exit iteration, Inform. and Comput. 137
(2) (1997), 121-158.

[21 L. Aceto, W.J. Fokkink, R.J. van Glabbeek and A. lng6lfsd6ttir, Axiomatizing prefix iteration with silent
steps, Inform. and Comput. 127 (l) (1996), 26-40.

[3 I L. Aceto, W.J. Fokkink and A. Ing61fsd6ttir, On a question of A. Salomaa: The equational theory of regular
expressions over a singleton alphabet is not finitely based, Theoret. Com put. Sci. 209 (1/2) (1998), 163-178.

[4) L. Aceto, W.J. Fokkink and A. lng61fsd6ttir, A menagerie of non-finitely based process semantics over
BPA *: From ready simulation to completed traces, Math. Struct. Com put. Sci. 8 (3) (1998), 193-230.

[5] L. Aceto, W.J. Fokkink and A. Ing6lfsd6ttir, A Cook's tour of equational axiomatizations flir prefix itera­
tion, Proceedings I st Conference on Foundations of Software Science and Computation Structures (FoS­
SaCS'98), Lisbon, Lecture Notes in Comput. Sci. 1378, M. Nivat, ed., Springer-Verlag (1998), 20-34.

[6] L. Aceto, W.J. Fokkink and C. Verhoef, Structural operational semantics, Handbook of Process Algebra,
J.A. Bergstra, A. Ponse and S.A. Smolka, eds, Elsevier, Amsterdam (2001), 197-292.

[71 L. Aceto and J.F. Groote, A complete equationul axiomatization j(Jr MPA with string iteration, Theoret.
Comput. Sci. 211 (1/2) (1999), 339-374.

J"8J L. Aceto and A. lng61fsd6ttir, An equationa/ axiomati~ation of observation congruence j(;r pr~fix iteration,
Proceedings 5th Conference on Algebraic Methodology and Software Technology (AMAST'96), Munich,
Lecture Notes in Comput. Sci. 110 l, M. Wirsing and M. Nivat, eds, Springer-Verlag (1996), 195-209.

[9] D.N. Arden, Delayed logic and.finite state machines, Theory of Computing Machine Design, University of
Michigan Press (1960), 1-35.

[10] F. Baader and T. Nipkow, Term Rewriting and All That, Cambridge University Press (1998).
[111 J.C.M. Baeten, J.A. Bergstra and J. W. Klop, On the consistency of Koomen 's fair abstraction rule, Theoret.

Comput. Sci. 51 (1/2) (1987), 129-176.
[12) J.C.M. Baeten, J.A. Bergstra and J.W. Klop, Decidability of bisimulation equivalence ji1r processes gener­

ating context:f"ree languages, J. ACM 40 (3) (1993), 653-682.
[13] J.C.M. Baeten and R.J. van Glabbeek, Another look at abstraction in process algebra, Proceedings 14th

Colloquium on Automata, Languages and Programming (ICALP'87), Karlsruhe, Lecture Notes in Comput.
Sci. 267, T. Ottmann, ed., Springer-Verlag (1987), 84-94.

[141 J.C.M. Baeten and C. Verhoef, A congruence theoremf(1r structured operational semantics with predicates,
Proceedings 4th Conference on Concurrency Theory (CONCUR'93), Hildesheim, Lecture Notes in Com­
put. Sci. 715, E. Best, ed., Springer-Verlag (1993), 477-492.

[151 J.C.M. Baeten and W.P. Weijland, Process Algebra, Cambridge Tracts in Theoretical Computer Science 18,
Cambridge University Press (1990).

[16] J.A. Bergstra, I. Bethke and A. Ponse, Process algebra with iterarion, Report P93 l 4, Programming Research
Group, University of Amsterdam (1993).

386 J.A. Bergstra et al.

[17] J.A. Bergstra, I. Bethke and A. Ponse, Process algebra with iteration and nesting, Comput. J. 37 (4) (1994),
243-258.

[18] J.A. Bergstra, J.A. Hillebrand and A. Ponse, Grid protocols based 011 synchronous communication, Sci.
Comput. Programming 29 (1/2) (1997), 199-233.

[19] J.A. Bergstra and J.W. Klop, Process algebra for synchronous communication, Inform. and Comput. 60
{1/3) (1984), 109-137.

[20] J.A. Bergstra and J.W. Klop, Algebra of communicating processes with abstraction, Theoret. Comput. Sci.
37 (I) (1985), 77-121.

[21] J.A. Bergstra and J.W. Klop, Verification of an alternating bit protocol by means of process algebra, Pro­
ceedings Spring School on Mathematical Methods of Specification and Synthesis of Software Systems 85,
Wendisch-Rietz, Lecture Notes in Comput. Sci. 215, W. Bibel and K.P. Jantke, eds, Springer-Verlag (1986),
9-23.

[22] J.A. Bergstra, J.W. Klop and J.V. Tucker, Algebraic tools for system construction, Proceedings 4th Work­
shop on Logics of Programs, Pittsburgh, Lecture Notes in Comput. Sci. 164, E. Clarke and D. Kozen, eds,
Springer-Verlag (1984), 34-44.

[23] J.A. Bergstra and A. Ponse. Two recursive generalizations of iteration in process algebra, Report P9808,
Programming Research Group, University of Amsterdam (1998). Extended version to appear in: Theoret.
Comput. Sci.

[24] J.A. Bergstra and A. Ponse, Register machine based processes, Programming Research Group, University
of Amsterdam, June 13 (1999).

[25] S.L. Bloom and Z. Esik, Equational axioms for regular sets, Math. Struct. Comput. Sci. 3 (I) (1993), l-24.
[26] S.L. Bloom, Z. Esik and D.A. Taubner, Iteration theories of synchroni::.ation trees, Inform. and Comput.

102 (I) (1993), 1-55.
[27] J. Boselie, Expressiveness results for process algebra with iteration, Master's Thesis, University of Ams-

terdam (1995).
[28] D.J.B. Bosscher, Granunars modulo bisimulation, Ph.D. Thesis, University of Amsterdam (1997).
[29] D. Caucal, Graphes canoniques de graphes algebriques, Theoret. Inform. Appl. 24 (4) (1990), 339-352.
[30] J.M. Copi, C.C. Elgot and J.B. Wright, Realization of events by logical nets, J. ACM 5 (1958). 181-196.
[31] J.H. Conway, Regular Algebra and Finite Machines, Chapman and Hall (1971).
[32] F. Corradini, R. De Nicola and A. Labella, Fully abstract models for nondeterministic regular expressions,

Proceedings 6th Conference on Concurrency Theory (CONCUR'95), Philadelphia, Lecture Notes in Com­
put. Sci. 962, I. Lee and S.A. Smolka, eds, Springer-Verlag (1995), 130-144.

[33] F. Corradini, R. De Nicola and A. Labella. Models of nondeterministic regular expressions, J. Comput.
System Sci. 59 (3) (1999), 412-449.

[34] F. Corradini, R. De Nicola and A. Labella, Afinite axiomatization ofnondeterministic regular expressions,
Theoret. Inform. Appl. 33 (4) (1999), 447-466.

[35] S. Crvenkovic, I. Dolinka and z. Esik, A note on equations for commutative regular languages, Inform.
Process. Lett. 70 (6) (1999), 265-267.

[36] W.J. Fokkink, A complete equational axiomatization for prefix iteration, Inform. Process. Lett. 52 (6)
(1994), 333-337.

[37] W.J. Fokkink, A complete axiomatizationfor prefix iteration in bram·hing bisimulation, Fundamenta lnfor­
maticae 26 (2) (1996). 103-113.

[38] W.J. Fokkink, On the completeness of the equations for the Kleene star in bisimulation, Proceedings 5th
Conference on Algebraic Methodology and Software Technology (AMAST'96), Munich, Lecture Notes in
Comput. Sci. I 101, M. Wirsing and M. Nivat, eds. Springer-Verlag (1996), 180-194.

[39] W.J. Fokkink, Axiomatizations for the perpetual loop in process algebra, Proceedings 24th Colloquium
on Automata, Languages and Programming (ICALP'97), Bologna, Lecture Notes in Comput. Sci. 1256,
P. Degano, R. Gorrieri and A. Marchetti-Spaccamela, eds. Springer-Verlag (1997). 571-581.

[40] W.J. Fokkink, Language preorder as a precongruence, Theoret. Comput. Sci. 243 (1/2) (2000), 391--408.
[41] W.J. Fokkink. Rooted branching bisimulation as a congruence, J. Comput. System Sci. 60 (I) (2000), 13-

37.
[42] W.J. Fokkink. lntroduction to Process Algebra. Springer-Verlag (2000).
[43] W.J. Fokkink and R.J. van Glabbeek, Ntyft!ntyxt rules reduce to ntree rules, Inform. and Comput. 126 (1)

(1996), 1-10.

Process algebra with recursive operations 387

[44] W.J. Fokkink and H. Zantema, Basic process algebra with iteration: Completeness of its equational axioms,
Comput. J. 37 (4) (1994). 259-267.

[45] R.J. van Glabbeek, The linear time - branching time spectrum, Proceedings I st Conference on Concurrency
Theory (CONCUR'90), Amsterdam, Lecture Notes in Comput. Sci. 458, J.C.M. Baeten andJ.W. Klop, eds,
Springer-Verlag (1990), 278-297. See also: Handbook of Process Algebra, J.A. Bergstra, A. Ponse and
S.A. Smolka, eds, Elsevier, Amsterdam (2001), 3-99.

[46] R.J. van Glabbeek, A complete axiomatization for branching bisimulation congruence of finite-state be­
haviours, Proceedings 18th Symposium on Mathematical Foundations of Computer Science (MFCS'93),
Gdansk, Lecture Notes in Comput. Sci. 71 l, A. Borzyszkowski and S. Sokolowski, eds, Springer-Verlag
(1993), 473--484.

[47] R.J. van Glabbeek, The linear time - branching time spectrum II: The semantics of sequential systems with
silent moves, Proceedings 4th Conference on Concurrency Theory (CONCUR'93), Hildesheim, Lecture
Notes in Comput. Sci. 715, E. Best, ed., Springer-Verlag (1993), 66--81.

[48] R.J. van Glabbeek, Axiomatizing flat iteration, Proceedings 8th Conference on Concurrency Theory (CON­
CUR '98), Warsaw, Lecture Notes in Comput. Sci. 1243, A. Mazurkiewicz and J. Winkowski, eds, Springer­
Verlag (1997), 228-242.

[49] R.J. van Glabbeek and W.P. Weijland, Branching time and abstraction in bisimulation semantics, 1. ACM
43 (3) (1996), 555--000.

[50] J.P. Groote and F.W. Vaandrager, Structured operational semantics and bisimulation as a congruence, In­
fonn. and Comput. 100 (2) (1992), 202-260.

[51] M. Hennessy, A term model for synchronous processes, Inform. and Control 51 (I) (1981), 58-75.
[52] S.C. Kleene, Representation of events in nerve nets and finite automata, Research Memorandum RM-704,

U.S. Air Force Project RAND, The RAND Cooperation (15 December 1951).
[53] S.C. Kleene, Representation of events in nerve nets and.finite automata, Automata Studies, C. Shannon and

J. McCarthy, eds, Princeton University Press (1956), 3--41.
[54] D.E. Knuth and P.B. Bendix, Simple word problems in universal algebras, Computational Problems in

Abstract Algebra, J. Leech, ed., Pergamon Press (1970), 263-297.
[55] C.J. Koomen, A structure theory fi>r communication network control, Ph.D. Thesis, Delft Technical Univer­

sity (1982).
[56] C.P.J. Koymans and J.L.M. Vrancken, Extending process algebra with the empty process e, Logic Group

Preprint Series Nr. I, CfF, Utrecht University (1985).
[57] D. Kozen, A completeness theorem for Kleene algebras and the algebra of regular events, Inform. and

Comput. 110 (2) (1994), 366-390.
[58] D. Krob, Complete systems of B-rational identities, Theoret. Comput. Sci. 89 (2) (1991), 207-343.
[59] W.S. McCulloch and W. Pitts, A logical calculus of ideas immanent in nervous activity, Bull. Math. Biophys.

5 (1943), 115-133.
[60] R. Milner, A Calculus of Communicating Systems, Lecture Notes in Comput. Sci. 92, Springer-Verlag

(1980).
[61] R. Milner, A modal characterisation of observable machine-behaviour, Proceedings 6th Colloquium on

Trees in Algebra and Programming (CAAP'81), Genoa, Lecture Notes in Comput. Sci. 112, E. Astesiano
and C. Bohm, eds, Springer-Verlag (1981), 25-34.

[62] R. Milner, A complete inference system for a class of regular behaviours, 1. Comput. System Sci. 28 (3)
(1984), 439--466.

[63] R. Milner, Communication and Concurrency, Prentice Hall (1989).
[64] R. Milner, A complete axiomatisationfor observational congruence offinite-state behaviours, Inform. and

Comput. 81 (2) (1989), 227-247.
[65] M.L. Minsky, Computation: Finite and Infinite Machines, Prentice Hall (1967).
[66] D.M.R. Park, Concurrency and automata on infinite sequences, Proceedings Sth GI (Gesellschaft filr Infor­

matik) Conference, Karlsruhe, Lecture Notes in Comput. Sci. 104, P. Deussen, ed., Springer-Verlag (1981).
167-183.

[67] D.A. Plaisted, Equational reasoning and term rewriting systems, Handbook of Logic in Artificial Intelli­
gence and Logic Programming, Vol. 1, D. Gabbay and J. Siekmann, eds, Oxford University Press (1993),

273-364.

388 I.A. Bergstra et al.

[68] G.D. Plotkin, A structural approach to operational semantics, Report DAIMI FN-19, Computer Science
Department, Aarhus University (1981).

[69] V.N. Redko, On defining relations for the algebra of regular events, Ukrain. Mat. Zh. 16 (1964), 120--126,
in Russian.

[70] A. Salomaa, Two complete axiom systems for the algebra of regular events, J. ACM 13 (I) (1966), 158-169.
[71] A. Salomaa, Theory of Automata, International Series of Monographs in Pure and Applied Mathematics

I 00, Pergamon Press (1969).
(72] P.M. Sewell, Nonaxiomatisability of equivalences over finite state processes, Ann. Pure Appl. Logic 90

(1/3) (1997), 163-191.
(73] D.R. Troeger, Step bisimulation is pomset equivalence on a parallel language without explicit internal

choice, Math. Struct. Comput. Sci. 3 (I) (1993), 25-62.
[74] J.L.M. Vrancken, The algebra of communicating processes with empty process, Theoret. Comput. Sci. 177

(2) (1997), 287-328.
(75] H. Zantema, Termination o.fterm rewriting by semantic labelling, Fundamenta lnforrnaticae 24 (1/2) (1995),

89-105.
[76] M.B. van der Zwaag, Some verifications in process algebra with iota, Proceedings 3rd Workshop on For­

mal Methods for Industrial Critical Systems (FMICS'98), Amsterdam, J.F. Groote, S.P. Luttik and J.J. van
Warne!, eds, Stichting Mathematisch Centrum (1998), 347-368.

Subject index

+,339
$,374

*· 335, 345
~.374

±t, 341
·, 339
8,339
aH, 339
w. 358
w-completeness, 347
11. 339

ll.' 339
1. 339
u. 374
r,339
r-convergence, 345
r -guarded, 344
r1.339
<.384

abstraction, 339
ACP, 338, 339
action, 338
- communication, 338
- exit, 365
algebra of communicating processes, 338, 339

back tmd forth operation, 374
binary Kleene star, 345
bisimulation equivalence
- (rooted) branching, 344

- (rooted) weak, 344
- strong, 341
bisimulation relation, 341
BKS, 345
BPA, 339

communication
- action, 338
-handshaking, 339
-merge, 339
completeness, 342, 346, 347, 358, 361
congruence relation, 342
counter, 377
cycle, 365

deadlock, 339

empty process, 384
encapsulation, 339
equivalence
- language, 343
- ready simulation, 343
- simulation, 343
- strong bisimulation, 34 l
-trace, 343
exit action, 365

fairness, 383
FIR, 383
flat iteration, 363

handshaking, 339
HNF-expansion, 347

iteration
- flat, 363
- multi-exit, 360
- no-exit, 358
-prefix, 361
- string, 363

KFAR, 383
Kleene star
- binary, 345
-unary, 384

labelled transition system, 341
language equivalence, 343
!en merge, 339
loop, see cycle
LTS,341

merge, 339
- communication merge, 339
- left merge, 339
multi-exit iteration, 360

nesting operation, 374
no-exit iteration, 358
non-deterministic choice, 339
normed process term, 347

PA,340
parallel composition, 339
prefix iteration, 361
process term, 339

Process algebra with recursive operations

- nonned, 347
push-down operation, 374

ready simulation equivalence, 343
ready simulation relation, 343
recursive specification, 344
- solution of a, 344
recursive specification principle, see RSP
regular process, 345
RSP, 345
-RSP'=', 374
- RSp$, 375
-RSP*, 358
- RSP'". 359
-RSP~. 374

sequential composition, 339
silent step, 339
simulation equivalence, 343
simulation relation, 343
state, 341
- initial, 341
- proper substate, 343
- substate, 343
- successor of a, 365
string iteration, 363
strong bisimulation equivalence, 341
substate, 343
sum. 339

trace, 343
trace equivalence, 343
transition, 34 l
- labelled transition system, 34 l
- rule, 341

389

