
CHAPTER 19

A Process Algebra for Interworkings

S. Mauw, M.A. Reniers
Faculty rlf'Mathematics and Computing Science, Eindhm·en Unil'asitv u{Tec/1110/og1; PO. Bo 1 . ..;

NL-5600 MB Eindhoven, The Netherlands

CW/, P.O. Box 94079, NL-1090 GB Amstadam, The Neiherland.,

Emails:.1jouke@win.tue.nl, M.A.Re11ier.1·(!!'111e.11/

Contents
I. Introduction

I. I. History and motivation

1.2. Jntcrworkings and similar languages .

1.3. Purpose and structure of this chapter .

2. lnterworkings .

2.1. Interworking diagrams

2.2. Sequencing

2.3. Alternatives

2.4. Merge

3. Semantics of Interworkings

4. Sequential and alternative composition

.'i. The interworking sequencing

6. The .s·-interworking merge .

7. Process algehra for lnterworkings

8. Conclusions

9. Bihliographical notes

References

Suhject index

HANDBOOK OF PROCESS ALGEBRA

Edited by Jan A. Bergstra, Alhan Ponse and Scott A. Smolka

~) 2001 Elsevier Science B.V. All rights reserved

1269

127!

1271

l 27-l

l2ih

1~77

I "1-"J
1,'\,_

J .1c l

1270 S. Mat11t'. M.A. Reniers

Abstract
The Interworking language (lW) is a graphical formalism for displaying the communica­

tion behaviour of system components. In this chapter, we develop a formal semantics for the
Interworking language. This semantics must support the analysis of (collections of) Inter­
working diagrams and allow to express the relation between diagrams. We will explain how
techniques from process algebra can be successfully applied to this problem. Thereto, we in­
troduce process operators for expressing the relationship between Interworking diagrams. We
define a number of process algebras with increasing complexity. For each of these we prove
completeness with respect to an operational semantics.

A process algebra for lnterworkings 1271

l. Introduction

1.1. History and motivation

The Interworking language (IW) is a graphical formalism for displaying the communica­

tion behaviour of system components. It was developed in order to support the inf01mal

diagrams used at Philips Kommunikations lndustrie (Nlimberg) which were used for re­

quirements specification and design. Before discussing the rationale behind the IW lan­

guage, we first show a simple Interworking diagram 1 in Figure I. The name of the Inter­

working is displayed in the upper left corner of the diagram. This Interworking describes

the interaction behaviour of three entities, which are called s, medium and r. Each entity is

represented by a vertical line, which, when read from top to bottom, describes the succes­

sive interactions in which this entity takes part. A message exchange is represented by an

anow. The diagram shows that the three entities exchange four messages. First, s sends a

req message to medium. Next, the same message is being sent from medium to r. Then, r

sends a message reply back to medium, which sends the same message to s.

This example shows the basic use of Interworkings. It describes one scenario of in­

teraction between communicating entities. In general, when using IW for requirements

specification, a collection of Interworkings is needed, containing a description of the most

interesting scenarios. Often there is one main scenario, complemented with a number of

scenarios describing exceptional behaviour. Using Interworkings in this way, the scenarios

express alternative behaviours.
There are, however, more reasons for having to deal with large collections of Interwork­

i ngs for the description of a distributed system. First, the specified scenario can be too long

to physically or logically fit in one diagram. Such a large scenario is then decomposed into

a number of sub scenarios which are "sequentially" linked to each other.

A second reason is that the horizontal size of the system, or more precisely the number of

distinct entities, may be too large to fit in a single diagram. This gives rise to a collection of

sub scenarios which denote the behaviour of different parts of the system. Each part then

describes the behaviour of just a number of (logically related) entities. Of course. there

must be a means to express that entities from distinct parts exchange messages with each

other. The scenarios of these parts are linked to each other in a parallel way.

E.rarnp/P.
.s mPdivm r

Hc!J

req
'l'PJ!ly

reply

Fig. l. An example Interworking diagram.

1 The Interworking diagrams in this chapter are drawn with the MSC Macro package which can be obtained at

http://www. win. tue. ntrsjouke/mscpac kage. html.

1272 S. Mauw, M.A. Reniers

Due to the above mentioned reasons, in practice a system description using Interwork­

ings often consists of a large collection of diagrams. Practical experience showed that it was

very hard to maintain such large collections by hand. First of all, manually drawing and up­

dating diagrams is an expensive activity. Secondly, the relation between the diagrams in a

collection is only implicit. Some diagrams describe alternatives, some describe successive

behaviour. and some describe parallel behaviour. The third problem, assuming the relation

between the diagrams to be known, is that if one diagram changes also several related di­

agrams must be updated. A consistent update of a large collection of Interworkings could

not be achieved manually. A final problem was that there existed different interpretations

of the meaning of even simple Interworkings.
These observations lead to the conclusion that when using Interworkings in the tradi­

tional and informal way it was not possible to take full advantage of the language. There­

fore, the Interworking language needs a complete and explicit definition.

Not only the development of an explicit language is motivated in this way, but also the

need for a formal semantics of lnterworkings. This semantics must support the analysis of

(collections of) Interworking diagrams and allow to express the relation between diagrams.

Moreover, since tool support is needed, the semantics must allow for easy derivation of

(prototype) tools.
In this chapter, we will explain how techniques from process algebra can be successfully

applied to this problem. Thereto, we introduce process operators for expressing the rela­

tionship between Interworking diagrams. As explained above, there are three possible rela­

tions between Interworkings: alternative composition, sequential composition, and parallel

composition. The most interesting is the interworking sequencing operator for composing

Interworkings sequentially. Later in this chapter it will be explained why the standard pro­

cess algebra operator for sequencing is not appropriate for Interworkings. The operator for

parallel composition of Interworkings, is derived from the standard interleaving operator

with synchronization. For the alternative composition operator there are different choices.

For a discussion on this choice we refer to Section 2.3.

1.2. /nterworkings and similar languages

The Interworking language is not a unique and isolated language. It is very natural and

intuitive to express the behaviour of a distributed system in such a graphical way. In fact.

informal IW-like drawings are encountered very often in system design.

Therefore, the Interworking language is a member of a large class of similar graphical

notations, most of which are only informally defined, such as Signal Sequence Charts, Use

Cases, Information Flow Diagrams, Message Flow and Arrow Diagrams. In object oriented

design, a similar notation, called Sequence Diagrams, is used. They play an important role

in the description of Use Cases in UML [31]. Interworkings are also related to Message

Sequence Charts (MSC), see [12], which are standardized by the International Telecom­

munication Union (ITU). The main difference is that Interworkings describe synchronous

communication, whereas Message Sequence Charts describe asynchronous communica­

tion. The semantics of MSC as described in (23,28] is also very similar to the semantics

ofIW.

A process al[?ebrafin· Interworkinf?s 1273

Traditionally, the main application area for IW and similar languages is the field of

telecommunication systems. This is mainly due to the distributed nature of these systems.

However, more and more applications outside the telecommunication world rnn be found,

e.g., the description of work ftows in business organizations [I].

The main reason why IW-like diagrams are so popular is the fact that they can be under­

stood easily. This is due to their intuitive and graphical appearance. The diagrams can be

used in different stages of the design of a software system. The main application is during

requirements engineering, where they are used to capture initial requirements about the

interactions in a system. Furthermore, they play a role in documentation, simulation and

testing.
The results of this chapter cannot completely be transferred to similar languages. This

is mainly because IW describes synchronous communication, whereas most similar lan­

guages consider asynchronous communication. Nevertheless, the approach taken in this

chapter is generic. It is at the basis of the semantics definition of Message Sequence Charts,

as standardized by the ITU in Annex B to Recommendation Z.120 [13].

1.3. Purpose and structure of this chapter

This chapter serves several purposes. First, it shows the process algebraic approach in

defining the semantics of a scenario language. This typically entails the use of a number of

operators which describe the ways in which scenarios or fragments of scenarios are com­

bined. The meaning of such a diagram is then described by a process algebraic expression,

which can be analyzed using standard techniques.

Secondly, this chapter shows the development of non-standard operators in process alge­

bra, needed for some domain specific application. These newly introduced operators will

probably have little application outside the realm of scenarios. On the other hand, the in­

terworking sequencing operator already received attention in a more general context, and

was named 'veak sequential composition (see [29]).
Thirdly, we show in detail which (proof) obligations occur when introducing new oper­

ators. We both give an operational and an algebraic definition, and prove their correspon­

dence.
This chapter is subdivided as follows.
First, we will introduce the Interworking language and the operators for combining Inter­

workings (Section 2). Next, we formally define the operators involved. We will not simply

give one process algebra containing all operators, but we will formalize the operators in

a modular way. This yields a collection of process algebras, for which we obtain some

additional proof obligations, such as conservativity. The first process algebra (defined in

Section 3) only contains the operator for sequential composition. This operator suffices to

give a fmmal semantics of Interworking diagrams. In Section 4 we define the theory of the

basic process algebra operators(+ and ·)which we enrich with partial deadlocks. Next, in

Section 5, these process algebras are combined. The following two sections deal with the

introduction of the interworking merge operator. In Section 6 we first define a parameter­

ized version of this operator. the £-interworking merge. The general interworking merge

operator is defined in Section 7, which yields the final process algebra for lnterworkings.

1274 S. Mauw, M.A. Reniei~1·

Every operator is both defined algebraically and by means of an operational semantics.
The relation between these descriptions is given in several soundness and completeness
theorems.

The treatment of Interworkings in the cun-ent chapter is mainly on a theoretic level. We
will not introduce graphical and linear syntax of the language. and we will not present
a mapping from Interworking diagrams to process algebra expressions (for a thorough
treatment see [24]). Our main goal is to define the theory needed to formally understand
Interworkings. Neither will we explain methodological aspects of the use of lnterworkings
or supporting tools. For a description of a prototype tool set based on these semantical
definitions. we refer to [26].

2. Interworkings

An Interworking specification consists of a collection of Interworking diagrams. The rela­
tion between these diagrams is defined by means of operators. An Interworking diagram
specifies (part of) a single scenario and the operators can be used to compose simple sce­
narios into more complex scenarios. We consider operators for sequential composition,
alternative composition and parallel composition of Interworkings.

In this section we will only give an informal explanation of syntax and semantics of
Interworkings. Simple examples show the relevant properties, which are formalized in the
sections to come.

We will not give a formal definition of the graphical syntax of Interworkings, since
for our purposes an informal and intuitive mapping from Interworkings to the semantical
domain suffices. There exists a textual representation of Interworkings too, but we will not
discuss this. Consult [241 for more information on this topic.

2.1. Interworking diagrams

An example of an Interworking diagram is shown in Figure 2. Such a diagram consists of
a number of vertical lines and horizontal arrows, surrounded by a frame. The name of the
Interworking diagram (Co-operation) is in the upper left comer of the frame. The vertical
lines denote the entities of which (pan of) the behaviour is being described. Above the
lines are the names of these entities. Here we have four entities, called a, b, c, and d.

The anows denote the exchange of messages between the entities. Interworkings de­
scribe synchronous communication, which means that an arrow represents one single
event. The order in which the communications take place is also expressed in the dia­
gram. On every entity axis, time runs from top to bottom and the events connected to an
entity axis are causally ordered in this way. However. there is no global time axis and the
only way to synchronize the behaviour of the entities is by means of a message exchange.
So, message k causally precedes message rn. And because m precedes o. we have that k
also precedes o. Messages k and I are not causally related; they may occur in any order. In
our semantical treatment we assume an interleaved model of operation. which means that
k and l cannot occur simultaneously.

A process algebra.fiJr Interworking~ 1275

Fig. 2. An example Interworking diagram.

J,ln.r:Pm.ent 1 Plru:PmPnt 2
(}, b (' d a b (' d

n~ ~H
Fig. 3. Two semantically equivalent lnterworkings.

P ar-t 1 Par-t !::! Sequf"ru:i11g
a b c a b c a b c

rn rn D9
0 '

.

.

Fig. 4. Sequential composition of two lnterworkings.

The fact that the time lines of all entities are independent, implies that the vertical place­

ment of two messages which are not causally related has no semantical meaning. There­

fore, the lnterworkings from Figure 3 have identical semantics.

A special case in our semantics is the empty Interworking. This is an Interworking which

describes no behaviour at all and contains no entities. In the next sections the empty Inter­

working is denoted by E.

2.2. Sequencing

Sequential composition is the easiest way to compose two lnterworkings. Intuitively, se­

quential composition can be considered as the concatenation of two lnterworkings, thereby

connecting the corresponding entity axes. Figure 4 shows the sequential composition of

two Interworkings. The circle denotes the sequencing operator.

1276 S. Mauw, M.A. Rcnier.1·

Fronr a tu b From c tu d Nosync
a. b c d 0 a b e d a b c d

H I I I I H H H
Fig. 5. No synchronization through sequential composition.

Left Hight Result
a b b a b c

n 0 r rn .

Fig. 6. Sequential composition with different entity sets.

One must take into account that there is no (implicit) synchronization between the enti­
ties at the point where the two Interworkings are concatenated. For this reason. the operator
for sequential composition of Interworkings is called the weak sequential composition op­
erator (or interworking sequencing). Although we will also introduce an operator for strong
sequential composition of Interworkings in our semantical treatment, this operator is not
part of the lnterworkings language. Figure 5 shows that the weak sequential composition
of two unrelated messages gives an Interworking where these two messages still are un­
ordered.

In the previous examples, the two composed Interworkings contained the same set of
entities. This is not a requirement for sequential composition. The Interworking resulting
from a sequential composition simply contains all entities from its constituents, as shown
in Figure 6.

Given the above interpretation of Interworking diagrams and sequential composition,

the following observation is apparent. Every Interworking diagram is equivalent to the se­
quential composition of all its events. Look, e.g., at Interworking Co-operation (Figure 2)
which is the sequential composition of five simple Interworking diagrams, each contain­
ing one arrow. The order in which these Interworkings are composed should of course
con-espond to the causal ordering of the original Interworking. So, if K, l, M, N, and 0
are Interworking diagrams containing the messages k, l, m, n, and o, respectively, then
l o K o M o N o 0 would be an example of such an expression. An alternative for this
expression is K o l o M o 0 o N.

2.3. Alternatives

In theoretical approaches to MSC-related languages different operators for alternative
composition are used. These are the delayed choice operator (=f, see [3]) and the non­
deterministic choice operator (+. see [6]). In the standardized semantics of MSC [281 the

A process algebrafi>r lntenvorking1·

altl altf2
a b c a b r

~ + ~
Fig. 7. Alternative composition of two Interworking diagrams.

M1:1:q<Cl
(). b ('

~ 11

MPrqr:2
d f'

M
Afrrqt:

(). b ('

~
Fig. 8. Merge of Interworking diagrams without shared entities.

1277

delayed choice operator is used. The essential difference between these two operators is

that non-deterministic choice determines the moment of choice between the alternatives

at the place where it occurs, whereas the delayed choice postpones the moment of choice

to the place where the alternatives start to differ. The latter leads to a trace semantics (if

non-deterministic choice is not present as well). As a consequence also all other operators

in which a choice is manifest (such as parallel composition) must be changed to adopt the

delayed interpretation of choices [28]. ln our opinion the use of the delayed choice is only

interesting if non-deterministic choice is present too. If the delayed choice is the only alter­

native composition operator of interest, then a better solution is to adopt a trace theoretical

approach towards the semantics. In the process algebra approach of this handbook it seems

more appropriate to study the non-deterministic choice operator.
Hence, the operator which expresses the fact that two Interworkings describe alterna­

tive scenarios is denoted by +. Figure 7 contains an example of the choice between two

alternative Interworking diagrams. This expression describes the non-deterministic choice

between the two given scenarios. Both scenarios start with message k, but the first contin­

ues with message l and the second with messages m and n.

Notice that the class of Interworking diagrams is not closed under application of the

+-operator. The behaviour defined in Figure 7 cannot be expressed without application of

the+.

2.4. Merge

Whereas the sequencing operator is used for vertical composition of lnterworkings, the

merge operator is used for horizontal composition.
In the case that the two operands have no entities in common, the merge of two Inter­

working diagrams is simply their juxtaposition, as illustrated in Figure 8.

1278 S. Mauw, M.A. Renie1:1·

IWJ IW-S' JWoll
a b c d c d f' a b r: d f

J,; Ji k jJ

m
11

m
q

rn

iJ
n n n

() r 0 r

Fig. 9. Merge oflnterworking diagrams with two shared entities.

In the case that the two operands do share some entities. the situation is a bit more
complicated. Suppose, for example, that the two Interworking diagrams have two entities
in common. as in Figure 9. Then the messages exchanged between the shared entities must
be identical for both operands. The resulting Interworking contains only one occuITence of
every shared entity. Also the messages exchanged between the shared entities. which must
occur in the same order in both operands, appear only once in the resulting Interworking.
In Figure 9 the two operands share the entities c and d with shared messages m and n.

In the case that the two operands do not describe identical behaviour with respect to
the shared entities, as in Figure 10, a deadlock occurs. The resulting Interworking contains
the parallel behaviour of the operands, up to the point where the behaviours on the shared
entities start to diverge. At this point the deadlock occurs. denoted by two horizontal bars.
Such a deadlock only covers entities which are blocked. This means that we do not have the
global deadlock as used elsewhere. but a partial deadlock. We refer to this partial deadlock
as deadlock. An entity shows no behaviour after it has entered a deadlock situation. All
behaviour which is causally dependent on a communication which causes the deadlock.
is also blocked. In Figure 10 this means that. since messages x and n do not match, a
deadlock occurs on entities c and d. Moreover, since message r is causally dependent upon
message n, the deadlock extends to entity e. In the following sections. such a deadlock
will be denoted by 8 E, where E is the set of deadlocked entities. If a deadlock occurs as
a consequence of merging two lnterworkings, we say that the two operands are mer?,e­
inconsistent.

This explanation of the merge operator generalizes easily to the case where the operands
have more than two entities in common. However, the case where they share only one entity
yields a different situation. It is clear that this shared entity should occur only once in the
resulting Interworking. but what happens with the events that this entity takes part in? This
situation occurs in Figure 11. There is no reason to introduce a causal ordering between
the messages I and m, and therefore the result cannot be a single Interworking diagram.
The result of the merge in Figure 11 contains two alternative Interworking diagrams. which
together desc1ibe all possible orderings of I and m.

Care has to be taken to correctly handle entities which are included in an Interworking
diagram but which do not take part in any communication. so-called empty entities. In the
case that such an entity occurs in the set of shared entities. it cannot be discarded. Figure 12

A process algebra fin· Interworking.1,

11 12
a b c d c d

k
e

p
d

Inrons1<:f111t

a b t'

" p

m
11

m
q

//)

t/
1: n

() '('

I I I
(/

Fig. lO, Merge of two inconsistent Interworking Jiagrarm,

Ml
(1. b c

~ II

Xl
(}, b c

l1i

M2
c d e

~

11

M8
a b c d e

fWJ I

11 IR
Fig.]] , Consistent merge.

X2
b c d

I ~

l\.14
11 b (' d ('

+ ~
.X.i

a b c d

I'·! n
Fig, 12. Inconsistent Interworking diagrams with empty entity,

1279

shows an example. Entity h occurs in both operands, but in the second operand there is no

behaviour associated to h. Because in the first operand a message l is sent to b. a deadlock

occurs.
The situation would be quite different if we would omit entity b from the second

operand. Then the two operands would be merge-consistent. This is shown in Figure 13.

1280 S. Mau11~ M.A. Renier.1·

X5

~11lli] +
(/, b c d

00
Fig. 13. Empty entity removed.

3. Semantics of Interworkings

In this section we will present a simple process algebra that can be used for reasoning
about the equality of Interworking diagrams. Based on the textual syntax of Interworking
diagrams a process term is generated as follows. With every message in the Interworking
diagram an atomic action is associated. A deadlock that covers the entities from a set E
is denoted by 8 r:. The atomic actions are combined by means of interworking sequencing.
The process algebra is called IWD(o).

We assume the existence of sets EID and MID of names of entities and messages, respec­
tively. Actually, these can be considered as parameters of the process algebra. A message
is characterized by the name of the sender, the name of the receiver, and the message name.
These messages form the set of atomic actions.

DEFINITION l (Atomic actions). The set A of atomic actions is given by

A= {c(i, j, m) Ii, j E EID, m E MID).

DEFINITION 2 (Signature of IWD(o)). The signature E1wD of the process algebra IWD(o)
consists of the atomic actions a E A, the deadlock constants 81,· (E :;; EID), the empty
process 8, and the binary operation interworking sequencing Oiw.

The set of all (open) terms over the signature E1wD is denoted as O(E1wD). The set
of all closed terms over the signature E1wD is denoted as C(E1wo). We will use similar
notations for other signatures.

We provide the process algebra with an operational semantics by associating a term
deduction system to it. We will first summarize the terminology related to term deduction
systems. For a formal definition of term deduction systems and related notions we refer
to [5]. A term deduction system is a structure (E, D) where Eis a signature and D a set
of deduction rules. The set of deduction rules is parameterized by a set of relation symbols
and a set of predicate symbols. If P is such a predicate symbol, R such a relation symbol,
and s, t E 0(E), then the expressions P s and s Rt are called formulas. A deduction rule is
of the form f{- where H is a set of formulas, called hypotheses, and C is a formula, called
the conclusion.

In the term deduction systems used in this chapter we use relations _ ~ _ :;; 0(E) x
A x O(E) and the predicate_ .j,£ O(E). The formula x ~ x' expresses that the pro-

A process algebra for lntetworkings 1281

cess x can perform an action a and thereby evolves into the process x'. The formula x +
expresses that process x has an option to terminate immediately and successfully.

In the remainder of this chapter we use the following shorthands: x --4 represents the
d. h ll It' . I ii I h · · ll / ·

pre 1cate t at x ---+ x or some x , x --++ x represents t e proposn1on that x ---+ x rs not

derivable from the deduction system, x _:,L,. represents -i(x --4), and x --++ represents

x _;L,. for all a EA. Similarly we use x J(to represent -.(x ,J,).

A proof of a formula</> is a well-founded upwardly branching tree of which the nodes

are labeled by formulas such that the root is labeled by the formula </> and if x is the label

of a node and (Xi I i E I) is the set of labels belonging to the nodes directly above it, then

{x; I i E I)

x
is an instantiation of a deduction rule.

The term deduction system for the process algebra IWD(o) consists of the signature

E1wn and the deduction rules given in Table l.
Before we can give the operational description of the interworking sequencing operator

we first define the active entities associated with a process term representing an Interwork­

ing diagram. The active entities of an Interworking diagram are those entities which are

involved in a communication or in a deadlock.

DEFINITION 3 (Active entities). For i, j E EID, m E MID, E <::;EID, and x. y E C(El\VD)

we define the mapping AE: C(Em1n) ~ f?(EID) inductively as follows:

AE(c(i, j, m)) = {i. j},

AE(t:) = 0.

AE(81J = E.

AE(x oiw y) = AE(x) UAE(y).

The operational semantics of the process algebra IWD(o) is given by the deduction rules

in Table I and the equations defining the active entities in Definition 3. These equations

can easily be written as deduction rules. The empty process does not execute any actions,

but it terminates successfully and immediately. The fact that it does not execute any action

is visible by the impossibility of deriving that it can execute an action. The process a can

execute the action a and in doing so evolves into the empty process E. The process 8 E

cannot execute any actions nor can it terminate successfully. The interworking sequencing

of two processes terminates if and only if both processes can terminate. The process x Oiw y

executes an action a if x can execute action a or if y can execute a and this action is not

related to an active entity of x (AE(a) n AE(x) = 0). This expresses the intuition that the

first operand may always perform its actions, while the second operand may only perform

actions which are not blocked because they are causally dependent on actions from the first

operand.
The Interworking from Figure 14 can semantically be represented by the process term

c(p, q, m) Oiw (c(r, s, o) Oiw c(q, r, n)).

1282 S. Mauw. M.A. Reniers

Table I
Deduction rules for interworking sequencing (a EA)

(/ x-+ .\'

X Oi\\ y __!!__,,. X 1 Oi\\ }'

(/
a --7 B

xi .d
X Ojw .\' i

AE(a) nAE(x) = 0

A
p q r s

rw4

(/ I y ____,. y

Fig. 14. Example of an Interworking diagram.

Then the following is a derivation of the fact that first the communication of message o can
take place:

AE(c(r. s. o)) nAE(c(p, q, m)) = 0
c(r,s.o) ~ E

() (c(r.s.o) ()
c r, s, o Oiw c q, r, 11)-----+ E Oiw c q, r. n

c(p, q, m) Oiw (c(r, s, o) Oiw c(q, r, n)) ~ c(p, q, m) Oiw (E Oiw c(q, r, n))

Two processes x and y are considered equivalent if they can mimic each others be­
haviour in terms of the predicates and relations that are used in the term deduction system.
In this case these are the execution of actions, the termination of a process, and the active
entities of a process. As a consequence of introducing partial deadlock constants, we must
be able to distinguish deadlocks over different sets of entities. This is the reason that we
require that two processes are equivalent only if they have the same active entities. This
type of equivalence is usually called strong bisimilarity, but we call it IWD-bisimilarity.

DEFINITION 4 (IWD-bisimilarity). Let E be a signature. A symmetric relation R c
C (.L') x C (E) is called an !WD-bisimulation iff for all p, q such that p Rq we have

(I) AE(p) =AE(q);

(2) if p .j,, then q .j,;
(3) if p ~ p' for some a E A and p', then there exists a q' such that q ~ q' and

p'Rq'.

Two processes x and y are called !WD-bisimilar, notation x ++iwd y, iff there exists an
IWD-bisimulation R such that x Ry. The notation R : x ++iwd y expresses that R is an
IWD-bisimulation that relates x and y.

A process ulgebraj(w lnteni•orkinf?s 1283

THEOREM I (Equivalence). !WD-hisimilarity is an equivalence relation.

PROOF. We must prove that IWD-bisimilarity is reflexive, symmetric, and transitive.

(l) ++iwJ is reflexive. Let R = {(p, p) Ip E C(L'1wn)}. Clearly, R is an IWD­

bisimulation.

(2) ++iwd is symmetric. Suppose that p ++iwJ q. This means that there exists an IWD­

bisimulation R such that p R q. Since any fWD-bisimulation is symmetrical we also

have q Rp. Hence q .:±.iwd P-

(3) ++iwd is transitive. Suppose p ++iwd q and q ++iwd r. Thus there exist IWD­

bisimulations R1 and R2 such that pR1q and q R2r. Let R = (R1 o R2)s. For

a relation p on X, the notation ps denotes the symmetric closure of p. It is not

hard to show that R is an IWD-bisimulation and pRr. Hence p ++iwd r. D

THEOREM 2 (Congruence). IWD-hisimilarity is a congruencefor intenvorking sequenc­

ing.

PROOF. The term deduction system for IWD(o) is in path format. From [4], we then have

that IWD-bisimilarity is a congruence for interworking sequencing. The path format is a

syntactical restriction on the form of the deduction rules and can be easily checked. O

In Table 2 we present the axioms of the process algebra IWD(o).

The first three axioms express straightforward properties. The axioms oiw I and Oiw3

describe the propagation of partial deadlocks through the Interworking diagram. The first

of these is illustrated in Figure 15 for E = {p, q} and a= c(q, r, m).

For deriving equalities between process terms we can use all instantiations of the axioms

and the usual laws of equational logic. These are reflexivity, symmetry, transitivity, and

Leibniz's rule.

As a simple example, we present the derivation that the empty process is a right unit for

interworking sequencing. The fact that it is a left unit is put forward as an axiom.

LEMMA 1 (Properties). For x E O(L'twD) we have x Oiw c = x.

PROOF. As AE(t:) = 0, we have AE(x) nAE(c) = 0. Then, using the axioms Comm. oiw

and Idem. Oiw, we have x Oiw t: = E Oiw x = x. D

Thus far we have presented an operational semantics and a process algebra on the sig­

nature EiwD- Ideally, there is a strong connection between these. In this case we will first

show that every pair of derivably equal closed IWD(o)-terms is IWD-bisimilar. This rela­

tion between an equational theory and its model is usually referred to as soundness of the

equational theory with respect to the operational semantics. It can also be stated from the

point of view of the operational semantics: the set of closed IWD(o)-terms modulo IWD­

bisimilarity is a model of the equational theory. Later we will also present a relation in the

other direction: every pair of IWD-bisimilar closed /WD(o)-terms is also derivably equal.

This result is referred to as completeness.

1284 S. Mauw, M.A. Reniers

Table'.!
Axioms of IWD(o) (a EA. E, FE EID)

Idem. oiw
Comm. oiw
Ass. oiw
Ojwl

Ojw3

i:: Ojw x =x
x Ojw y = y Ojw x
(X Ojw y) Ojw: = x Ojw (y Ojw :)

St; 0 iw a =SEuAE(aJ

SE oiw SF= S1::uF

I A: r I 0

if AE(x) nAE(y) = 0

if AE(a) n E ;f. 0

Fig. 15. Propagation of partial deadlocks.

THEOREM 3 (Soundness). /WD(o) is a sound axiomatization of IWD-bisimilarity on
closed IWD(o)-terms.

PROOF. Due to the congruence of IWD-bisimilarity with respect to all operators from
the signature of IWD(o), it suffices to prove soundness of all closed instantiations of the
axioms in isolation. We give an IWD-bisimulation for each of the axioms. These are the
following
• for axiom Idem. oiw: R = {(e Oiw p, p) Ip E C(E1wo)} 8 ;

• for axiom Comm. Ojw: R = {(p Ojwq. q Ojw p) Ip, q E C(E1wD), AE(p) nAE(q) = 0}·\';
• for axiom Ass. Oiw: R = {(p Oiw (q Oiw r), (p Oiw q) Oiw r) Ip, q, r E C(E1wD)}8 ;

• for axiom Ojwl: R = {(0£ Oiwa, 0£UAE(a)) I AE(a) n E =I 0}5 ;

• For axiom oiw3: R = {(oE oiw op, OEuF) I E, F £ EJD}5. D

The proof of completeness consists of a number of steps. First we define the notion of
basic term and prove that every closed term is derivably equal to some basic term. The
introduction of basic terms makes it easier to pe1form inductive reasoning on the structure
of a closed term.

DEFINITION 5 (Basic terms). The set of basic terms is the smallest set such that
(I) f is a basic term;
(2) for E £EID, OE is a basic term;
(3) for a E A and x a basic term, a Diw x is a basic term.

The set of all basic terms over the signature E1wo is denoted B(E1wn).

THEOREM 4 (Elimination). For every closed term there is a basic term which is derivably
equal.

A process algebra.fur Intenvorkinr;s

PROOF. By induction on the structure of closed term x.
(1) x = E:. This is a basic term.

(2) x = 81: for some Es:; EID. This is a basic term.

1285

(3) x =a for some a EA. Then, using Lemma l, a= a oiw E: which is a basic term.

(4) x = x1 Oiw x2 for some x1, x2 E C(E1wn). By induction we have the existence of

basic terms b1 and h such that x1 =bi and x2 = b2. By induction on the structure

of basic term b 1 •

(a) b1 = E:. Then x = x oiw y = h1oiwh=8 oiw b2 = b2 which is a basic term.

(b) b1 =DE for some Es:; EID. By induction on the structure of basic term b2.

(i) h2 =F. Then x = x1 Oiw x2 = 81o· Oiw E: = o E, which is a basic term.

(ii) b2 = 8F for some F s:; EID. Thenx = x1 Oiw x2 = b1 oiw h =OE Oiw OF=

81,u r. which is a basic term.

(iii) h2 = a2 oi" b~ for some a2 EA and h; E B(E1wn). By induction we have

the existence ~fa basic term c such that oi: Oiw h~ =c. Also by induction

we have the existence of a basic term c' such th~t 81:uAEio, J oiw b~ = c'.

If AE(a2) n E # 0, then x = X\ Ojw x2 = b1 Ojw b2 = 8 E Ojw-(a2 Oj\\-b~) =
(ot,· Ojw a2) Ojw h~ = DEuAF(m) Ojwb~ = c', which is a basic term. IfAECct) n
E = 0, thenx =-X\ OiwX2 =·b1 Oiwh2 = OfOiw(a2oiwh~) = (8l:·Oiwa2)oi.,,,

h; = (a2 Oiw 81J Oiw h; = a2 oiw (8 E Oiw b;) = a2 Oiw-C which is a basic

term.
(c) b1 = a1 oiw h; for some a1 EA and b; E B(Eiwn). By induction we have

the existence of a basic term c such that b; oiw b2 =c. Then x = x1 oiw x2 =

h1 Oiw h2 = {clJ Oiw b;) Oiw b2 = a1 Oiw (b; Oiw b2) =a 1 Oiw c, which is a basic

~- D

The next step towards the proof of completeness is the following lemma. It provides a

link between axiomatic reasoning and reasoning in the (operational) model. The proof of

this lemma requires the notion of norm of a closed term. It counts the number of actions

and sequencing operators occurring in the term.

DEFINITION 6 (Norm). For Es:; EID, a EA, and x. y E C(E1Wn) we define the mapping

1-1: C(E1wn) ~ N inductively as follows:

l.sl = 0,

181-.I = o.
lal I,

Ix 0 iw YI lxl + IYI + l.

LEMMA 2. For all x, x' E C(E1wn) and a EA we have

(l) ifx __!!__,. x', then lx'I < lxl;
(2) if x +,then x = E:;

(3) if x _!.'_,, x', then x =a oiw x';

(4) ifx ¥. x ~.then x = 8A1:·(x)·

1286 S. Mauw, M.A. Reniers

PROOF.

(1) By induction on the structure of closed term x. Suppose x ~ x'.
(a) x =E. This case cannot occur.
(b) x = 8E for some E ~EID. This case cannot occur.
(c) x = b for some b EA. Then necessarily b =a and x' =E. Observe that

lx'I =lei= 0 < 1 =!bi= Ix!.

(d) x = x1 oiw x2 for some x1, x2 E C(E1wD). We can distinguish two cases for
ll I

XJ OjwX2 ~x.

(i) x1 ~ x; for some x; E C(EiwD) such that x' = x; Oiw x2. By induction
we have that Ix; I < Ix 1 l- Thus we obtain

(ii) AE(a) nAE(xi) = 0 and x2 ~ x; for some x; E C(E1wD) such that x' =
x1 oiw x~. By induction we have that tx;I < lx2i. Thus we obtain

(2) By induction on the structure of closed term x. Suppose x .i.
(a) x = E. Trivial.
(b) x = 8 E for some E ~ EID. This case cannot occur.
(c) x = a for some a E A. This case cannot occur.
(d) x = x1 Oiw x2 for some x1, x2 E C(E1wv). As x i, we have x1 t and x1 ,!,. By

induction we then have x1 = E and x2 = s. Then x = x1 Oiw x2 = E Oiw E = s.
(3) By induction on the structure of closed term x. Suppose x ~ x'.

(a) x = s. This case cannot occur.
(b) x = 8£ for some E ~EID. This case cannot occur.
(c) x = b for some b EA. Then necessarily b =a and x' = s. Then,

x = b =a =a Oiw s = a Oiw x'.

(d) x = x1 oiw x2 for some x1, x2 E C(E1wD). For x1 oiw x2 ~ x' two cases can
be distinguished:

(i) x1 ~ x; for some x; E C(E1wo) such that x' ::x; Oiw x2. By induction
we then have x 1 =a Oiw x;. Then,

x = x1 Oiw x2 =(a Oiw x;) Oiw x1 =a Oiw (x; Oiw x2) =a Oiw x'.

(ii) x2 ~ x; and AE(a) n AE(x1) = 0 for some x; E C(EtwD) such that
x' = x1 oi:, x;. By induction we have x2 =a Oiw x;. Then,

x = x1 OiwX2 =xi Oiw (a Oiw x~} = (x1 Oiw a) OiwX;

= (a Oiw x1) Oiw x; =a Oiw (x1 Oiw x;) =a Oiw x'.

A process algebra for lnterwurkings 1287

(4) By induction on Ix I and case analysis on the structure of x. Suppose x ,V and x -+-?-.

(a) x = t:. This case cannot occur.

(b) x =DE for some E ~EID. Trivial as AE(x) = AE(DE) = E and x =DE=

DAl:(x)·

(c) x = b for some b E A. This case cannot occur as b __!!..,. contradicts the assump­

tion that x --++ .

(d) x = x1 Oiw x2 for some x1, x2 E C(L'1wn). If x1..), then we find x1 = t:. As x ,V,

we also find x2 ¥- As x 1 oiw x2 --++, we find x 1 --+-+-, and x2 -:L+ v AE(a) n
AE(xi)-=/= 0 for all a EA. As x1 = t:, we find AE(a) n A£(x 1) = AE(a) n

AE(t:) = t:. Therefore, we must have x2 _;L+. By induction (note that lx2 \ < Ix I)

we thus have x2 = DAE11 21. Then

If x 1 ,Ii', then we have by induction x 1 = DAEtri 1 as we also have x 1 _;i.+. First,

suppose that x2 ..), . Then x2 = E: and we obtain x = x 1 Oiw .x2 = DAE(xi l Oiw t: =
DAl:(xi J = DAf:lq JUAl:'(x2 i = 8AE11 1• Second, suppose x2 ,V. Again we can distin­

guish two cases:

(i) x2 -:L+ for all a E A. As lx2I < \x I. we can apply the induction hypothesis

and obtain x2 = 0Af:lr 2)· Thus,

.. (/ 'f. A Th h I A (/
(11) x2---7x2 orsomeaE . enwe avex2=aoiwX2. sx1oiwX2-+-T,

we must have AE(a) n AE(x1)-=/= 0. Then,

x = XJ Ojw x2 = DAE(r1 I Ojw (a Ojw x;) = (OA/'.'(r1) Ojw a) Ojw x;

= DAJ-Xr 1 iUA/:'iol Oiw X~.

Note that Ix; I < lx2 I. Observe that

Hence we can apply the induction hypothesis to obtain

DAEl11 ILIA/:(11) 0 iw x; = DAEl.\'J)U;\fla)LIAE1x;J = DA/'.'(x1)LIAHr2)

= DAE(x)·
D

THEOREM 5 (Completeness). /WD(o) is a complete axiomatization of IWD-bisimilarity

on closed IWD(o)-terms.

PROOF. Suppose that x *+iwd y. Then we must prove that x = y. By the elimination the­

orem we have the existence of a basic term .x' such that x = x'. As the axioms are sound,

1288 S. Mauw. M.A. Reniers

we also have x +->-iwd x'. Hence it suffices to prove x' = y. We do this by induction on the
structure of basic term x'.

(1) x' = s. Then x' {.,.Since x' +->-iwd y, we also have y {.,.By Lemma 2.2 we then have
v = s. Hence x' = E = v.

(2) :J.: 1 =DE for some Es; EID. Then x' ¥and x' __;L,.. for all a EA. As x' +->-;wd y, also
y ¥and y __;L,.._ We also haveAE(y) =AE(x') =AE(8E) =E. By Lemma 2.2 we
have y = O£. Sox'= O£ = y.

(3) x' =a o;w x" for some a E A and x" E 6(E1wo). Then x' ~ E o;w x". Since
' 1 h (/ 'f I h h II I Th . x Biwd y we a so ave y ~ y or some y sue t at£o;wx Biwd y. en, usmg

transitivity of IWD-bisimilarity and the soundness of Idem. oiw' also x" +->-;wJ y'.
By induction we then have x" = y'. By Lemma 2.2 we have y =a o;w y'. Then
x.1 =a Oiw x" =a Oiv,.' y' = y. D

4. Sequential and alternative composition

In the previous section we have defined a sound and complete axiomatization of Interwork­
ing diagrams. For this purpose we needed to introduce the interworking sequencing oper­
ator only. If we want to extend this theory with other operators, we first have to introduce
the Basic Process Algebra operators + and ·. This section is devoted to the development
of the process algebra BPA(o E) without interworking sequencing. In the next section, the
interworking sequencing is added to this algebra.

The + is called alternative composition and · is called sequential composition. The
process x + y can execute either process x or process y, but not both. The process x · y
starts executing process x, and upon termination thereof starts the execution of process y.
Operationally these operators are described by the deduction rules given in Table 3. ln this
table we assume that a E A and E s; EID. The theory presented in this section is very
similar to standard Basic Process Algebra with deadlock and empty process BPA,1, (see,
e.g., f 51).

DEFINITION 7 (Active entities). For i, j E EID, m E MID, Es; EID, x, y E C(E111~1 1 <1 1 ,),
and 8 E { +. ·},we define the mapping AE: C (EBPAUii; J) -+ W'(EID) inductively as follows:

AE (c (i, j, m)) = {i, j),

AE(s) = 0,

AE(oE) = E,

AE(x 8 y) = AE(x) UAE(y).

The alternative composition of two terms can terminate if either one of these terms
can terminate. It can perform every action that its operands can perform, but by doing so
a choice is made. A sequential composition can terminate if both operands can terminate.
It can perform all actions from its first operand and if the first operand can terminate, it can
perform the actions from the second operand.

Again, we first need to prove that IWD-bisimilarity is a congruence for all operators in
the process algebra.

A process algebra fur lnterwurkings

Table 3

Deduction rules for alternative and sequential composition (a E A)

x~x'

x+y~x'

Table 4

x t
x+yt

{/ I y __,. y

x+y~y'

x~x'

X·Y~X1 ·)'

Axioms of alternative and sequential composition (E s; EID)

Al

A2

A3
A4

AS
A6

A7
AS

x+y=v+x

(x + y) + z = x + (y + :)
x+x=x

(x + y) · z = x · z + y · z
(x·v)·;:=x·(y·z)

x+8L=X

8r · x = 8ru.1Lcn
i"X=X

A9 X·E'=X

if Es; AE(x)

U I
_v ---:!' }'

x·y~y'

1289

THEOREM 6 (Congruence). IWD-bisimilarity is a congruence.for alternative composition

and sequential composition.

PROOF. The term deduction system for BPAU'JJ,J is in path format. From [4], we then have

that IWD-bisimilarity is a congruence for all operators. D

These operators are axiornatized by the axioms from Table 4. In these axioms the vari­

ables x, y and .:: denote arbitrary process terms. In order to reduce the number of paren­

theses in processes we have the following priorities on operators: unary operators bind

stronger that binary operators; · binds stronger than all other binary operators and + binds

weaker than all other binary operators.
Axioms A l-A5 express straightforward properties, such as commutativity, associativity,

and idempotency of alternative composition, distributivity of alternative composition over

sequential composition, and associativity of sequential composition. Axioms A6 and A 7

characterize the deadlock constant. A6 states that if an entity has the choice between per­

forming an action and deadlocking, it will never deadlock. Axiom A 7 expresses that after

a deadlock no more actions can occur. The scope of the deadlock is thereby extended to in­

clude all entities on which blocked actions occur. Axioms AS and A9 express the standard

behaviour of the empty process.
The proof of soundness is straightforward.

THEOREM 7 (Soundness). BPA(81:) is a sound axiomatization of JWD-bisimilarity on

closed BPA (8 f:')-terms.

1290 S. Mauw, M.A. Reniers

PROOF. In this and other soundness proofs we use l to denote the diagonal relation.
If "s = t if b" represents either one of A l-A4, A6-A8, then the relation R = { (s, t),
(t, s) I b l U I is an IWD-bisimulation for that axiom. For the axioms AS and A 9 the
IWD-bisimulations are given by R = (((p · y) · z, p · (y ·.::))Ip E C(Es1'At8i ,)ls U land
R = { (p. c, p) I p E C(Esf'.11,\; I n5. respectively. . D

The proof of completeness consists of a number of steps. First we define basic terms
and prove the elimination property. Next, we formulate a lemma which relates semantical
properties to equational properties, and, finally, we prove completeness.

DEFINITION 8 (Basic terms). The set of basic terms is the smallest set that satisfies:
(I) c is a basic term;
(2) for Es; EID, 01:· is a basic term;
(3) for a E A and x a basic term, a · x is a basic term;
(4) if x and y are basic terms, then x + y is a basic term.

The set of all basic terms of the process algebra BPA (o E) is denoted by B (J;11pA 1,1 1. 1).

The following lemma expresses that we can always combine multiple deadlock alterna­
tives into one deadlock alternative.

LEMMA 3. For E, F S"; EID we have OE+ OF= Of:.'UF·

PROOF. Consider the following derivation:

0 E + 0 F = (OE + 0 F) + O EU F = O EU F + (0 E + 0 F) = (0 EU F + 0 E) + 0 F

= DEUF +Op= SEUF· D

As alternative composition is idempotent, commutative and associative, and 80 is a zero
element for it, we can define a generalized alternative composition operator. For finite index
set /, the notation L; El x; represents the alternative composition of the process terms x;.
If I= 0, then LiE/ x; = 80. If I= {i1, ... , i 11 } forn;?: I, then

Lx; = x; 1 +x;2 + · · · +x;,,.
iE/

Then we can easily establish that every basic term is of the form

iE/ jEJ kEK

for some finite index sets I, J, K, a; E A, Ej s; ElD and basic terms x; of a similar
form. For convenience in proofs to follow we combine the deadlock alternatives into one
alternative by using Lemma 3:

iE/ kf'K

A process algebra fiJr lnte1working1' 1291

where E = U iEJ E_;. The summand LkEK c is only used to indicate presence (K =f. VJ) or

absence (K =VJ) of a termination option.

THEOREM 8 (Elimination). For every closed term there is a derivably equal basic term.

PROOF. We prove this theorem by induction on the structure of closed te1m x.

(l) x = c;. Trivial as 8 is a basic term.

(2) x = 01, for some Es; EID. Trivial as OE is a basic term.

(3) x =a for some a EA. Then x =a= a· c, which is a basic term.

(4) x = x 1 • x2 for some x 1• x2 E C (LBl'AinF>). By induction we have the existence of

basic terms h1 and b2 such that x 1 = b1 and x2 = b2. By induction on the structure

of basic term b1 we will prove that there exists a basic term c such that b1 · h2 =c.

(a) b1=c.Thenb1·b2=E·b2=b2.

(b) h1 = ot_ for some Es; EID. Then b1 · b2 =OE· In= O/:'UAl:<h,l·

(c) bi =a· b1
1 for some a EA and b; E B(E8 p;1 1,11->l· By induc-tion we have the

existence of basic term c' such that &; · b2 = c;. Then b 1 • b2 = (a · b;) · b2 =
a· (b; · b2) =a· c'1.

(d) b1 = h11 + b'(for some h;, b'1' E B(EBmint.J)· By induction we have the exis­

tence of basic terms c' and c" such that b; · b2 = c' and b;' · b2 = c2. Then

h1 · b2 = (b; + b;') · b2 = h; · h + h;' · b2 = c' + c".
Observe that in each case we have the existence of basic term c such that b 1 ·be =c.

Hence x = x 1 • x2 = b 1 • b2 = c, which is a basic te1m.
(5) x = x 1 + x2 for some x1, .\·2 E C(E 1rn 11 .1 11). By induction we have the existence of

basic terms h1 and b2 such that x1 = b1 and x2 = h> Then x = x1 + x2 = b1 + b2.

which is a basic term. D

LEMMA 4. For all x,x' E C(ER1~ 11 ,,1cJl and a EA we have

(1) ifxt.thenx=e+x;
(2) ifx _!!_,,. x', then x =a· x' + x.

PROOF.
(1) We will prove this by induction on the structure of x. Suppose x +.

(a) x =£.Then trivially x = £ = £ + c = e + x.
(b) x = 8i: for some Es; EID. Then we have a contradiction as OE Y.
(c) x = a for some a E A. Then we also have a contradiction as a Y.
(d) x = x1 + x2 for some x1, .q E C(I:m'A(8t. >)·Then we have x1 t or x2 +.By

induction we then have x 1 = £ + x1 or x2 = c + x2. In both cases we find

x =x1 +x2 =c+x1 +x2=t: +x.
(e) x = x 1 • x2 for some x1, x2 E C(l:'11p;1 1s11). Then we have x1 t and x2 +. By

induction we then have x 1 = £ + x1 and x2 = f + x2. Therefore, x = x1 · x2 =
(E + x1) · x2 = E · x2 + x1 · x2 = x2 + x1 · x2 = 8 + x2 + x1 · x2 = E" +c.· x2 +
x1 ·.q=E+(E+X1)·X2=c+x1 ·X2=E+x.

(2) We will prove this by induction on the structure of x. Suppose x _!!_,,. x'.

(a) x = c;. Then we have a contradiction as c ~.
(b) x = o F for some E s; El D. Then we also have a contradiction as o E ~.

1292 S. Mau1t; M.A. Reniers

(c) x = b for some b EA. Then necessarily b =a and x' =e. Hence x = b =
b+b =a +h =a·£ +b =a ·x' +x.

(d) x = x1 + x2 for some x1, x2 E C(L'sPAiliti). Then we have x1 ~ x' or x2 ~
x'. By induction we then have x1 =a· x' + x1 or x2 =a· x' + x2. Then x =
x1 + x2 =a · x' + x1 + x2 =a · x' + x.

(e) If x = x1 · x2 for some x1, x2 E C(L'nPAlli£i). We can distinguish two cases.

First, x1 ~ x; for some x; E C(L'sPMliEl) such that x' = x; · x2. By induction
we then have x1 =a · x; + x1. Therefore, x = x1 · x2 = (a · x; + x1) · x2 =
(a·x;)·x2+x1 ·x2=a·(x; ·X2)+x=a·x'+x.

Second, x1 ..i. and x2 ~ x'. By induction we have x2 =a · x' + x2. From the
first part of this lemma we have x1 = e +x1. Therefore, x = x1 · x2 = (e + x1) ·
x2 = E·x2+x1 ·X2 =x2 +x1 ·X2 =a ·x' +x2+x1 ·X2 =a ·x' +s ·x2 +x1 ·x2 =
a· x' + (e + x1) · x2 =a· x' + x1 · x2 =a· x' + x. D

THEOREM 9 (Completeness). BPA(8E) is a complete axiomatization of IWD-bisimilarity
on closed BPA(8E)-terms.

PROOF. Suppose that x ++iwd y. By the elimination theorem and the soundness of the
axioms we can assume, without loss of generality, that x is a basic term. By congruence
and the soundness of axiom A3 it suffices to prove that if x + y ++iw<l y then x + y = y.
This can be seen as follows. From x ++iwct y we obtain x + y ++iw<l y + y using congruence
of ++iw<l with respect to+, and reflexivity of ++iwd . Using the soundness of axiom A3
we have y + y ++iwd y. By transitivity of ~iw<l we obtain x + y ++iwd y. Then x + y = y.
Similarly we can obtain y + x = x. Therefore, x = y + x = x + y = y.

We prove this by induction on the structure of basic term x.
(I) x = e. Then x ..i.. So x + y ..i.. Therefore, y ..i.. Then, by Lemma 4.1, we have y =

s + y. So we find x + y = s + y = y.
(2) x = 8E. Then AE(x + y) = AE(8E + y) = E UAE(y). As x + y ++iwd y, we must

also have AE(y) = AE(x + y) =EU AE(y). Thus we obtain E ~ AE(y). Then
x + y = 0£ + y = y +OE= y.

(3) x =a· x'. Then x ~ s · x'. Sox+ y ~ s · x'. Therefore, y ~ y' for some
y' such that e · x' ++iwct y'. By the soundness of axiom A8 we find x' ++iwd y'.
By induction we then have x' = y'. By Lemma 4.4 we have y =a· y' + y. Then
x + y =a · x' + y =a · y' + y = y.

(4) x = x1 +x2. Using x1 +x2 + y ++iwd y implies x1 + y ++iwd y and x2 + y ++iw<l y.
By induction we then have x1 + y = y andx2 + y = y. Thenx+ y = (x1 +x2) + y =
x1+(x2+y)=x1+y=y. D

5. The interworking sequencing

In Section 3 we have introduced the interworking sequencing and in Section 4 we have
defined alternative and sequential composition operators. When combining these operators
into one single theory, we need to express the relation between the interworking sequencing

A process algebra for lnterw11rki11g.1·

Table 5

Deduction rules for auxiliary operators for interworking

se4uenc1ng (a E A)

(/ I
x ---r x

x t y t
x LiiwY t

AE(a)nAE(x)=0 y_<'_,.v

xRoiwY~XO\\\ y'

on the one hand and alternative and sequential composition on the other hand. Bv i 11 trndu'-'

ing the auxiliary operators Loiw and Roiw. we can express the interworking scc;uencing in

terms of the alternative and sequential composition operators. The process algebra ohtained

in this way is called IWD(o, ·, +).It is a conservative extension of both the pr01:e'' algehr.i

IWD(o) from Section 3 and the process algebraBPA(81:) from Section 4. Furthermnre . .t!

axioms formulated for interworking sequencing in the theory /WD(o) can now he derivt.'d

for closed terms.

The intuition of the auxiliary operators is as follows. The process.\ Lo," y behave~ hl-..t.•

the process x oiw y with the restriction that the first action to be executed must

from process x. The process x RoiwY also behaves like the process x oi" v but thi" tim'-"

with the restriction that the first action to be executed must be from process y. In thi~ ea~ .. ·.

the first action from y can only be executed if it is not blocked by any of the action~ folm .t

These definitions resemble the use of the left-merge operator in PA to define the mcri;.'.:

operator. That we need two auxiliary operators instead of one is caused by the foci that

interworking sequencing is not commutative.

DErI NIT ION 9 (Active entities). For i, j E EID. m E MID.Es; EID .. \. y EC< I'111n1 ·

and 8 E {oiw, l.oiw' Roiw, +,·},we define the mappingAE:C(Emn1D .i·,) ~ 'F(E!Dl in·

ductively as follows:

AE(cU, j. m)) = {i, j},

AE(c:) = 0,

AE(81:) = E.

AE(x O y) = AE(x) UAE(y).

The operational semantics of the interworking sequencing is given already in Tabk

The operational semantics of the auxiliary operators is given _in Tab!e 5. The rules _lnlh w,

from the intuitive explanation above. The termination behaviour ot the mterwmkm.g ~.:-
. · · · b h · ·1· · · · t · Th1·s· is not necessarv but Jauhtak""

qucncrng is mcorporated 111 ot aux1 ia1y opera ors. · . . . · · . -. .

the axiomatization of these operators and the proof of the auxiliary proposition 111 the

of Proposition I.

THEOREM JO (Congruence). !WD-hisimilarity is a congruencef(ir Loi" und Ro"'.

1294 S. Mauw, M.A. Reniers

Table 6
Axioms for interworking sequencing and auxiliary operators (a E A, E <:;;EID)

S x Djw y =x WiwY +x R>iwY

Ll <1..oiw<=£
L2 e 1..oiwo1:.· =Si;
L3 e 1..oiwll · x = 0A£(<1-.<l

L4 8 l.o;w(X + y) = 8 WjwX +e 1..oiwY

L5 O£WiwX=8£uA£(xl

L6 ll ·X 1..oiwY =a· (x Djw y)

L7 (x + y) 1..oiwZ = x 1..oiwZ + y 1..oiw:

Rl-4
RS
R6a
R6b
R7

x R>iwE = £ WjwX

x R>;woE =8£uA£ix)

X &;wa · y =a· (X Djw y)

X &jwll · Y = 0A£(x)UA£(<1-1')

x &;wCv + :) = x &;wY + x &iwZ

if AE(a) nAE(x) = 0
if AE(a) nAE(x) # 0

PROOF. The term deduction system is in path format and hence IWD-bisimilarity is a
congruence for all operators. D

The axioms defining the interworking sequencing in terms of alternative and sequen­
tial composition are given in Table 6. The first axiom, S, states that the first action from
x Oiw y can either come from x (via the term x l..o;wy) or from y (via the term x RoiwY).

Axioms L 1-L 7 define the operator l..o;w using the structure of basic terms. As stated be­
fore, x l..oiw y behaves like the process x oiw y with the restriction that the first action to be
executed comes from x. This is expressed clearly in axiom L6. The relation between Lo;w

and o;w also explains the distributive law L7 and the absorption law L5. Axioms LI-L4
define the termination behaviour of l..oiw: x Loiw y can only terminate if both operands can
terminate. A deadlock occurs if the left operand is c: and the right operand cannot terminate
(axioms L2, L3).

The definition of Roiw is similar. The intuition behind the operator Roiw is that the right
operand may only execute actions which are not blocked by the left operand. Therefore,
we make a distinction using the condition AE(a) nAE(x) = 0 (see axioms R6a and R6b).

THEOREM 11 (Soundness). The axioms given in Table 6 are sound with respect to IWD­
bisimilarity on closed IWD(o, ·, +)-tenns.

PROOF. If "s = t if b" represents either one of S, LI-L5, L 7, R 1-4, R5, R6b, or R7, then
the relation R = { (s, t), (t, s) I b} U I is an IWD-bisimulation for that axiom.

For the axioms L6 and R6a the IWD-bisimulations are given by

R = {(a· x l..oiwY, a· (x Ojw y)), (e · x Ojw y, E • (x Oiw y)), (E • x Ojw q, x Oiw q)

I q E C(EJWD(o.·,+l)} 5 U I

A process all(ebrafiYr fnterworking.i·

and

R = { (x Roiwa · y, a · (x oiw y)), (x o;w E. y, E. (x o;" r)). ! /1 Orn t . ,1. /! <f l

I p, q EC(E1wD1u . ._ + 1), AE(a) n AE(x) = 0 l' u !

respectively.

We will consider basic terms as in Definition 8 of Section 4. To prove the eliminatiun

property we will need the following lemma.

LEMMA 5. For arbitrary basic terms b1 and be we have the existence of'hasic terms ci.

c2 and c3 such that b 1 Lo;wh2 = c1, b1 Ro; 11 b2 = c2 and h 1 o; 11 b2 = c 1.

PROOF. These statements are proven simultaneously with induction nn the structure l)f

basic terms h 1 and b2. The details of the proofs are omitted. l::'

THEOREM 12 (Elimination). For eve0· closed IWD(o," +)-tenn x there i.1 a derin1hfy

equal basic terms.

PROOF. This theorem is proven by induction on the structure of closed JWD1 o ... +)-term

x. The only interesting cases are the following: x = x' !JJ",x", x = x' Ro 111 x", and x =
x' 0; 11 x" for closed IWD(o, "+Herms x' and x". In all cases we find the existence of

basic terms h1 and h2 such that x1 = h1 and x2 = h2. Using the previous lemma ,,.e tlnd

the desired result. o

Next, we prove that the process algebra IWD(o. ·, +) is a conservative extension nf the

process algebra BPA Uh). This means that every equality between closed terms from the

signature of BPA (8 E) is also derivable from the process algebra IWD(o, ·,+),and also that

in the process algebra IWD(o, ., +) only those equalities are derivable. The proof of thi-,

theorem uses the approach of [34].

THEOREM 13 (Conservativity). The process algebra /WD(o." +)is a co11.1·er1·1ui1·1.' nto1-

sion of the process algebra BPA (81,).

PROOF. The conservativity follows from the following observations:

(I) IWD-bisimilarity is definable in terms of predicate and relation symbols only.

(2) BPA(8F:) is a complete axiomatization of IWD-bisimilarity on closed BP.4. (811-

terms,
(3) JWIJ(o,., +)is a sound axiomatization ofIWD-bisimilarity on closed /WD(o. ·.+I-

terms (see Theorem 11),

(4) The term deduction system for BPA(8t.) is pure, well-founded and in path format.

and
(5) The term deduction system for !WD(o, "+) is in path format. D

THEOREM 14 (Completeness). The process algebra IWD(o, ·, +) is a compltte <nionwti­

::.ation (~{IWD-bisimilarity on closed !WD(o, ·,+)-terms.

1296 S. Mauw. M.A. Reniers

PROOF. By the General Completeness Theorem of [33], the completeness of the process
algebra JWD(o, ·, +) follows immediately from the properties mentioned in the proof of
Theorem 13 and the fact that IWD(o, ·,+)has the elimination property for BPAU!r:) (see
Theorem 8). O

In Section 3 we have given a direct axiomatization of interworking sequencing, while
in this section we have expressed interworking sequencing in terms of alternative and se­
quential composition. We will prove that the axioms used in the direct axiomatization are
still valid in the cmTent setting for closed terms.

As a consequence of the fact that IWD-bisimilarity is a congruence for all operators in
the signature and the fact that for every closed term there exists a derivably equal basic
term, we can prove equalities for closed terms with induction.

PROPOSITION l (Commutativity of oiw). For closed IWD(o, ·,+)-terms x and y such that
AE(x) nAE(y) = 0 we have

X Ojw y = y Ojw X.

PROOF. Suppose that AE(x) n AE(y) = 0. We prove the statements x LoiwY = y RoiwX

and x Oiw y = y o;w x simultaneously with induction on the structure of basic terms x and y.
First we present the proof of x Lo;w y = y Ro;wx.

(1) x =£.Trivial by axiom Rl-4.
(2) x =DE for some Es; EID. Then x LoiwY = 8E Lo;wY = 8EuAE(r) = y RoiwDE =

y Ro;wx.

(3) x =a ·x' for some a E A and x' E B(E1wD(o.·.+l). As AE(a ·x') nAE(y) = 0 implies
AE(x1) n AE(y) = 0, we have by induction that x' oiw y = y o;w x'. Then

x Lo;w)' = a· x' Lo;w)' =a· (x' Oiw y) =a· (y o;w X1)

= y Ro;wa · x' = y Ro;wX.

Note that we have also used that AE(a ·x') nAE(y) = 0 implies AE(a) nAE(y) = 0.
(4) x = x' +x" for some x', x" E B(E1wD(o.·.+ll· AsAE(x 1 +x") nAE(y) = 0 implies

AE(x 1) n AE(y) = 0 and AE(x 11) n AE(y) = 0, we have by induction x' Lo;w_v =
y Ro;v.x' and x" Lo;w)' = y Ro;wx". Then

X Lo;wY = (x 1 + x") Lo;wY = x' LoiwY + x" Lo;w)' = y Ro;wX 1 + y RoiwX"

= y Roiw(x' + X11) = y Ro;wX.

Then we have x Ojw y = x Lo;wY + x Ro;w)' = y RoiwX + y LoiwX = y Oiw x.

PROPOSITION 2 (Unit element). For closed IWD(o, ·,+)-terms x we have

F Ojw x = x Ojw E: = x.

PROOF. First, we prove r:: o;w x = x with induction on the structure of basic term x.

0

A process algebra for lnterworkings 1297

(1) X =E. Then E Oiw X = E Oiw E = E Lo;wf + E Roiwf = E + 1:o· = E = X.

(2) x = 01, for some E <;;EID. Then t: o;w x = E Oilv Of: = E LoiwOE + E RoiwOE =

Of:' +ot·uAl:'l>l =oi: =x.
(3) x =a· x' for some a EA and x' E B(Envnio.-.+J). By induction we have t: o;w x' =

x'. Then E o;wX = E Diw a ·x' = E Lo;wa · x' +r Roiwa ·x' = 8Ano .. r'l +a· (E DiwX 1
) =

oAEi""''l +a· x' =a· x'.
(4) x = x1 + x2 for some x1, x2 E B(Enm10 ... +ll- By induction we have E oiw x 1 = x 1

and E Oiw x2 = x2. Then E Oiw x = E Oiw (x1 + x2) = E Loiw(XJ + x2) + E Roiw(XJ +
x2) = E LoiwXJ +E LoiwX2 +t: RoiwXi +t: RoiwX2 = f OiwX! +s OjwX2 = x, +x2 = x.

Then, using the commutativity of oiv. and the fact that AE(x) n AE(E) = 0 we easily find

X Ojw E = E Ojw X = X. 0

PROPOSITION 3 (Associativity of oiwl- For closed IWD(o. ·,+Herms x, y, and:::. we

have

(x Diw y) Ojw::: = X Ojw (y Diw :::).

PROOF. Without loss of generality we can assume that x, y, and z are basic terms. To

prove this theorem the following propositions are proven simultaneously with induction on

the general form of the basic terms x, y, and z.

(x LoiwY) Loiw::: = X Loiw()' Oiw ::),

(x RoiwY) Loiw:'. = X Roiw(V LoiwZl,

(x Ojw y) Ro;wZ = X Ro;w()' RoiwZ),

(X Oiw y) Oiw Z = X Oiw (y Oiw .::).

(1)

(2)

(3)

(4)

This way of proving associativity of interworking sequencing is similar to the way in which

associativity of parallel composition is proven in AC'P. Similar equations in the setting of

ACP are usually called the Axioms of Standard Concurrency [6].

Let

x = La,.-x,.+lh+ LE,
iEI kE/\

y Lh1·y1+0F+ Le,
/E/. 11EN

L c" · :::" + OG + LE.
OEO 1/EQ

for some finite index sets /, K, L, N, 0, Q, a,., h1, c11 EA, E. F. G <;;EID and basic terms

Xi, YI· ::'.o-
The following identities are used in the proofs of these four equations. Their proofs are

omitted.

£ Lo;w (y Oiw :::) , (a)

1298 S. Mauw, M.A. Renier.1·

(X RoiwE) l.o;w::: = X Ro;w(E l.o;wz.).

(X o;w)') RoiwE = X Ro;w(Y RoiwE).

PROOF OF (1).

(x l.o;w)') l.o;w:::

= {ass. x. distribution laws}

2.)ai · Xi l.oiwYl l.oiwZ. +(DE l.o;w)') l.oiwZ + L (E l.oiwY) l.oiwZ.

iE/ kEK

= {L6, LS}

Lai· ((x; Ojw y) o;w :::) + D1:uM;(YJUAl:'i:) + L(E l.oiw}'l l.oi11:::

iE/

= {Induction hypothesis (4), AE(y) U AE(::) = AE(y Oiw z), (a)}

La;. (x; Oiw (y Ojw :::)) + DHJAl:(ro;~:I +LE l.o;w(}' Ojw z)

iEI kEK

= {L6. LS}

L Ui. X; Oiw (y Ojw ;::) +OE Loiw(Y Oiw :::) +LE l.P;wCY Ojw z)

iEI I.EK

= {distribution laws, ass. x}

x l.Piw(Y Ojw z).

PROOF OF (2). Let L' ={/EL I AE(b1) nAE(x) = 0} and L" = L \ L'.

(x Ro;w)') l.oiwZ

= {ass. y, distribution laws)

L.:<x Ro;wbt · Yt) Lo;wZ + (x Ro;w8;:) Lo;wZ + L(x Ro;wE) Lo;wZ

/El. nEN

{R6a, R6b, L6, R5, LS}

L b1 · ((x Oiw YI) 0 iw Z) + L DAE! r JUAH(hi·y; JUAHI:) + 8 FUAl:'(.\IUA/:'i:I

IE/.' /EL"

+ L (x Ro; 11 E) L.:i;w:::
11EN

= {Induction hypothesis (4), (b)}

Lht · (x Oiw ()'1 °iw :::)) + L DAt;(,)UA!:'ihr1·111JAl:'(:I +8FUAEl.1)U,\/:'i:I

/EL' /El!'

11EN

{R6a, R6b, L6. R5, L5}

LX Ro;w(h1 ·YI Lo;wZ) +x Ro;w(DF Lo;w:::) + L.:x Ro;w(E Lo;wZ)

/EL 11EN

(b)

(c)

A process algebra for lntenvorkings

= {distribution laws, ass. y}

X Roiw(Y RoiwZ).

PROOF OF (3). Let O' = {o E 0 I AE(co) nAE(x Ojw)') = 0} and O" = 0 \ O'.

(x Oiw y) RoiwZ

= {ass. z, distribution laws}

L)x Oiw y) RoiwCo · Zo + (x Ojw y) Roiw8o + L (X Oiw y) Roiw&

oEO qEQ

= {R6a, R6b, R5}

L Co. ((x Ojw y) Ojw zo) + L 8AE(xo;\\.1·)UAE(c,.·:,,) + 8cuAE(.to"'r)
oEO' oEO"

+ L (x Oiw y) RoiwB

qEQ

= {Induction hypothesis (4), AE(x oiw y) =AE(x) UAE(y), (c)j

L Co· (x Ojw (y Ojw Zo)) + L 8AE(x)UAE<.1·)UAE(c,.·:,,)

oEO' OE()"

+ 8cuAE(x}UAE(y) + L X Roiw(Y Roiw&)

l/EQ

= {R6a, R6b, R5}

L X Roiw(Y RoiwCo · Zo) + X Roiw()' Roiw8o) + L X Roiw(Y RoiwE')

oEO qEQ

= {distribution laws, ass. z}

X Roiw(Y RoiwZ).

PROOF OF (4).

(x Oiw y) Oiw Z

= {S}

(x Oiw y) LoiwZ + (x Oiw y) RoiwZ

= {S}

(x LoiwY +x RoiwY) LoiwZ + (x Oiw y) RoiwZ

= {L7}

(x LoiwY) LoiwZ + (x RoiwY) LoiwZ + (x Oiw y) RoiwZ

= {Induction hypotheses (I), (2), (3)}

x Loiw(Y Ojw z) + x RoiwCY LoiwZ) + x Roiw()' RoiwZ)

= {R7}

x Loiw(Y Ojw z) + x Roiw()' LoiwZ + y RoiwZ)

1299

1300 S. Mam1·. M.A. Reniers

= {S}

= {S)

X Oiw (y Ojw :::). D

Finally, we give two more identities. They correspond to the axioms oiw I and oiw3 from

Table 2.

PROPOSITION 4. For E, F s; EID and a EA such that AE(a) n E =f. 0 we have

0 E Ojw a = 0 /:"UA/,·(11 I.

or; Ojw Of= Ot:UF·

PROOF. For the first identity consider

OE Oiw a = OE Loiwa + 0£ Roiwll = Ot:uAE(il) +OE Roiwll. E:

= 0 EL!AE(u) + 8 fl!Af(a) = 0 EL!AE(11),

and for the second consider

D

Observe that we have now shown that all identities on closed IWD(o)-terms that are

derivably equal in the process algebra /WD(o), are also derivably equal in the process
algebra /WD(o,., +).

6. The £-interworking merge

Now that we have defined the process algebras BPA(8tJ and IWD(o,., +)which include
operators for alternative and sequential composition, we aim at extending them with the
merge operator. For technical reasons, we do this in two steps: First we will define the

£-interworking merge in this section and in the next section we will extend the obtained
process algebra to its final shape.

The £-interworking merge of x and y, denoted by x ll(S y, is the parallel execution of
the processes x and y with the restriction that the processes must synchronize on all atomic
actions which are defined on entities from the set E. This set E is static, which means that
it remains unchanged during calculations on a term which contains the £-interworking
merge operator. The resulting process algebra is called IWD(o, +,., llE).

The deduction rules defining the operational semantics of the £-interworking merge are
given in Table 7. The £-interworking merge of two processes can terminate if and only if
both operands can terminate. The second and third rule in Table 7 say that if an operand
can perform an action, the merge can perform the same action, provided that the action is
not supposed to synchronize (i.e., the sender and receiver are not both in £). The fourth
rule expresses the behaviour of a merge in case a synchronized action is possible.

A process algebra for Interworkings

Table?
Deduction rules for £-interworking merge (a EA, E ~EID)

xi .d
x lifwy i

x ~ x' AE(a) g: E

x 11({.,y ~ x' iifwy

y~y' AE(a)g:E

xllE v~xllf; v'
IW ~ IW •

x~x' y~y' AE(a)CE

x ilfwy ~x' llfw.v'

Table 8
Deduction rules for auxiliary operators of
£-interworking merge (a EA, E ~EID)

x~x' AE(a)g:E

x~x' y~y' AE(a)~E

x lfw y ~ x' llfw y'

1301

DEFINITION 10 (Active entities). For i, j E EID, m E MID, E ~ EID, x, y E

C(L'1wmo.+.·.llEl), and 0 E {oiw, Loiw, Roiw. +, ·, II~, ll~, I~ I E ~EID}, we define
the mapping AE: C(L'1wmo.+.·.ll"l) -7 'IP'(EID) inductively as follows:

AE(c(i, j, m)) = {i, j},

AE(t:) = 0,

AE(8t:) = E,

AE(x 0 y) = AE(x) UAE(y).

For the axiomatization of the £-interworking merge we need two auxiliary operators,
similar to the axiomatization of the communication merge of ACP. These additional op­
erators are ll~ (£-interworking left-merge) and I~ (£-interworking synchronization
merge). The process x ll~ y behaves like the process x II(~ y with the restriction that the
first action must come from process x and that action cannot synchronize with an action
from y. The process x I(~ y behaves as the process x 11(~ y with the restriction that the first
action must be a synchronization. This is formalized by the deduction rules in Table 8. The
term deduction system T(IWD(o, +. -.11£)) consists of the deduction rules of Tables l, 3,
5, 7 and 8.

Table 9 presents the axioms defining the £-interworking merge and its auxiliary oper­
ators. Axiom M states that either one of the two operands executes a non-synchronized
action (x ll..~ y + y ll~ x), or that a synchronized action takes place (x I~ y). The defini­
tion of the LI}~ operator (LM1-LM7) is very similar to the definition of the Lciiw operator

1302 S. Mauw, M.A. Reniers

Table 9
Axioms of £-interworking merge (a, b EA, E, FE EID)

LML

LM2

LM3

LM4

LM5

LM6a

LM6b

LM7

CM!

CM2

CM3

CM4

CMS a

CM Sb

CM6

CM7

E sll.iws=s

sll.~8F =op
sll.~ a. x = 0AEl<1·X)

ell.~ (x + y) = sll.f> +silt'~ Y

8 Fil.{;:, X = 8 FUAE(.r)

a· xlL{~ y =(I· (x II(;~ y)

a· xlL~ Y = 8A1:·1<1·.r)UAE(yl

(x + ylll_f~. z = xlL{~ z + YIL{~ z

B if>= 0Afol

X if~ E = 0AEix)

OF I~ x = 8FuAE(x)

E
X Ii;., 8 F = 8 FUAE(x)

E E a · x liw b · y =a · (x lliw y)

a · X 1{~ b · Y = 8AE(a·x)UAE1b·y)

(x + y) If~ z = x il z + y lt°w z

x l{;.,<y+z) =x ilY +x ilz

ifAE(a) Sl: E

if AE(a) £ E

ifa:=bAAE(a) £ E

if a"' b v AE(a) S?; E

in Section 5 (Table 6, axioms Ll-L7). The only difference is that axiom L6 is uncondi­
tional, whereas axiom LM6b has to take care of eliminating actions which are supposed to
synchronize. Axioms CM l-CM7 define the I(~ operator. This operator enables all actions
that can be performed by both operands and which must synchronize. In all other cases it
yields a deadlock, where the scope of the deadlock can be derived from the operands.

It turns out that IWD-bisimilarity is a congruence for the operators in the signature of
JWD(o, +,., 11£). Furthermore, IWD(o, +, ·, 11£) is a sound and complete axiomatization
of IWD-bisimilarity on closed JWD(o, +, ·, II £)-terms. The proofs are based on the meta­
theory presented in [5,34].

THEOREM 15 (Congruence). JWD-bisimilarity is a congruence for £-interworking merge
and the auxiliary operators.

PROOF. The term deduction system is in path format and hence IWD-bisimilarity is a con­
gruence for all operators. O

THEOREM 16 (Soundness). The process algebra JWD(o, +, ·, 11£) is a sound axiomatiza­
tion of/WD-bisimilarity on closed IWD(o, +, ·, 11£)-tenns.

A process algebra j(Jr Inter'vvorkings 1303

PROO F. For the axioms LM 1-LMS, LM6b, CM l-CM4, and CM Sb the IWD-bisimulations

that witness the soundness are trivial. If "s = t if b" represents such an axiom, then the

IWD-bisimulation is R = {(s. t), (t, s) I b}.

For the axioms M, LM7, CM6, and CM7 the IWD-bisimulation is given by R =
{ (s, t), (t, s) I b} U I if the axiom is given as "s = t if b''.

For the axioms LM6a and CM5a the IWD-bisimulations are

and

R = {(a · x ll~ y, a · (x Iii~ y)), (E • x II(~ y, E · (x II(~ Y)), (E · x II(~ q. x 11(~ q)
s

IAE(a)£E,qEC(L'1wD(o.+ ... ll'l)} U/

R = {(a·xl~.b·y,a·(xllf~y)),(E·xll~>·y,E·(xlli~vY)),
(p II(~ E . y' p II tv y), (E . x II f~ q, x II;~ q)

s
I 2a = b,AE(a) s; E, p, q E C(L'1WD(o.+,·.ll1'J)} U I

respectively. 0

LEMMA 6. For arbitrary basic terms b1 and b1 we have the existence of basic terms c1,

q, and c:; such that b1 llt,, b1 = c1, b1 I~ b1 = C2 and b1 11(~ b1 = c3.

PROOF. These statements are proven simultaneously with induction on the total number

of symbols of the basic terms bi and b:..
(I) By case distinction on the structure of basic term b1.

(a) b1 =E. By case distinction on the structure of basic term b1.

(i) b2 =E. Then b1 llf~ b2 =ell(;, E =E.

(I· 1·) . h b F b ll_E o o b2 = oF2 for some F1 s; EID. T en 1 lli:V 2 = E iw of2 =of;_.

(iii) b2 = a1 · b; for some a1 E A and bS E B(L'/1¥/J(o. +.·. ll1 l). Then

(iv) b2 = bS + b~ for some b;, b~ E B(L'/\VJ)(o.+_.. 11 1)). By induction we

have the existence of basic terms c; and c;' such that s ll_(~ b; = c; and

lL F h" ·" Th E i;:.. 2 =c 1• en

h 1:.· h ll_1:.· (b' h") - ll_E b' ll_E h" - / .''
I Lw 2 = E iw 2 + 2 - 8 iw · 2 + 8 iw 2 - C 1 + c I·

(b) h1 = OF1 for some F1 s; EID. Then h1 ll_(~ b2 = OF1 ll_{;, b2 = Of'iLJAE(h2 J·

(c) b1 = a 1 • b; for some a1 EA and b; E B(L'1wD(o.+,..ll1c 1). By induction we have

the existence of basic term c'1 such that b; II~ h2 = c'1• Then, ifAE(a) Sf E.

1304 S. Mauw, M.A. Reniers

(d) bi= b; + b;' for some b;, b;' E B(E/WD(o.+.·.ll'-l). By induction we have the

existence of basic terms c; and c;' such that b; ll~ b2 = c; and b;' ll[~ b2 = c;'.
Then

b lLE b (b' b") ll_E b b' ll_E b b"ll_E b ' II i iw 2 = i + i iw 2 = i iw 2 + i iw 2 = Ci + Ci •

(2) By case distinction on the structure of basic term bi.
(a) bi = s. Then bi lfw b2 = s lfw b2 = DA£(b2J·

E E (b) bi= OF1 for some F1 ~EID. Then bi liwb2 = OF1 liwb2 = OF1uA£(b2)-

(c) bi = ai · b; for some ai EA and b; E B(E1wnio.+.·.ll£l). By case distinction
on the structure of basic term b2.

· E E (t) b2 =e. Then bi liw b2 =bi liw e = OA£(b 1)-

(ii) h = o F2 for some F1 ~ EID. Then bi lfw b2 =bi I fw o F2 = DA£(h 1 JuF2 •

(iii) b2 = a2 · h2 for some a1 E A and h2 E B(E1wD<o.+,·.llEi). By induction
we have the existence of basic term c3 such that b; llfw b2 =CJ. Then, if
a1 = a2 /\ AE(ai) ~ E,

If ai f=. a2 v AE(a1) Sf E, then

(iv) b2 = b1_ + h2 for some b;_, h2 E B(E/WD(o.+.·.llEJ). By induction we
have the existence of basic terms c2 and c2 such that bi lfw h2 = c2 and
b IE b" II Th i iw 2 = Cz· en

b I E b b I E (b' b") b I E b' b I E b" I II i iw 2 = i iw 2 + 2 = i iw 2 + i iw 2 = Cz + Cz •

(d) bi = b; + b;' for some b;, b;' E B(E/WD(o.+_.. 11 Ei). By induction we have the

existence of basic terms c2 and c2 such that b; I fw b2 = c2 and Vi I fw b2 = c2.
Then

b I E b (b' b") I E b b' I E b b" I E b I II i iw 2 = i + I iw 2 = i iw 2 + I iw 2 = Cz + Cz.

(3) By the previous two items we have the existence of basic terms c;, c;', and ez such

that bill~ b2 = c;, b2 ll{~ b1 = c;', and bi lfw b2 = c2. Then,

0

THEOREM 17 (Elimination). For every closed IWD(o, +,·,II E)-term x there is a deriv­
ably equal basic terms.

A process algebra for lnterworkings 1305

PROOF. This theorem is proven by induction on the structure of closed !WD(o. +, ·, II t.·)­

term x. All cases except for x = x' lL(~. x''. x = x' I(~ x", and x = x' 11(~. x" have already
been treated in the proof of Theorem 12. In the remaining three cases we find the existence
of basic terms b1 and h such that x1 = b1 and x2 = b2. Using the previous lemma we find
the desired result. O

THEOREM 18 (Conservativity). The process algebra !WD(o, +,.,II E) is a conservative
extension of the process algebra !WD(o,., +).

PROOF. The proof of this theorem uses the approach of [34]. The conservativity follows
from the following observations:

(1) IWD-bisimilarity is definable in terms of predicate and relation symbols only,
(2) !WD(o, ., +) is a complete axiomatization of IWD-bisimilarity on closed IWD(o, .,

+)-terms,
(3) IWD(o, +,., II E) is a sound axiomatization ofIWD-bisimilarity on closed !WD(o, +,

., II t.')-terms (see Theorem 16),
(4) the term deduction system for !WD(o, ., +) is pure, well-founded and in path format,

and
(5) the term deduction system for IWD(o, +,.,lit.') is in path format. D

THEOREM 19 (Completeness). The process algebra IWD(o, +,., llE) is a complete ax­
iomatization of IWD-bisimilari(y on closed IWD(o, +, ·, 11 1~)-terms.

PROOF. By the General Completeness Theorem of [33], the completeness of the pro­
cess algebra !WD(o, +,., llE) follows immediately from the properties mentioned in the
proof of Theorem 18 and the fact that IWD(o, +,.,Ill:') has the elimination property for
BPA(oF)(see Theorem 8) and hence also for IWD(o,., +). D

When defining an operator for parallel composition, several properties are desirable,
such as commutativity, the existence of a unit element, and associativity (under some con­
dition). The proof of associativity in the process algebra is quite complicated.

PROPOSITION 5 (Commutativity II(~). For closed IWD(o, +,., II E)-terms x, y, and a set

of entities E we have

x-IEy-)'IEx · iw - ivv '

x-11 1:' "=)1 11_1:' 1:'
· 1wJ 1w· ·

PROOF. The propositions are proven simultaneously with induction on the general struc­
ture of basic terms x and y. Let

x=La;·x;+8E+ LE,
iE/ kEK

y= Lb1·.v1+8F+ LE,
!EL 11EN

1306 S. Mauw. M.A. Reniers

for some finite index sets /, K, L, N, a;, b1 E A, E. F t; El D and basic terms x;, Yt. Then,

and

x\(;~y = LLa;·x1l(~vb1·Y1+xl(;,8F+ Lx\~c:+8Eli~Y+ LE\~y
iEI /EL llEN kEK

= L L a;· (x; 11/~Yt)
iEI IEL.ll;""h1.AE(a,)~E

+ L L OA/:'(a,·x;JUAE(/>1·r1)

iEI IEL.<11f'/>iVAE(a;l'£J

+ 0AE(x)UF + L Or\f:(r) + Of:LJAE(yl + L 0AE(v)

11EN kEK

= L z= b,. (y111t;>d
IEL iEl.h1=a1.AE(h1J~E

+ L L 0AE(b1·v1)LJAE(a;·X1)

/EL iEl.b1otil 1 vAE(h1)<[)'.'

+OF I(;>:+ LE l(~x + Y li~oE +LY l(Sc:
nEN kEK

= LLbt·Ytl(~>i;·x;+8Fl(~x+ Lc:l(~x+yl(~81::+ LYli~c:
/EL iEI nEN kEK

= "IE :r .t 1w·

' II E v = 'lLE v +)' lLE x + \" I E v = v lLE x + x lLE y + y I E x = v II E x. D
. !W - • !W • IW • IW., • lW IW IW .- JW

PROPOSITION 6. For closed IWD(o, +,·,II E)-terms x we have

x11rw£=X,
c:11rwx=x.

PROOF. The first proposition is proven with induction on the general structure of basic

term x. Let

x =La; ·x; +81: +LE,
iEI kEK

for some finite index sets/, K, a; EA, E c; EID and basic terms x;. The induction hypoth­

esis is x1 11rw c: = x1 for all i E /. Then,

xllrwf =La; ·X1lLrwc:+81:."lLrwc:+ LflLrwf
iEl kEK

iEI kEK

A pmcess algebra for llllerworking.1· 1307

=La; ·x; +8E +LE
ifC'/ kEK

=x

and

sllrwx = Ellrw (i:a; · x; +oE +LE)
I E/ kE [\

'\:""" Ell_rwai. X; + .sll_0 OF+"' cll_0 E
L_; IW • ~ !\\

iE/ kEK

LOAEiu;·x;l +81: +LE·
iE/ k<=K

Using these two subcomputations we obtain:

x11rwE = xll_rwE+ell_rwx+xlrwE'

= X + LDAE(a;·x;) +lit;+ LE +OAL(x)
iE/ kEK

= x.

The other part of the proposition is obtained using the commutativity of 11°
~ i\\ . 0

The following proposition serves our needs in proving interworking merge associative

in the next section.

PROPOSITION 7 (Associativity of II~). For closed IWD(o, +,., 11 1'.)-tenns x, y. and.::.

and sets identities E1. E2, and £3 such that AE(x) s; £1, AE(y) s; E2. and AE(.::) ~ E;.

we have

PROOF. Without loss of generality we can assume that x, y, and.::: are basic terms. We use

the following shorthands: S = E1 n £2 n £3, E12 = (£1 n £2) \ S. E2; = (£2 n £,) \ S.

and E l.l = (E 1 n £ 3) \ S. In Figure 16 these sets are indicated in a Venn diagram.

We prove the following propositions simultaneously with induction on the structure of

the basic terms x, y, and z.

(5)

(6)

(7)

(8)

1308 S. Mauw, M.A. Reniers

Fig. 16. Explanation of shorthands.

Let

X = l:a; ·X; +8£ + I::c:,
iE/ kEK

/EL 11EN

Z = L Co · Zo + OG + L 8,

oEO qEQ

for some finite index sets I, K, L, N, 0, Q, a;, h1, c0 EA, E, F, G i:;; EID and basic terms

X;, YI, Zo·

We only give the proofs for (6) and (8). The proof for (6) uses induction on the general
form of basic terms x, y, and:::.

FromAE(x) t:;; E1, AE(y) t:;; E2, and AE(z) t:;; £3 we obtainAE(x;) t:;; E1, AE(y1) s; E2,

and AE(z 0) i:;; £3 for all i E I, l EL, and o E 0. This means that we are allowed to use

First, we give a number of subcomputations. These are used in proving Equation (6).

Subcomputation 1:

.. ((· JJ"'.12US) JJE11Ut,'23US ~)
ll1 x, iw YI iw ~o

= DAt,'(a; iUAE(.r;)UA/:'(_\'/)UAE(c0 <: 0)

DAt:(a; ·X;)UAE(/>1·.\'/)UAE(co·~0)

if a;= h1 AAE(a;) t:;; E12 US,

otherwise

if a;= h1 AAE(a;) s; E12 US

/\a; =co /\AE(a;) t:;; £13 U En US,

if a;= b1 /\AE(a;) t:;; E12 US

/\ (a; =/=. c0 V AE(a;) ~ E 13 U £23 US),

otherwise

=

A process algebra f(1r /nterworki11g1· 1309

I a . ((x ll/:12U' ') 11E11UE21US 7)

t t \\\)/ l\V ""0

DAt(a1 ,,)U1\l:i/J1 11)l;Af:I<,, ~,,)

I a· . ((x· llL12US ,) llEuUE2.1US _)
I I IW)/ IW ~o

DAE(a, ·x;)UAE(/J1·.1·1)UAl:'(c,,·:,,)

I .. (· llE12u1:·11us (, 11 t·,,us _))
l11 X1 IW)/ IW ~o

DAE(a, ·x;)lJJ\E(h1·r1lUAt'(c,,.~,,)

if a1 = b1 /\A E (a1) s:; E 1-:! U S

/\ a1 =Co /\AE({11) s:; E13 U Kn US,

otherwise

if a1 = b1 =Co/\ AE(a1) s:; S,

otherwise

if a; = b1 =Co /\ AE(ai) s:; S,

otherwise

ifa1 =b1 AAE(ai) s:; E11U £13 US

/\ bt =Co /\ AE(b1) s:; En US,

if (ai '/= b1 v AE(ai) g; E12 U £13 US)

/\ bt = C0 /\AE(b1) s:; £13 US,

DAl:'(a, ·x; JUAE(/!1. v1 JUAl:'(c,, ·:,, l otherwise

Subcomputation 2:

(o. jf;12US •) IE1.1UF2.iUS _ 0 IE11lJt',1US
Of. IW) !W ~ = Ot,'UA/:'(yl iw. - Z

= DLUAf(viUA/:'(:)

= 81,· 1:~:2Ul:uUS (y h~~;US z).

Similarly we obtain

and

Subcornputation 3:

(t: I f:'12US v) 1Luui:,3us 7 _ 0 . lf 11 uf:'23 us _
1w • 1w " - Af.(r) iw '-

= DAE(vJUAE(:)

= 1E12Ul:'1.1US (IE2.1US •)
[:; IW y IW '-.

Similarly we obtain

1310 S. Mauw, M.A. Renier.1·

and

Then, using these subcomputations, we obtain

"" " (. ' . 1E12US h . ,) IE.1.1UE2.iUS .. -L_, L_, L_, a, x, iw /)I iw c,, ~11

+ IE12U/:'1.1US (, [f."2.1US ~ ·) +" . [1:·12U/:'1.1U.\' (, [E21US 7)
X IW) IW U(, L_, £ IW) IW ''

kEK

+ L x i(~~2ul:uus (r:; t(Jius ;:) + L x i(~12Ul:uus (y 1 ~,us £)
nEN qEQ

= · [E12U/:"11US (, [.1:·2.1US -)
X IW) IW ~ •

Finally, Equation (8) is proven as follows:

A process algebra for lntenvorkings 1311

+ X [l:12U/:'1.;US (, [E21US 7)

i\V) iw ..:,

= .rll_/:'12UL1.1US (, [[/:'2.\US .,) + (, [[E2.1US "')lLE12UE13US .
IW) IW_,) IW, !\I/ .\:

+ X [./:'12Ul:11US (•ll_L2.1US _ + 7 U_E2.1US , + , [E2.1US -)
l\V) IW " " IW)) IW "'-•

= . II l:12u1:·1 \us (, 11 1o 2_ \us-)
.\ IW _\ IW ~ " D

By taking £1 = E2 = Eo, we obtain associativity of II(~.
The final property which we prove is the correspondence between the oiw and lit:, opera­

tors. This formalizes the resemblance between the axiomatic definitions of these operators.

PROPOSITION 8. For closed IWD(o, +, ·. 111:·)-terms x and y such that AE(x) nAE(y) = 0
we lu11•e

\' 110 \' - \' 0 \' .· i\'·,.'r -r lW. •

PROOF. Let

x =La; ·x; +8F + I:s.
ic·f kEK

y L hr · Yt + 8 F + Ls
I El.

for some finite index sets I. K, L, N, a;, br E A, E, F s; EID and basic terms x;, v1. The
induction hypotheses are x; II~' y = x; oiw y for all i E I and x llrw YI = x oiw YI for all I E L.
Then

X U_VI \'
! \\· . l:a; - x; lL~v y + 81,·llrw .v +I: 2 llrw y

iE/ kEK

l:a; · (x; 11rwY)+8t:uAE11·1+ 2:2lLrwY
ire/ kEK

1312 S. Maw1·. M.A. Rrnicr.1·

:z=a, · (x; Oi11yl+8,,,_Af-.111 + L L f:' +8Aflrl

ice I I.El\ 1108

= :z=a, · (x; oi" r) + 8r Lo;,1Y +LE Lo;11Y
ic-1 kEK

= La;. X; LoiwY + 8F LoiwY +LE Lo;wY
iE/ I.EK

= x Lo;11,\'.

In the following computations we use that AE(h1 J ~ AE(y) and AE(.i:J n AE(y) = 0 imply
AE(hr) nAE(x) =0:

and therefore

IE/. 11t:-i\'

L h1 · (Yt 11~1 x) + 8nJ,·l/:1r1 + L L P + DAt.1r1

I 'Cl.

L h1 · (x II~' YI) + 8 PU.Fi, 1 + L LE + 8,.\/:'111
/EL nEN kEK

Lb!· (.r Oj 11 Y1) + x Ro;"8F + L x Roi 11 E

hL 11EN

= x Roi11-"·

= L L O,.\J:'ia,-r, IUAl-.i/11-.111 + D/:U·IF11 I+ dFLJAFl.I) + dt1/:(1·1+8AI:'i11
if I /~/.

= 8,-11:u \UA/:·1_1 I·

x 11 ~' y = x 1Lr11 y + y 1Lr11 x + x I r11 y

= x Lo;"_\'+ x Roi11X + 8;11-,111UAE11·)

= X Oiw Y + DAEl.1)U,.\f(1·)

= xo;" y.

7. Process algebra for Interworkings

0

In the previous section we introduced the £-interworking merge. This operator was pa­
rameterized with the set of entities on which the processes should synchronize. In order
for the interworking merge to be generally applicable, the set E must be determined from

A process algebra for lnterworking.1· 1313

the actual operands of the interworking merge. Therefore, we have to generalize the E -

interworking merge to the interworking merge operator.

There is a technical complication which makes this generalization non-trivial: we have

to explicitly attribute every process term with the set of entities that it contains. The reason

for this is revealed by the examples in Figures 12 and l 3 (see Section 2.4).

Using the definitions from the previous sections, interworking X2 from Figure 12 has the

following semantical representation: c(c, d, m). There is no explicit mention of the empty

entity h. Indeed, this interpretation is exactly the same as the interpretation of interworking

X2' from Figure 13.
In a context with only + and oiw operators, this identification would be completely

harmless, however Figures 12 and 13 show that there is a merge context which makes

a distinction between X2 and X2'.
The reason for this anomaly is that we did not take empty entities into consideration.

Therefore, in order to properly define the interworking merge, we have to extend our se­

mantical representation with information about the entities contained.

There are several ways to achieve this. A first option would be to attribute the empty pro­

cess c: with a set of entities. Empty entity b would then be represented by c{/JI. A second op­

tion would be to label a complete process term with the set of entities which it ranges over.

The semantical representation of X2 would then become (c(c, d, m), {b, c, d)), whereas

X2' would be represented by (c(c, d, m), {c, d)).

For technical reasons we choose to elaborate on the second option. An Interworking

with a dynamical behaviour denoted by x over the entities from E is denoted by (x, E).

Such a tuple (x, E) will be called an entity-labeled process.

DEFINITION 11 (Signature). The signature of the process algebra IWE(o, +,Ill consists

of the operators (_, _), +, Ojw, and II iw .

For (x, E) to be a well-formed expression we do not require that the active entities from

x are all contained in E. All entities in E which are not active entities in x are empty

entities. The active entities of (x, E) can be determined from x solely. The complete set

of entities of (x, E), denoted by Ent((x. E)), contains the active entities from x and the

entities from E.

D EF!NITION 12 (Active entities, entities). For closed IWD(o, +. ·, II £)-term x, E ::; EID,

and closed IWE(o, +. 11)-terms s and t we define the mappings AE:C(E1wE(o.+.11))-+

P(EID) and Ent: C(E1wl:(o.+.i1))-+ W'(EID) inductively as follows:

AE((x.E)) =AE(x),

AE(s + t) = AE(s) U AE(f),

AE(.1· Oiw t) = AE(s) UAE(t).

AE(s lliwt) = AE(s) UAE(t),

Ent((x, E)) = EU AE(x),

Ent(s+t) = Ent(s)UEnt(t),

1314 S. MauH', M.A. Renier.1·

Table 10
Operational semantics of entity-labeled processes (a E A. E c;: EID. x . .r'

/W/J(o. +. ·-11 /:)-terms. s. s'. 1.1' entity-labeled processes)

a ' x -i
(x. l:') i

x ---.:;. x

(.r. E) ___!!__, (x'. E UAE(xl)

(/ ' s __,. s
ii ,

I ------? I

s +I___!!__, s' oiw (c-, E/11(1)) .1· +I___!!__, I' oiw (<, Enl(.1·))

s I I l
s Oiw I .j,

s ___!!__, s' AE(a) i Ent(s l n £111(1)

s Iii" t ___!!__, s' Iii" t

t~t'

AE(a) nAE(s) = 0 I___!!__, 1'

t ___!!__, 11 AE(a) E111(s) 11 Ent(!)

S lliw I ___!!__, S lliw I'

AE(a) <; E111(s) n Em(t)

s lliw I___!!__, s' lliw 1'

Ent(.1· Oiw t) = Ent(s) U Ent(t),

Ent(s lliw t) = En!(s) U Ent(t).

On entity-labeled processes we define the operators interworking sequencing and inter­
working merge. The set of all entity-labeled processes is called !WE(o, +. II). The defini­

tion of the interworking sequencing on entity-labeled processes is straightforward.

Before we give axioms for the process algebra !WE(o, +. Ill. we define a operational
semantics. The operational semantics of entity-labeled processes, as expressed in Table 10,
is similar to the operational semantics of non-labeled processes.

The first two rules relate the domains of non-labeled processes and entity labeled pro­
cesses. In the second rule we have to take care that we do not loose information about

the involved entities after executing an action. lt may happen that some active entity from
x which does not occur in E is not active anymore in x' since the last action from that

entity has been executed. Therefore, we have to extend the entity label of x 1 with the
active entities of x. The rules for the interworking merge correspond to the rules for the £­

interworking merge but the condition AE(a) ~ E is replaced by AE(a) ~ Ent(.1·) n Ent(t).

The set Ent(.1·) n Ent(t) contains the shared entities from s and t, so this is the set of entities
which should synchronize.

For the "correctness" of the deduction rules for interworking merge it is necessary that

the set of entities of a process does not change by executing actions (Lemma 8). This is

guaranteed by the deduction rules_ We first prove that the set of active entities does not
expand due to the execution of actions.

A process algebmfor lntent'orkings 1315

LEMMA 7. For all a EA and closed IWD(o, +. ·, II 1:·)-terms x and x' we have: (fx -2.+ x',

then AE(x) 2 AE(x').

PROOF. This lemma is proven with induction on the structure of closed lWD(o. +. ·. II;.;)­
term x. Suppose that x -2.+ x'.

(I)

(2)
(3)

(4)

(5)

(6)

(7)

x = £. This case cannot occur as £ _!;4.

x =Of:' for some Es; EID. This case cannot occur as or; ~.
x = h for some b E A. Then it must be the case that b = a and x' = s. Clearly

AE(x) =AE(b) 2 0 = AE(c:) = AE(x').

x = x1 + x2 for some closed lWD(o. +. ·.111:)-terms x1 and x2. Then it must be

the case that either x1 -2.+ x' or x2 -2.+ x'. By induction we thus have either

AE(x1) 2 AE(x') or AE(x2) 2 AE(x'). In either case we have AE(x) = AE(x 1 +
x2) =AE(x1) UAE(x2) 2AE(x').

x = x1 · x2 for some closed IWD(o. +. ·, 111-·)-terms x1 and x2. Then we can distin­

guish two cases. First. x1 ~ x; for some closed IWD(o. + . ., II 1:·)-terrn x; such that

x' = x; · x2. By induction we have AE(x 1) 2 AE(x;). Then AE(x) = AE(x 1 · x2) =

AE(x 1) U AE(_\·2) 2 AE(x;) U AE(x2) = AE(x; · x2) = AE(x'). Second. x1 i and

x2 ~ x'. By induction we have AE(x2) 2 AE(x'). Then AE(x) = AE(x1 · x2) =

AE(x 1) U AE(x2) 2AE(x1) U AE(x1) 2 AE(x').

x = x 1 oiw x2 for some closed IWD(o, +. ·, 111-·)-terrns x1 and x2. Then we can

distinguish two cases. First, x1 ~ x; for some closed !WD(o, + . ., llL)-terrn x;

such that x' = x; Oiw x2. By induction we have AE(x1) 2 AE(x;). Then AE(x) =

AE(x1 oi" x2) =AE(x1) UAE(x2) 2AE(x;) UA£(x2) =AE(x; Oiw.x2) =AE(x 1
).

Second. AE(a) nAE(x 1) = 0 and x: ~ x~ for some closed IWD(o, +, ·. 111:·)-terrn

x~ such that x' = x 1 oiw x~. By induction we have AE(x2) 2 AE(x~). Then AE(x) =

AE(x1 Oj\, .\'2) = AE(x1) UAE(x2) 2 AE(xi) U AE(x~) = AE(x 1 o~w x~) =AE(x 1
).

x = x1 11{~,x: for some Es; EID and closed IWD(o. + . ., 11,..·)-ter~s x1 and x2.

Then we can distinguish three cases. First. AE(a) g; E and x1 ~ x; for some

closed !WD(o, +,., llr:l-term x; such that x' == x; II{~, x2. By induction we have

AE(x1) 2 AE(x;). Then AE(x) = AE(x1 11(~>2) = AE(:q) U AE(x2) 2 AE(x;) U

AE(x2) = AE(x; II(~ x2) = AE(x'). Second, AE(a) g; E and x2 -2.+ x; for some

closed !WD(o, + . ., 11 1'.)-term x~ such that x' = x1 II(~ x;. By induction we have

AE(x2) 2 AE(x~). Then AE(x) = AE(x1 ll{~,x2) = AE(x1) U AE(x2) 2 AE(x1) U

AE(x~) = AE(x1 II{~, x;) =AE(x'). Third, AE(a) s; E. x1 -2.+ x;, and x2 -2.+ x; for

some closed !WD(o, +, -. II L)-terms x; and x~ such that x' = x; II{~ x;. By induction

we have AE(.r1) 2AE(x;) andAE(.\2) 2AE(x;). Then AE(x) =AE(x1 ll{~x2) =
AE(xJ) UAE(x2) 2AE(x;) UAE(x;) =AE(x; 11(~,x;) =AE(x'). D

LEMMA 8. For all closed IWE(o, +.Ill-terms sand t and all a EA we have: ~ls~ s',

then Ent(.1·) = Ent(s').

PROOF. This lemma is proven with induction on the structure of closed IWE(o. +. 11)­

term s.

1316 S. Mau11', M.A. Reniers

(l) s = (x, E) for some closed IWD(o, +,·,II E)-term x and E ~EID. Then s ~ s'

must be due to x ~ x' for some x' such that s' = (x', EU AE(x)). Clearly we
have Ent(s) =Ent((x, E)) = E UAE(x) and Ent(s') =Ent((x', E UAE(x))) =EU
AE(x) U AE(x'). Using Lemma 7 we obtain Ent(s) = Ent(s').

(2) s =St + s2 for some closed IWE(o, +, 11>-terms St and s2. We can distin­
guish two cases. First, St ~ s; for some closed IWE(o, +. 11)-term s; such
that s' = s; oiw (t:,Ent(s2)). By induction we have Ent(si) = Ent(s;). There­
fore, Ent(s) = Ent(s1 + s2) = Ent(st) U Ent(s2) = Ent(s;) U Ent(s2) = Ent(s;) U

Ent((£. Ent(s2))) = Ent(s; Oiw (£, Ent(s'.!.))) = Ent(s'). Second, .1·2 ~ s; for some
closed /WE(o, +, 11)-term s; such that s' = s; oiw (£. Ent(st)). This case is symmet­
rical to the first case.

(3) s = st OiwS2 for some closed /WE(o, +,ID-terms st and s2. We can distinguish two
cases. First. St ~ s; for some closed IWE(o, +, 11)-term s; such that s' = s; Oiw
s2. By induction we have Ent(st) = Ent(s;). Therefore, Ent(s) = Ent(st oiw s2) =
Ent(st) U Ent(s2) =Ent(s;) UEnt(s2) = Ent(s; oiw s2) = Ent(s'). Second, AE(a) n
AE(s2) = 0 and s2 ~ s~ for some closed IWE(o, +, 11)-term s~ such that s' =St Oiw
s~. By induction we have Ent(s2) = Ent(s~). Therefore, Ent(.;)= Ent(st Oiw s2) =
Ent(s t) U Ent(s,) = Ent(s t) U Ent(s~) = E;zt(st Oiw s~) = Ent(s'). - ~ -

(4) s =St lliw s2 for some closed IWE(o, +. 11)-terms St and s2. We can distinguish three

cases. First, AE(a) CJ:_ Ent(st) nE11t(s2) and st ~ s; for some closed IWE(o, +. 11>­
term s; such that s' = s; lliw s2. By induction we have Ent(st) = Ent(s;). There­
fore, Ent(s) = Ent(st lliw s2) = Ent(s1) U Ent(s2) = Ent(s;) U Ent(.1·2) =

Ent(s; lliw S'.!.) = Ent(s'). Second, AE(a) 2'.; Ent(st) n Ent(s2) and s2 ~ s; for
some closed /WE(o,+.11)-term s; such that s' = s1 lliws;. By induction we
have Ent(s2) = Ent(s;). Therefore, Ent(s) = Ent(st II iw s2) = Ent(s1) U Ent(s2) =
Ent(st) U Ent(s;) = Ent(s1 lliws2) = Ent(s'). Third, AE(a) ~ Ent(s1) n Ent(s2),

St ~ s;. and s2 ~ s; for some closed IWE(o, +, Ill-terms s; and s; such that
s' = s; lliws;. By induction we have Ent(s1) = Ent(s;) and Ent(s2) = Ent(.1·2).
Therefore, Ent(s) = Ent(s1 lhw s2) = Ent(s1) U Ent(s2) = Ent(s;) U Ent(s;) =
Ent(s; II iw s;) = Ent(s'). D

Next, we adapt the definition of IWD-bisimilarity to take into account the set of entities
of a process.

DEFINITION 13 (Entity hisimilarity). A symmetric relation R on closed IWE(o, +,Ill­
terms is an entity bisimulation, if and only if, for every pair (s, t) E R and a E A, the
following conditions hold:

(I) AE(s) = AE(t).

(2) ifs .),. then t .),.
(3) if s ~ s', then there is a closed !WE(o, +, II)-term t' such that t ~ t' and

(s', t') ER,

(4) Ent(s) = Ent(f).

The closed IWE(o, +,Ill-terms sand t are entity bisimilar, notations *+ t, if and only if
there exists an entity bisimulation R relating them.

A process algebra for lnterworking.1· 1317

THEOREM 20 (Equivalence). Entity hisimilarity is an equivalence relation.

PROOF. The proof is similar to the proof that IWD-bisimilarity is an equivalence (Theo­

rem l) and therefore omitted. o

THEOREM 21 (Congruence). Entity hisimilarity is a congruence for the function symbols

in the signature of IWE(o, +.II) which are de.fined on IWE(o, +,Ill-terms.

PROOF. Suppose R : x B-iwd y and E, = E.1 .. Now we must prove that there exists

an entity bisimulation R' such that R': (x, £ 1) ~ (y, Ey). Let R' = j((p, E), (q, F)l I
pRq, E =F).Let p and q be closed IWD(o, +. ·.11£)-te~ms such that pRq and E, F s::;

EID such that E =F. Since p ~iw,1 q we have AE(p) =AE(q).

(l) AE((p, £)) =AE(p) =AE(q) =AE((q, F)).

(2) Suppose that (p, E) --..!.!._,, s for some closed /WE(o, +. II)-terms. This must be due to

p _!!_,,. p' for some closed /WD(o, +, ·, II £)-term p' such that s = \p', EU AE(p)).

As p *""iwd lf, we have the existence of closed /WD(o, +. ·, II £)-term q' such that

q--..!.!._,, q' and p'Rq'. Then we also obtain (q,F) ~ (q',F UAE(q)). Clearly

(p', E UAE(p))R'(q', F UAE(q)).

(3) Suppose that (p, £) ,(.,.This must be due top+. Asp ~iwd q, we have q ,(.,.There­

fore, (q, F) ,(.,.
(4) Ent((p, E)) = E UAE(p) = F UAE(q) =AE((q, F)).

Suppose R1 : s1 ~ !1 and R1: .1·2 ~ t2. Let R = { (s1 + t1, s2 + t2), (p1 Oiw (c:, E), l/I Oiw

(s, £)), (p2 Oiw (F, E), q2 Oi" (f, E)) I p 1 R1 qi, p2R2q2, E ~EID). Obviously, this relation

is an entity bisimulation.

Suppose R1: s1 *"" t1 and R1: s2 *+ t2. Let R = {(p1 Oiw p2.q1 Oiw q2) I p1R1q1,

p2 R2lJ2}. Obviously this relation R is an entity bisimulation. The proof is similar to the

proof that IWD-bisimilarity is a congruence for interworking sequencing (see Theorem 2).

Suppose R1 :s1~t1 and R1:.1·2~t2. Let R={(p1iliwP2,q1lliwi/2llp1R1q1,

p2 R2CJ2}. Obviously this relation R is an entity bisimulation. O

As was done in ['.25], the interworking merge is expressed in terms of the £-interworking

merge operator and the common entities of the operands. The axioms for entity-labeled

processes are given in Table 1 l for E, F i; EID. The extension of/WD(o, ·, +) with entity­

labeled processes is denoted by IWE(o, +, II).

Table l l
Axioms of entity-labeled processes (E, F <;; EID)

IWEl

JWE2
JWE3
IWE4

(x. £) = (x. E UAE(x))

(.r. E) + (y, F) = (x + y, EU F)

(x, E) o;w (v. F) = (x o;w y, EU F)

(x. E) ll;w (y. F) = (x 11(~~/' y, EU F) if AE(x) <; E and AE(y) <; F

1318 S. Mauw. M.A. Reniers

Axiom IWEl describes the convention discussed before that the entity-part of an

JWE(o. +.II)-term contains at least the empty entities of the Interworking. Axioms JWE2-

JWE4 describe how the other operators on JWE(o, +,II)-terms can be defined in terms of

their counterparts on /WD(o, +.·,II E)-terms. It is also possible to define entity bisimula­

tion in terms of IWD-bisimilarity of the process-parts and set equality of the entity-parts.

Also for our final process algebra, IWE(o, +. II), we prove soundness and completeness.

THEOREM 22 (Soundness). The process algehra IWE(o, +.Ill is o sound axiomatization

of IWD-bisimilarity on dosed JWD(o, +. ·, 11 1')-tcrms. The process a/gehro IWE(o, +.Ill

is a sound axiomati:ation 1:lentity bisimulation on closed JWE(o, +.Ill-terms.

PROOF. For the first proposition observe that we did not add any axioms relating closed

IWD(o, +. ·, 11 1')-terms. We will prove the second proposition. Since entity bi simulation is

a congruence for the closed IWE(o, +.Ill-terms (Theorem 21) we only have to show that

the axioms from Table I I are sound. Thereto, we provide an entity bisimulation relation for

each axiom. For !WE!, the relation R = { ((x, E). (x, E UAE(x))) }·\ U I is an entity bisimu­

lation. For the axiom/W£2 the relation R = {((p, £) + (q, F), (p+q, EU F)), ((p, E) oiw

(c, F). (p, EU F)) I p, lf E C(.L'rn"n\o.+.·. II 1), E, F S::: EID}s is an entity bisimulation. For

axiom IWE3 the relation R = { ((p, £ 1
) Oiw (y, F), (p Oiw y, E' U FU AE(y))), ((x, E) Oiw

(q, F'), (x oiw q, E' U F' U AE(x))) I p, q EC (.E1wn10. + .. 11 1 1 J, E'. F' S::: EID }s is an entity

bisimulation. For IWE4, the relation R = {((p, E) lliw (q, F), (p 11(~ 1 Fq. EU F) I p.q E

C(L'rnnia.+.·.ll1 1). E. F S::: EJD.AE(p) S::: £, AE(q) S::: F}s is an entity bisimulation. D

DEFINITION 14 (Basic terms). The set of basic terms is the smallest set that satisfies: if

x is a closed IWD(o, +. ·, ll"'l-term and ES::: EID such that AE(x) S::: E, then (x, E) is a

basic IWE(o, +. llJ-term. The set of all basic terms over the signature of /WE(o, +.Ill is

denoted by B(.ErnT10.+.111l·

THEOREM 23 (Elimination). For every closed IWE(o, +, 11)-term s there exists a bosic

IWE(o, +.Ill-term t such that IWE(o, +.Ill f- s = t.

PROOF. This theorem is proven with induction on the structure of a closed /WE(o, +, II)­

term. First, consider the case s = (x, £) for some closed /WD(o, + . ., 111:)-term x and

E S::: EID. Then s = (x, E) = (x, E U AE(x)). Clearly AE(x) S::: E U AE(x) and hence

(x, EU AE(x)) is a basic !WE(o, +, II)-term. Then, consider the cases = s 1 + .1· 2 for some

closed IWE(o, +.Ill-terms s1 and s2. By induction we have the existence of basic terms

(x1, E 1) and (x2. E2) for some closed /WD(o, +, ·, II 1')-terms x 1 and x2 and E1, E2 S::: EID

such that AE(x1) S::: £1 and AE(x2) S::: E2. Then, s = s1 +.1·2 = (.ri, E1) + (x2, E2) = (x1 +

x2. E 1 U E2). Clearly AE(x1 +x2) S::: E1 U E2. Next, consider the cases= .1·1 oiw s2 for some

closed IWE(o, +.Ill-terms s1 and s2. By induction we have the existence of basic terms

(x1. £1) and (x2, E2) forsomeclosed/WD(o, + . ., llh)-termsx1 andx2 and £ 1, E2 c;::EID

such that AE(x1 JS::: £1 and AE(x2) S::: E2. Then s = s1 Oiw s2 = (x1, £1) Oiw (x2, E2) =
(.r1 Oiw x2, £1 U £;.).Clearly AE(x1 Oiw x2) = AE(x1) UAE(x2) S::: E1 U E2. Finally, con­

sider the case s = .1·1 Iii" s2 for some s1. s2 closed IWE(o. +. 11>-tenns. By induction we

A process algebra f(1r lnterworkings 1319

have the existence of basic terms (x1, E1) and (x2• E2) for some closed !WD(o, +, ·, 11£)­
terms x1 and x2 and E1, E2 s; EID such that AE(x1) s; £ 1 and AE(xo) c £1. Then

s = s1 lliw s2 = (x1. E1) lliw (x2. E2) = (x1 11(~/'.fc x2. E1 U £2). Clearly A£(;1 Iii~' x2) =
AE(x1) UAE(x2) s; E1 U £2. D

LEMMA 9. For basic !WE(o, +.Ill-terms (x. E) and (y, F) we have

(x, E) .:±. (y, F) ijf x +;-iwJ y and E = F.

PROOF. First, suppose that R: (x, E) B (y, F).Let R' = {(p, q) I (p, E')R(q, F'), E' =

F'). As (x, E)R(y. F), AE(x) s; E, and AE(y) s; F, we have E = E UAE(x) = Ent(x) =

Ent(y) =FU AE(y) =F. We will prove that R' is an IWD-bisimulation.

(I) AE(p) =AE((p, £ 1)) =AE((q, F')) =AE(q).

(2) pt iff (p, E') t iff (q, F') tiff q t·
(3) Suppose that p ~ p' for some closed !WD(o, +,·,II F)-term p'. Then (p, E') ~

(p', E' U AE(p)). So we have (q, F') ~ (q', F' U AE(q')) for some closed

!WD(o, +, ·, 11 1')-term q' such that (p'. E' U AE(p))R(q', F' U AE(q')). From this

we obtain that E' UAE(p') = F' UAE(q'). Thus p' R'q'.

The proof in the other direction is trivial. o

THEOREM 24 (Completeness). The process algebra !WE(o, +,Ill is a complete axioma­

tiz.ation of entity bisimulation on closed !WE(o, +. 11)-terms.

PROOF. By the elimination theorem (Theorem 23) we only have to prove this theorem for

basic IWE(o, +,Ill-terms. Let (x, E1) and (y. E2) be basic /WE(o.+.11)-terms such that

(x, E1) +;- (y, E2). By Lemma 9 we have x +;-iwd y and £1 = £2. Since !WD(o, +, ·, llE)

is a complete axiomatization of !WD(o)-bisimilarity on closed /WD(o, +, ., II!:)-terms, we

have x = y, and hence (x, E1) = (y, £2). D

THEOREM 25 (Conservativity). The process algebra IWE(o, +.II) is a conservative ex­

tension of the process algebra IWD(o, +, ·, llL\

PROOF. With respect to /WD(o, +, ·, 11£)-terms, the process algebra IWE(o, +,Ill and the

process algebra IWD(o. +. ·. llr.) have exactly the same axioms. Then clearly the same

equalities can be derived between closed !WD(o, +,.,II E)-terms. D

We end our treatment of the semantics of Interworkings with some properties of In­

terworkings. The interworking sequencing is commutative under the assumption that the

active entities of the operands are disjoint. Furthermore, it is associative. The interworking

merge is both commutative and associative.

PROPOSrTION 9 (Unit elements). For closed /WE(o, +.Ill terms s,

s Oiw (s, 0) = s,

(s, 0) Oiw s = s,

(9)

(10)

1320

s lliw (s, 0) = s,

(t:,0)11iws =s.

S. Mauw, M.A. Reniers

(I I)

(12)

PROOF. By the elimination theorem it is allowed to restrict the proof of the statements to
basic terms. Lets= (x, E) for some closed IWD(o, +,.,II E)-term x and Es; EID such
thatAE(x) s; E. Then

SOiw(s,0) = (x,E)oiw(t:,0)=(Xoiw&,EU0)=(x,E)=s,

(f, 0) Oiw s = (s, 0) Oiw (x, E) = (t: Oiw x, 0U £) = (x, E) =s,
s lliw (£, 0) = (x, E) lliw (t:, 0) = (x ll{~nV1£,EU0) = (x llrw c:, E) = (x, E) = s.

(s, 0) lliws = (s,0) lliw (x, E) = (s 11r~r: x, 0 U E) =(s ll~vx, E) = (x, E) = s.

0

PROPOSITION I 0 (Commutativity and associativity of oiw and ILw). For closed
IWE(o, +,!I)-terms s, t, u we have

s Oiw t = t Oiw s, if AE(s) nAE(t) = 0

(s Oiw t) Oiw u = s Oiw (t Oiw u),

s lliwt = t lliws,

(siliwt)iliwu = slliw(tlliwu).

(13)

(14)

(15)

(16)

PROOF. By the elimination theorem it is allowed to restrict the proof of the statements to
basic terms. Lets= (x1, £1), t = (x2, £2), and u = (x.i, E.i) for some E1, E2, £3 ~EID
and closed !WD(o, + • .,II r.·)-terms x1, x1, and x3 such that AE(x1) s; £1, AE(x2) ~ E1.
and AE(x.i) s; E.i. Then

s Oiw f = (x1, Ei) Oiw (x2, E2) = (x1 Oiw x2, E1 U E2)

= (x2 OiwXi, E2 U £1) = (xz, £2) Oiw (x1, £1)

= t OjwS,

(s Oiw t) Oiw u = ((x1, E1) Oiw (x2. E2)) Oiw (x3, E.i)

= (x1 Oiw x2, E1 U E2) Oiw (x3, £3)

= ((x1 Oiw x2) Oiw X.J, (E1 U £2) U £3)

= (x1 Oiw (x2 OiwX3), £1 U (£2 U £3))

= (x1,E1)oiw(x2o;wX3,£2U£3)

= (x1, EI) Oiw ((x2, £2) Oiw (XJ. £3))

= S Oiw (t Ojw LI),

s ll;wt = (x1. £1) lliw (x2, E2) =(x1 ll(~nF2 x2, £1 U E2)
= (x2 ll~nr:i x1, E2 U E1) = (x2, E2) lliw (x1, E1)

= t li;wS,

A process algebra fiir lnterworking.1·

((x1, £1) lliw (x2. E2)) lliw (x3, E>,)

= (x1 ll(:inL2 x2, E, U E2) ll;w (.q, £3)

= ((i: llL1r'E:·2 .) 11 1F1uL21nF\ . (E U E) U £,)
· I 1w .\ 2 1 w .\ 3 • I 2 ·'

= (x ilt1n1!:2UE\i (·o llE2nf;1 ·,) (£ U E) UE')
I IW .\ _ I\\ x .1 , I "2 .1

= (x1, E1) lliw (x2 ii(/:t.i XJ, £2 U E.1)

= (x1, E1) ll;w ((x2, E2) ll;w (x3, E.~))

= sll;wUll;wU).

1321

D

PROPOSITION 11. For closed lWE(o, +.ID-terms s and t such that Ent(s) n Ent(t) = 0

we have

sll;wt=Soiwt.

PROOF. By the elimination theorem it is allowed to restrict the proof of the state­

ments to basic tenns. Let s = (x. £) and t = (y, F) for some E. F S::: EID and closed

IWD(o, +. ·, 111:)-terms x and y such thatAE(x) S::: E andAE(y) S::: F.

s li;w t = (x, E) ll;w (y, F) = (x 11rw y, E u F)
= (x Oiw y, EU F) = (x, E) Oiw (y, F).

8. Conclusions

D

The starting point of the application described in this chapter was the informal drawing

technique, called Interworkings. After analyzing the informal meaning of the language and

the way in which users applied this language, our aim was to formalize the Interworking

language.
The assets of having a formal semantics are well-known. We mention the following.

Formalization yields a thorough understanding of the language and the aspects of the ap­

plication domain which can be modeled; it allows for an unambiguous interpretation of

expressions in the language; it enables formal analysis; and it can be used to derive, or

even automatically generate supporting tools.

These points directly addressed the problems that users were confronted with when ap­

plying the language. The language organically grew from a collection of examples and it

was not clear which constructs were exactly part of the language. For some diagrams even

specialists disagreed on the exact interpretation. It was not clear under which precise con­

ditions two Interworkings could be merged. And, finally, in order to efficiently work with

collections of Interworkings tool supp011 was required.

The research carried out helped to solve these issues to a large extent. The kernel of

the work was the description of the formal semantics of the language by means of process

algebra. This is the part of the research covered in this chapter.

Our choice was to use process algebra for the formal definition of Interworkings. This

worked out quite successfully. The process algebraic approach even proved suitable to

1322 S. Mauw. M.A. Reniers

define the semantics of a similar, but much larger language (MSC'96). Although it showed
very beneficial, we do not advocate that the process algebraic approach is the best or even
the only suitable approach towards the formalization of sequence chart languages. Other
techniques, such as Petri nets and partial orders, have also been successfully applied, and
when considering only the core of these sequence chart languages, the several approaches
do not differ too much with respect to expressivity and simplicity. Only when extending
the sequence chart language with specific features, such as recursion and intetTupts, some
approaches offer a more natural way of modeling.

The work presented here only describes the part of the project which has to do with the
theoretical foundations of the project. The main point here was to identify the basic Inter­
working constructs and operators, and to give their operational and algebraic semantics.
The extension with a theory of refinement or the derivation of computer tools is not in the
focus of this handbook.

Although already an overwhelming variety of operators has been described in process
algebra literature, we have introduced yet more operators. This is typical for the process
algebraic approach. For a specific application domain a specific algebra is needed. In the
case of sequence chm·ts, the standard operators for sequential and parallel composition do
not properly describe the user's intuition. Because the synchronization implied by strong
sequential composition is in contradiction with intuition, we developed the interworking
sequencing. Because the standard parallel composition operator could not deal with over­
lapping areas of an Interworking, we had to investigate a variation: interworking merge.
Even though these are newly invented operators, their definitions resemble the definition
of well-studied operators.

This approach of defining new operators and variations on existing operators has been il­
lustrated in this chapter. We have treated all proof obligations, such as soundness and com­
pleteness in full detail. We have especially taken care of setting up our theory in a modular
way. This means that we have first defined the kernel of the theory (i.e., the semantics of
single Interworking diagrams) and subsequently extended this with other operators.

The kernel of our theory just consists of the interworking sequencing operator. This sin­
gle operator already allows for the definition of the semantics of Interworking diagrams.
After that, we defined the basic process algebra consisting of the standard operators for
alternative and sequential composition, extended with a special constant for expressing
partial deadlocks. The alternative composition operator is used to express alternative sce­
narios. This process algebra is independent of the previous one, and the next module sim­
ply consisted of the combination of these two theories. The interworking sequencing can
now be expressed in terms of the other operators. The axioms defining the interworking se­
quencing in the first process algebra are now derivable properties. Finally, we extended this
algebra with the interworking merge operator. This required two separate steps. First we
introduced the E-interworking merge, which is parameterized by the set of entities which
should synchronize. And next, we extended the semantical interpretation of Interworkings
in order to be able to define the unparameterized interworking merge. This modular ap­
proach is illustrated in Figure 17.

In our opinion, such a modular approach brings several assets. A mathematical the­
ory, just like a piece of software, requires maintenance. Parts of the theory may become
obsolete due to new insights or new extensions may be required due to additional user re-

A process algebraji;r lnten\'Orkings 1323

JWD(o, ·. +)

IWD(o.+.-,W1

Pig. 17. Overview of conservative extensions.

quirements. A modular theory makes it easier to isolate the parts of the theory which are

affected by such modifications. A modular design also reduces the impact of a misdesign

of one or more concepts. The modules defining the other concepts can easily be reused,

while replacing the inappropriate concepts. An example of such a misdesign could be the

interworking merge. Contrary to the interworking sequencing, which seems to be very sta­

ble and well accepted, several alternatives for the interworking merge have been proposed

in literature (such as the envimmnental gate 111e1:~e, see [30]). The part of the algebra de­

scribing the interworking merge can easily be replaced by a definition of another similar

operator.

9. Bibliographical notes

In this section we will give a comprehensive overview of the relevant literature on Inter­

workings and the related language Message Sequence Chart (MSC).

lnterworkings. In [24], Mauw, Van Wijk and Winter give a concrete textual syntax for

the language IW and present both an informal and a formal definition of its semantics. The

formal semantics does not consider entities without events (empty entities). A short version

appeared as [25].
Based on the work on the formal semantics several prototype tools have been developed.

A description of the prototype tool set is given in [26]. This tool set consists of three parts,

the interworking processor (IWP), the intermediate language compiler (ILC) and a term

rewriting system (TRS).
The formal semantics of lnterworkings is not able to deal with empty entities and refine­

ment. This has been solved in [19-21].

1324 S. Mauw, M.A. Reniers

The deduction rules for U_~ are different from the deduction rules used in [21] in the
sense that the termination behaviour of II[~ is coded in the termination behaviour of U_[~
instead of using the termination operator J used there to describe the termination be­
haviour of E-interworking merge. There are two reasons for this change. First, in [35] and
[32] also the termination behaviour is described with the left-merge operator. Second, it is
easier to define the set of active entities of a process term x U_~ y in this case.

In [21] we reported the following. For closed IWD(o, +, ·, 11£)-terms x, y, z, and sets of
entities E,, E2, £3 we have

This is not true. In the case that x can execute an action a such that AE(a) Sf E 1 and
AE(a) ~ E2 n £3 the equation does not hold.

This can be explained as follows. The sets £1, £2, and £3 are intended to model the
instances of x, y, and z respectively. In the situation sketched above we have that x executes
an action defined on an instance that does not belong to x ! Here we presented an improved
and correct version of this proposition.

The interworking merge as defined in [25] did not have the associativity property. This
difference is a direct consequence of our decision to maintain the entities of an Interwork­
ing statically.

In [7] the language Interworking is extended with discrete absolute time features. Events
can have a discrete time stamp or a discrete time interval associated with them. The authors
describe the timed versions of interworking sequencing and interworking merge.

In [10], Feijs uses Interworkings as a starting point for generating finite state machines.
This is useful for obtaining feedback from a set of scenarios (Interworkings) during a sys­
tem's definition phase or test phase.

In [9], possibilities and impossibilities of using Interworkings are studied in the context
of describing a service, a protocol, or a protocol entity in the OSI reference model on differ­
ent levels of abstraction. The author concludes that Interworkings are useful for analyzing
a limited number of interesting cases such as test runs, simulation runs, and debug sessions,
but also that Interworkings lack sufficient power to act as a specification formalism.

Message Sequence Charts. From the vast amount of graphical languages that resemble
Interworking the language Message Sequence Chart, which is standardized by Study Group
10 of Question 9 of the Telecommunications Standardisation Sector of the International
Telecommunication Union, is best known. The language MSC describes the asynchronous
communication between instances (entities). The language is very rich in its syntax and has
a standardized formal semantics [13,28]. This formal semantics is inspired by the work
on the formal semantics of Interworking. In [17] a process algebra semantics of Basic
MSC (only simple diagrams) is given. In [16], prototype tools are defined based on this
formal semantics. In [27, 18] the formal semantics of Basic MSCs is extended to the lan­
guage MSC92 except for instance decomposition and conditions. Later, this semantics is
standardized as Annex B to Recommendation Z.120 [13]. Also De Man [15] gives a pro­
cess algebra semantics for Basic MSC. In [22], High-level Message Sequence Charts are
treated. In [23,28], an operational semantics for a large fragment of MSC96 is presented.

A process algcbraj(1r lntCJworkings
1325

Besides the literature on the semantics of MSC based on process algebra, we also men­

tion some other approaches. In [111, an MSC is transformed into a P~tri net. In 1.14], a se­

mantics of Message Flow Graphs is presented that translates an MSC_ rnt~) a Buchi automa­

ton. In [21, Alur, Holzmann and Peled, present a partial order semantics for Basic Message

Sequence Charts.
In the ITU Recommendation Z.120, the only assumption about communi~·ation hetween

entities is that it is asynchronous and that sending of a message occurs b_etorc its r~ce1pt.

In [8]. communication is discussed based on FIFO buffers. A variety 0 1 commun1cat1on

models is obtained by considering different ways of connecting entities thr~>u_gh hul:fers.

A hierarchy of these communication models is presented based on the possihillty ot 1111-

plementing MSCs in the communication models. One of the communication models is

identified with the synchronous communication in lnterworkings.

References

111 W.M.P. van der Aalst, !ntero1xani:ational workflow: An approach based on Message S<'<fll<'tll'« C!tarr.1 and

Petri nets, Systems Anal. - Modelling - Simulation 34 (3) (1999), 335-367.

121 R. Alur, G.J. Holzmann anu D. Peled, An a11ai.l'~erjiJr Message Sequence Clwrts. Soltv- arc· ('om:i.:ph and

Tools 17 (2) (1996), 70-77.
[3] J.C.M. Baeten and S. Mauw, Dduyed choice: an operator j(>r joining Messag<' Sl'qll<'tli'<' ('llllrt1. Formal

Description Techniques VII, Proc. 7th IFIP WG 6.1 International Conference <HJ Formal De,,i.:npti<Hl Tt:d1-

niques, Berne. D. Hogrefe and S. Leue, eus, Chapman & Hall (1995), 340-Yi4.

[41 J.C.M. Baeten anu C. Verhoef. A congruence theorem j(>r strc1cturf!d operotional .1·,·mantin u·1th f'rt'di­

rntes. CONCUR '93, International Conference on Concurrency Theory, Lecture Notes m C"111pu1. Sci. 71 '.i.

E. Best, eu., Springer-Verlag (l 993), 477-492.

[51 J.C.M. Baeten and C. Verhoef. Concrl'/e process alge/Jra. Semantic Modelling. Handbook of Lu)!Jl' 111 C'lltll·

puter Science 4, S. Abramsky. D.M. Gabbay and T.S.E. Maibaum, eds, Oxford U111ver>ity f'n:" I l'N'i1.

149-268.
[61 J.C.M. Baeten and W.P. Weijland, Process Algebra, Cambridge Tracts Theoret. Corn put. S..:1 IS, Camhrid,l!e

University Press (1990).

[7] J. van den Brink and W.O.D. Griffioen, Formal semantics of lnterworkings witlt di11 l'<'tc <1hH1/1tf<' tinw.

Algebra of Communicating Processes, Utrecht 1994 Workshops in Computing A. Po1ht'. (' Vcrhnd ;ind

S.F.M. van Vlijmen, eds, Springer-Verlag (1995), 106-123.

[81 A. Engels, S. Mauw and M.A. Reniers, A hierarchv <fcon111wnicatio11 models/(Jr Mr11ug1· S1'</W'll<'<' ('!tur11.

Formal Description Techniques and Protocol Specification. Testing and Yeri1icalion l'roc'. HJRTL X and

PSTV XVll '97, Osaka, Japan, T. Mizuno, N. Shiratori, T. Higashino and A. Togashi. l.'cb. Chaprna11 & llall

(1997). 75-90.

[91 L.M.G. Feijs. Synchonous sequc11ce charts in actio11, Infonnation and Software Tt•chnoluj!y .W ~ 1'>'171.

583-606.
[!OJ L.M.G. Feijs, GeneratinK FSMsj/·0111 lnterlt'orkings, Distrib. Comput. 12 (I) (I LJ'Jl) 1 .. II .~11

[I l] 1. Grabowski, P. Graubmann and E. Rudolph, Towards a Petri net hased senumtin ,J,·/muwn /or M"'"'g1•

Se11w•11ce Charts, SDL'93- Using Objects, Proc. 6th SOL Forum, Darmstadt. (l. l'a:rl!C!lliilld and A S;miw.

eds, North-Holland, Amsterdam (1993), 179-190. '

[121 ITU-T. Rl!co111111endatio11ZI20: Message Sequence Chart (MSC). JTU-T, Geneva c J <N 11

[1.0\] ITU-T. Reco11111u•1u/ation Z. I 20 Annex B: Algebraic semantics <!/'Message s,,,1111 •11 ,.,. ('/uu 11 . !TI• T. <;,.""'a
(1995).

[141 P.B. Ladkin and S. Leue, !11terpreti11,q message flow graphs. Formal Aspects of (">lllput 111 ~ 7 1~ 1 1J'l'l'i 1,

473-509.

1151 J. de Man, Towards a.fimnal snnantics of Messaxe Sequence Charts, SOl.'93 l ;,,11!1'! c >hic·ch. Pr<><:. lith

SDL Forum. Dannstadt, 0. Frergemand and A. Sarma, eds, North-Holland, Am "Ienlarn 1 i 'l'l l i l q I h'i

1326 S. Mauw, M.A. Reniers

[16] S. Mauw and E.A. van der Meulen, Generaring roolsfur Message Sequence Charts, SDL'95 - with MSC in
CASE, Proc. 7th SDL Forum, Oslo, R. Bnek and A. Sarma, eds, North-Holland, Amsterdam (1995), 51-62.

[171 S. Mauw and M.A. Reniers, An a(~t>hraic semantics ofBa.~ic Message Sequence Charts, Comput. J. 37 (4)
(1994), 269-277.

(18] S. Mauw and M.A. Reniers, An algebraic semantics of Message Sequence Charts, Technical Report CSN
94/23, Eindhoven University of Technology, Department of Computing Science, Eindhoven (1994).

[191 S. Mauw and M.A. Reniers, Empty Interworkings and refinement - semantics of Interworking.1· revised,
Technical Report CSR 95-12, Eindhoven University of Technology, Department of Computing Science
(1995).

[20] S. Mauw and M.A. Reniers, Empty lnterworkings and refinement - semantic.1· (}/' Interworking.1· rei-ised,
ACP'95, Proc. Second Workshop on Algebra of Communicating Processes Computing Science Reports
CSR 95/14, 3 Eindhoven University of Technology, Department of Computing Science (1995), 67-385.

[21] S. Mauw and M.A. Reniers, R~finement i11 l11terworkings, CONCUR'96, Pisa, Italy, Lecture Notes in Com­
put. Sci. l l 19, U. Montanari and V. Sassone, eds, Springer-Verlag (l 996), 671-686.

1221 S. Mauw and M.A. Reniers, High-levt'l Message Sequence Charts, SDL'97: Time for Testing - SDL, MSC
and Trends, Proc. 8th SOL Forum, Evry, France, A. Cavalli and A. Samia, eds, North-Holland, Amsterdam
(1997), 291-306.

[23] S. Mauw and M.A. Reniers, Operational semantics for MSC96, Computer Networks amd ISDN Systems
31 (17) (1999), 1785-1799. Special issue on Advanced topics on SDL and MSC, A. Cavalli, ed.

[24] S. Mauw, M. van Wijk, and T. Winter, Syntax and semantics of synchronous Interworking.\', Technical
Repmt RWB-508-re-92436, Information and Software Technology, Philips Research (1992).

[25] S. Mauw, M. van Wijk and T. Winter, A.fi1rmal semantics of synchronous lntemorkings, SDL'93 - Using
Objects, Proc. 6th SDL Forum, Dam1stadt, 0. Ftergemand and A. Samia, eds, North-Holland, Amsterdam
(1993), 167-178.

[26] S. Mauw and T. Winter, A prototvpe too/set .fi11· fnterworking.1·, Philips Telecommunication Review 51 (3)
(1993), 41-45.

[27] M.A. Reniers, An olgehraic .\'t'l//Wllics 1~f'Message Sequence Charts, M.S. thesis, Department of Mathemat­
ics and Computing Science, Eindhoven University of Technology (1994).

[28] M.A. Reniers, Message Sequence Chart: S.vntax and semantics, Ph.D. thesis, Eindhoven University of Tech­
nology (1999).

[29] A. Rensink and H. Wehrheim, Weak sequential composition in process algehras, CONCUR'94: Concur­
rency Theory, Lecture Notes in Comput. Sci. 836, Uppsala, B. Jonsson and J. Parrow, eds, Springer-Verlag
(1994), 226-241.

130"1 E. Rudolph, P. Graubrnann and J. Grabowski, Message Sequence Chart: Composition tffhnique.1· vt•rsu.1·
OD-techniques- 'tema con mria~ioni', SDL'95-with MSC in CASE, Proc. 7th SDL Forum, Oslo, R. Bnek
and A. Sarma, eds, North-Holland, Amsterdam (1995), 77-88.

[31] J. Rumbaugh, l. Jacobson and G. Booch, The Unified Modeling Language Reference Manual, Addison­
Wesley (1999).

[32] J.J. Vereijken, Discrete-time process algt>hra, Ph.D. thesis, Eindhoven University of Technology (1997).
[331 C. Verhoef, A genaal co11.1·errntive extension theorem in process algebra, Programming Concepts, Methods

and Calculi <PROCOMET94), IFIP Transactions A: Computer Science and Technology 56, E.-R. Olderng,
ed., Elsevier Science B.V. (1994), 149-168.

134] C. Verhoef, A congruence theorem for structured operational semantic.1· with predicate.1· and negative
premises, Nordic J. Comput. 2 (2) (1995), 274-302.

[351 J.L.M. Vrancken, The algehra of communicating processes with empty process, Theoret. Comput. Sci. 177
(2) (1997), 287-328.

A process algebra.for lnterlt'orkings 1327

Subject index

alternative composition, 1272, 1274. 1276, 1277.

1288-1290, 1292, 1293, 1296, 1300, 1322

associativity, 1290, 1297, 1307, 1319

atomic action, 1280, noo

causal order, 1274, 1276, 1278

communication, l 270-1274, 1278, 1281, 1282,

1324, 1325
commutativity, 1290, 1293, 1296, 1305, 1319,

1320
completeness. 1270, 1274, 1283-1285. 1287,

1288, 1290. 1292, 1295, 1296, 1302. 1305,

1318, 1319, 1322

congruence, 1283, 1284, 1288. 1289. 1292-1294,

1296, 1302, 1317' 1318

conservativity, 1273. 1293, 1295, 1305, l 319, 1323

deadlock, 1278-1284, 1288-1290, 1294, 1302

deduction rule, 1280, 1281, 1283, 1288, 1300.

1301, 1314, 1324

- conclusion, 1280
delayed choice, 1276, 1277

/:'-interworking merge, 1273, 1300-1302, 1312-

1314, 1322, 1324
elimination, 1184, 1291, 1295, 1304. 1318

empty entity, 1313
empty process, 1280, 128 I. 1283, 1288. 1289,

1313
entity, 1271, 1274-1282, 1289, 1300. 1305, 1307,

1312-1314, 1316, 1317, 1322-1325

- active, 1281. 1282, 1288, 1293, 1301. 1313,

1314, 1319. 1324
-empty, 1278-1280, 1313, 1318, 1323

entity hisirnulation, 1316-1319

equivalence, 1282, 1283. 1317

hypothesis, 1280

Interworking, 1271-1278, I 281. 1312, 13 lJ, 1318,

1321-1325
- empty, 1275
Interworking diagram, 1270-1283, 1288, 1322

Interworking language, 1270-1273, 1276, 1321

interworking merge, 1273, 1307, 1312-1314,

1317, 1319, 1322-IJ24

interworking sequencing, 1272, 1273, 1276, 1280-

1283, 1288, 1292-1294, 1296, 1297, 1314,

1317, 1319, 1322-1324

ITU. 1272, 1273, 1324. 1325

IWD-hisimulation, 1282-1284. 1287-1290, 1292-

1296, L\02, 130.\ 1305' 13 16-1319

left-merge, 1293, 1324

- E-interworking, 1301

merge-inconsistent, 1278, 1279

Message Flow Graphs, 1325

Message Sequence Chart, see MSC

MSC, 1271-1273, 1276, 1322-1325

non-deterministic choice, 1276, 1277

operational semantics, 1270, 1274, 1280, 1281,

1283, 12'13. 1300, 1314, 1322. 1324

parallel composition, 1272, 1274, 1277, 1297,

1305. 1322
partial deadlock, 1273, 1282, 1322

path fonnat, 1283, 1289, 1294, 1295, 1302, 1305

Petri net, 1322, 1325

scenario, 1271, 1273, 1274, 1277, 1322, 1324

sequential composition, 1272-1276, 1288, 1289.

1292-1294, 1296, 1300, 1322

signature, 1280-1284, 12'15, 1296, 1302, 1313,

1317, 1318

soundness, 1274. 1283, 1284, 1287-1289, 1292,

1294, 1295. 1302, 1303, 1305, 1318, 1322

strong bisimulation, 1282

strong sequential composition, 1276, 1322

synchronization, 1272, 1276

tem1, 1280

- husic. 1284, 1290, 1318

- closed, 1280

tenn deduction system, 1280-1283, 1289, 1294,

1295, 1301. 1302. 1305

- pure, 1295, 1305

- well-founded, 1295, 1305

UML, 1272

Use Case. 1272

weak sequential composition, 1273, 1276

