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Abstract

We discuss the types of noise that may occur in
relational learning systems and describe two
approaches to addressing noise in a relational
concept learning algorithm. We then evaluate
each approach experimentally.

1 INTRODUCTION

Recently, there have been several advances in relational
concept learning (Muggleton & Feng, 1990; Quinian,
1990) that may enable large applications to be
implemented (e.g., Dolsak & Muggleton, 1990), A
characteristic problem of large learning applications is that
there will inevitably be some type of noise in the training
data.

In this paper, we first discuss learning when there is noise
in the training data. We discuss a variety of types of
noise that can occyr in relational training data. Next, we
describe the FOIL algorithm, concentrating on how it uses
an encoding length metric to prevent overfitting the data.
We also review reduced error pruning, an approach to
dealing with noise that has been successfully applied 10
deciston trees (Quinlan, 1987) and decision lists (Pagallo
& Haussler, 1990). Finally, we report on 2 series of
experiments in which we introduce noise into artificially
generated training data for a king-rook-king board
classification problem. The problem we study is to
determine if a chess board containing a white king, white
rook, and black king is in an illegal configuration. A
configuration is illegal if either king is in check or more
than one piece occupies the same space.

2 NOISE IN RELATIONAL DOMAINS

Learning from noisy data has been extensively studied in
propositional (i.e., attribute-value) domains (Quinlan,
1987, Aha & Kibler, 1989, Mingers 1989). Here, we
concentrate on leaming from relational data,

In propositional learning systems, a classification error
occurs in training data when a datum is not assigned 10 the

correct class. When purposely introducing classification
errors into data (for purposes such as testing the noise
tolerance ability of a learning algorithm), noisy data are
created by assigning some of the training data 1o a random
class. Classification noise maps directly into relational
learning systems, For example, in the king-rook-king
problem, a 6-tuple (WK, WK WR WR;,BK,BKy) is used

to represent the rank and file of the white king, white rook
and black king. Therefore, (1,1,1,1,7,5) should be a
positive example of the concept illegal (since there are
two pieces on the same square). When there is 20% class
noise, there would be 2 0.20 chance that this example is
assigned to a random class (i.e., there is a 0,10 probability
it will be falsely reported to the learning program as a
negative example).

Attribute-value data may also contain attribute noise,
attributes that take on the wrong value, For example, in a
medical record a patient's gender might be recorded
incorrectly, although the disease of the patient (i.e., the
classification) is reported correctly. We will call the
generalization of attribute noise to relational learners tuple
noise. With tuple noise, there is a probability that an
element of the k-tuple for a concept to be learned is not
correctly recorded. For instance, the previous illegal
example might be listed as (1,2,1,1,7,5} rather than
{(1,1,1,1,7,5). When there is 5% tuple noise, for each
elemeni in the k-tuple there would be a 0.05 chance that
its value is assigned randomly,

An additional complication of relational learners is that
they also require a set of known background predicate
definitions as input. These predicates are used as part of
the learned concept description. However, there may be
noise in these predicates too. Consider the predicate
adjacent(X,Y) which is defined extensionally by the set
{(1.2)(2,1)(2,3)...(8,7)}. Background classification noise
would occur if one of these tuples were identified
incorrectly. For example, (1.1) might be included in this
set, or {1,2) might be omitted. In addition, background
tuple noise would occur if one of the values were recorded
improperly. For example, (8,7) might be improperly
entered as [8,77). We do not investigate noise in the
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background predicates further since we assume that the
same definitions will be used at learning and testing time.

Eventually, relational learning programs will have to
address issues of missing data values as well as noise. A
first pass at a taxonomy of missing values can be arrived
at by replacing "incorrect” with "unknown” in the
previous discussion. However, in this paper we will
restrict our atlention to just noisy training data.

3 THE LEARNING ALGORITHM

FOIL (Quinlan, 1990) is a relational learner which uses a
separate and conquer approach guided by an information
based heuristic to produce a concept description that covers
all the positive examples and excludes all the negative
examples. Given a collection of classified examples of a
concept (e.g., illegal(A,B,C,D,E,F)) and a set of
extensionally defined predicates (e.g., adjaceni{X,Y),
between(X,¥,2), equal(X,Y)), FOIL produces a Hom-
clause description of the concept in terms of the
extensional predicates,

FOIL can be viewed as having (wo operators:
sdd-ciause which start a new clause with the body true,
and add-literal which adds a literal to the end of the
current clause body. FOIL performs the add-literal
operator until no negative examples are covered by the
clause, and performs the add-clause operator adding new
clauses until all positive examples are covered by some
clause, FOIL computes the information gain of the
variabilizations (i.e., the orderings of existing and new
variables) of each exiensionally defined predicate in order
to determine which literal to add to the end of a clause,

We will report on experiments with FOCL, (Pazzani &
Kibler; 1990) that extends FQIL by allowing the
algorithm to make use of possibly incorrect background
knowledge in the form of intentionally defined predicates
(i.e., Hom-clanse concept descriptions). However, we do
not make use of background knowledge in this paper, See
Pazzani, Brunk and Silverstein (1991} for one such
experiment.

4 INFORMATION-BASED
STOPPING CRITERIA

Stopping criteria allow a relaxation of the requirement that
the concept description cover all positive and exclude all
negative examples. This can be useful when learning on
noisy data because it provides a systematic method of
preventing the algorithm from overfitting the data. An
information-based stopping criterion compares some
measure of the information required to encode the leamed
description with some measure of the information required
to encode the examples. The resuit of this comparison
determines when to stop learning,

Quinlan (1990} has implemented an information-based
approach that attempts to detect when the learner may be

overfitting a training set. This formulation determines if
the number of bits required to indicate the positive
examples the covered by the current clause body minus the
number of bits 10 encode the current clause body is
sufficient to allow new literals to be added to the current
clause. A similar computation determines if there is
enough training data to start a new clause.

EXPLICIT-BITS, the number of bits required to explicitly
indicate the positive examples which the clause covers is
computed before each literal is added.

EXPLICIT-BITS = loga(T) + logz((g))

T is the number of exampies, both positive and negative,
in the training set. p is the number of positive examples
covered by the clause.

CLAUSE-BITS, the number of bits to encode the clause
body is determined after each literal is added to the clause
body. CLAUSE-BITS is equal to the sum of the bits to
encode each literal in the clause body minus the number of
bits to indicate the possible permutations of the literals

CLAUSE-BITS =(2z +Jogs(R) + loga (V) )- loga(n!)
i=1

n is the number of literals in the clause body. R is the
number of predicates. Vy, is the number of possible

variabilizations of the predicate used in literal i.

With this stopping criteria, only literals which require less
than EXPLICIT-BITS - CLAUSE-BITS bits to encode are
considered. Literals are added to the clause until either the
clause covers no negative e¢xamples or all literals require
too many bits. Similarly, clauses are added to the concept
description until either no positive example in the training
set is left uncovered or all literals require more than
EXPLICIT-BITS - CLAUSE-BITS bits to encode.

FOIL's stopping criteria serves two purposes. First,
Quinlan has demonstrated that the stopping criteria are
useful when no noise is present in the data, but the
representational bias and search strategy of the learning
system is not sufficient 10 create an entirely accurate
concept description. In the king-rook-king problem, when
using the predicates eaqual(X,Y), adjacent(X,Y), and
less_than{X.Y) FOIL learns an approximate definition of
iltegal{A,B,C.D,E,F) that is pearly 100% accurate.
However, if the predicates equal{X,Y), adjacent(X,Y) and
between(X,Y.Z) are used (where batween(X,Y,2) is defined
as less_than(X,Y) & less_than({¥,Z)), FOIL can learmn a
definition of illegal that is 100% accurate (Pazzani &
Kibler, 1990). We believe this occurs because the 100%
accurate definition makes use of not{between(E, A,C)).
When less_than(X.,Y) is provided instead of
between({X,Y,Z), FOIL cannot create not{less_than({E,A} &
less_than{A,C)) because FOIL does not create negations
of conjunctions of literals. Instead, it appears that FOIL
finds ways to approximate this relationship and the
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stopping criteria allow it to ignore the exceptions to the
approximate relationship. The second purpose of the
stopping criteria is to avoid overfitting noisy data.
However, this use of the stopping criteria has not
previously been subject to systematic experimentation,

5§ REDUCED ERROR PRUNING

Reduced error pruning divides the set of examples
available for creating the concept description into two
independent sets. One set, the training set, is used to
learn a concept description while the other set, the pruning
set, is used to increase the accuracy of the learned concept
description. In our experiments, we will use FOCL with
no stopping criteria to learn a concept. This version
continues adding literals to a clause until no negative
examples are covered by the clause or until no predicate
has positive information gain. Similarly, it builds new
clauses until all positive examples are covered. Then a
pruning algorithm that uses the pruning set is run on the
learned concept description.

This implementation of reduced error pruning is a
modification of the pruning algorithm for decision lists
described by Pagallo and Haussler (1990). In our
implementation, the pruning algorithm uses two
operators to increase the accuracy of the concept
description: delaete-tast-literal which deletes the last
literal from a clause, and drop-cltause which drops a
clause from the concept description. During one pass the
pruning algorithm independently applies each operator to
each clause in the concept description retaining the
modification which leads to the greatest improvement in
accuracy. Multiple passes are made over the learned
concept description until ail operators, if applied, would
result in a decrease in accuracy on the pruning set. At this
point pruning terminates and the pruned concept
description is retumed.

One advantage of reduced error pruning is that it is
independent of the algorithm used 1o learn the concept
description. It could be applied to the results of inductive
systems such as GOLEM (Muggleton & Feng, 1990);
explanation-based learning systems (Mitchell, Keller, &
Cedar-Kabelli, 1986) or systems that combine
explanation-based and empirical leaming such as FOCL
(Pazzani & Kibler, 1990; Pazzani, Brunk, & Silverstein,
1991), A-EBL (Cohen, 1990) or IOE (Flann & Dietterich,
1989). However, the delete-1ast-literal operator
would need to be replaced by a deletg-any-litersl
operator. 1n FOIL, literals are learned in an order tha
makes the less expensive delete-last-literal operator
feasible. This ordering is not present in the other
systems,

A disadvantage of reduced error pruning is that the training
set must be subdivided into two sets which decreases the
number of examples available for leaming. Since the
algorithm continues to prune until there is a decrease in
accuracy, it requires a pruning set in which there is at least
one example of each disjunctive clause. It may be
difficult on small example sets o distinguish a clause that
was learned 1o cover noisy data from a clause that was
leamed 1o cover an infrequently occurring disjunction.

6 EXPERIMENTAL RESULTS

Experiments were run on the king-rook-king board
classification problem. Three algorithms were compared:

» No Stopping - FOCL with no stopping criteria

leamning from 100% of the data.

* Stopping - FOCL with FOIL's stopping criteria
learning from 100% of the data.
* REP - FOCL with no stopping criteria

learning from 66.7% of the training
data and using the remaining 33.3%
for reduced error pruning.

Examples were selectcd from the domain to conform 1o a
50% positive 50% negative distribution. This was
accomplished by randomly selecting the example class,

~ either positive or negative, with probability 0.5, and then

drawing examples at random from the domain until
obtaining one of the selected class. Noise was then
introduced.

The 50% positive 50% negative distribution of examples
was chosen to evenly distribute errors of omission and
errors of commission in the training set. In the illegal
domain as selected from a uniform distribution of chess
board configurations, there are many more negative
examples than positive. This would skew the
classification noise introduced on training data toward
falsely classifying negative examples as positive, Since
we are interested in a technique which is equally adept at
dealing with both types of errors, we normalized the
distribution of training and test data.

In the experiments, we ran a number of trials of each
algorithm on training data sets of size 80, 160, 320 and
480. Each successively larger set built on the examples
of the smaller sets. For instance, the 160 example set
contains all the data of the 80 example set and the 320
example set contains all the data of the 160 example set.
Each point in a graph represents the mean over all trials as
measured by testing on 1000 noise free examples, The
bars on the data points represent 95% confidence intervals
around the mean. Some confidence intervals have been
omilted to avoid clutter,
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Figure 1. 20% Classification Noise Accuracy

6.1 CLASSIFICATION NOISE

In the first experiment, we ran 10 trials of each algorithm.
The graph in Figure 1 represents the mean accuracy over
10 trials as measured by testing on 1000 noise free
examples. In this run, there was 20% classification noise
added to the training data.

The graph shows that reduced error pruning is able 1o
prune a concept definition that overfits 66.7% of the
training data, and achieve an error rate smaller than the
amount of noise in the domain (since we test accuracy on
noise-free data). However, with a small training set (80),
this algorithm tends not to significantly improve
accuracy. This is due to dividing the data into separate
training and pruning sets. With 80 total examples, the
pruning set typically contains 13 positive training
examples and a clause is deleted unless it is needed to
comrectly classify one of these examples.

The information-based stopping criteria does not result in
the creation of a concept definition that performs as well
on this training set. In fact, with the stopping criteria,
the system performance is slightly less accurate than
overfitting the noisy data by using no stopping criteria.
Figure 2 shows the errors of commission and Figure 3
shows the errors of omission for this experiment.
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These graphs illustrate that with larger data sets, reduced
error pruning tends to have fewer ermrors of omission and
errors of commission than overfitting the noisy data.
However, the information-based stopping criteria tends to
have fewer errors of omission than errors of commission.
We suspect that reduced error pruning performs better on
this data set than the information-based stopping criteria
due 1o its use of two independent samples of the data.

6.2 TUPLE NOISE

In the Second experiment, we ran 6 trials of each
algorithm on training data sets of size 80, 160, 320 and
480. The graph in Figure 4 represents the mean accuracy
over 6 trials as measured by testing on 1000 noise free
examples. In this run, there was 5% tuple noise added to
the training data. (i.e., For every element of each tuple
there is a .05 chance that it has been randomly assigned a
value in the range [1..8].) Since each wple in this domain
is composed of 6 elements and there is a .04375 chance
that any element is assigned an erroneous value, it follows
that there is .2354 chance that a tuple is incorrectly
reported to the learning algorithm. Note that a tuple
containing an erroneous element value does not
necessarily mean that the tuple is misclassified.
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Figure § shows the errors of commission and Figure 6
shows the errors of omission for this experiment. The
data show the same pattern as the classification noise
experiment.
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7 CONCLUSION

We feel that for any large application to be truly
successful it will have to be capable of leamning accurately
in the presence of noise. This topic has been studied
extensively in propositional domains and we feel that it
should continue to be studied in relational domains. We
have presented g brief discussion of the kinds of noise that
may occur in relational data and explored two techniques
for handling noisy data, one of which appears to
significantly increase the accuracy of the learned concept
descriptions. These results should be considered
preliminary. We have so far tested in only one antificially
generated domain. More experiments on other artificial
domains will help to gain further understanding of these
algorithms. In addition, experimenis on naturally
occurring data sets will be important in understanding
what types of noise exist in these data sets and which
noise tolerant algorithms will be useful in practical
applications.
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