
Abstract

We present an approach to modeling the average
case behavior of an algorithm for learning
Conjunctive Normal Form (CNF, i.e.,
conjunctions of disjunctions). Our motivation is
to predict the expected error of the learning
algorithm as a function of the number of training
examples from a known distribution. We extend
the basic model to address issues that arise if the
data contain attribute noise. We show how the
analysis can lead to insight into the behavior of
the algorithm and the factors that affect the error.
We make certain independence assumptions
during the derivation of the average case model
and we demonstrate that the predictions of the
model account for a large percentage of the
variation in error when these assumptions are
violated.

1 INTRODUCTION
A goal of research in machine learning is to gain an
understanding of the capabilities of learning algorithms.
Pazzani and Sarrett (1990) introduced a framework for
average case analysis of machine learning algorithms.
Here, we show how this framework can be applied to
create an average case model of an algorithm for learning
monotone k-CNF concepts.

The framework attempts to unify the formal
mathematical and the experimental approaches to
understanding the behavior of machine learning
algorithms. In order to achieve this unification, an
average case model is needed since experiments lead to
findings on the average accuracy of an algorithm. In
contrast, the probably approximately correct (PAC)
learning model (e.g., Valiant, 1984; Haussler, 1987;
Haussler, Littlestone, & Warmuth, 1990; Haussler, 1990)
is a worst-case model. Pazzani and Sarrett (in press)
contains more detailed discussion, motivation, and
comparisons between average case and PAC models.

2 AN AVERAGE CASE MODEL OF k-CNF
A restricted version of conjunctive normal form, k-CNF,
provides a more expressive language of hypotheses than
the language of pure conjunctions that we analyzed
previously (Pazzani & Sarrett, 1990). Hypothesis in k-
CNF can be expressed as conjunctions of disjunctions of
length at most k. Pure conjunctive hypotheses can be

viewed as a special form of k-CNF (i.e., k=1). For
simplicity, we restrict our attentions to monotone k-CNF
(i.e., k-CNF in which no feature is negated).

The goal of the average case model is to predict the
expected error as a function of the number of training
examples. The framework requires determining:
1. The conditions under which the algorithm changes

the hypothesis for a concept.
2. How often these conditions occur.
3. How changing a hypothesis affects the accuracy of a

hypothesis.

The first requirement of the average case model is that
the algorithm be specified so that it is possible to
determine when the hypothesis changes. Unlike the PAC
model, an average case model requires creating a separate
model for each algorithm. We will restrict our attention
to the algorithm proposed in Valiant (1984) (see Table 1).
This algorithm initializes the hypothesis to the most
specific k-CNF concept and gradually makes the
hypothesis more general by deleting disjunctive terms
that are not consistent with positive training examples.
For example, if there are 3 features (a, b and c), then the
initial hypothesis for a monotone 3-CNF algorithm is:

a ∧ b ∧ c ∧ (a ∨ b) ∧ (a ∨ c) ∧ (b ∨ c) ∧ (a ∨ b ∨ c).
If the first training example is a, ¬b, ¬c then the
hypothesis will be revised to

a ∧ (a ∨ b) ∧ (a ∨ c) ∧ (a ∨ b ∨ c).

The second requirement of the average case model
presupposes information about the distribution of the
training examples. Therefore, unlike the PAC model, the
framework we have developed is not distribution-free.
Furthermore, to reduce the amount of information
required by the model, we will make certain
independence assumptions. In particular, we will analyze
the case in which the examples are drawn from a product
distribution (i.e., the values of features are chosen
independently).

The third requirement of the average case model
presupposes information about the test examples and
information about the correct hypothesis. As in the PAC
model, we will assume that the distribution of the test
examples is the same as the distribution of the training
examples.

Average Case Analysis of Learning k-CNF Concepts
Daniel S. Hirschberg Michael J. Pazzani
dan@ics.uci.edu pazzani@ics.uci.edu

Department of Information and Computer Science
University of California, Irvine

Irvine, CA 92717 USA
Proceedings of the Tenth International Conference on Machine
Learning (pp. 206-211). Aberdeen, Scotland: Morgan Kaufmann.

2.1 AN AVERAGE CASE MODEL FOR 2-CNF
We will first present an analysis of an algorithm that
initializes the hypothesis to the set of conjunctions of
disjunctions of exactly two positive variables. We will
then generalize the model to the k-CNF case. We will use
the following notation in describing the problem:

fj the j-th feature of a training example. Here, we
consider only Boolean features.

pj the probability that the j-th feature has a true
value. To reduce the amount of information re-
quired, we will assume that all pj are indepen-
dent.

m the total number of features used to describe
training examples.

D* the set of pairs (i,j) such that fi ∨ fj is part of
the correct hypothesis.

D*, m, pj and fj specify the information required in
order to calculate the expected error of the learning
algorithm as a function of n, the number of positive
examples. Since the algorithm ignores negative
examples, we will initially consider the case in which all
of the training examples are positive. A minor extension
requires calculating the probability that from T total
examples, there are exactly n positive examples. We
will use the following notation to describe the analysis of
the algorithm.
D0 the set of pairs of features that make up the terms

conjoined to form the initial hypothesis:
{(i,j) | (i < j)}.

Dn the set of pairs of features representing the
hypothesis after n positive training examples.

In the set of pairs from Dn that are not in D*. In =
Dn–D*.

S the set of all positive examples.

In order to calculate the error of a 2-CNF algorithm
learning D*, it is necessary to compute the probability
that a randomly drawn example is positive and the
probability that a randomly drawn positive example
contains various combinations of features. We introduce
the following notation:

P the probability that a randomly drawn example is
a member of S under the assumption that values
of each feature are determined independently
with probability pj that feature fj has a true
value.

Pi the probability that a randomly drawn example,
X, is a member of S and the i-th feature of X
has a true value. Similarly, Pi is the probability
that X is a member of S and the i-th feature of
X has a false value. Furthermore, P ij is the
probability that X is a member of S and the i-th
and the j-th features of X both have true values.
This notation, Pi... , generalizes to any number of
subscripts and combinations of negated and
unnegated subscripts.

We will derive the average case model by first indicating
how to calculate P and Pi.... Next, we will show how to
use P and Pi... to determine the probability that any
disjunctive term remains in the hypothesis. Finally, we
compute the expected error by determining the
probability that a disjunctive term in the hypothesis will
result in the misclassification of a randomly drawn test
example.

P and Pi... are calculated in the following manner. Let X
be a randomly drawn positive example. Define the
weighted size of a set A of positive examples to be the
probability that X is a member of set A. We will use |A|
to denote Pr[X ∈ A]. If A = B ⊕ C, where ⊕ denotes
union of disjoint sets, then |A| = |B| + |C|. We note that if
A = B ∪ C, where B and C are not necessarily disjoint,
then |A| = |B| + |B ∩ C|. Define {β(i,j...,)} to be the set
of examples for which the Boolean expression β(i,j...,)
on the indicated features is true. For example, {i∨j} is
the set of examples for which either fi is true or fj is
false. Then, |{β1∨β2} | = |{β1} ⊕ {¬β1β2} | =
|{β1}| + |{¬β1β2} |.

 we need to evaluate:

This intersection can be converted symbolically to the
union of a number of disjoint sets. For example, to
compute , the set is initialized
to . This set is intersected with to
form: . This process
can be repeated for each (i,j) ∈ D*. Although in the
worst case, this will result in the union of 2c disjoint sets
(where c is the cardinality of D*), in practice it is
substantially smaller due to cancellation of terms. For
example, finding the intersection of all conjunctions of
disjunctions of exactly 3 of 5 features requires computing
the union of 10 disjoint sets instead of 210 sets.

Once a CNF has been converted to this form, the
probability that the CNF is true for a randomly drawn
example can be found by summing the probabilities that
it is a member of one of the disjoint sets described by a
conjunction of features (or the inverses of features).

Table 1. The k-cnf learning algorithm
1. Initialize the hypothesis to the

conjunction of all disjunctions of at
most length k of the features that
describe training examples.

2. If the new example is a positive
example, and the hypothesis
misclassifies the new example, then
remove all disjunctions from the
hypothesis that are false in the

{i1i2} ⊕{i1j1i2} ⊕ {i1i2j2} ⊕{i1j1i2j2}
{i2} ⊕{i2j2}{i1} ⊕{i1j1}

 Pr[X ∈ (fi1∨f j1)∧(fi2∨fj2)]

{i ∨ j}∩
(i,j)∈D *

 = {i} ⊕{ij}∩
(i,j)∈D *

 P = Pr[X ∈ (fi∨fj)∧
(i, j) ∈D *

]

Since we assume that individual features are independent,
the probability that a conjunction of features can be
found by multiplying the corresponding values of pi.
Computing P requires converting D* to this format and
then summing the products of the probabilities. The
computation of Pi... is similar. The computation of Pi...
is similar. For example, Pab is

The k-CNF algorithm has only one operator to revise a
hypothesis. A disjunctive term is dropped from the
hypothesis when the term is false in a positive training
example. This is modeled by removing pairs from In-1 to
form In. We will use the notation rd(n) to indicate the
probability that the disjunction corresponding to d = (i,j)
remains in In. This occurs only if at least one of fi and
fj has had a true value in all n positive training examples.
Similarly, indicates the probability that the
disjunctions corresponding to d1 and d2 both remain in In.

Note that . In general:

. [1]

Note that misclassifying a positive example as a negative
example is the only error made by the k-CNF algorithm.
The hypothesis created by the k-CNF algorithm
misclassifies a positive example if there is at least one
pair (i,j) in In such that fi and fj are both false in the
test example. We will use the notation en to represent
the probability that an example is misclassified after n
training examples. en = en(1) − en(2) + en(3) − en(4) ...
en(h) where h is the cardinality of I0 and en(a) is the
probability that an example is misclassified after n
examples because it is contra-indicated by at least a of

the pairs in I0.

[2]

where partitions(I,a) is the set of all subsets of I with
length a. en(1) calculates the probability of getting an
error from some learned hypothesis containing exactly
one erroneous disjunction. rd(n) is the probability that a
learned hypothesis containing the disjunction d survives n
examples and is the probability that the learned
hypothesis containing fi ∨ f j makes an error. Thus en(1)
calculates the probability that each pair from I0 is a pair
of In weighted by the probability that a randomly drawn
training example would be misclassified by the
disjunction corresponding to that pair. For larger values
of i, en(i) corrects en(i−1) by taking into consideration the
fact that more than i−1 of the pairs in In result in a
misclassification.

2.2 EXTENDING THE MODEL FOR k-CNF
The generalization of the model to k-CNF is fairly
straightforward. First, D* is now a set of tuples of at
most length k. Each tuple corresponds to a set of features
corresponding to one of the terms of the correct
hypothesis. D0 (the initial hypothesis) is defined to be
the set of all tuples of at most k of the features. From
here, the notation of the previous section needs to be
extended somewhat, but the technique for calculating P,
r(n), and e(n) remains unchanged.

2.3 DEALING WITH NOISE IN TRAINING DATA
Valiant (1985) introduces a version of the k-DNF
algorithm that allows it to tolerate noise in the training
data. Table 2 adapts this algorithm to learning k-CNF
concepts. The k-CNF algorithm removes a disjunction
from the hypothesis if the disjunction is false in at least 1
positive example. The noise tolerant k-CNF algorithm
removes a disjunction if the disjunction is false in at least
εN positive examples, where ε is a parameter to the
algorithm and N is the size of the training set. In order
to create an average case model of the noise tolerant k-
CNF algorithm, the probability that a disjunction in a
hypothesis is modified from the (non-noise tolerant) k-
CNF algorithm to take into account that it may be false
in εN training examples (Equation 3).

Once this change has been made to the definition of rd(n)
in Equation 1, then Equation 2, for calculating the
expected error, holds for the noise tolerant k-CNF
algorithm. Modifying the definition of rd(n) is all that is
needed to model the noise tolerant k-CNF learning from
noise-free data. If there is noise in the training data, it is
also necessary to create a model of the noise in the
training data. Here, we will illustrate this process by

Table 2. Noise tolerate k-cnf learning algorithm
1. Initialize the hypothesis to the

conjunction of all disjunctions of at
most length k of the features that
describe training examples. For each
disjunction, initialize a counter to 0

2. If the new example is a positive
example, and the hypothesis
misclassifies the new example, then
increment the counter associated with
each disjunctions from the hypothesis
that are false in the example.

3. When finished processing all N
examples, remove those disjuncts whose
counter is greater than εN.

[3]rd1,..., dh n =
n

j
Pr[X∈{(i1∨j1) ∧ ∧ (ih∨jh) }]j∑

j = n - ceiling εn

n

Pr[X∈{(i1∨j1) ∧ ∧ (ih∨jh) }]n-j

Pij

e n(a) = rd1... da(n)Pi1 j1... ia ja ∑
d1... da = (i1, j1) ... (ia,ja)

∈ partitions(Io, a)

e n(1) = rd(n)Pi j∑
d = (i, j) ∈Io

rd1,..., dh n = Pr[X∈{(i1∨j1) ∧ ∧ (ih∨jh) }]n
rd1 n = Pr[X∈{i1∨j1}]n

rd1d2 n

Pr[X ∈ {ab} & X ∈ (f i∨fj)∧
(i,j)∈D *

]

Pr[X ∈ (fi∨f j)∧
(i ,j)∈D*

]

modeling the effect of attribute noise (Quinlan, 1986). In
attribute noise, there is a possibility that the value of a
feature is replaced by a noisy value. In particular, we
will assume that for each feature of a training or test
example there is a fixed probability α, that value is
replaced with a random value. The effect of this noise is
that the probability that a feature has a true value in an
training or test example will differ from pj. In particular,

. In order to calculate the
probability that an example from a product distribution
with attribute noise is misclassified, replaces pj in
Equations 2 and 3. In Section 3.2, we illustrate how
attribute noise affects the accuracy of the noise tolerant k-
CNF algorithm.

3 IMPLICATIONS OF THE MODEL
In this section, we show how the average case model for
k-CNF can be used to gain an understanding of some
factors that affect the error of the learning algorithm. In
particular, we address the following two problems:
1. The effect on the error of adding an irrelevant feature

to all training examples.
2. The effect on the error of adding attribute noise to the

training examples.

3.1 IRRELEVANT FEATURES
We consider a relatively simple problem to illustrate the

effect of adding irrelevant features to the training data.
Consider trying to learn the concept, i1 ∧ i2 with a 2-
CNF learning algorithm. If there are 3 features, then the
2-CNF algorithm will converge on the equivalent (but
unsimplified) hypothesis: i1 ∧ i2 ∧ (i1 ∨ i2) ∧ (i1 ∨ i3) ∧
(i2 ∨ i3). The set I0 will contain the singleton {(i3)}.
With 0 training examples, the initial hypothesis will
produce an error on (1−p3) of the positive examples
(since an error is made when i3 is false and i3 is false in
this proportion of training examples). After n training
examples, the hypothesis will produce an error on

 of the positive training examples (since the
probability that i3 is in I0 is). Figure 1 (lower
curve) graphs the observed and expected error under
these conditions (with p3 = 0.5).

If there are 4 features, then the 2-CNF algorithm will
converge on the equivalent (but unsimplified) hypothesis:
i1 ∧ i2 ∧ (i1 ∨ i2) ∧ (i1 ∨ i3) ∧ (i1 ∨ i4) ∧ (i2 ∨ i3) ∧ (i2 ∨ i4).
The set of terms that can cause errors is now
{(i3)(i4)(i3 ∨ i4)}. The initial hypothesis will produce an
error on (1 −p3p4) of the positive examples (since an error
is made when i3 is false or when i4 is false). After n
training examples, the hypothesis will produce an error
on of the
positive training examples. Figure 1 also graphs the
observed and expected error with a total of 4, 5, 6, and 7
features (with all pi = 0.5). Note that for this problem,
the analysis is equivalent to learning the always true
concept (i.e., D* ={}) while ignoring the two features i1
and i2. This occurs because both features must appear in
every positive example.

3.2 ATTRIBUTE NOISE
To illustrate how the noise-tolerant k-CNF algorithm
performs, we ran a simulation with five features: a, b, c,
d, and e. The probability that the features had a true

Figure 2. Expected and observed error (with a 95%
confidence interval) for a noise tolerant 2-CNF
algorithm.

Figure 1. Expected and observed error when
learning i1 ∧ i2 with a 2-CNF algorithm when there
are a total of 3 (lowest curve) 4, (next to lowest), 5
(middle), 6 (next to upper) and 7 features (upper
curve). The curves represent predicted values and
the bars are 95% confidence intervals around the
mean values. To avoid clutter, confidence intervals
are not shown for 4 and 6 total features.

20151050
0.0

0.2

0.4

0.6

0.8

1.0

Number of examples

E
rr

or

4035302520151050

0.0

0.2

0.4

0.6

0.8

1.0

N

E
rr

or

p3
n 1–p3 + p4

n 1–p4 – p3p4
n 1–p3p4

p3
n

p3
n 1–p3

pi

pi = 0.5α + 1-α pi

pi

value was 0.7, 0.4, 0.8, 0.5, and 0.6, respectively. The
correct concept definition which would classify noise-
free examples properly was (a ∨ b) ∧ (a ∨ c). The
probability that a feature value was replaced with a
random value (α) was 0.04. We use a 2-CNF algorithm
with ε equal to 0.1 (i.e., a disjunction must be false in
10% of the positive examples to be removed from the
hypothesis). Figure 3 graphs the observed and predicted
probability that a positive example is misclassified by the
hypothesis produced by the learning algorithm under
these conditions (averaged over 100 trials).

An increase of expected error occurs when the value of
ceiling(εN) increases. In this case, this happens after
every 10 training examples since ε equal to 0.1. Note that
the expected error does not converge on 0. Although the
algorithm can converge on the correct concept definition,
the correct concept misclassifies some examples because
there is noise in the test data.

4 VIOLATING ASSUMPTIONS
In the previous section, the intent of the simulations was
to obtain confirmation of the mathematical result and to
visualize the equations. A common measure used to
describe how well a model fits the data is the coefficient
of determination (r2). Since we generated data according
to the assumptions used to derive the model, it is not
surprising that r2 is greater than 0.99 for the data
graphed in Figures 1 and 2. In this section, we evaluate
the sensitivity of the model to violations of the
independence assumption. We run a series of
experiments in which the the value of one feature is
dependent on the value of another feature. In particular,
we experiment with learning when there are 6 features, a,
b, c, d, e, and f and the correct concept is (a ∨ b) ∧ (c ∨
d). We consider the following dependencies:

I. Dependencies between features of the same
disjunction (e.g., a and b).

II. Dependencies between features of a different
disjunction (e.g., a and c).

III. Dependencies between a features in the hypothesis
and an irrelevant feature (e.g., a and e).

IV. Dependencies between irrelevant features (e.g., e
and f).

In each case, there is a 0.5 probability that each feature
has a true value. However, we systematically vary the
dependence between features. For example, if P(a) is
0.5, P(b|a) is 0.9 and P(b|¬a) is 0.1, then P(b) will be
0.5. Since P(b) is 0.5, the independence assumption of
the average case model is not violated only when P(b|a)
is 0.5. For values of P(b|a) greater than 0.5, a and b are
correlated and for values less than 0.5, these features are
inversely correlated. We ran a series of simulations in
which we varied the value of P(f1|f2) from 0.1 to 0.9 by
0.1 increments and measured the accuracy of the k-CNF
algorithm at various points between 0 and 30 training
examples. Figure 3, Parts I and IV, graph the accuracy
predicted by the average case model and the observed
accuracy for these experiments. The points with 95%
confidence intervals indicate the mean error (averaged

over 150 trails) measured on 200 randomly drawn
positive examples. The line represents the error predicted
by the average case model. Although the data violate the
assumptions of the average case model, the predicted
accuracy still accounts for a large percentage of the
variation in observed error. In particular, for dependency
class I, r2 is 0.971 when P(b|a) =0.1 and 0.838 when
P(b|a) =0.9. For class II, r2 is 0.957 when P(c|a) =0.1
and 0.941 when P(c|a) =0.9. For class III, r2 is 0.986
when P(e|a) =0.1 and 0.966 when P(e|a) =0.9. For
class IV, r2 is 0.983 when P(f|e) =0.1 and 0.959 when
P(f|e) =0.9. In all cases, when P(f1|f2) is 0.5 r2 is
greater than 0.99.

Iit is possible to characterize the systematic deviations
from the predicted error as a function of the class of the
dependency between features and the direction of the
correlation. These conclusions are also supported by the
data for P(f1|f2) in the range 0.2 to 0.8 that are not
graphed in this paper:
• Class IV dependencies (correlations between

irrelevant features): When the correlation is
positive (i.e., P(f|e) > 0.5), the model
overestimates the actual error. The extreme case of
this positive correlation (P(f|e) = 1.0) is equivalent
to having one fewer irrelevant feature. On the
other hand, when e and f are inversely correlated,
it is more difficult for the k-CNF algorithm to
remove terms involving these variables from the
hypothesis, so the model underestimates the error.

• Class III dependencies (correlations between a
relevant and an irrelevant feature): When the
correlation is positive, the model overestimates the
error. Once again, the extreme case of this
positive correlation (P(e|a) = 1.0) is equivalent
to incorrectly telling the model that there is
one additional irrelevant feature.

• Class II dependencies (correlations between
features of different disjuncts): When the
correlation is positive, the model overestimates the
error. This occurs because when the algorithm
drops an irrelevant term (e.g., (a ∨ f)) involving
one feature, it is also likely to drop the irrelevant
term involving its dependent feature (e.g., (c ∨ f)).

• Class I dependencies (correlations between features
of the same disjunct): There is a complex
interaction in that for positive correlations, the
model initially overestimates the error and after
several training examples it underestimates the
error. The behavior is reversed for negative
correlations.

5 CONCLUSION
We have presented an approach to modeling the average
case behavior of an algorithm for learning k-CNF. The
model predicts the expected error of the algorithm as a
function of the number of training examples. We
evaluated how well the average-case model predicts the
observed error when the independence assumption of the
product distribution is violated. We have shown the
analysis can lead to insight into factors that affect the

error of the learning algorithm. A longer technical report
is available from the authors providing addition details
and implications of the model.

The average case model requires much more information
about the training examples than the PAC learning
model. The information required by the model is exactly
the information required to generate artificial data to test
learning algorithms. One future research direction would
be to relax some of these assumptions. For example,
rather than requiring the correct concept definition, it
might be possible to perform a similar analysis for a
given probability distribution of possible concepts.

Acknowledgements
We would like to thank Dennis Kibler, Kamal Ali, Tim
Cain and Jim Wogulis for helpful comments on this work
and Caroline Ehrlich for reviewing an earlier draft of this
manuscript. This research is supported by a National
Science Foundation Grant IRI-8908260.

References
Blumer, A., Ehrenfeucht, A., Haussler, D., & Warmuth,

M. (1989). Learnability and the Vapnik-Chervonenkis
dimension. Journal of the Association of Computing
Machinery, 36, 929-965.

Haussler, D. (1987). Bias, version spaces and Valiant’s
learning framework. Proceedings of the Fourth
International Workshop on Machine Learning (pp.
324-335). Irvine, CA: Morgan Kaufmann..

Haussler, D. (1990). Probably approximately correct
learning. Proceedings of the Fourth International
Workshop on Machine Learning (pp. 1101-1108).
Boston: AAAI Press.

Haussler, D., Littlestone, N. & Warmuth, M. (1990).
Predicting {0,1}-functions on randomly drawn points.
Technical Report USCS-CRL-90-54, University of
California, Santa Cruz.

Pazzani, M., & Sarrett, W. (1990). Average case analysis
of conjunctive learning algorithms. Proceedings of the
Seventh International Workshop on Machine Learning,
Austin, TX: Morgan Kaufmann.

Pazzani, M., & Sarrett, W. (in press) A framework for
average case analysis of conjunctive learning
algorithms. Machine Learning.

Quinlan, J.R. (1986). The effect of noise on concept
learning. In R.S. Michalski, J.G. Carbonell, & T.M.
Mitchell (Eds.), Machine Learning: An artificial
intelligence approach (Vol 2). San Mateo, CA:
Morgan Kaufmann.

Valiant, L. (1984). A theory of the learnable.
Communications of the Association of Computing
Machinery, 27, 1134-1142.

Valiant, L. (1985). Learning disjunctions of
conjunctions. Proceedings of the Ninth International
Joint Conference on Artificial Intelligence (pp 560-
566). Los Angeles, CA: Morgan Kaufmann.

Figure 3. The observed accuracy when the assumptions
of the average case model are violated by introducing
dependencies between feature values.

3025201510500
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Expected

P(f|e)=0.1

P(f|e)=0.9

Number of Examples

E
rr

or

Dependency IV

25201510500
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Expected

P(b|a)=0.1

P(b|a)=0.9

Number of Examples

E
rr

or

Dependency I

