
An Investigation of Noise-Tolerant Relational
Concept Learning Algorithms

Clifford A. Brunk and Michael J. F’azrani
Department of Information and Computer Science

University of California, Irvine
Irvine, CA 92717 USA

brunk@ics.uci.edu

Abstract

We discuss the types of noise that may occur in
relational learning systems and describe two
approaches to addressing noise in a relational
concept learning algorithm. We then evaluate
each approach expximentally.

1 INTRODUCTION
Reedy, there have been several advances in relational
concept learning (Muggleton & Feng. 1990; Quinlan,
1990) that may enable large applications to be
implemented (e.g.. Dolsak & Muggleton. 1990). A
characteristic problem of large learning applications is that
them will inevitably be some type of noise in the training
data.
In this paper, we ftrst discuss learning when there is noise
in the training data. We discuss a variety of types of
noise that can occur in relational training data Next, we
describe the FOIL algorithm, concentrating on how it uses
an encoding length metric to prevent 0verIitting the data
We also review reduced error pruning, an approach to
dealing with noise that has been successfully applied to
decision trees (Quinlan, 1987) and decision lists (Pagallo
Bi Haussler, 1990). Finally, we report on a series of
experiments in which we introduce noise into artificially
generated training data for a king-rook-king board
classification problem. The problem we study is to
determine if a chess board containing a white king, white
rook, and black king is in an illegal configuration. A
configuration is illegal if either king is in check or more
than one piece occupies the same space..

2 NOISE IN RELATIONAL DOMAINS

Learning from noisy data has been extensively studied in
propositional (Le.. attribute-value) domains (Quinlan,
1987; Aha & Kibler. 1989; Mingers 1989). Here, we
concentrate on learning from relational data
In propositional learning systems, a classiticalion error
DARIUS in mining data when a datum is not assigned to the

correct class. When purposely introducing cIassiIlcation
errors into data (for purposes such as testing the noise
tolerance ability of a learning algorithm), noisy data are
created by assigning some of the training data to a random
class. Classification noise maps dimctly into relational
learning systems. For example, in the king-rook-king
problem. a 6-tuple (WK,.WKI.WR,.WRt.BK,.BKI) is used
to represent the rank and file of the white king, white rook
and black king. Therefore, (1.1,1.1,7.5) should be a
positive example of the concept illegal (since there are
two pieces on the same square). When there is 20% class
noise., there would be a 0.20 chance that this example is
assigned to a random class (i.e., there is a 0.10 probabihty
it will be falsely reported to the learning program as a
negative example).
Attribute-value data may also contain attribute noise,
attributes that take on the wrong value. For example, in a
medical record a patient’s gender might be recorded
incorrectly, although the disease of the patient (i.e., the
cbrssification) is reported correcrly. We wiN call the
generalization of attriiute noise to relational learners tupfe
noise. With tuple noise, there is a probability that an
element of the k-tuple for a concept to be learned is not
correctly recorded. For instance, the previous illegal
example might be listed as (1.2.1.1.7.5) rather than
(1,1.1,1,7.5). When there is 5% tuple noise, for each
element in the k-tuple there would be a 0.05 chance that
its value is assigned randomly.
An additional complication of relational learners is that
they also require a set of known background predicate
definitions as input. These predicates are used as part of
the learned concept description. However, there may be
noise in these predicates too. Consider the predicate
adjacsn1IX.Y) which is defined extensionally by the set
((1.2)I2,tl(2,31...(8.7)). Background classification noise
would occur if one of these tuples were identified
incorrectly. For example, (1.1) might be. included in this
set, or (12) might be omitted. In addition, background
tuple noise would occur if one of the values were recorded
improperly. For example, (8.7) might be improperly
entered as 18.77). We do not investigate noise in the

389

390 Bmnk and Rtzani

background predicates further since we assume that the
same definitions will be used at learning and testing rime.
Eventually, relational learning programs will have to
address issues of missing data values as we11 as noise. A
Iirst pass at a taxonomy of missing values can be arrived
at by replacing “incorrect” with “unknown” in the
previous discussion. However, in this paper we will
restrict our attention to just noisy training data.

3 THE LEARNING ALGORITHM
FOIL (Quitdan, 1990) is a relational learner which uses a
separate and conquer approach guided hy an information
based heuristic to produce a concept description that covers
all the positive examples and excludes all the negative
examples. Given a collection of classified examples of a
concept (e.g., Illagal(A,B.C.D.E,F)) and a set of
extensionally defined predicates (e.g.. ad)acenttX,Y).
between(X,Y.Z), equal(X,Y)). FOIL produces a Hom-
clause description of the concept in terms of the
extensional predicates.
FOIL can be viewed as having two operators:
add-clause which start a new clause with the body true,
and add-IlIeral which adds a literal to the end of the
current clause body. FOIL performs the add~lltrral
operator until no negative examples are covered by the
clause, and performs the add-clause operator adding new
clauses until all positive examples are covered by some
clause. FOIL computes the information gain of the
variabilizations (i.e., the orderings of existing and new
variables) of each extensionally defined predicate in or&r
to determine which literal to add to the end of a clause.
We will report on experiments with FOCL (Paxzani &
Kibler: 1990) that extends FOIL by allowing the
algorithm to make use of possibly incorrect background
knowledge in the form of intentionally defined predicates
(i.e., Horn-clause concept descriptions). However, we do
not make use of background knowledge in this paper. See
Pazzani. Brunk and Silverstein (1991) for one such
experiment.

4 INFORMATION-BASED
STOPPING CRITERIA

Stopping criteria allow a relaxation of the requirement that
the concept description cover all positive and exclude all
negative examples. This can he useful when learning on
noisy data because it provides a systematic method of
preventing the algorithm from overlilting the data, An
information-based stopping criterion compares some
measure of the information required to encode the learned
description with some measure of the information required
to encode the examples. The result of this comparison
determines when to stop learning.
Quinlan (1990) has implemented an information-based
approach that attempts to detect when the learner may he

overfitting a training set. This formulation determines if
the number of bits required to indicate the positive
examples the covered by the current clause body minus the
number of bits to encode the current clause body is
sufficient to allow new literals to be added to the current
clause. A similar computation determines if there is
enough training data to start a new clause.
EXPLICIT-BITS. the number of hits required to explicitly
indicate the positive examples which the clause covers is
mmputed before each literal is add&.

EXPLICIT-BITS = log2G-j + loga(

T is the number of examples, both positive aad negative,
ia the training sot. p is the number of positive examples
covered by the clause.
CLAUSE-BITS, the number of bits to encode the clause
body is determined after each literal is added to the clause
body. CLAUSE-BITS is equal to the sum of the bits to
encode each literal in the clause body minus the number of
bits to indicate the possible permutations of the literals

CLAUSE-BITS =($ J + Jogz(R) + JogtO’ri>>- J~gzb’)

n is the number of literals in the clause body. R is the
number of predicates. Vri is the number of possible
variabilizations of the pm&ale used in literal i.
With this stopping criteria, only literals which require less
than EXPLICIT-BITS - CLAUSE-BITS bits to encode am
mnsidemd. Liter& are added to the clause until either the
clause covers no negative examples or all literals require
ux) many biu. Similarly, clauses are added to the concept
description until either no positive example in the training
set is left uncovered or all literals require more than
EXPLICIT-BITS - CLAUSE-BITS bits to encode.
FOIL’s stopping criteria serves two purposes. First,
Quinlan has demonstrated that the stopping criteria are
useful when no noise is present in the data, but the
representational bias and search strategy of the learning
system is not sufficient to create an entirely accurate
mncep description. In the king-rook-king problem, when
using the predicates equal(X.Y). ad]acent(X,Y). and
lers_than(X,Y) FOIL learns an approximate definition of
illegal(A,B,C,D.E.F) that is ~&a& 100% accurate.
However, if the predicates equal(X,Y), adiacent(X.Y) and
between(X,Y,i!) are used (where batwaan(X,Y.Z) is defined
as les+than(X,Y) 6 less_than(Y.Z)). FOIL can learn a
definmon of illegal that is 100% accurate (Fazzani &
Kibler. 1990). We believe this occurs because the 100%
accurate definition makes use of not(between(E,A,C)).
When less_thantX.Y) is provided instead of
between(X.Y.i!), FOIL cannot create not(less_than(E,A) 6
less_than(A.C)) because FOIL does not create negations
of conjunctions of literals. Instead, it appears that FOIL
finds ways to approximate this relationship and the

An Investigation of Noise-Tolerant Relational Concept Learning Algorithms 391

stopping criteria allow it to ignore the exceptions to the
approximate relationship. The second purpose of the
stopping criteria is to avoid overfitting noisy data.
However, this use of the stopping criteria has not
previously been subject to systematic experimentation.

5 REDUCED ERROR PRUNING

Reduced error pruning divides the set of examples
available for creating the concept description into two
independent sets. One set, the training set. is used to
learn a concept description while the other set, the pruning
set, is used to increase the accuracy of the learned concept
description. In our experiments, we will use FQCL with
no stopping criteria to learn a concept. This version
continues adding literals to a clause until no negative
examples are covered by the clause or until no predicate
has positive information gain. Similarly, it builds new
clauses until all positive examples are covered. Then a
pruning algorithm that uses the pruning set is run on the
learned concept description.
This implementation of reduced error pruning is a
modification of the pruning algorithm for decision lists
described by Pagallo and Haussler (1990). In our
implementation, the pruning algorithm uses two
operators to increase the accuracy of the concept
description: delete-last-literal which deletes the last
literal from a clause, and drop-clause which drops a
clause from the concept description. During one pass the
pruning algorithm independently applies each operator to
each clause in the concept description retaining the
modification which leads to the greatest improvement in
accuracy. Multiple passes are made over the learned
concept description until all operators, if applied, would
result in a decrease in accuracy on the pruning set. At this
point pruning terminates and the pruned concept
description is returned.
One advantage of reduced error pruning is that it is
independent of the algorithm used to learn the concept
description. It could be applied to the results of inductive
systems such as GOLEM (Muggkton & Feng. 1990):
explanation-based learning systems (Mitchell. Keller, &
Cedar-Kabelli, 1986) or systems that combine
explanation-based and empirical learning such as FQCL
(Faxzani B Kibler, 1990; Parzani, Brunk. & Silverstein.
1991). A-EBL (Cohen, 1990) or IOE (Flann & Dieterich.
1989). However, the delete-last-literal operator
would need to be replaced by a delete-any-llternl
operator. In FOB. literals are learned in an order that
makes the less expensive delete-last4itrral operator
feasible. This ordering is not present in the other
systems.

A disadvantage of reduced error pruning is that the training
set must be subdivided into two sets which decreases the
number of examples available for learning. Since the
algorithm continues to prune until there is a decrease in
accuracy, it requires a pruning set in which there Is at least
one example of each disjunctive clause. It may be
difficult on small example sets to distinguish a clause that
was learned to cover noisy data from a clause that was
learned to cover an infrequently occurring disjunction.

6 EXPERIMENTAL RESULTS

Experiments were run on the king-rook-king board
classitication problem. Three algorithms were compared:

* No Stopping - FOCL with no stopping criteria
learning from lCO% of the data.

* Stopping - FCCL with FOIL’s stopping criteria
learning from 100% of the data.

’ REP - FOCL with no stopping criteria
learning from 66.7% of the training
data and using me remaining 33.3%
for reduced error pruning.

Examples were selected from the domain to conform to a
50% positive 50% negative distribution. This was
accomplished by randomly selecting the example class,
either positive or negative, with probability 0.5, and then
&awing examples at random from the domain until
obtaining one of the selected class. Noise was then
intrcduced.
The 50% positive 50% negative distribution of examples
was chosen to evenly distribute errors of omission and
errors of commission in the training set. In the illegal
domain as selected from a uniform distribution of chess
board configurations, there are many more negative
examples than positive. This would skew the
classitication noise introduced on training data toward
falsely classifying negative examples as positive. Since
we are interested in a technique which is equally adept at
dealing with both types of errors, we normalized the
distribution of training and test data.
In the experiments, we ran a number of trials of each
algorithm on training data sets of size 80. 160, 320 and
480. Bach successively larger set built on the examples
of the smaller sets. For instance, the 160 example set
contains all the data of the 80 example set and the 320
example set contains all the data of the 160 example set.
Bach point in a graph represents the mean over all trials as
measured by testing on loo0 noise free examples. The
bars on the data points represent 95% confidence intervals
around the mean. Some confidence intervals have been
omitted to avoid clutter.

392 Bronk and FazxanI

O.b-) . , . , . , . , . (

0 tw 200 300 400 SO0
Numbs El Exmpled

Figure 1. 20% Classitication Noise Accuracy

6.1 CLASSIFICATION NOISE

In the fit experiment we ran 10 trials of each algorithm.
The graph in Figure 1 represents the mean accuracy over
10 trials as measured by testing on 1000 noise free
examples. In this run, there was 20% classitication noise
addedtothetrainingdata
The graph shows that reduced error pruning is able to
prune a concept definition that overfrts 66.7% of the
training data, and achieve an error rate smaller than the
amount of noise in the domain (since we test accuracy on
noise-free data). However, with a small training set (80)
this algorithm tends not to significantly improve
accuracy. This is due to dividing the data into separate
training and pruning sets. Whh 80 total examples, the
pruning set typically contains 13 positive training
examples and a clause is deleted unless it is needed to
correctly classify one of these examples.
The information-based stopping criteria does not result in
the creation of a concept definition that performs as well
on this training set. In fact, with the stopping criteria,
the system performance is slightly less accurate than
overfitting the noisy data by using no stopping criteria.
Figure 2 shows the errors of commission and Figure 3
shows the errors of omission for this experiment,

0 100 200 300 400 500
NumbaafEhmpb

Figure 2. Classification Noise Errors of Commission

0.0: .) . , . , . , . ,

0 100 200 300 400 so0
N”lnbrrdEumpla

Figure 3. 20% Classification Noise Errors of Omission

These graphs illustrate that with larger data sets, reduced
error pruning tends to have fewer ermrs of omission and
errors of commission than overfitting the noisy data.
However, the information-based stopping criteria tends to
have fewer errors of omission than errors of commission.
We suspect that reduced error pruning performs better on
this data set than the Information-based stopping criteria
due to its use. of two independent samples of the data.

6.2 TUPLE NOISE

In the Second experiment, we ran 6 trials of each
algorithm on haining data sets of size 80, 160. 320 and
480. The graph in Figure 4 represents the mean accuracy
over 6 trials as measured by testing on 1000 noise free.
examples. In thii run, there was 5% tuple noise added to
the training data. (i.e., For every element of each tuple
there is a .05 chance that it has been randomly assigned a
value in the range [l..E].) Since each tuple in this domain
is composed of 6 elements and them is a ~34375 chance
that any element is assigned an erroneous value, it follows
that there is .2354 chance that a tuple is incorrectly
reported to the learning algorithm. Note that a tuple
containing an erroneous element value does not
necessarily mean that the tuple is misclassiBed.

B. I I I
I - rnbb&sM

4 * NGSk!+q

:z
r . I . I . 1 7 1

104 *w 300 400 500

Number or-plea

Figure 4. 5% Tuple Noise Accuracy

An Investigation of Noise-Tolerant Relational Concept Learning Algorithms 393

Figure 5 shows the errors of commission and Figure 6
shows the errors of omission for this experiment. The
data show the same pattern as the classification noise
experiment.

0 100 200 300 400 500

N”nltm cl Eumplr

Figure 5. 5% Tuple Errors of Commission

* Nc.sl+.u

QSrppr
*F.E?

o.o! . , . , . , . , . ,
0 100 200 300 400 so0

Nvmber or Ermpls

Figure 6. 5% Tuple Noise Errors of Omission

7 CONCLUSION
We feel that for any large application to be truly
successful it will have to be capable of learning accurately
in the presence of noise. This topic has been studied
extensively in propositional domains and we feel that it
should continue to be studied in relational domains. We
have presented a brief discussion of the kinds of noise that
may occur in relational data and explored two techniques
for handling noisy data. one of which appears to
significantly increase the accuracy of the learned concept
descriptions. These results should be considered
preliminary. We have so far tested in only one artificially
generated domain. More experiments on other artiIicia1
domains will help to gain further understanding of these
algorithms. In addition, experiments on naturally
occurring data sets will be important in understanding
what types of noise exist in these data sets and which
noise tolerant algorithms will be useful in practical
applications.

Acknowledgements

We would like to thank Ross Quinlan for his advice on
FOIL, and Dennis Kibler for his discussions on noise in
learning. This research is supported in part by NSF grant
lRl-8908260.

References
Aha, D., & Kibler. D. (1989). Noise tolerant instance-
based learning algorithms. Proceedings of he EIevenrh
International Joint Conference an Araficial Intelligence.
Detmit. MI: Morgan Kaufmann.
Cohen, W. (1990). Abductive explanalion-based learning:
A solution 10 the multiple explanation-problem (ML-TR-
29). New Brunswick, NJ: Rutgets University.
Dolsak, B.. & Muggleton, S. (1991). The application of
inductive logic programming IO finite element mesh
design. The Firsr International Workshop on Inductive
Lagic Programming. Porto, Portugal.
Flann, N.. & Dietterich. T. (1989). A study of
explanation-based methods for inductive learning.
Machine Lparnig. 4, 187-226.
Mitchell, T.. Keller, R., & Kedar-Cabelli. S. (1986).
Explanation-based learning: A unifying view. Machine
Learning, 1. 47-80.
Mingers. 1. (1989) An empirical comparison of pruning
methods for decision bee induction. Mac/r& Learning, 4.
227-243.
Muggleton, S., & Feng, C. (1990) Eflicient induction of
logic programs. Proceedings of rhe Firsr Conference on
Algorirhmic L-earning Theory, Tokyo, Japan. Ohmsha.
Pagallo. G., & Haussler. D. (1990). Boolean Feature
Discovery in Empirical Learning. Machine Learning. 5,
71-99.
Pazzani. M., Brunk, C., & Silverstein, G. (1991). An
information-based approach to inregraling empirical and
explanation-based learning Cfechnical Report No. 90-38).
Irvine.CA: University of California, Department of
Information & Computer Science.
Pazzani, M., & Kibler, D. (1990). The uliliry of
knowledge in in&rive learning (Technical Report No.
90-18). Irvine.CA: University of California, Department
of Information & Computer Science.
Quinlan, J,R. (1986a). The effect of noise on concept
learning, in R. Michalski, J. Carbonell. & T. Mitchell
(Eds.), Machine Learning: An Artificial lnrelligence
Approach (Vol. 2). Los Altos, CA: Morgan Kaufmann.
Quinlan. J.R. (1986b). Induction of decision trees.”
Machine Learning, I, 81-106.
Quinlan, J.R. (1987). Simplifying decision trees.
lnrernalional Journal of Man-Machine SUies, 27,221-
234.

Quinlan, J.R. (1990). Learning logical definitions from
relations. Machine Learning. 5.239-266.

