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Abstract

We describe mutual theory refinement, a
method for refining world models in a reac-
tive system. The method detects failures, ex-
plains their causes, and repairs the approxi-
mate models which caused the failures. Our

approach focuses on using one approximate
model to refine another.

1. Introduction

The world model guiding a reactive system is always
approximate. Thus even the most carefully coded sys-
tem will occasionally fail. Our long-term objective is
to enable a reactive system to learn - from its fail-
ures - refinements of its world model. In this paper,
we describe interim results on an incremental learn-

ing method, mutual theory refinement. The method
detects failures, explains their causes, and repairs the
approximate models which caused the failures. The
learning is incorporated into a reactive system, the En-
tropy Reduction Engine (Bresina & Drummond, 1990;
Drummond, et al., 1991). Our approach focuses on us-
ing one approximate model to refine another approxi-
mate model. It can also determine when the approx-
imate model is not sufficient to explain the failure,
and degrade gracefully, resorting to inductive or rote
learning. This is accomplished by exploiting two com-
mon features of knowledge-based reactive systems: (/)
multiple related approximate models whose underlying
principles overlap, and (ii) multiple sources oTexperi-
ence (e.g., planning and reaction) which, when com-
pared, provide a strong basis for failure detection and
explanation.

A knowledge-based reactive system initially has
models of the world and actions, however approxi-
mate. If that knowledge exists, why not exploit it for

learning? Our work follows the key idea: use knowl-
edge when you can, yet recognize when you cannot
use it. We are therefore exploring an analytic end of

*Also affiliated with Rutgers University.

the learning spectrum, while addressing the problem of
how to detect the limits of the knowledge and fall back
on inductive methods. Our method builds on earlier

work in explanation-based learning (EBL) from failure
for refining approximate theories (Mostow & Bhatna-
gar, 1987; Tadepalli, 1989; Chien, 1989; Gupta, 1987).
Most of these methods assume a complete and correct

theory is available to fix the approximate one. In con-
trust, we refine one approximate theory with another,
and recognize the limitations of either.

We first present some features of our performance
system, the Entropy Reduction Engine. Next, we de-
scribe the learning method and illustrate it using the
NASA TileWorld experimental domain. We then com-
pare and contrast our approach with other work, clos-
ing with a discussion of our future plans.

2. Background

Reactive systems are situated in an environment in
which they sense and act. Our work is cast within one
such system, the Entropy Reduction Engine (ERE).
Unlike systems which consist of hand-coded reactions
tailored to a particular task (notably Brooks' (1986)
subsumption architecture), the ERE architecture uses
planning and scheduling to automatically synthesize
reactions appropriate to the given goals and environ-
ment. Briefly, this synthesis is accomplished as fol-

lows (Drummond &Bresina, 1990). First, a planning
component, called the projector, performs chronologi-
cal search through the space of possible world model
states to select an operator sequence that satisfies the
given goal. Then, using goal regression, the opera-
tor sequence is compiled into Situated Control Rules

(SCRs); each rule specifies the appropriate action to
take in a given situation to satisfy the desired goal.
These SCRs are used as advice by the execution com-

ponent, called the reactor.

The projector uses two approximate models: opera-
tors and domain constraints (Drummond, 1986). The
operators model the agent's actions in terms of pre-
conditions and effects. The effects can be specified as



a set of nondeterministic _ariant outcomes, each asso-
ciated with the probability that the variant outcome
will result from execution of the operator. Domain
constraints model physical laws as sets of facts which
can never co-occur in a world state; e.g., "the agent
cannot be in two locations at once'. These two models

capture some of the same underlying principles from
different perspectives; hence, each can serve as a basis
to refine the other.

Note that, unlike STRIPS operators, ERE operators
specify only what is added, not what is deleted. The
facts in the pre-state that should be deleted from the
post-state are those that contradict the operator's ef-
fects. These contradictions are detected using the do-
main constraints. For example, when the agent moves
to a new cell, the above domain constraint indicates

that the agent cannot also be in the old ceil, so that
(old) fact is deleted.

The current testbed used in building and testing
ERE is the NASA TiIe_-rld experimental-d0rna-fd.
It consists of a simulator of a single agent ifi a two-
dimensional grid of cells, able to move and grasp tiles.

3. Mutual Theory Refinement

Given the hand-coded operators and domain con-
straints, the system may occasionally experience a fail-
ure: the expected outcomes do not match the observed
outcomes. Let WM be a world model representing as-
pects of the world. WM is approzimate if it is incom-
plete and/or incorrect in its representation. A predic-
tion failure in WM for a reactive system is a discrepancy
between the predicted state resulting from planning in
WM and the observed post-state resulting from reaction
in the world. If there is no discrepancy, it is s correct
prediction. WM' is a refinement of WM with respect to
a prediction failure if planning with WM_ now results
in a correct prediction. The mutual theory refinement

problem is: given a set (WMi } of approximate models,
and a prediction failure, find a refinement {WM_} of
{WMi}. The mutual theory refinement method follows
three steps. It detects a prediction failure, then uses

some models to explain the cause of the failure (due
to approximations in other models). It then repairs
the failure producing a refinement {WM_}, resulting

or over-generai) variant outcomes; incorrect precondi-
tions or outcomes; missing or incorrect domain con-
straints. We have focused thus far only on refinements
of incomplete, rather than incorrect, models (missing
preconditions, missing variant outcomes, or missing
domain constraints). Our method draws on a catalog
of heuristics which determine, for each type of incom-
pleteness, what models can be used to make the refine-
ment, and what refinement can be made. We envision
the refinement process as incremental and plausible,
not necessarily correct. All refinements are annotated
and may be revised if further relevant information be-
comes available. The degree of confidence in a partic-
ular refinement depends both on the degree of confi-
dence in the knowledge used in the refinement, and on
W]iether the refinement is inductive or analytic.

4. Operato_r_Refinement

In this section we describe methods for detecting and
repairing missing preconditions-and miss]rig-_cariant
outcomes, illustrated with a simple T[leWorld exam-
pie. For these types ofincompletenesses in theapprox-
imate operator model, the method attempts to use the
approximate model of domain constraints as a basis
for refinement. The initial recommended repair is to
use an explanation of the failure derived from the do-
main constraints to add missing preconditions. If the
domain constraints are insufficient to explain the fail-
ure, then the recommended repair is to use inductive
methods to add a missing variant outcome.

4.1 Missing Precondition_

Consider a MOVE operator which describes the agent
moving in some direction while grasping a tile in some
other direction. Suppose that the preconditions test
whether the destination cell of the agent is empty, but
not whether the destination cell of the grasped tile is
empty (i.e., a "cell-empty" precondition is missing), a
The operator's single variant outcome specifies that
both the agent and the grasped tile will end up in their
destination cells. The initial faulty operator definition
is the following:

(dez_op :name MOVE(?dir)
:precondit ions

in a correct prediction. A model WM becomes increas-
ingly correct (Mitchell, 1990) with respect to the world
over time if there is a decrease in prediction failures in

WM. The goal of the learning is to produce increas-
ingly correct models.

Given a prediction failure, how does the method de-
termine which of the approximate models are causing
the failure, which models can be used to make the re-
finement, and which refinement can be made? Predic-
tion failures for ERE may result from one or more of
the following: missing or extra (over-general or over-
specific) preconditions; missing or extra (over-specific

(agent-location (?x ?y))
(grasping ?dir2 ?t)
(tile-location ?_-(?x2 ?y2_)
(cell-adjacent (?x ?y) ?dir (?xl ?yl))
(cell-adjacent (?x2 ?y2) ?dir2 (?x3 ?y3))
(cell-empty (?xl ?yl))

:variant outcome :name straight :prob 1.0
(agent-location (?xl ?yl))
(tile-location ?t (?x3 ?y3))
(cell-empty (?x ?y))
(cell-empty (?x2 ?y2))

1$im_ar errors ofomission have actuaJ]y occured.



Figure1: Failurewhilemoving a tile

The first step detects failure when the observed
post-state differs from all predicted states (one for each
variant outcome in the operator). For example, sup-
pose the agent is attempting to move to the right while
grasping a square above, but there is a triangle next to
the square (see Figure 1). Since MOVE's preconditions
do not require the destination cell of the grasped tile
to be empty, projection predicts that the agent and
square will move right. However, when the reactor at-
tempts to execute the move, it is prevented from doing
so by the physics of the TileWorld simulator. Thus,
the agent and square remain where they were in the
previous state. Hence, the predicted post-state of the
MOVE operator differs from the observed post-state.

The next step explains the difference between the
observed and predicted states. A possible cause for
this discrepancy is that the predicted state is incon-
sistent and, hence, can never be observed. Therefore,
for each variant outcome of the operator, the result-
ing predicted state is tested for inconsistencies using
the domain constraints. In our example, the square

is predicted to move to the cell that is occupied by
the triangle (see Figure 2). Hence, the predicted state
violates the constraint that "no two distinct tiles can

be in the same cell". This constitutes a single-step
explanation of the failure.

1980) is used to accomplish this general repair. Re-
gressing a goal over a single operator produces the
weakest (i.e., most general) preconditions that must
hold in a state such that executing the operator sat-
isfies the goal. In this case, we want to ensure that
the execution of the operator results in a state that
satisfies the operator's effects and does not violate C.
Hence, the "goal" to regress is the operator's outcome
restricted to prevent violation of C. The conditions
resulting from regression are the new preconditions,
which are a superset of the original preconditions.

In our example, the goal to regress is determined
by restricting the outcomes of the MOVE operator to
prevent violation of "no two distinct tiles can be in
the same cell". Since one of the effects of MOVE is
that "tile t is in cell (za, y3)', preventing violation of
the domain constraint requires that for all tiles t2, ei-
ther "tile t2 is not in cell (xs, Y3) or t and t2 are not
distinct tiles". This restriction can be expressed as

"no tile other than t is in cell (zs, y3) _ (this transfor-
mation is currently hand-coded). Hence, the goal to
regress consists of the effects of MOVE plus this addi-
tional restriction. The result of regression consists of
this restriction plus the original preconditions (with
appropriate variable bindings). Thus, the repair step
"compiles" aspects of the domain constraints into the
operators, introducing new terms such as "no other
tile". The operator definition is, thus, repaired by
adding the new precondition: "no tile other than t
is in cell (zs, y3) _.2

4.2 Missing Variant Outcome

In the MOVE operator, the predicted outcome is that
the agent will move straight in the intended direction
to the adjacent cell. However, the TileWorld simulator
will occasionally cause the agent to "veer" so that it
ends up in a cell to the right or left of the intended
destination. This variant of the outcome is missing

from the initial operator definition.

Figure 2: Inconsistent Projected State

The final step repairs the operator by adding miss-
ing precondition(s) that will prevent predicting this
and similar inconsistent states; although the projected
outcomes of the revised operator might still violate
other domain constraints. This assumes that the do-

main constraint theory is sufficient to explain why a
predicted state is inconsistent and, therefore, why the
action outcome during reaction was unexpected.

That is, given a constraint C which the predicted
outcome state violates, the faulty operator's precon-
ditions are restricted to prevent the projection of not
only this particular outcome state, but of any outcome
state that could violate C. Goal regression (Nilsson,

X
Figure 3: Missing Variant Outcome: Veer Left

As above, the first step detects when the observed

post-state differs from all predicted states. That is,
the operator has a different effect on the world than is
expected. In our example, when the agent was in cell
(1, 0), a 'move east' resulted in the agent veering left
and ending up in cell (2, 1) instead of moving straight

2Note, this added precondition is slightly more specific
than the desired "cen-empty _ precondition.



to cell (2, 0) as predicted (see Figure 3). For this type
of prediction failure, the domain constraint theory can-
not explain the discrepancy between prediction and
observation as an inconsistency in projection. In our
example, there is nothing inconsistent about predict-
ing the agent will move straight.

For this case, the recommended repair is to just
add the observed state as a new expectation for the
future, that is, as an additional variant outcome of the
operator. The new variant outcome is computed as the
difference between the observed post-state and the pre-
state. This assumes that all observed changes can be
attributed to the previous agent action (rather than
to some exogenous event). The new variant is fully
instantiated since there is no theory that supports de-
ductive generalization of the observed instance. We

intend to use inductive learning to generalize over a
set of new variant outcomes. Currently, the instanti-
ated variant outcome is included in the operator defi-
nition with an arbitrarily low probability, and pairs of
pre- and post- state instances are retained for induc-
tion over future observations. In our example, the new
variant outcome is simply "agent in cell (2, 1) _.

5. Learning Domain Constraints

In our first two cases, the approximate operator model
was refined using the domain constraint model. To
demonstrate the mutuality of the theory refinement,
we sketch how the the domain constraint model could

in turn be refined using the operator model. In partic-
ular, we are working toward a method to address the
problem of missing domain constraints which perform

'deletes' in projection. If such a domain constraint is
missing, the predicted state could differ from the ob-
served state. Suppose the (previously mentioned) do-
main constraint "the agent cannot be in two places at
once _ is missing. Then, during projection of the MOVE
operator, the assertion regarding the previous location
of the agent will not be deleted. Hence, in the pre-
dicted post-state the agent is both in its old and new
locations. This differs from the post-state observed
during reaction, in which the agent is in its new lo-
cation only. Since the prediction cannot be explained
as inconsistent, yet is a superset of the observed state,
this guides the method to check whether the superflu-
ous predictions match preconditions. If so, the failure
may be that certain preconditions were not deleted in

projection because of a missing domain constraint.

A new domain constraint is plausibly derived based
on the approximate operator model. The domain con-
straint should describe those superfluous predictions
which match preconditions, yet are not in the observed
outcomes. These need to be deleted during projection.
The result is a new domain constraint which specifies
that those preconditions and all the outcomes of the
operator cannot co-occur. In this example, the new

domain constraint, derived from the MOVE operator
states that the precondition "agent at old location"

and outcomes, including "agent at new location _, can-
not co-occur. Thus a specialization of the missing do-
main constraint "the agent cannot be in two locations
at once _ can be learned using the operators.

6. Related and Future Work

There are many approaches to theory refinement. Tra-
ditional approaches to refinement of knowledge-bases
in expert systems (e.g., Politakls & Weiss, 1984) typ-
ically perform induction over cases. Purely inductive

approaches to refining models for reactive systems in-
clude reinforcement learning (Lin, 1990) and experi-
mentation (Gil, 1991; Christiansen, et al., 1990).

Analytic, or explanation-based learning approaches
to refining approximate theories fall into four broad
categories: (s) using a complete and correct auxiliary
theory to refine the approximate one, as in most EBL
from failure (Hammond, 1986; Mostow & Bhatnagar,
1987; Chien, 1989; Gupta, 1987; Tadepalli, 1989);
(i 0 relying on induction and possibly experimentation
when the explanation is insufficient (Rajamoney & De-
Jong, 1988; Ourston & Mooney, 1990; Pazzani, 1988;
Danyluk, 1989; All, 1989); (ii 0 augmenting the sys-
tem's knowledge through apprenticeship learning from
the user (Wilkins, 1988; Smith, et al., 1985; Laird, et
al., 1990); (iv) using one approximate theory to refine
another. We distinguish our work from the above ap-
proaches to refining approximate theories in that we
use one approximate theory to refine another (Bennett
(1990) is a closely related approach).

In order to circumscribe the problem initially, we
have made a number of assumptions, and did not ad-
dress certain issues. One major assumption underlying
the current work is that the approximations are due to
incompleteness rather than incorrectness. Another as-
sumption is that there is a single recommended refine-
ment. These need to be removed in the future. Other

future issues are: (0 utility of the refinement - being
selective as towhich new information to retain and

Which t0 "forget_i (ii) Consistency maintenance - co-
ordinating the refinements in several models to reflect
each other correctl-y-as new refinements are made; (iii)

dependency maintenance - retaining the appropriate
justifications to retract earlier faulty decisions, as in
_Smith, et al., 1985); (iv) eager versus lazy refinement
- trading offline processing of errors versus waiting un-
til they are observed through failure; (v) deciding what
to sense in the world for failure detection; (vi) refine-
ment based on partial observations,

In conclusion, we have discussed three cases of mu-

tual theory refinement (the first two of w_hich h_
been implemented). In the first, the operator model
was refined with the aid of the approximate domain
constraint model. In the second, inductive learning

T



was used because the domain constraint model was

deemed insufficient to refine the operators analytically.
And in the third, the domain constraint model was re-
fined using the approximate operator model. These
methods begin to pave the way for more robust reac-
tive systems, better able to learn from their failures
and refine their models with experience.
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