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Abstract

In many cases, higher order (Horn) clauses
are more suited to express certain con-
cepts when relations between predicates ex-
ist. However, to date there has been no
appropriate higher order formalism within
which efficient inductive generalisation can
be carried out. This paper describes in-
ductive generalisation in M) —a higher or-
der formalism which not only retains the
expressiveness of A-calculus but also pro-
vides for effective and efficient inductive
generalisation. The main strength of R, is
twofold: it is a higher formalism extension
of the (clausal) first order logic and it can
be mechanised in a way similar to the first
order case in Horn clause form. For a class
of restricted M), their least general gener-
alisation (LGG) is unique, and so is their
most general unification. Inductive gener-
alisation in M) is implemented in the al-
gorithm HOLGG. This algorithm has been
applied to some interesting induction prob-
lems in the induction of higher order rule
templates and automatic program transfor-
mation.

1 Introduction

Generalisation forms the basis of most inductive learn-
ing systems. In first order logic, generalisation has
been well-understood
[Plotkin1970, Plotkin1971, Reynolds197 0], and many
algorithms have been devised based on these principles
[Muggleton and Feng1990]. Using a first order induc-
tive tool [Muggleton and Feng1990], we can obtain the
clauses:

VXVYVZ.ancestor(X,Y) «

ancestor(X, Z), ancestor(Z,Y). (1)
YXVYYVZ.less_than(X,Y) «—
less_than(X, Z),less than(Z,Y). (2)

which are the geliera.lisa.tion respectively of the facts-
lessthan(1,3), lessthan(2,4), ... and the facts
ancestor(john, steve), ancestor(steve, mike), ...

The clauses in (1) and (2) are very similar in the sense
that (1) can be obtained from (2) by exchanging the
predicate symbol ancestor with less_than in all its ap-
pearances, and vice versa. If we allow for a special vari-
able P, it is not difficult to see that both clauses in (1)
and (2) are “substitution instances” of the clause:
VXVYVZ.P(X,Y) « ,
P(X,Z), P(Z,Y). @)
with P being substituted by ancestor for (1) and
less_than for (2). As P is a predicate variable, this
clause needs a higher order language that goes beyond
the first order predicate logic used in present machine
learning research and applications. i

In general, a term E is more general than another
term F whenever there is a substitution 6 for which
E@ = F. This is normally called term #-subsumpti
Obviously formula (3) is more general than both
and (2). Because the clause in (3) contains the hig
order variable “P”, this generality cannot be un
stood under its meaning in first order logic. T
to be made precise by formal semantic and synt
tic definitions in higher order logic. Thus we need
consider the problem of how P, X, Y and Z ar
terpreted in (1), (2) and (3). This has been par
tackled by logic programming in higher orde

clauses [Nadathur and Miller1990}, which is an.e
sion of (first order) logic programming methods t
with higher-order terms. )

Obviously, the higher order clause is a more 0
representation both in terms of expressiveness, al
ficiency. Conversely, if we are given the highe
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clause such as the clause in (3) we hope that we can
more quickly find the rules (1) and (2) with respect to
some given facts (perhaps in higher order).

2 Motivation

In order to introduce a higher order language we need
to address several issues pertinent in inductive learn-
ing. The main concerns are:

o Expressiveness. Meta-level information about
inductive problems can, in many cases, only be
expressed adequately with higher order terms.
The induction of program transformation rules
in [Huet and Langl978] is a case in point.

e Induction. Inasmuch machine learning is con-
cerned, we need to consider how (3) can be ob-
tained, especially from the given formulae such
as (1) and (2). This gives rise to the need
of the induction of (3). Similar to the case
in first-order logic [Plotkin1970, Plotkin1971,
Muggleton and Feng1990], this may be solved
by generating the least general generalisation
(LGG) of terms in this language.

o Efficiency. To achieve practical efficiency, de-
duction and induction in this language must be
easy to compute. In specific, corresponding to
first order logic the lower bound of generalisa-
tions and unifications of terms must be unique
as both are unique for the language of first order
terms.

Following Robinson, unification has become the basis
of resolution-based logic deduction. Huet [Huet1975]
found a semi-deterministic unification algorithm for
higher-order terms. Inspired by the success of
the logic programming language Prolog, AProlog
[Nadathur and Miller1990] has been developed as a
full higher-order extension of Prolog. For example,
the formula (3) is a AProlog clause. AProlog has
been successfully applied in writing program trans-
formers, theorem provers and a number of other areas
[Paulson1986, Dietzen and Pfenning1989].

" Similar to most general unification (MGU), the least
general generalisation (LGG) of terms [Plotkin1970,
Muggleton and Fengl1990] plays an important role in
the emerging field of inductive logic programming,
which is evolved from logic programming and con-
ventional machine learning [Muggleton1990]. How-

-ever, as the field matures the need for various higher-
order notions has arisen in order to guide the induc-
: Flon of Horn clauses from facts (ground atoms). These
~-include rule templates [Raedt and Bruyonooghe1990,

Kietz and Wrobelto appear, Harao1990], predicate de-
terminations

and modes [Muggleton and Fengl990], variable types
[Lavrac and Dzeroskil991, Quinlan1990] and predi-
cate commutativity [Lavrac and Dzeroski1991].

At present, higher order terms already have many
applications in machine learning: these include in-
ductive learning [Muggleton and Fengl990], analog-
ical reasoning [Harao1990], constructive induction
[Raedt and Bruyonooghel990] and model-driven in-
duction [Kietz and Wrobelto appear]. It is argued
that higher-order terms provide elegant expressions for
many problems. However, the higher order formalisms
used in research to date are unsatisfactory and lack a
sound semantics. In particular they deliberately avoid
using A-calculus. They therefore lose the expressive
power of higher-order logic.

In a higher order logic, a term E is more general than
another term F, or F is more specific than E, if and
only if there is a substitution # such that E¢ is A-
convertible to F. This is denoted by E >y F or F' <y
E. The relation >4 is transitive, nonsymmetric and
reflexive and thus defines a partial ordering over terms.
E =¢ F, or E is f-equal to F if and only if E >4 F
and F >9 E. When E >¢ F but E #¢ F, we say
E>yForF<y E.

A term E is a common generalisation of a set of terms
T if and only if E is more general than each of the
terms in 7. A term F is a least general generalisation
of a finite set of terms 7 if and only if: 1) E is a
common generalisation of 7; and 2) for any F <4 E,
F is not a common generalisation of 7.

It is shown in [Feng and Muggleton1991] that in gen-
eral there are multiple or an infinite number of solu-
tions for the LGG of two higher-order terms that are
expressed in full @Bn A-calculus (see Appendix A). In
order to compute LGGs efficiently, it is desirable to
have a restricted A calculus such that MGU and LGG
are unique in the condition of not sacrificing effective-
ness. It is, indeed, only the formulae similar to (3) in
Section 1 that we are most interested in. To achieve
this we will have to place some additional conditions
on A-calculus and hopefully we can find a manageable
subclass of the general A-calculus. One such restriction
is Ly [Miller1990]. Ly [Miller1990, Pfenn1ng1991] is a
restricted subset of AProlog which has unique MGU
and LGG. But it is ill-equipped to express many prob-
lems. In particular it cannot represent recursions in
its terms which we shall see in Section 6.
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3 M,: arestricted higher order
language

Readers unfamiliar with simple (typed) A-calculus may
go to the Appendix A for the relevant information on
A-calculus. Throughout this paper, the terminology is
similar to that used in logic programming, especially
Prolog. Variables are denoted by upper case letters U
to Z; formulae and terms by other upper case letters;
constants by lower case letters; types by Greek letters
@, B and 7; and substitutions by Greek letters 6, §
and etc., when confusion does not arise. The constant
“e-" is often used as an infix operator for convenience
of understanding. In a few occasions we will use cal-
ligraphical upper-case letters to denote sets. Suitable
super- or sub-scripts may also be used.

A L, [Miller1990] term contains only free variables
that are applied to bound variables. For example, the
formula,

AXAY.AZ(P(X,Y) «

P(X, 2), P(2,Y)). @)
is a Ly term. The free variable P only has arguments
that are bound variables in the formula. P is said to
be applied to X and Y and AX is called an abstrac-
tion from AY.AZ.(P(X,Y) « P(X,Z),P(Z,Y)). A
variable in an abstraction is called a bound variable,
otherwise it is a free variable. We will also say a vari-
able is free to.a term (or subterm) if it is not bound by
that term (or subterm). When there are many succes-
sive abstraction variables in a formula such as in (4)
we may write “AXY Z”.

The term in (4) is closely related to (3) as the
quantifier“V.X.F” is an abbreviation for “I(AX.F)”
and IT is a constant expressing universal quantification
(and similarly “3X.F” is for “C(AX.F)”).

Though MGU and LGG is unique in L, it is too con-
strained to express simple terms that contain recur-
sion. Practical examples of the restrictions of Ly can
be seen in Section 6. But now let us look at a simple
modification of the above term:
AXY Z.(P(5(X),Y)

P(X,Z2), P(Z,5(Y))). ()
Because it contains a constant s in the arguments of P,
() is not a Ly term which is important in many logic
programming problems (see Section 6). We shall in-
troduce some extra-logical extensions to AProlog. This
will be called M. In this calculus, a subterm such as
8(X), called an object term, is explicitly allowed.

An object term consists of externally bound variables
and constants of distinct types from any bound vari-
ables without abstraction. A variable X in a term F

the other extensions in M.

is ezternally bound if F is a subterm of some term E
and X is bound by an abstraction in E outside of F.
The use of object terms gives rise to the necessity of

M, is a restricted typed A-calculus. In M,: 1) It is
allowed to perform «, 3, 8y and 7 conversions on terms.
The 6y conversion rule is described in Appendix B;
2) Any free variables in My terms are only applied
to arguments that are object terms; 3) It contains at
least constants x and 4 such that for any object term
of My, E, x(E) = E; and ¥(E) = E; if E = (E+E»),
and Y(E) = x(E) = E otherwise. (Both are undefined
for non-object terms).

Clearly M) is an extemsion of the L, language
[Miller1990], in which the &; rule is not permitted and
the arguments of free variable functions can only be
externally bound variables. x and v are analytical
selectors in an analytical syntax as defined by Mc-
Carthy. Fortunately many programming languages,
such as Lisp and Prolog, have these functions. In M. hy
these are further restricted to the application to object
terms, which do not contain abstractions as defined in
this paper. Also note these extensions are introduce
constants into the formalism and therefore are extra-
logical.

4 M, normal and nonredundant terms

A term is M) normalif and only if it is in afbon nor-
mal form and contains no irreducible &, expressions.
We will be interested in LGGs and MGISs that are M Y
normal. The following definition is adopted from that-
in Section 2. E is the M), normal LGG of a set of M,
normal terms 7, if and only if: 1) E is M) normal
and is also a common generalisation of 7'; and 2) Fis
not a common generalisation of 7 for any M) normal
term F <y F. :

For My normal term S = p(U,U(a)), the sub-
stitution containing &y conversions such as 8 =
{U/AX.if X = a then E; else E,)} is not applica-
ble [Curry et al.1958]. If applied it results in S0 =
P((AX.if X = a then E; else Es), E;), which cannot
be reduced further because X in X = a is a free var

able to X. Thus this term is not a M) normal term. -

Let E be a M) term and E' be a f-equal term to E. 4
subterm F of E will have some trace F', so to speak
in E'. F' is called the residual of F'. A subterm F o
E i8 redundant if E' = E' — {F'} and E" =, E, i
the residual of F' can be removed and still maint
O-equality.

Clearly, any redundancy can only happen in ter 1
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with free variable functors. If E is a subterm of F' with
free variable functor and no other subterm of F has the
same functor, then any term containing only constants
and repetitive bound variables in E is redundant: Be-
cause E is the only subterm that has the free variable
as its functor, we are free to devise various substitu-
tions to decompose F into its subterms and then re-
move all constants and repetitive bound variables from
it. The operation to remove redundant subterms is
called a reduction (not to be confused with o, 3, 6y and
7 reductions of A calculus). After simple reductions,
constants will appear only in subterms that appear in
multiple places of a terms. [Feng and Muggleton1991]
describes an algorithm that can reduce a M) to its
nonredundant form. In the rest of the paper we refer
terms to M) normal, nonredundant terms and their
LGGs to M) normal, nonredundant LGGs.

We need also to consider unification, which is the dual
of LGG. E is the common instance of a set of M)
terms 7 if F is more specific than each element of
T. E is the most general instance (MGI) of a set
of M) terms 7 if and only if: 1) E is the common
instance of 7; and 2) F is not the common instance
of T for any F >4 E. The substitution # for which
Ei = E\VE; € T is called the most general unifier

(MGU). M) normal MGU is similarly defined except’

that E, F and E; € T are all My normal terms. It
is proved in [Feng and Muggleton1991], in normal and
nonredundant form the MGU and LGG of M) terms
are unique. The unification algorithm is also given in
[Feng and Muggleton1991].

5 Implementation

LGG and unification in M) is implemented in Prolog,
and is called HOLGG. The LGG algorithm has two
parses. The first parse is ELGG which collects all the
multiple appearances of subterms into a set of triples
I' = {(X,S),T1)}. Then T is sorted to obtain I' =
U =1 I'i for which T; = {(X,S;,T;)} and each Sj; and

Sj2 in T; have the same functor and so do Tj; and Tjs.

In the second parse, CLGG takes S, T and I; (i =
1,...,m) as input and produces F. CLGG also calls
the algorithm VLGG.

MLGG: anti-unification (LGG) algorithm for
M) normal terms.
INPUT: two M) normal terms S and T of
the same type;
OUTPUT: a M, normal term F =
MLGG(S,T).
1. T = ELGG(S, T, 0);
2. Sort T such that T' = |J;2, I; for which

3.
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I = {(X,S:(Sj1, - +5ik))}

Sjn), 111'(1-:1'1) vee
fori=1,...,m;
F =CLGG(S,T,T,0).

ELGG ~
INPUT: S, T and the binding variables X;
OUTPUT: I = {(Fp, Sp, Tp)} where Fp, S,

1.

2.

3.

have different functors.

FS=AY.S;and T=AY.T}, then T =
ELGG(S:, Ty, XY);

If S = SQ(S]_, ceey Sn), T= To(Tl, ...,Tn)
and Sy = Ty = C, where C is a constant or
C e X, then T = U, ELGG(S:, T3, X);
If So # To, then T = {(X, S, T)}.

CLGG
INPUT: S, T, the sorted I‘ and the binding

variables X

OUTPUT: F is the M) normal LGG of S

1.

2.

. 4.1.

XS = So(Sy, ...,

LIS = S6(S1, -

and T.

KS=AY.S;and T=AY.Ty, F=

AY .CLGG(S:, Ty,T, XY);

If S = So(sl, ...,S,-,), T= TQ(T]_, ...,Tn) and

So = Tp, then F = C(Fy, ..., Fy,) where F; =

CLGG(S:, T:, T, X);

Sn), T= To(Tl, ...,Tn) and

So # To, and (X', S,T) is in I'; and there

exist F; (i =1,...,0),

3.1. If Sy and Ty are constants or free

variables, F' = Vs, 1,(F1, F2, ..., F1);

IfS e X and Ty is a constant or a free

variable, F = Vs, 1,(So0, F1, Fa, ..., F1);

If Sy is a constant or a free variable

and Tp € )~(, then F =

Vso,10(To, F1, F, ..., FY);

34. f Sy € X and Ty € X, then F =
Vso,15(S0, To, F1, F, ..., F1); where Fg
= VLGG(S,-E , VLGCE(..., VLGG
(S;,j_1,5,'j,X), ...),X) and Fp.=
VLGLG(T,'l, YLGG(..., VLGGgT,-,j_-l,
Tij, X),..),X)s0o § =~(...((/\X.F5)F1)
wF) and T = (..(AX.Fr)F)...F});

Sn), T = To(Th, .-, T2)

3.2

3.3.

and S() ?é To,

If Sp and T are constants or free
variables, F' = Vs, 1,(X1, X2, ..., X1);
If S; € X and T} is a constant or free
variable, F = Vg, 1,(S0, X1, X2, ..., X1);
If Sy is a constant or a free variable
and Ty € X, then F = Vs, 1o(To, X1,
X2y -ees X:’); .
IfSoeXandTh € X, F=Vs, 1, .
(S0, To, X1, X2, .... X1); where X; € X

4.2.

4.3.

44.
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(i =1, ...,1) are bound variables in S
and T.

VLGG: Variablisation of terms in M.

INPUT: two terms S and T and binding
variables X;

- QUTPUT: F = VLGG(S, T, X).

1. If $=AY.S; and T = AY Ty, then F =
AY. VLGG(S'l,Tl,XY)

2. If S =T =C and C is a constant or .C €

X, then F = C;

3. HS= C(S]_,.. Sn) andT:C(Tl,..., n)
and C is a constant or C € X, then F =
C(VLGG(S1,Ti, X), ..., VLGG(Sn, Tn, X));

4. If S,T contain variables in X, then fail
otherwise F' = Vs for a variable named
by S and T'.

6 Applications

LGG has played an important role in inductive logic

programming in first-order logic. The following exam- -

ples show the applications of LGG to acquire higher-
order clause templates from given first-order clauses.

Example 1. Given the first-order facts:

less_than(0,2), less.than(1,3), ...
less_than(0,3), less_than(1,4), ...
less_than(0,1), less_than(1,2), ...

we are able to obtain the following, using an algorithm
such as Golem [Muggleton and Fengl1990}:

VXY Z.lessthan(X,Y) —
less_than(X, Z),less_than(Z,Y),

and similarly

VXY Z.ancestor(X,Y) «—
ancestor(X, Z), ancestor(Z,Y),

In both clauses X, Y and Z are universally quanti-
fied. Note VX.F is the abbreviation of H(AX.F) and II
expresses universal quantlﬁcatlon Their higher-order
LGG is

VXY Z.P(X,Y) — P(X, Z), P(Y,Y),

where P is a free variable and “«” is an infix con-
stant. P may then become universally quantified as
this generalisation is accepted.

Though L can still be used to express the higher-order
term in Example 1, the clause in the following exam-
ple, which contains recursion and represents a major-
ity of problems that we are interested in, cannot be

This is because L) forbids the
existence of constants in the arguments of free vari-
ables.

Example 2. Given the first-order clauses with X, Y,
Z and W universally quantified,

expressed within L.

VXY ZW.reverse(cons(X,Y ), Z) —
reverse(Y, W),
append(W, cons(X, nil), Z).

VXY ZW.insert_sort(cons(X,Y), Z) «
insert_sort(Y, W), insert(X, W, Z).

we can obtain

VXY ZW.P(cons(X,Y), Z) «—
P(Y,W),QW, X, Z).

where “reverse” is a version often referred to as “naive
reverse”, P and Q are free variables, and “cons” is a
list processing function.

One may observe that the first-order facts seem to
be the objects in the induction of first-order clauses.
These clauses then become objects that characterise
the properties of higher-order objects — in this partic-
ular case it is second order predicate constants such
as “reverse” and “insert”. At this “order”, we are
mainly concerned with the properties of the predicates,
the first order objects will be universally quantified,
and they are “taken for granted” when studying ob-
jects that may apply on them. After this, the higher-
order objects may become universally quantified.

If we extend this scenario further, we can imagine that
through progressive quantification clauses of succes-
sive orders can be induced that characterise objects of
higher-order objects.

Another application area is the discovery of pro-
gram transformation rules. Huet and Lang
[Huet and Langl978] discussed methods for program
transformation of recursive computations into itera-
tive ones. A set of second order clause templates for .
transformation were suggested and they are applied
through second order unification to produce more effi-
cient programs based on the Darlington and Burstall
[Burstall and Darlington1977] method. As they re-
marked, the opposite problem with regarding to the
discovery of such templates is a difficult task. e
templates are known and no automatic methods exis
for performing such discovery.

Example 3. The higher-order logic clause in Exam]
1, though interesting, is computationally ineffic
To satisfy the first predicate P(X,Y), it needs to
deterministically satisfy P(X,Z) and then P(Z
More efficient programs for ancestor and less-thar




Towards Inductive Generalisation in Higher Order Logic 159

respectively:

VXY Z.less_than(X,Y) «
successor(X, Z),less_than(Z, X).
VXY Z.ancestor(X,Y) —
parent(X, Z), ancestor(Z, X).

where successor(X, Z) expresses that Z is the succes-
sor of X in Peano’s formalism, and parent(X, Z) states
that Z is the parent of X. Both are computational
more efficient. Thus possible program transformations
are:

(VXY Zlessthan(X,Y) —
successor(X, Z),less_than(Z, X)))
==
(VXY Z.less than(X,Y) —
less_than(X, Z),less_than(X,Y)),

(VXY Z.ancestor(X,Y) «
parent(X, Z), ancestor(Z, X)))
—
(VXY Z.ancestor(X,Y) «—
ancestor(X, Z), ancestor(X,Y)).

The LGG produces a program transformation tem-
plate, though the conditions for the transformation are
omitted.

(VXY Z.P(X,Y) — Q(X, Z), P(Z, X)))
L —]
(VXY Z.P(X,Y) «— P(X, 2), P(X,Y)).

In fact, such a template is applicable when @) is a spe-
cial case of P (i.e. P by one).

Example 4. The recursive list reverse program is de-
scribed in 3. A more efficient iterative (tail recursive)
version of it is: '

VXY ZWU.reversel(cons(X,Y), Z,W) «
append([X], Z,U), reversel(Y, U, W))

where “reversel” contains an accumulator Z. When
“reversel” starts with “reversel(List, nil,

ReversedList)” and = is terminated
by - “reversel(nil, ReversedList, ReversedList)”, it
yields the reversed list. Thus we have a transformation

(VZ.reversel(nill, Z,Z) &
VXY ZWU.reversel(cons(X,Y ), Z, W) —
append([X], Z,U), reversel(Y,U,W))..
=
© (reverse(nil, nil) &
VXY ZW.reverse(cons(X,Y), Z) —
w+  reverse(Y, W), append(W, cons(X, nil), 2)).

We also know another transformation vyhich concerns
with the addition of the elements in a list:

(VZ.sumlistl(nil, Z,2) &
VXY ZWU.sumlistl(cons(X,Y ), Z, W) —
add(X, Z,U), sumlist1(Y,U, W))
—
(sumlist(nil,0) &
VXY ZW.sumlist(cons(X,Y ), Z) —
sumlist(Y, W), add(W, X, Z)).

where “plus” is a function that returns the ad-
dition of two numbers. When started with
“sumlist1(List,0, SumOfList)” and terminated by
“sumlist1(nil, SumO fList, SumO fList)”, the itera-
tive computation also returns the sum of the elements
in the list. The LGG of the two is:

(VZ.P1(nil, Z,2) &
VXY ZWU.Pl(cons(X,Y),Z,W) —
Q(Z, X, U), P1(Y, U, W))
=
Pnil,V) &
VXY ZW.P(cons(X,Y),Z) —
PY, W), QW, X, 2)).

with free variables P, ), P1 and V.

This is an alternative expression of McCarthy’s trans-
formation [McCarthy1960]. For the sake of conve-
nience we have omitted the conditions for this trans-
formation to apply. It is in fact that, among others, V
must be the lower bound element of the appropriate
type and @ be a transitive and communicative func-
tion. This problem can be addressed by relative least
general generalisation (RLGG) that will be discussed
briefly in Section 7. However, its detail is beyond the
scope of this paper.

The other potential application areas are analogical
reasoning and the automatic acquisition of grammar
rules from example sentences and the generalisation
of proofs. However we will not discuss them in this

papetr.

7 Conclusion and future research
directions

Recently, inductive
logic programming [Muggleton1990] has witnessed a
growing trend in utilising higher-order (or meta-level)
logical notions in existing ILP framework. This is mo-
tivated, in part, by the need to develop more effective
and efficient ILP methods. These notions are often
adopted as declarative biases in many forms including
functional constraints on the predicates in clauses and
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templates for the clauses being induced. However cur-
rent methods lack a coherent framework for accommo-
dating these notions. In this paper, we found a class of
higher order terms that are sufficiently expressive and
still have unique MGI and LGG. Their generalisations
also proved to be computationally efficient. This can
be demonstrated by the various applications in Section
6. This lays the foundation for studying the relative
least general generalisation of such terms.

Our future research work is concerned with expand-
ing the current (first order) ILP framework, in which
higher-order inductive inference may be described as
the discovery of a hypothesis H from examples and
background knowledge such that:

MABAHtF ET .
MABANHWYE~ (6)

if M A Bl Et. M in relation (6) represents a set of
higher-order (A Prolog) clauses. The hypotheses in H
now can be either first-order or higher-order clauses.
B is the background knowledge, E* and E~ are re-
spectively the set of positive and negative examples.
Corresponding to existing ILP theory, it is necessary
to develop methods for generalisation in higher-order
logic. In doing so we hope to achieve two aims: a)
to develop more efficient methods for inducing first-
order clauses, and b) to induce higher-order clauses
such that they can aid induction of both classes of
logic programs.

From the experience of ILP in first-order logic, in the
next step we need to study the relative least general
generalisation (RLGG) for higher-order logic programs
in the presence of background knowledge. Similar to
the first-order case [Muggleton and Feng1990], we may
have to deal with a restricted logical model of the
background knowledge. We also need to investigate
the computability of such a model of the background
knowledge. If this is successful the results will have
implications in ILP and to the discovery of automatic
program transformation techniques.
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A Syntax of \-calculus terms

A term in (simply typed) A-calculus can be one of the
following;:

1. Atom. A variable or constant (of type a) is

a term (of type a);

2. Application. An application of E (of type
B — a) to F (of type B) is a term (E F) (of
type «);

3. Abstraction. The abstraction of a term F
(of type @) on a variable X (of type 3) is
the term (AX.F) (of type 8 — «) that binds
X in the scope F.

The type of a term F is denoted by (F'). One may
verify that (1), (2) and (3) in Section 1 are terms,
and 7(P) = (a,a — ) and (<) = (8,8,8 — v),
assuming that 7(X) = 7(Y) = 7(Z) = a. Types are
not essential in some results. They are polymorphic
when used.

We denote (...((F E;) E;) ...E,) by the expression
F(Ey, E,...,E,) if F is an atom, and its type (a; —
(a2 = ...(an — B)..)) by (a1, @, ...,ay — B), where
7(E;) = ;. F is called the functor, E; (i = 1,2, ..., n)
the arguments and n the arity of F. We also abbrevi-
ate (AX1(/\X2~(/\X,;F))) to (/\X1X2XnF) and
X1X2...Xn to X.

The order of an atom is the depth of the nesting of
parentheses in its type + 1. The order of a term is the
highest order of its atoms. The order of X, Y and Z
in (3) is 1, and the order of P is 2. The order of (3) is
therefore 2.

S e

A.1 )A-conversions

Let F{X/E} be the operation of substitution that re- -
places each occurrence of X in F by E. X is free in F
if it does not occur in the scope of an abstraction in F
that binds X. E is free for X in F if E does not ap-
pear in the scope of an abstraction in F that binds X.
These two conditions are used to avoid possible name
clashes in the following definition of A conversions.

A substitution is a set of ordered pairs 6 = {X;/E; |i =
1,...,n}, where X; are distinct variables and each E;
is a term of the same type as X;. The application
of @ to a term F is denoted by F@ and it is the
term (...(AX.F)E1)E3)...)E,). Intuitively for each
Xi(i = 1,...,n) F0 is the results of replacing X at
each place in F' by the subterm E;. The composition
of substitutions, denoted by -4, is the same as defined:
in first-order logic (sometimes we may omit the dot). -

The conversion rules of the general A-calculus is: '

l.a-rule. AX.F to AY.(F{X/Y}) if Y is free
for X in F, and vice versa,; ,

2. f-rule. (AX.F)E to F{X/E} if E is free

for X in F, and vice versa;

3. p-rule. AX.FX to F if X is not free in F,
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and vice versa.

The convertibility' of two terms is an equivalence rela-
tion. The rules can be carried out in both left-to-right
and right-to-left directions. A-Convertible terms are
- considered to be equal to each other. An application
of a conversion rule is called a a (or 8 and etc.) re-
duction when applied in the left-to-right direction and
an ezpansion in the opposite direction. A X term that
cannot be reduced by rules of any kind is said to be in
normal form. s

Church and Rosser proved that the normal form of a
term is unique. For any convertible A terms E and
F, there is a term S in normal form such that E and
F can be reduced to S. They also proved the nor-
mal form of a term can be obtained by attacking the
leftmost reduction on one-by-one basis until no reduc-
tion is possible. We should bear in mind at this point,
apart from «, # and 7 rules, there are other conversion
rules that also maintain Church and Rosser properties
such as the § and §; rules that will be introduced in
Appendix B.

B Extension to §, conversion

We will first consider a conversion rule of 8y, which is
a variant of the § conversion rule studied by Church in
an extension to afn A-calculus. The § conversion rule
is defined as follows. If ' and F are in 3637 normal
form without variables free in E and F:

1. 5EF = AXY.X if E is a-convertible to F;
2. EF = AXY.Y otherwise.

AXY.X is known as “true” and AXY.Y as “false” in
the standard A-calculus (In Church’s system, truth is
expressed by AXY.XY — the combinatory number 1
— and falsity by AXY.X(XY) — the number 2. This
is an arbitrary choice).

6o rule is similar to a weaker form of the equality the-
ory introduced in modern deductive logic. Similarly
to afn A-calculus, the application of the &y rule from
left-to-right is called a 6y reduction. It is shown that
6o reductions maintain the Church-Rosser properties
‘of A-calculus when the reduction expressions are car-
ried over from the original (perhaps not in Bbon nor-

-mal form) terms. We shall restrict ourselves to such a
A-calculus.

The term AXY.X selects the first argument of X
id Y, whereas AXY.Y selects the second. Us-
g the & rule we can construct a term: F =

R

O | . ‘ N

ce Note often an o conversion is used prior to a B conver-
on to change the names of bound variables.

(AX.((foXN)E1)E;). When F is applied to a term M,

- we obtain FM = (((6o M N)E,)E,) which corresponds

to “if M is o convertible to N, then E; else E;”, where
SoM N is the 8y reduction expression and E; and E,
are the terms applied upon by this reduction. M, N,
Ey and E, are in 867 normal form. M and N con-
tain no variables free in them. We shall denote F by
“AX.if X = N then E, else Ey”. Clearly, (AX.E}) is
convertible to (AX.if X = N then E, else E,) if Ey
is a-convertible to E5.
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