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Abstract 

We discuss the types of noise that may occur in 
relational learning systems and describe two 
approaches to addressing noise in a relational 
concept learning algorithm. We then evaluate 
each approach expximentally. 

1 INTRODUCTION 
Reedy, there have been several advances in relational 
concept learning (Muggleton & Feng. 1990; Quinlan, 
1990) that may enable large applications to be 
implemented (e.g.. Dolsak & Muggleton. 1990). A 
characteristic problem of large learning applications is that 
them will inevitably be some type of noise in the training 
data. 
In this paper, we ftrst discuss learning when there is noise 
in the training data. We discuss a variety of types of 
noise that can occur in relational training data Next, we 
describe the FOIL algorithm, concentrating on how it uses 
an encoding length metric to prevent 0verIitting the data 
We also review reduced error pruning, an approach to 
dealing with noise that has been successfully applied to 
decision trees (Quinlan, 1987) and decision lists (Pagallo 
Bi Haussler, 1990). Finally, we report on a series of 
experiments in which we introduce noise into artificially 
generated training data for a king-rook-king board 
classification problem. The problem we study is to 
determine if a chess board containing a white king, white 
rook, and black king is in an illegal configuration. A 
configuration is illegal if either king is in check or more 
than one piece occupies the same space.. 

2 NOISE IN RELATIONAL DOMAINS 

Learning from noisy data has been extensively studied in 
propositional (Le.. attribute-value) domains (Quinlan, 
1987; Aha & Kibler. 1989; Mingers 1989). Here, we 
concentrate on learning from relational data 
In propositional learning systems, a classiticalion error 
DARIUS in mining data when a datum is not assigned to the 

correct class. When purposely introducing cIassiIlcation 
errors into data (for purposes such as testing the noise 
tolerance ability of a learning algorithm), noisy data are 
created by assigning some of the training data to a random 
class. Classification noise maps dimctly into relational 
learning systems. For example, in the king-rook-king 
problem. a 6-tuple (WK,.WKI.WR,.WRt.BK,.BKI) is used 
to represent the rank and file of the white king, white rook 
and black king. Therefore, (1.1,1.1,7.5) should be a 
positive example of the concept illegal (since there are 
two pieces on the same square). When there is 20% class 
noise., there would be a 0.20 chance that this example is 
assigned to a random class (i.e., there is a 0.10 probabihty 
it will be falsely reported to the learning program as a 
negative example). 
Attribute-value data may also contain attribute noise, 
attributes that take on the wrong value. For example, in a 
medical record a patient’s gender might be recorded 
incorrectly, although the disease of the patient (i.e., the 
cbrssification) is reported correcrly. We wiN call the 
generalization of attriiute noise to relational learners tupfe 
noise. With tuple noise, there is a probability that an 
element of the k-tuple for a concept to be learned is not 
correctly recorded. For instance, the previous illegal 
example might be listed as (1.2.1.1.7.5) rather than 
(1,1.1,1,7.5). When there is 5% tuple noise, for each 
element in the k-tuple there would be a 0.05 chance that 
its value is assigned randomly. 
An additional complication of relational learners is that 
they also require a set of known background predicate 
definitions as input. These predicates are used as part of 
the learned concept description. However, there may be 
noise in these predicates too. Consider the predicate 
adjacsn1IX.Y) which is defined extensionally by the set 
((1.2)I2,tl(2,31...(8.7)). Background classification noise 
would occur if one of these tuples were identified 
incorrectly. For example, (1.1) might be. included in this 
set, or (12) might be omitted. In addition, background 
tuple noise would occur if one of the values were recorded 
improperly. For example, (8.7) might be improperly 
entered as 18.77). We do not investigate noise in the 
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background predicates further since we assume that the 
same definitions will be used at learning and testing rime. 
Eventually, relational learning programs will have to 
address issues of missing data values as we11 as noise. A 
Iirst pass at a taxonomy of missing values can be arrived 
at by replacing “incorrect” with “unknown” in the 
previous discussion. However, in this paper we will 
restrict our attention to just noisy training data. 

3 THE LEARNING ALGORITHM 
FOIL (Quitdan, 1990) is a relational learner which uses a 
separate and conquer approach guided hy an information 
based heuristic to produce a concept description that covers 
all the positive examples and excludes all the negative 
examples. Given a collection of classified examples of a 
concept (e.g., Illagal(A,B.C.D.E,F)) and a set of 
extensionally defined predicates (e.g.. ad)acenttX,Y). 
between(X,Y.Z), equal(X,Y)). FOIL produces a Hom- 
clause description of the concept in terms of the 
extensional predicates. 
FOIL can be viewed as having two operators: 
add-clause which start a new clause with the body true, 
and add-IlIeral which adds a literal to the end of the 
current clause body. FOIL performs the add~lltrral 
operator until no negative examples are covered by the 
clause, and performs the add-clause operator adding new 
clauses until all positive examples are covered by some 
clause. FOIL computes the information gain of the 
variabilizations (i.e., the orderings of existing and new 
variables) of each extensionally defined predicate in or&r 
to determine which literal to add to the end of a clause. 
We will report on experiments with FOCL (Paxzani & 
Kibler: 1990) that extends FOIL by allowing the 
algorithm to make use of possibly incorrect background 
knowledge in the form of intentionally defined predicates 
(i.e., Horn-clause concept descriptions). However, we do 
not make use of background knowledge in this paper. See 
Pazzani. Brunk and Silverstein (1991) for one such 
experiment. 

4 INFORMATION-BASED 
STOPPING CRITERIA 

Stopping criteria allow a relaxation of the requirement that 
the concept description cover all positive and exclude all 
negative examples. This can he useful when learning on 
noisy data because it provides a systematic method of 
preventing the algorithm from overlilting the data, An 
information-based stopping criterion compares some 
measure of the information required to encode the learned 
description with some measure of the information required 
to encode the examples. The result of this comparison 
determines when to stop learning. 
Quinlan (1990) has implemented an information-based 
approach that attempts to detect when the learner may he 

overfitting a training set. This formulation determines if 
the number of bits required to indicate the positive 
examples the covered by the current clause body minus the 
number of bits to encode the current clause body is 
sufficient to allow new literals to be added to the current 
clause. A similar computation determines if there is 
enough training data to start a new clause. 
EXPLICIT-BITS. the number of hits required to explicitly 
indicate the positive examples which the clause covers is 
mmputed before each literal is add&. 

EXPLICIT-BITS = log2G-j + loga( 

T is the number of examples, both positive aad negative, 
ia the training sot. p is the number of positive examples 
covered by the clause. 
CLAUSE-BITS, the number of bits to encode the clause 
body is determined after each literal is added to the clause 
body. CLAUSE-BITS is equal to the sum of the bits to 
encode each literal in the clause body minus the number of 
bits to indicate the possible permutations of the literals 

CLAUSE-BITS =($ J + Jogz(R) + JogtO’ri>>- J~gzb’) 

n is the number of literals in the clause body. R is the 
number of predicates. Vri is the number of possible 
variabilizations of the pm&ale used in literal i. 
With this stopping criteria, only literals which require less 
than EXPLICIT-BITS - CLAUSE-BITS bits to encode am 
mnsidemd. Liter& are added to the clause until either the 
clause covers no negative examples or all literals require 
ux) many biu. Similarly, clauses are added to the concept 
description until either no positive example in the training 
set is left uncovered or all literals require more than 
EXPLICIT-BITS - CLAUSE-BITS bits to encode. 
FOIL’s stopping criteria serves two purposes. First, 
Quinlan has demonstrated that the stopping criteria are 
useful when no noise is present in the data, but the 
representational bias and search strategy of the learning 
system is not sufficient to create an entirely accurate 
mncep description. In the king-rook-king problem, when 
using the predicates equal(X.Y). ad]acent(X,Y). and 
lers_than(X,Y) FOIL learns an approximate definition of 
illegal(A,B,C,D.E.F) that is ~&a& 100% accurate. 
However, if the predicates equal(X,Y), adiacent(X.Y) and 
between(X,Y,i!) are used (where batwaan(X,Y.Z) is defined 
as les+than(X,Y) 6 less_than(Y.Z)). FOIL can learn a 
definmon of illegal that is 100% accurate (Fazzani & 
Kibler. 1990). We believe this occurs because the 100% 
accurate definition makes use of not(between(E,A,C)). 
When less_thantX.Y) is provided instead of 
between(X.Y.i!), FOIL cannot create not(less_than(E,A) 6 
less_than(A.C)) because FOIL does not create negations 
of conjunctions of literals. Instead, it appears that FOIL 
finds ways to approximate this relationship and the 
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stopping criteria allow it to ignore the exceptions to the 
approximate relationship. The second purpose of the 
stopping criteria is to avoid overfitting noisy data. 
However, this use of the stopping criteria has not 
previously been subject to systematic experimentation. 

5 REDUCED ERROR PRUNING 

Reduced error pruning divides the set of examples 
available for creating the concept description into two 
independent sets. One set, the training set. is used to 
learn a concept description while the other set, the pruning 
set, is used to increase the accuracy of the learned concept 
description. In our experiments, we will use FQCL with 
no stopping criteria to learn a concept. This version 
continues adding literals to a clause until no negative 
examples are covered by the clause or until no predicate 
has positive information gain. Similarly, it builds new 
clauses until all positive examples are covered. Then a 
pruning algorithm that uses the pruning set is run on the 
learned concept description. 
This implementation of reduced error pruning is a 
modification of the pruning algorithm for decision lists 
described by Pagallo and Haussler (1990). In our 
implementation, the pruning algorithm uses two 
operators to increase the accuracy of the concept 
description: delete-last-literal which deletes the last 
literal from a clause, and drop-clause which drops a 
clause from the concept description. During one pass the 
pruning algorithm independently applies each operator to 
each clause in the concept description retaining the 
modification which leads to the greatest improvement in 
accuracy. Multiple passes are made over the learned 
concept description until all operators, if applied, would 
result in a decrease in accuracy on the pruning set. At this 
point pruning terminates and the pruned concept 
description is returned. 
One advantage of reduced error pruning is that it is 
independent of the algorithm used to learn the concept 
description. It could be applied to the results of inductive 
systems such as GOLEM (Muggkton & Feng. 1990): 
explanation-based learning systems (Mitchell. Keller, & 
Cedar-Kabelli, 1986) or systems that combine 
explanation-based and empirical learning such as FQCL 
(Faxzani B Kibler, 1990; Parzani, Brunk. & Silverstein. 
1991). A-EBL (Cohen, 1990) or IOE (Flann & Dieterich. 
1989). However, the delete-last-literal operator 
would need to be replaced by a delete-any-llternl 
operator. In FOB. literals are learned in an order that 
makes the less expensive delete-last4itrral operator 
feasible. This ordering is not present in the other 
systems. 

A disadvantage of reduced error pruning is that the training 
set must be subdivided into two sets which decreases the 
number of examples available for learning. Since the 
algorithm continues to prune until there is a decrease in 
accuracy, it requires a pruning set in which there Is at least 
one example of each disjunctive clause. It may be 
difficult on small example sets to distinguish a clause that 
was learned to cover noisy data from a clause that was 
learned to cover an infrequently occurring disjunction. 

6 EXPERIMENTAL RESULTS 

Experiments were run on the king-rook-king board 
classitication problem. Three algorithms were compared: 

* No Stopping - FOCL with no stopping criteria 
learning from lCO% of the data. 

* Stopping - FCCL with FOIL’s stopping criteria 
learning from 100% of the data. 

’ REP - FOCL with no stopping criteria 
learning from 66.7% of the training 
data and using me remaining 33.3% 
for reduced error pruning. 

Examples were selected from the domain to conform to a 
50% positive 50% negative distribution. This was 
accomplished by randomly selecting the example class, 
either positive or negative, with probability 0.5, and then 
&awing examples at random from the domain until 
obtaining one of the selected class. Noise was then 
intrcduced. 
The 50% positive 50% negative distribution of examples 
was chosen to evenly distribute errors of omission and 
errors of commission in the training set. In the illegal 
domain as selected from a uniform distribution of chess 
board configurations, there are many more negative 
examples than positive. This would skew the 
classitication noise introduced on training data toward 
falsely classifying negative examples as positive. Since 
we are interested in a technique which is equally adept at 
dealing with both types of errors, we normalized the 
distribution of training and test data. 
In the experiments, we ran a number of trials of each 
algorithm on training data sets of size 80. 160, 320 and 
480. Bach successively larger set built on the examples 
of the smaller sets. For instance, the 160 example set 
contains all the data of the 80 example set and the 320 
example set contains all the data of the 160 example set. 
Bach point in a graph represents the mean over all trials as 
measured by testing on loo0 noise free examples. The 
bars on the data points represent 95% confidence intervals 
around the mean. Some confidence intervals have been 
omitted to avoid clutter. 
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Figure 1. 20% Classitication Noise Accuracy 

6.1 CLASSIFICATION NOISE 

In the fit experiment we ran 10 trials of each algorithm. 
The graph in Figure 1 represents the mean accuracy over 
10 trials as measured by testing on 1000 noise free 
examples. In this run, there was 20% classitication noise 
addedtothetrainingdata 
The graph shows that reduced error pruning is able to 
prune a concept definition that overfrts 66.7% of the 
training data, and achieve an error rate smaller than the 
amount of noise in the domain (since we test accuracy on 
noise-free data). However, with a small training set (80) 
this algorithm tends not to significantly improve 
accuracy. This is due to dividing the data into separate 
training and pruning sets. Whh 80 total examples, the 
pruning set typically contains 13 positive training 
examples and a clause is deleted unless it is needed to 
correctly classify one of these examples. 
The information-based stopping criteria does not result in 
the creation of a concept definition that performs as well 
on this training set. In fact, with the stopping criteria, 
the system performance is slightly less accurate than 
overfitting the noisy data by using no stopping criteria. 
Figure 2 shows the errors of commission and Figure 3 
shows the errors of omission for this experiment, 
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Figure 2. Classification Noise Errors of Commission 
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Figure 3. 20% Classification Noise Errors of Omission 

These graphs illustrate that with larger data sets, reduced 
error pruning tends to have fewer ermrs of omission and 
errors of commission than overfitting the noisy data. 
However, the information-based stopping criteria tends to 
have fewer errors of omission than errors of commission. 
We suspect that reduced error pruning performs better on 
this data set than the Information-based stopping criteria 
due to its use. of two independent samples of the data. 

6.2 TUPLE NOISE 

In the Second experiment, we ran 6 trials of each 
algorithm on haining data sets of size 80, 160. 320 and 
480. The graph in Figure 4 represents the mean accuracy 
over 6 trials as measured by testing on 1000 noise free. 
examples. In thii run, there was 5% tuple noise added to 
the training data. (i.e., For every element of each tuple 
there is a .05 chance that it has been randomly assigned a 
value in the range [l..E].) Since each tuple in this domain 
is composed of 6 elements and them is a ~34375 chance 
that any element is assigned an erroneous value, it follows 
that there is .2354 chance that a tuple is incorrectly 
reported to the learning algorithm. Note that a tuple 
containing an erroneous element value does not 
necessarily mean that the tuple is misclassiBed. 
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Figure 4. 5% Tuple Noise Accuracy 



An Investigation of Noise-Tolerant Relational Concept Learning Algorithms 393 

Figure 5 shows the errors of commission and Figure 6 
shows the errors of omission for this experiment. The 
data show the same pattern as the classification noise 
experiment. 
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Figure 5. 5% Tuple Errors of Commission 
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Figure 6. 5% Tuple Noise Errors of Omission 

7 CONCLUSION 
We feel that for any large application to be truly 
successful it will have to be capable of learning accurately 
in the presence of noise. This topic has been studied 
extensively in propositional domains and we feel that it 
should continue to be studied in relational domains. We 
have presented a brief discussion of the kinds of noise that 
may occur in relational data and explored two techniques 
for handling noisy data. one of which appears to 
significantly increase the accuracy of the learned concept 
descriptions. These results should be considered 
preliminary. We have so far tested in only one artificially 
generated domain. More experiments on other artiIicia1 
domains will help to gain further understanding of these 
algorithms. In addition, experiments on naturally 
occurring data sets will be important in understanding 
what types of noise exist in these data sets and which 
noise tolerant algorithms will be useful in practical 
applications. 
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