
Towards Inductive Generalisation in Higher order Logic

Cao Feng, StePhen Muggleton
The T\rring Institute, George Eouse, 36 North Ha¡over Street'

Glasgow Gl 2A'D, UK

øncestor(X,Z),øncestor(Z,Y)' (1)

Y XYY V Z .I e s s Jhøn(X,Y) *
less-than(X,Z),lest-than(Z,Y)' (2)

which are the generalisation respectiveþ of the facts

lesslhan(!,3\, Iesslhan(2,4), " ' and the facts

an ce stor (i ohn, st eo e), ance st or (st ea e, mi k e),'''
The clauses in (1) and (2) a,re very similarjn the sense

that (1) can be obtained from (2) by exchanging the

pt"¿iàiu symbol ancestot with less-flraæ in all its ap-

i"*oo"*, ood vice versa. If we allow for a special vari-

lblu p, it is not difficult to see that both clauses in (L)

and (2) are "substitution instances' of the clause:

vxwvz.P(x,Y) *
P(X,Z),P(Z,Y). (3)

Abstract

In many cases, higher order (Eorn) clauses

are more suited to express certain con-

cepts when relatione between predicates ex-

ist. Howevet, to date there has been no

appropriate higher order formalism within
*hi"h uffi"i"nt inductive generalisation can

be carried out. This paper describes in-
ductive generalisation in M¡ - a higher or-

der formalism which not only retains the

expressiveness of À-calculus but aleo pre'

vides for effective and efficient inductive
generalisation. The main strength of Er is
lwofold: it is a higher formalism exüension

of the (ctausat) first order logic and it cau

be mecùanised in a way similar to the first

order case in Horn clause form' For a class

of restricted M¡, their least general gener-

alisation (tGG) is unique, and so is their

most general unification- Inductive gener-

atisatiãn in Mr is implemented in the al-

gorithm HOIGG. This algorithm has been

applied to some interesting induction prob-

lems in the induction of higher order rule

templates and automatic program transfor-

mation.

1 Introduction

Generalisation forms the basis of most inductive lea¡n-

ing systems. In first order logic, generalisation has

been well-understood

[Plotkinlg?0, Plotkin1971, Reynoldsl'97O], and many

atgorithms have been devieed based on these principles

[Muggleton and Feng1990]. Using a first order induc-

iive tool [Muggleton and Feng1990], we can obtain the

clauses:

Y XYYY Z.øncestor(X,Y\ *

with P being substituted by ancestot for (1) and

IessJhøn f"r 1Z¡. -A.s P is a predicate variable, this

clause needs a itígh"t order language that goes beyond

the first order prãdicate logic used in present machine

learning researcl and applications'

In general, a term E is rnore general than another:

terã f whenevbr there is a substitution 0 for which''

E0 = F. This is oor*utty called term á-subsumption"'"

õúuioorl¡formula (3) is more general than both (i):
and (2). Because the clause in (3) contains lhe

hlglj
,,,,

order variable "P' , this generality cannot be under';, ',

stood under its meaning in first order logic' It.h.Tuii,,

to be made precise by formal semantic and syntäc-Ì'r;i-

tic definitions in higher order logic' Thus we nee(

consider the problem of how P, X,Y 7nd'
Z a1e,

terpreted in (t¡, (2) and (3). Thie has been pa¡

tackted by bgíc ptogtt**iog in higher orderi'

clauses [Nadathur and Miller1990], which it To
sion of (ärst order) logic programmingrnethod-s to

with higher-order terms.

Obviously, the higher order clause is a more p9'

representation both in terms of expressiveneçs. q

fi"i"n"y. Conve.rsely, if we are given the higher

.:ilt:.

:..,i1:ì

'
)tll^;i

!:.ä1?

Towards Ind'uctiue Generalisation in Higlær Ordcr Logic 155

Kietz and Wrobelto appear' Harao1990l, predicate de'

terminations
and modes [Muggleton and Feng1990], va^riable types

[Lavrac and Dzeroskil99l, Quinlan1990] and predi-

ðate commutativity [Lavrac and Dzeroskilgg 1].

At present, higher order terms already have many

applications in machine learning: these include in-
ductive learning [Muggleton and FengL990], analog-

ical reasoning [Harao1990], constructive induction

lRa€dt and Bruyonooghelgg0] and model-d¡iven in-
duction [Kietz and Wrobelto appear]- It is argued

that higher-order terms provide elegant expressions for
many problems. However, the higher order formalisms

used in research to date are unsatisfactory and lack a
sound semantics. In particular they deliberately avoid

using À-calculus. They therefore lose the expressive

power of higher-order logic.

In a higher order logic, a term E is more generølthan

another term F, or F is more specific than .8, if and

only if there is a substitution 0 such that Ed is À-

convertible to F. This is denoted by E 2.e F ot F !6
.8. The relation)9 is transitive, nonsymmetric and

reflexive and thus defines a partial ordering over terms.

E =e F, or .E is d-equal to F if and only tf E 2e F
and.F)e E. When.E ìo ,F but E *e F, we say

E)eForF<sE.
A. term E is a common generøIisation of. a set of terms

f if and only if .E is more general than each of the

terms in 7. A term E is a least genetøI genetalisøtion

of a finite set of terms 7 if and only if: 1) ,E is a
commongeneralisationof.T; and 2) for any F 1e E,
F is not a common generalisation of T.

It is shown in [Feng and Muggletonl9g{ that in gen-

eral there are multiple or an infinite number of solu-

tions for the LGG of two higher-order terms that a¡e

expressed in full øpq \-calculus (see Appendix Ä). In
order to compute LGGs efficiently, it is desirable to
have a restricted À calculus such that MGU and LGG
are unique in the condition of not sacrificing effective'

ness. [t is, indeed, only the formulae similar to (3) in

Section 1 that we are most interested in. To achieve

this we will have to place some additional conditions
on l-calculus and hopefully we can find a manageable

subclass ofthe general À-calculus. One such restriction
is .[¡ [Mitler1990]. Ir [Miller1990, Pfenningl99l] is a

restricted subset of ÀProlog which has unique MGU
a¡d [GG. But it is ill-equipped to express many prob'
lems. In particular it cannot represent recursions in
its terms which we shall see in Section 6.

clause such as the clause in (3) we hope that ïve can

more quickly find the rules (1) and (2) with respect to
some given facts (perhaps in higher order).

2 Motivation

In order to introduce a higher order language we need

to address several issues pertinent in inductive learn-

ing. The main concerns are:

o Expressivenesa. Meta-level information about

inductive problems can, in many cases' only be

expressed adequately with higher order terms.

The induction of program transformation rules

in [Huet and Langl978] is a case in point.

o l¡rduction. Inasmuch machine lea^rning is con-

cerned, we need to consider how (3) can be ob'
tained, especially from the given formulae such

* (1) and (2). This gives rise to the need

of the induction of (3). Similar to the case

in first-order logic [Plotkin1970, Plotkin197l'
Muggleton and Feng1990], this may be solved

by generating the least general generalisation
(tGG) of terms in this language.

o Efficiency. To achieve practical efficiency, de-

duction and induction in this language must be

easy to compute. In specific, corresponding to
first order logic the lower bound of generalisa-

tions and unifications of terms must be unique
as both are unique for the lauguage offirst order

terms.

Following Robinson, unification has become the basis

of resolution-based logic deduction. Huet [Euet1975]
found a semi-deterministic unification algorithm for
higher-order terms. Inspired by the success of
the logic pfogramming language Prolog, ÀProlog

[Nadathur and Millerl990] has been developed as a
full higher-order extension of Prolog. For example,
the formula (3) is a ÀProlog claus€. ÀProlog has

been successfully applied in writing program trans'
foimers, theorem provers and a number of other areas

[Paulson1986, Dietzen and Pfenningl989].

Simila¡ to most general unification (MGU)' the least
general generalisation (tGG) of terms [Plotkin1970,
Muggleton and Feng1990l plays an important role in
the emerging field of iniluctioe logic progrømming,

which is evolved fro_m logic programming and con-
iì:ntional machine téàrninl [Mulgbtonlgéo]. How-
g;y.e¡, as the field matures ti" o*d fot various higher-
óider notions has a¡isen in order to guide the induc-
tion of Born clauses from facts (ground atoms). These

,' inqlude rule templates [Raedt'and Bruyonooghe199O,

156 Feng ønd Mtqglcton

3 M¡: a restricted higher order
language

Readers unfamilia¡ with simple (typed) À-calculus may
go to the Appendix A for the relevant information on
À-calculus. Throughout this paper, the terminology is
simila¡ to that used in logic programming, especially
Prolog. Variables are denoted by upper case letters ¿¡
to Z; formulae and terms by other upper case letters;
constants by lower case letters; types by Greek letters
a, B and, 7; and substitutions by Greek letters d, ó
and etc., when confusion does not a¡ise. The constant**-t' is often used as an infix operator for convenience
of understanding. In a few occasions we will use cal-
ligraphical upper-cas¡e letters to denote sets. Suitable
super- or sub-scripts may also be used.

A I¡ [Miller1990] term contains only free variables
that are applied to bound variables. For example, the
formula

i.ì
,i:

t.:
t,

i.
È

H

ff

i{

Ê

I
H

i;
':j

ll
i::

is a.L¡ term. The free va¡iable p only has arguments
that are bound variables in the formula. p is said to
be applied to X and Y and ÀX is called aù abstrac-
tion from

^Y.^Z.(P(X,Y) - P(X,Z),p(Z,y)).
^va¡iable in an abstraction is called a bound variable,

othe¡wise it is a free va¡iable. \{e will also say a vari-
able is free to a term (or subterm) if it is not bound by
that term (or subterm). When there are miury succes-
sive abstraction variables in a formula such as in (4)
we may write "^XYZ,,.
The term in (a) is closely related to (3) as the
quantifier"ty'X.F" is an abbreviation for "II(ÀX..F')?
and II is a constant expressiug universal quantification
(and similarly "3X.F" is for ,,E(ÀX.Ðr.

Though MGU and LGG is unique in Z¡, it is too con-
strained to express simple terms that contain recur-
sion. Practical examples of the rest¡ictions of .t¡ can
be seen in Section 6. But now let us look at a simple
modification of the above term:

ß eúemølly boanil lf F is a subterm of some term .E
and X is bound by an abstraction in ,E outside of F.
The use of object terms gives rise to the necessity of
the other extensions in M7.

M; is a restricted typed À-calculus. In M¡: 1) It is
allowed to perform a, þ,6o and 7 conversions on terms.
The óo conversion rule is described in Appendix B;
2) .A,ny free variables in Mt terms are only applied
to arguments that are object terms; B) It contains at
least constants ¡ and ry' such that for any object term
of Y\,. E, x(E) = E2 and, rþ(E) = h tf E - (E182),
and, rþ(E) = X(E) = .Ð otherwise. (Both a¡e undefined
for non-object terms).

Clearly M¡ is a¡ extension of the .t¡ language
[Miller1990], in which the ó¡ rule is not permitted and
the arguments of free variable functions can only be
externally bound variables. y and, ry' are analytical
selectors in an analytical syntax as defined by Mc-
Ca,1thy. Fortunately many ptogramming languages,
such as Lisp and Prolog, have these functions. ln M¡
these a¡e further restricted to the application to object
terms, which do not contain abstractions as defined in
this paper. Also note these extensions are introduce
constants into the formalism and therefore are extra_
logical.

4 M¡ normal and nonredundant terms

A term is M¡ normøl if and only if it is in cpó67 nor-
mal form and contains no irreducible 66 expressions.
We will be interested in LGGs and MGIs that are M¡
normal. The following definition is adopted from that
in Section 2. E is the M¡ normøl LGG of a set of M¡
normal terms 7, if and only if: 1) .B is M¡ normal
and is also a common generalisation of T; and 2) F is
not a common generalisation of Z for any M¡ normal
term F <s E.

For M¡ normal term ^g = p(U,U(a)), the sub-
stitution containing óo conversions such as d =
{U/^X.il X = o, then E1 else E2} is not applica:
ble [Curry eú øL1958]. If applied it results io

^SO =,p((ÀX.tf X = øthen Ey else E2),,81), which cannot :

be reduced further because X in X = a is a fræ vari.- 1'

able to X. Thus this term is not a M¡ normal term. ,

Let ^E be a M¡ term and, E' be a d-equal term to E. _i,,,
subterm F of E will have some trace F', so to speak,, i
in E' . F is called the residualof F'. A ,"Ut"r* f ._i:.j
E w redundøntif. E" = E - {F''} and E" =e E, ¡.ç'jì
the residual of F can be removed and still maintaifrai

^X.^Y.^2.(P(X,Y)
*-

P(X, Z), P(Z,Y)).

\xY z.(P(s(x),Y) ,-
P(X, z), P(2, s(Y))).

(4)

(5)
Because it contains a consta¡t s in the arguments of p,
(5) ie not a ,t¡ term which is importantin many logiá
programming problems (see Section 6). We shall in_
t1$¡rce some extra-logical extensions tá lprolog. This
witl be called M¡. In this calculus, a subterm such as
c(X), catled an object term, is expliciily allowed.

An object lerr¿ consists of externally bound variables
and constants of distinct types from any bound va¡i_
ables without abetraction. Ä variable i in a term .F,

á-equality.

Clea,rly, any redundancy calr only happen in

with free va¡iable functors. If .0 is a subterm of ,F' with
free variable functor and no other subterm of]I has the
same functor, then any term containing only constants
and repetitive bound variables in -Ð is redundant: Be.
cause .E is the only subterm that has the free variable
as its functor, we a¡e free to devise various substitu-
tions to decompose ,E into its subterms and then re'
move all constants and repetitive bound variables from
it. The operation to remove redundant subterms is
called a reduction (not to be confused with a, p, 6s and

7 reductions of À calculus). After simple reductions,
constants will appear only in subterms that appear in
multiple places of a terms. [Feng and Muggletonl99l]
describes an algorithm that can reduce a M¡ to its
nonredundant form. In the rest of the paper we refer
terms to M¡ normal, nonredundant terms and their
LGGs to M¡ normal, nonredundant LGGs.

We need also to consider unification, which.is the dual
of LGG. ,E' is the corntnon instance of a set of Mx
terms f if .E is more specific than each element of
T. -E is the most general instance (MGÐ of a set
of Mx terms f if and only if: 1) ø is the common
instance of T; and 2) F is not the common instance
of T for any f')e E. The substitution 0 for which
E;0 = E,llE; € 1|- is called the most general unifier
(MGU). M¡ normal MGU is eimilarly defined except
that ,8, F and E; €. T are all M¡ normal terms. [t
is proved in [Feng and Muggletonl99l], in normal and
nonredundant form the MGU aud LGG of M¡ terms
are unique. The unification algorithm is also given in
[Feng and Muggletonl99l].

5 Implementation

LGG and unification in M¡ is implemented in Prolog,
and is called HOLGG. The LGG aþrithm has two
parses. The first parse is EIGG which collects all the
multiple appearances of subterms into a set of triples
f = {(i,Sr,"r)}. Then I is so¡ted to obtain I =
UL, f¡ for which I¡ = {(i, S¡,T¡l} and each S¡r and
S¡z in Ii have the same functor and so doT¡t andT¡2.
In the second parse, CLGG takes ,5, ? and I¡ (i -
1,...,m) as input and produces f'. CLGG also calls
the algorithm VLGG.

MLGG: anti-unification (LGG) algorithm for
M¡ normal terms.

INPUT: two M¡ normal terms S and ? of
the same type;
OUTPUT: a M¡ normal term ,F' =
MLGG(S,T).
1. I = ELGG(5,7,Ø);
2. Sort I such that I = Uli, f¡ for which

Toutørd,s Ind,uetiue Gercralisation in Higher Ordnr Lagic 157

I¡ = {(X, Si(S¡r, ..., Sin), T;(Tn,..., s¡r))}
for i = lr...rmi

3. F= CLGG(5,?,f,0).

EtGG
INPUT: .9, ? and the binding variables i;
OUTPUT: I = {(Fp, Sp,Tpl} where Fp, Sp

have different functors.
1. If S = ÀÍ..91 and ? =

^Í.Tt,
then I =

ELGG($,f1,*i);
2. If S = ,90(Sr, ..., S'), T = To(Tt,...,Tn)

and .9s - To = C, where C is a constant or
C e *, then I = Ui=r E_LGG(S;,r1,*);

3. If So I ?s, then I = {(X,,S, ?)}.

CTGG
INPUT: .S, ?, the sorted I and the binding

valiables Í;
OUTPUT: .F is the Mr normal LGG of

^S
and ?.

1. If S= ÀÍ..9r and ? = \t.Tt, F =

^t.CLGG(S.,T1,I,Xt);2. If S = .90(.Sr, ..., S'), T = To(Tt,..., T") and
So = ?0, then F = C(Ft,...,F') where .Fi -
CLGG(S;,Tì,1,X);

3. If ,S=,So(,Sr,...,S.), T=To(Tt,...,Ç) and
So * To, and (i,,S, ?) is in I¡ and there
exist ,F¡ (i - 1,..., l),
3.1. If Ss and ?s are constants or free

variables, F = Vgo,7o(F1, F2,..., Ft)l
3.2.If So € Í and ?o is a constant or a free

variable, F = tr/go,7o(.96, Ft, F2,..., fi);
3.3. If So is a constant or a free variable

and ?o € Í, then F =
Vso,ro(Tg, Ft, F2,..., l);

3.4. If ,So € X and ?o € X, then F =
Vso,ro(So, To, Ft, F2,..., Fr); where Fg

= V LGG(S;I,V LGG(...,V LGG
(S¡,¡-r, St¡,i),...),.i) and Fz -
V LGG(T1, V LGG(..., V LGG(T;,¡ - y,

T;¡, X),...), X) so .5 = (...((ÀX.r's)r'1)
...F¡) and

" = (...((À.i.rz)rr)...r¡);
4. If

^9 = .90(.9r, ..., S"), T = To(Tt,..., ?o)
and Ss {Ts,
4.1. If ,So and ?o are constants or free

variables, F = Vgo,7o(Xt, X2,..., Xt);
4.2.If So € Í and ?o is a constant or free

, variable, F = Vso,zo(So, Xt,Xz,...,Xt);
4.3. If .So is a constant or a free variable

and To € Í, then F = Vso,ro(To,Xt,
X2r...,X1);

4.4. If 5o € X and ?o e X, F = Vso,To
_

(50,?0, Xt,Xz,...,Xr); where X¡ € X

Feng and, Muggleton

(i = \...,1) are bound variables in ,9

and ?.

VLGG: Va¡iablisation of terms in M¡'
INPUT: two terms .9 and T and binding

variables i;
OUTPUT: F - VLGG(S,T,X).
1. If S = Ài.^9r and ? -

^t.Tt,
then F =

^t.vLGG(í1,T1,ftt);2.If S --T - C and C is a constant or G €
i,th"o F=C;

3. If S = C(&,..., S,n) and ? =_C(Tt,...,Tn)
and C is a constant ot C € X, then F =
c(v LGG(SI,T|, *), ...,VLGG(S^,T^, x));

4.If. S,T contain variables in X, then fail
otherwise F = Vs,r for a variable named
by .S and ?.

6 Applications

LGG ha^s played an important role in inductive logic
programming in first-order logic. The following exam-
ples show the applications of LGG to acquire higher-
order clause templates from given first-order clauses.

Example 1. Given the first-order facts:

less-than(0,2), leas-than(l,3), . . .

less-than(0,3), less-than(1,4), . . .

less-than(0,1), less-than(1,2), . . .

we are able to obtain the following, using an algorithm
such as Golem [Muggleton and Feng1990]:

YXYZ.less-than(X,Y) +
Ie s s -thøn(X, Z), I e s s -than(Z,Y),

and similarly

YXY Z.øncestor(X,Y) <-
ønce stor (X, Z), ønce st or(Z,Y),

In both clauses X, Y and Z a¡e un\versally quanti-
fied. Note VX.F' is the abbreviation of tr()X.F) and tr
expresses universal quantification. Their higher-order
LGG is

V XY Z.P(X,Y) * P(X, Z), P(Y,Y),

where P is a free va¡iable and "e" is an infix con-
stant. P may then become universally quantified as

this generalisation is accepted.

Though -L¡ can still be used to express the higher-order
term in Example 1, the clause in the following exam-
ple, which contains recursion and represents a major-
ity of problemo that we are interested in, cannot be

e:rpressed within ,ûr. This is because .Lr forbids the
existence of constants in the arguments of free vari-
ables.

B¡¡rnple 2. Given the first-order clauses with X, Y,
Z and W' universally quantified,

Y XY ZW.reaer se(cons(X,Y), Z) .*
reterse(Y,W),
append(W, cons(X, nil)' Z).

Y XY ZW.insert -sort(cons(X,Y), Z) +
insert -sort(Y, W), insert(X,W, Z).

we can obtain

VXY ZW.P(cons(X,Y), Z) *
P(Y,W),8(W,X, Z).

whete oreoerse" is a version often referred to as tnaive

reverse', P and Q are free va,riables, and tcons" is a
list processing function.

One may observe that the first-order facts seem to
be the objects in the induction of first-order clauses.

These clauses then become objects that characterise
the propertiæ of. hågher-onler objects - in this partic-
ular case it is second order predicate constants such
a,s urenerse" ar.d. "insert". At this ttorder" r we a¡e

mainly concerned with the properties of the predicates,

the first order objects will be universally quantified,
and they ane "ta,ken for granted" when studying ob-
jects that may apply on them. After this, the higher-
order objects may become universally quantified.

If we extend this scenario further, we can imagine that
through progressive quantification clauses of succqs-

sive orders can be induced that cha¡acterise objects of
higher-order objects.

Another application a¡ea is the discovery of pre
gram transformation rules. Huet and Lang

[Huet and Lang1978] discussed methods for program
transformation of recursive computations into itera-
tive ones. A set of second order clause templates for
transformation were suggested and they are applied
through second order unification to produce more efi-
cient programs based on the Darlington and Burstallì

[Burstall and Da^rlingtonl977] method. As they rel
marked, the opposite problem with regarding to the

discovery of such templates is a difficult task. Iel
templates are known and no automatic methods exi¡

for performing such discovery. :

þ¡¡rnple 3. The higher-order logic clause in
1, though interesting, is computationally i
To satisfy the first predicate P(X,Y), it needs to
deterministically satisfy P(X,Z) aud then p(Z¡.'l

More efficient programs for øncestor and less.Úl¡ø¿':ê

Ìespectively:

Y XY Z.less -thøn(X,Y) *-
succes sor(X, Z), I e s s -thøn(Z, X).

YXY Z.øncestor(X,Y) ,-
parent(X, Z), ancestor(Z, X).

where successor(X, Z) expresses lbat Z is the succes-

sor of X in Peano's formalism, and pørent(X, Z) statæ
lhat Z is the parent of X. Both are computational
more efficient. Thus possible program trarsformations
are:

(YXY Z.lessJhan(X,Y) *
succe s sor(X, Z), I e s s -thøn(Z, X)))

(YXY Z.lessJhøn(X,Y) *
I e s s -thøn(X, Z), I e s s Jhøn(X,Y)),

(Y XY Z.øncestor(X,Y) *-
pør ent(X, Z), ønce st or(2, X)))

(Y XY Z.øncestor(X,Y) *-
ønce stor (X, Z), ance st or(X, Y)).

The LGG produces a prograrn transformation tem-
plate, though the conditions for the transformation a¡e
omitted.

(V XY z.P(X,Y) * Q(X, z), P(2, X)))

(VXY z.P(X,Y) * P(X,Z),P(X,Y)).

In fact, such a template is applicable when Q is a spe-
cial case ofP (i.e. P by one).

Example 4. The recursive list reverse program is de.
scribed in 3. ,4. more efficient iterative (tail recursive)
version of it is:

Y XY ZWU -reoerset(cons(X,Y), Z,W) +-
app end([Xj, Z, U), r ea er s eL(Y, U, W))

where "reaercel-" contains an accumulator Z. When
oreuer se!' sta¡te with "reoer seL(L,åst, nil,
RnversedList)" and is terminated
by "reoerse!(nil, RnversedList, ReaersedList), it
yields the reversed list. Thue we have a transformation

(YZ.reaerseL(nill, Z, Z) &,
V XY ZW U.reaer sel(cons(X,Y), Z, W) *

app end(lXl, Z, A), r ea er s eL(Y, U, W))

'''
(reaerse(nil,níI) &
Y XY ZW.reaerse(cons(X,Y), Z) *

:,i: reoerse(YrW),append(Wrcons(Xrnil),Z)).

Towørds Ind,uctiue Gercrølisation in Hþhcr Ordcr Logic 159

1{'e also know another transformation which concerns
with the addition of the elements in a list:

(Y Z.surnlistl(nil, Z, Z) k,
Y XY ZWU.sumlistl(cons(X, Y), Z,W) +

ødil(X, Z, U), sumlistl(Y, U, W))

(sumlist(ni,I,0) &
Y XY ZW.sumli.st(cons(X,Y), Z) *

s urnl i. st (Y, W), ødd(W, X, Z)).

where 'þlus" is a function that returns the ad-
dition of two numbers. When sta¡ted with
"sumlistt(List,0,Swnof List)" and terminated by
"surnlistl(ni.l,SumOf List, SumOf List)", the itera-
tive computation also returns the sum of the elements
in the list. The LGG of the two is:

(YZ.P|(nil,Z,Z) k
V XY ZW U.Pl(cons(X,Y), Z,W¡ *

Q(Z,X,U), PL(Y,U,W))

P(niI,V) &,

V XY ZW.P(cons(X,Y), Z) *
P(Y,W),8(W,X, Z)).

with free va¡iables P, 8, Pl and V.

This is au alternative expression of McCarthy's tra¡s-
formation [McCa,rthy1960]. For the sake of conve-

nience we have omitted the conditions for this tranç
formation to apply. It is in fact that, among others, V
must be the lower bound element of the appropriate
type and Q be a transitive and communicative func-
tion. This problem can be addressed by relative least
general generalisation (RIGG) that will be discussed

briefly in Section 7. Eowever, its detail is beyond the
scope of this paper.

The other potential application areas are analogical
reasoning and the automatic acquisition of gramma.r
rules from example sentences and the generalisation
of proofs. However we will not discuss them in this
paper.

7 Conclusion and future research
directions

Rccently, inductive
logic programming [Muggletonl990] has witnessed a
growing trend in utilising higher-order (or metalevel)
logical notions in existing ILP framework. This is mo-
tivated, in part, by the need to develop more effective
and efficient ILP methods. These notions are often
adopted as decla¡ative biases in many forms including
functional constraints on the predicates in clauses aJld

160 Feng ønd. Muggleton

templates for the clauses being induced. However cur-
rent methods lack a coherent framework for accommo-
dating these notions. In this paper, we found a class of
higher order terms that are suficiently expressive and
still have unique MGI and LGG. Their generalisations
also proved to be computationally efficient. This can
be demonstrated by the va¡ious applications in Section
6. This lays the foundation for studying the relative
least general generalisation of such terms.

Our future resea¡ch work is concerned with expand-
ing the current (first order) ILP framework, in which
higher-order inductive inference may be described as
the discovery of a hypothesis .E[from examples and
background knowledge such that:

MABAHT-E+
MAB^uVE- (6)

if M A B V E+. M in relation (6) represents a set of
higher-order (À Prolog) clauses. The hypotheses in ¡/
now can be either first-order or higher-order clauses.
B is the background knowledge, -E+ and E- are re-
spectively the set of positive and negative examples.
Corresponding to existing ILP theory, it is necesnaÌy
to develop methods for generalisation in higher-order
logic. In doing so we hope to achieve two aims: a)
to develop more eft.cient methods for inducing first-
order clauses, and b) to induce higher-order clauses
such that they can aid induction of both classes of
logic programs.

From the experience of ILP in first-order logic, in the
next step we need to study the relative least general
generalisation (RIGG) for higher-order þic programs
iu the presence of background knowledge. Similar to
the first-order case [Muggleton and Feng1990], we may
have to deal with a restricted logical model of the
background knowledge. We also need to investigate
the computability of such a model of the background
knowledge. ff this is successful the results will have
implications in ILP and to the discovery of automatic
program transformation techniques.

Acknowledgements. The authors are grateful to
the ILP group at the T\rring Institute. We are also
thankful to Dale Miller and Flank Pfenning for pro-
viding general information in higher-order logic pro
gramming.

A Syntax of À-calculus terms

A term in (simply typed) À-calculus can be one of the
following:

1. Atom. A va¡iable or constant (of type a) is

aterm (oftype a);
2. Application. Än application of E' (of type

þ - o) to F (of type É) is a term (E .F') (of
type c);

3. Abstraction. The abstraction of a term F
(of type a) on a va¡iable X (of type B) is
the term (ÀX.F') (of type ß - o) that binds
X in the scope F.

The type of a term F is denoted by r(.F). One may
verify that (1), (2) and (3) in Section 1 are terms,
and r(P) - (a,u ---+ B) and r(.-) = (P,P,P -.t),
assuming that r(X) - r(Y) = r(Z) = o. Types are
not essential in some results. They are polymorphic
when used.

We denote (...((F Eù Ez) ...ø") bV the expression
F(81,82,..., En) if f' is an atom, and its type (a1 -(or -...(o,. --* É)...)) UV (or,or,...,en --+ B), where
r(E;) = a¡. F is callerl the functor, E¡ (i = L,2,...,n)
the arguments and n the arity of r'. We also abbrevi-
ate ()X1 .(ÀX2.:.(Àx".F)...)) ro (ÀX1X2...X".F) and
X1X2.-.X'to X.

The onler of an atom is the depth of the nesting of
parentheses in its type * 1. The order ofa term is the
highest order of its atoms. The order of X, Y and. Z
in (3) is 1, and the order of P is 2. The order of (3) is
therefore 2.

4.1 À-conversions

Let F{X/E} be the operation of substitution that re-
places each occurrence of X in F by E. X ie free in F
ifit does not occur in the scope of an abstraction in f'
that binds X. E is free for X in F if -E does not ap-
pea,r in the scope of an abstraction in .F that binds X.
These two conditions are used to avoid possible name
clashes in the following definition of .l conveÌsions.

in first-order logic (sometimes we may omit the dot). :
The conaersion r.ules of the general À-calculus is:

l.ø-rule. .\X.F to
^Y.(F{X/Y})

if y is free
for X in r', and vice versa;

l. É-rule. (^x.F)E to F{x/E} if .Ð is free
for X in F, and vice versa;
3. 7-rule.

^X.FX
to F if X is not free in .F

A sabstituláo¿ is a set of ordered pairs d = {X¡/E¡ li =
1, ..., æ), where X¡ are distinct variables and each .E¡
is a term of the same type a^s X¡. The application
of 0 to a term F is denoted by f'd and it is the
term (...((À.i .F)EL)82)...)8"). Intuirively for each
X¡(i = 1,...,æ) Fd is the results of replacing X ati.
each place in f' by the subterm ,E;. The compositiot iì
of substitutions, denoted by 0.6, is the ea"me as defined. ,,

Towørds Inductiue Generalisøtion in Highcr Ordcr Logic 161

and vice versa.

The conaertibilitù of two terms is an equivalence rela-
tion. The rules can be carried out in both left-to-right
and right-to-left directions. À-Convertible terms are
considered to be equal to each other. An application
of a conversion rule is called a o (or B and, etc.) re-
duction when applied in the left-to-right direction and
an expønsion in the opposite direction. Ä) term that
cannot be reduced by rules of any kind is said to be in
normal forrn.

Church and Rosser proved that the normal form of a
term is unique. For any convertible .l terms ,E and
f', there is a term ,9 in normal form such that ,Ð and
F can be reduced to .9. They also proved the nor-
mal form of a terrn can be obtained by attacking the
leftmost reduction on one.by-one ba.sis until no reduc-
tion is possible. We should bear in mind at this point,
apart from a, B and 7 rules, there are other conversion
rules that also maintain Church and Rosser properties
such as the ó and ós rules that will be introduced in
Appendix B.

B Extension to ó6 conversion

We will first consider a conversion rule of 6¡, which is
a variant ofthe ó conversion rule studied by Church in
an extension to eBq.l-calculus. The óo conversion rule
is defined as follows. If .E and .F' are in B6se normal
form without variables free in E and, F:

1. 6oEF -
^XY.X

if E is c-convertible to F;
2. 6oEF : ÀXY.Y otherwise.

^XY.X
is known a,s "ttue' and, ÀXY.Y as ,Îalse" in

the standard à-calculus (In Church's sysl,em, truth is
expressed by ÀXY.XY - the combinatory number I
- and falsity by),XY.X(XY) - the number 2. This
is an arbitrary choice).

ós rule is similar to a weaker form of the equality the-
ory introduced in modern deductive logic. Similarly
to uBr¡ À-calculus, the application of the ós rule from
left-teright is called a ás reduction. It is shown that
ós reductions maintain the Church-Rosser properties
of À-calculus when the reduction expressions are car-
¡ied over from the original (perhaps not in p6sq nor-
mal form) terms. We shall restrict ourselves to such a
)-calculus.

(¡X.((óoXlV)Et)Ez).When .F' is applied to aterm M,
we obtain FM = (((6¡MN)E1).E2) which corræponds
to "if M is o convertible to N, then,El else .82", where
6oM N is the ós reduction expression and .81 and. E2
a¡e the terms applied upon by this reduction. M, N,
.Er and E2 are in B6sq normal form. M and N con-
tain no variables free in them. We shall denote ,F' by
"^X.åf X = N then El else E,2". Clearly, (ÀX..8'1) is
convertible to (ÀX.ff X = N then E1 else E2\ if. E1
is a-convertible to .Ð2.

References

[Burstall and DarlingtonlgTT]
R.M. Burstall and J. Darlington. A transformation
system for developing recursive programs. JoutnøI
itf the ACM,24(I), 1977.

[Curry eú cL1958] H. Curry, R. Feys, and W. Craig.
Combinatory Logic (Volume 1,). North Holland, A,m-
sterdam, Holland, 1958.

[Dietzen and Pfenningl989] S. Dietzen and F. pfen-
ning. Higher-order and modal logic as a frame-
work for explanation-based generalization. In
B. Spatz, editor, Proceedings of the siuth intetna.
lional workshop on møchine leørning. Cornetl [Ini-
aersitg, Ithacø, New York, pagæ MZ - 44g. San Ma-
teo, CA: Morgan Kaufmann, June 1989.

[Feng and Muggletonl99l] Cao Feng and Stephen
Muggleton. Least general generalisation in higher
order logic. TIRM, The T\rring Institute, George
Eouse, 36 NOrth Hanover St, Glasgow, UK, Lggl.

[Earao1990] Masateru Harao. Anaþical reasoning
based on higher order unification. In First Inter-
natåonal Conference on Algoróthmic Leanting The-
ory, pages 151-163, Tokyo, Japan, 1990. Japanese
Society for Artificial Intellligence.

[Euet and tang1978] G. Huet and B. Lang. Proving
and applying program transformations expressed
with second order patterns. Acta Informatica,
1L:31-55, 1978.

[Huet1975] G. Euet. Ä unification algorithmfor typed
À-calculus. Theoreticsl Computer Science, 7:27-57,
1975.

[Kietz and IVrobelto appear] J. Kietz and S. \{ro-
bel. Controlling the complexity of learning in logic
through syntact ic and task orieted models. In
S. Muggleton, editor, Proceedings ol the First In-
temational Woúshop on Inductive Logic Progrøm-
ming,Yiana de Castelo, Portugal, to appear. Aca-
demic Press.

[Lavrac and Dzeroskilggl] N. Lavrac and S. Dze¡oski.
Lea.rning nonrecußive definitions of relations with

l

l

l

I

l

l
I

I

1

I
I

l

rIhe term
^XY.X

selects the first argument
::'and Y, whereas

^Xy.y
selects the second.

,,rqg the 6s rule we can construct a
;'. lNote-often ¡!n û conversion is used prior to a B conver-
sron to change the n¡mes of bound variìbhs.

ofX
Us-

F

162 Feng øn'dMugglnton

linus. In Y' Kodratoff, editor, EWSL '91: nachìne

Ieøming: proceedings of the Europeøn working ses-

sion oi liørning, pages 265-281, Porto, Portugal"

1991. Berlin: SPringer-Verlag'

[McCa,rthy1.960] J. McCa,rthy' R'ecursive functions of
' symbolic expressions and their computation by ma-

cline (part l). Communications of the Associøtion

of C ompatøtionøI M øchinery, 3:184-204' 1960'

[Milter1990] D. Miller. A logic programming languaç
'- *itn À-a'bstraction, function va¡iables and simple

unification. In P. Schroeder-Heister, editor, Eúen-

sions of logic ptogrømminq, Pagæ 237-258'Sprinter-

Verlag LNCS, 1990.

[Muggleton and Fengl'990] S' Muggteton and C' Feng'
'

Eh-cient induction of logic ptograms' In First Inter'

nøtionøI Confetence on Algorithmic Leøming The'

ory, pages 369-38L, Tokyo, Japan, 1990' Japanese

Society for Artificial Intellligence'

[Muggletonlgg0] S. Muggleton' Inductive logic pro-
' gramming. In Firsf Internationol Conference on

"Algoútnn;c Leørning Theory, I'olume Also in New

Gelneration Computing, 199L, Vol 8, pages 42-61'

Tokyo, Japan, t990. Japanese Society for Artificial

Intellligence.

[Nadathur and Miller1990] G' Na-

dathur and D. Miller. Eigher-order horn clauses'

fountal of the Association for Compaling Machin'

erE, 37 (4):777-814' 1990.

[Paulson1986] L. Paulson. Natural deduction as

higher-ordãr resolution. Joumal of Logic Progrøm'

ming, 3(3):237-258' 1986'

[Pfenningl9gl] F. Pfenning' U¡ifrcation and anti-
' unificJtiot io th" Calculus of Constructions' In

G. Kahn, editor, Si,xth Annual Symgtosiam on Logic

án Computer Science, pages 74 - 85' IEEE' July

1991.

[Plotkin1970] G.D. Plotkin' A note on inductive gen-
' eralisation. In B. Meltzer and D' Michie' edi-

tors, Machine Intelligence 5, pages 153-163' Else-'

vier North-Holland, New York, 1970'

[Plotkinlg?1] G.D. Plotkin' A further note on induc-

tive generalisation. In B. Meltzer and -!' -Yi"q:'
editois, Machine Inlelligence 6, pages 101-124' El-

sevier North-Holland, New York, 1971'

[Quinlan1990] J.R. Quinlan' Lea'rning fogical
defini-

tions from relations. Machine Leømöng, 5(3):239-

266, 1990.

lRaÊdt and BruYonooghelgg0]
L. De Ra€dt and M. Bruyonooghe' Constructive in-

duction by analogy: a new method to learn how to

learn? In K. Morik' editor, EWSL'î|: proceedings

of the fourth earopeon working session on leataing'

Montpellier, France, 1990. London: Pitman'

[Reynotdsl970l J.C. Reynolds' tansformational sys-
' ltå*" and thå algebraic structure of atomic formulas'

In B. Meltzet *a O. Michie, editors, Machine In-

lelli g
"n

ce.l, pages 1 35-1 5 1' Elsevier North-Holland'

New York, 1970.

