
P

E

N

N

University of Pennsylvania
Founded by Benjamin Franklin in 1740

The Institute For
Research In Cognitive

Science

An SE-tree based Characterization
of the Induction Problem

by

Ron Rymon

IRCS Report 93-15

University of Pennsylvania
Philadelphia, PA 19104-6228

April 1993

Site of the NSF Science and Technology Center for

Research in Cognitive Science

An SE�tree based Characterization

of the Induction Problem

Ron Rymon
Computer and Information Science

University of Pennsylvania
Philadelphia� PA �����

rymon�linc�cis�upenn�edu

�Proceedings Machine Learning Conference� Amherst MA� �����

Abstract

Many induction programs use decision trees
both as the basis for their search� and as a
representation of their classi�er solution� In
this paper we propose a new structure� called
SE�tree� as a more general alternative�

� INTRODUCTION

Many learning algorithms use decision trees as an un�
derlying framework for search and as a representation
of their classi�er solutions 	e�g� ID
 �Quinlan� ���
CART �Breiman et al�� ����� This framework� how�
ever� is known to mix search bias 	introduced when
the algorithm decides on the order in which attributes
are to be used in splitting� with hypotheses�space
bias� To avoid being trapped by this bias� several re�
searchers have suggested averaging over multiple trees
	e�g� �Buntine� ����� In this paper� still within a re�
cursive partitioning framework� we propose using an
alternative data structure called SE�tree �Rymon� ����
On one hand� since the new framework shares many
of the features of decision tree�based algorithms� we
should be able to adopt many sub�techniques devel�
oped for the latter� On the other hand� an SE�tree
embeds a large number of decision trees� thereby pro�
viding a more expressive� more �exible� representation
for classi�ers� Importantly� SE�tree�based algorithms
can eliminate almost completely the search bias� ad�
mitting instead a user�speci�ed hypotheses�space pref�
erence criterion�

Section � outlines a formal theory of induction where
classi�ers take the form of collections of rules� Sec�
tions
 and � present the SE�tree� and render it use�
ful in searching and representing such collections 	the
learning phase�� and in subsequently using them for
classi�cation� Incorporation of user�speci�ed bias in
either stage� or in both� is described in Sections �
and �� Section presents general results relating the
SE�tree to decision trees� with some algorithmic impli�
cations�

� A THEORY FOR INDUCTION

Formalizing the induction problem� we will examine
collections of production rules that best model the
function 	concept� represented by the training data�
Rules provide a common denominator for decision
trees on one hand� and SE�trees on the other� since
there is an obvious one�to�one mapping between rules
and leaves of such trees�

Let us introduce a few useful de�nitions �rst� Let
ATTRS

def
� fAig

n
i�� be a set of attributes 	also called

features or variables�� where each attribute Ai can take
values from a �nite unordered discrete domain denoted
Dom	Ai�� A partial description is a subset of ATTRS�
each instantiated from its own domain� An object is a
complete partial instantiation� i�e� one in which all at�
tributes are instantiated� By UNIVERSE we refer to
the collection of all objects� Consider� for example� a
space of
 binary attributes 	A�B�C�� hereafter called

BIN� In
BIN� fA���C��g is a partial description�
fA���B���C��g is an object� UNIVERSE is
BIN
itself� it is made of a total of � objects� A training set
	TSET�� consisting of objects labeled by their correct
class 	��� makes an induction problem instance�

Example ��� �The Checkers Problem�

Consider a universe de�ned by two
�valued attributes
	A�B�� and a set of four classes 	�� �� �� ��� The follow�
ing �gure depicts a training data� and an illustration
of UNIVERSE�

A B �

� � �
� � �
�
 �

 � �

B
� �

� �
A � � �

 �

�

Having de�ned a problem instance� we shall try to
characterize a solution� Conceptually� we assume the
existence of a function 	target� from UNIVERSE to
the set of classes� and that the training data agree
with this function� Our goal is to approximate target

over the complete universe� using conjunctive rules as
our elementary building blocks�

A rule� R� is simply a partial description such that
all objects in TSET which agree with it are equally
classi�ed� i�e� for every t�t��TSET� if R�t�t� then
�	t� � �	t��� To avoid irrelevant rules� we add the
additional requirement that an object matched by a
rule is provided in TSET� As a partial description� a
rule de�nes an equivalence class within the universe�

namely �R�
def
� ft �UNIVERSE j R�tg� Moreover�

since all objects in TSET��R� agree on their class� we
can de�ne �	�R�� to be that class� and write a produc�
tion rule of the form R � �	�R��� Thus� from here
on� we shall interchangeably talk about a rule as a set
of instantiated attributes� as a region in UNIVERSE�
and as a conjunction of antecedents� To model a tar�
get function� we use collections of rules� interpreted
disjunctively for each class� In general� there may pos�
sibly be many such collections� The Checkers problem�
for instance� admits � rules and thus �� collections�
The purpose of an inductive theory is to character�
ize desirable features of candidate collections� Bias�
or preference� expresses the relative desirability of one
collection versus another�

Our theory has a single bias� for the most part� we will
prefer rules that are syntactically simpler� By kernel
rules we refer to rules that are most�general 	minimal
set�wise�� Other bias� necessary to distinguish equally
simple hypotheses� is deliberately left out of the the�
ory� Our algorithms will modularly implement a user�
speci�ed preference criterion� Consider the Check�
ers problem again� Only four of the eight rules are
also kernel rules� 	�� 	A���� �� 	�� 	B���� �� 	
�
	B�
�� �� and 	�� 	A�
�� �� All other rules� e�g�
	A����	B���� �� are subsumed by one or more of
the kernel rules�

Let C be a collection of rules for a problem instance
P� we use Kernel	C� to denote the collection of kernel
rules for P that subsume rules in C� The collection of
all kernel rules� denoted KRULES� is the target of our
induction algorithms� Doing so� we avoid over�tting of
the training data� We propose that over�generalization
be dealt with in the classi�cation phase via resolution
methods based on the user�s preference criterion� In�
tuitively� while learning� we adopt most�general prin�
ciples� Rules that are too general will be in con�ict
with others� and will then be resolved�

De�nition ��� Completeness

A collection of rules C is said to be complete w�r�t�
T�UNIVERSE if for every t�T� there exists a rule
R�C such that R�t�

Proposition ���

�� Let C be a collection of rules that is complete
w�r�t� some T�UNIVERSE� then Kernel	C� is

also complete w�r�t� T�

�� KRULES is complete w�r�t� TSET� but is not
necessarily complete w�r�t� UNIVERSE�

Thus� in the Checkers problem� fA���B��g is not cov�
ered by any rule 	including non�kernel��� In contrast�
any decision tree is complete w�r�t� UNIVERSE� But
is completeness desired at all� One may argue that
incompleteness of KRULES is often a direct result of
important incompleteness of the training data� SE�
tree�based classi�cation algorithms can� however� ex�
tend their coverage by relaxing the rule matching pro�
cedure�

De�nition ��� Consistency

A collection of rules C is said to be consistent w�r�t�
T�UNIVERSE� if for every t�T� and rules R�R��C� if
R�R��t� then �	�R�� � �	�R����

Proposition ���

�� Every collection of rules is consistent w�r�t� TSET
	by de�nition�� but KRULES may be inconsistent
w�r�t� UNIVERSE�

�� Every collection of rules contains a consistent sub�
collection�

Thus� in the Checkers problem� each of the �cor�
ner� objects is covered by two contradicting kernel
rules 	e�g� fA���B��g is covered by 	A���� � and
	B���� ��� As per Proposition ���	��� KRULES may
have 	possibly several� sub�collections� the latter may
have lesser coverage than KRULES� In contrast� any
decision tree is consistent w�r�t� UNIVERSE� But is
consistency desirable at all� KRULES is inconsistent
when two rules are over�general to the point in which
they contradict one another on as yet unseen parts of
UNIVERSE� While ideally� one or both rules need be
specialized or removed� the training data alone does
not provide us with any suitable preference criterion�
An external preference criteria� or bias �Mitchell� ����
must be applied�

Bias can be de�ned as the set of all factors that
collectively in�uence hypothesis selection �Utgo�� ���
�Buntine� ��� divides such criteria into three separate
classes� hypothesis space bias are those criteria which
specify a preference for one classi�er over another�
search bias consists of criteria used to guide the ac�
tual search for such� and �nally� bias may have an ap�
plication speci�c component� Adopting Buntine�s di�
chotomy� we believe that an ideal learning system must
eliminate search bias� Put di�erently� bias should be
stated by the user� independently from the particular
algorithm used�

We believe SE�trees represent a step in that direction�
So far� we have introduced a single bias � a prefer�

ence for kernel rules� Next� when presenting the SE�
Learn family of learning algorithms� we defer the in�
troduction of bias to the latest possible� A variety of
user�de�ned preference criteria can be plugged into the
learning and�or classi�cation algorithms�

� A LEARNING ALGORITHM

��� SET ENUMERATION TREES

Many problems in Computer Science were formalized
to admit solutions in the form of sets� or in the form of
partial instantiations of a set of variables� Typically�
such sets are required to satisfy some problem�speci�c
criterion which designates them as solutions� In ad�
dition� where multiple solutions may exist� they are
often ranked by their plausibility� likelihood� or desir�
ability� Regularly� such preference involves a minimal�
ity 	or maximality� criterion� e�g� minimal entropy�
maximum probability or utility� etc� Set Enumeration
�SE� trees �Rymon� ��� were shown to be useful as the
basis for a unifying search�based framework for such
domains� SE�trees support complete� irredundant� and
prioritized search� their special structure allows for ef�
�cient pruning and other optimizations�

Let ATTRS
def
� fAig

n
i�� be a set of attributes with do�

mains Dom	Ai� respectively� and let ind�ATTRS�IN
be an indexing of the set of attributes� We de�ne the
SE�tree View of a partial description S as follows�

View	S�
def
� fA�ATTRS j ind	A��MaxA� in S ind	A��g

De�nition ��� Extended Set Enumeration Tree

The extended SE�tree for a set of attributes ATTRS is
de�ned as follows�

�� At its root is a node labeled with the empty set�

�� Recursively� let S be a node�s label� It has children
labeled as follows�

f S�fA�vg j A�View	S�� v�Dom	A�g�

Example ��� Figure � depicts an extended SE�tree
for the complete
BIN space� Note that restricting a
node�s expansion to its View� ensures that every mem�
ber of
BIN is uniquely explored within the tree� �

Representing all elements of a power�set� the complete
SE�tree is clearly exponential in size� However� in a
large class of problems� especially where solutions are
monotonic with respect to set inclusion� the SE�tree
can be used to induce a complete and yet often e��
cient search because it allows for systematic pruning
�Rymon� ����

{A=0,B=0,C=0}

{A=0,B=0,C=1}

{A=0,B=1,C=0}

{A=0,B=1,C=1}

{A=0,B=0}

{A=0,B=1}

{A=0,C=0}

{A=0,C=1}

{A=1,B=0,C=1}

{A=1,B=1,C=1}

{A=1,B=0}

{A=1,B=1}

{A=1,C=0}

{A=1,C=1}

{B=0,C=0}

{A=0}

{A=1}

{B=1,C=0}

{B=1,C=1}
{B=1}

{B=0,C=1}

{B=0}

{C=0}

{C=1}

{ }

{A=1,B=0,C=0}

{A=1,B=1,C=0}

Figure �� Complete SE�tree for
 Binary Variables

��� SE�TREE�BASED LEARNING

Aimed at all kernel rules� SE�Learn 	Algorithm
���
explores top�down an imaginary SE�tree� Nodes are
explored by some predetermined priority function� In
Sections � and �� we show this prioritization useful
in implementing various biases� In expanding open
nodes� SE�Learn exploits the SE�tree structure to
prune away nodes that cannot lead to kernel rules� SE�
Learn�s output is an SE�tree which leaves are labeled
with kernel rules�

De�nition ��� Candidate and Impotent Expansions

Let S be a node� TSET	S�
def
� ft �TSET j S � tg� We

say that S�
def
� S�fA�vg is a candidate expansion of S

if A�View	S�� v�Dom	A�� However� S� is impotent if
either

�� TSET	S�� is empty� or

�� TSET	S���TSET	S�� or

� all objects in TSET	S�� agree on their assignment
to attributes in V iew	S��� but there is not a com�
plete agreement on the class 	i�e� S� is not a rule��

Algorithm ���

Program SE�Learn

�� OPEN�NODES � f�g�

�� Until OPEN�NODES is empty do

�� Expand 	Extract�Min	OPEN�NODES��

Procedure Expand�S�

�� For every candidate expansion R
def
� S�fA�vg

that is not impotent and that is not subsumed
by a previously discovered rule do

�� If R is a rule then mark it as such�
otherwise add it to OPEN�NODES�

The algorithmworks by exploring nodes along the SE�
tree�s current fringe 	OPEN�NODES� in a best��rst
fashion� For that purpose� nodes are cached in a pri�
ority queue and accessed via an Extract�Min operation�
Candidate expansions that are not subsumed by pre�
viously discovered rules 	step �� are marked as rules
if they satisfy the de�nition or otherwise marked for
expansion and added to the queue for further consid�
eration 	step ���

��� EXPLORATION POLICIES

An exploration policy is simply the priority function
used in Algorithm
�� to determine the order in which
nodes are explored� It is easy to verify that if nodes
are explored by their cardinality 	breadth��rst explo�
ration of the tree� then the algorithm is correct� i�e� it
computes all and only kernel rules� As so far described�
any monotonic function �� i�e� such that S�S� implies
�	S� � �	S���� results in Algorithm
�� being cor�
rect� A large class of interesting functions are mono�
tonic� e�g� ones that are based on probability� utility�
or information�gain measures� However� at some com�
putational expense� SE�Learn can be modi�ed to ad�
mit non�monotonic exploration policies as well� The
sole purpose of the monotonicity restriction is to avoid
recording non�minimal solutions� therefore� to remove
it� we need to also check whether new rules subsume
old ones�

Note however that� as so far presented� all exploration
policies will result in the same tree structure� The vari�
ety of exploration policies allowed will become impor�
tant next� in specifying and implementing preference
criteria�

� CLASSIFICATION ALGORITHMS

Given an SE�tree acquired as above� we want to be
able to use it to classify new objects� As in decision

tree�based classi�cation algorithms� this is done by fol�
lowing matching paths from the root to class�labeled
leaves 	rules��

Recall however that in the SE�tree representation

�� there may be no such leaf 	rule� 	we called this
incompleteness�� or

�� there may be multiple rules 	and thus leaves�
matching a given object� and they may not always
be equally labeled 	we called this inconsistency��

The SE�tree incompleteness� we argued� is due to the
incompleteness of the training data� One way to �com�
plete� the SE�tree is to perform partial matching in
cases where there are no perfectly matching rules�

The inconsistency property� on the other hand� gives
the SE�tree its main power� Roughly� inconsistency re�
�ects a variety of perspectives that could be adopted to
logically partition the training data� In a decision tree�
a single such perspective is decided upon at the learn�
ing phase in the choice of attribute for each branching
point� Representing multiple perspectives is more ex�
pressive and allows more principled resolution� In par�
ticular� hypotheses�space preference� explicitly speci�
�ed by the user� can be used to resolve con�icts�

Algorithm ��� uses such preferences directly� by
searching the SE�tree best��rst with respect to the
speci�ed preference� it picks the leaf which maximizes
the speci�ed preference from all those matching the
object at hand�

Algorithm ��� Classi�cation via SE�tree Search

	 Input� 	�� an object� 	�� an SE�tree� and 	
� an
exploration policy � 	bias��

	 Procedure� Search SE�tree best��rst 	according
to ��� along paths matching the object� Stop
when the �rst leaf is hit� or when the tree is ex�
hausted�

	 Output� If a leaf was hit� predict its class label�
Otherwise� either respond �don�t know�� or guess�
or re�search the tree allowing for partial matching�

A more general approach involves specifying a resolu�
tion criterion� e�g� weighted averaging or voting� which
takes into account all rules matching a given object�
The two approaches can� of course� be combined by ap�
plying the resolution criterion to a subset of the rules
� those which rank highest by the preference criterion�

The following experiment� using the Monks benchmark
�Thrun et al�� ���� demonstrates the importance of the
particular choice of resolution criterion� In general� a
preference and�or a resolution criterion should re�ect
some domain knowledge� However� given the arti��
cial nature of the Monks problems� we experimented

with three generic weight functions� simple voting�
quadratic 	in the rule�s size� weight voting� favoring
more speci�c rules� and inverse quadratic� favoring
more general rules� In the learning phase� we sim�
ply learned all kernel rules� In classi�cation� when
the rules were incomplete� we used partial matching�
Con�icts were resolved using each of the three weight
functions� Figure � compares accuracy obtained using
each of the resolution criteria to each other� to the av�
erage reported for other decision tree�based programs
and to the overall average reported for all methods�
Note that SE�Learn�s performance is crucially depen�
dent on the resolution criterion used�

Monk� Monk� Monk

SE�Learn 	inv� quad�� ����� ��
� ����
SE�Learn 	voting� ���� ���� �����
SE�Learn 	quadratic� ���� ��� ����
Average decision trees ����� �� ����
Average overall ����� ��� �����

Figure �� Various Resolution Criteria

� BIAS IN THE LEARNING PHASE

��� PARTIALLY EXPLORED SE�TREES

It may often be intractable� or practically impossible�
to explore all kernel rules� Exploration policies can
then be used as early as the learning phase to prune
away less promising parts of the SE�tree� Even when
all kernel rules can be explored� added complexity may
not pay in the margin� Worse� as with many other
learning frameworks� more complex SE�trees can even
have lower accuracy than their simpler subsets� In
such instances� it is standard to use hill�climbing pro�
cedures and�or anytime algorithms which explore as
time�space permit and return the best classi�er seen
so far� In SE�Learn� the SE�tree can be constructed
gradually while testing to make sure that the added
complexity of new rules is worth the marginal improve�
ment in accuracy� When interrupted� or when it runs
out of resources 	particularly space� this procedure will
return the best classi�er it has seen so far� The partic�
ular exploration policy used plays an important role in
this procedure since it determines the order in which
rule nodes are seen� Using again the Monks problems�
we ran an experiment in which an SE�tree was explored
level by level� The change in complexity 	measured by
the number of rules� and in accuracy 	using the inverse
quadratic resolution criterion� is depicted in Figure
�

��� SPECIAL COLLECTIONS OF RULES

In what follows� we brie�y describe variations of SE�
Learn that compute SE�trees corresponding to collec�
tions of rules with special features� Here too� the par�

Monk1
Monk2
Monk3

Accuracy

Size
50.00

55.00

60.00

65.00

70.00

75.00

80.00

85.00

90.00

95.00

100.00

0.00 50.00 100.00 150.00 200.00 250.00

Figure
� Complexity vs� Accuracy

ticular collection computed is determined by the ex�
ploration policy�

Consistent Sub�Collections of KRULES

A collection of kernel rules is inconsistent w�r�t�
UNIVERSE i� it has rules R�� R� such that
�	�R���
��	�R��� and no attribute appears in both R��
R�� and R��R�� Thus� SE�Learn could be modi�ed
not to retain rules which are inconsistent with previ�
ously discovered rules� Since the order in which nodes
are explored determines which rules are retained� the
particular exploration policy used de�nes a bias�

Minimal Sub�Collections of KRULES

For TSET�completeness purposes� a rule R is redun�
dant if every object in TSET that R matches is also
matched by another rule R�� As before� one can modify
SE�Learn so as not to retain rules deemed redundant
by previously discovered rules� Another alternative is
to restrict redundancy to n rules per training instance�
or to rules that satisfy some other acceptance criterion
such as statistical signi�cance� Again� the particular
exploration policy de�nes a bias�

Consistent and Complete Collections of Rules

The down side of discarding inconsistent rules� as sug�
gested above� is that the collection of rules obtained
may be incomplete even w�r�t� TSET� To avoid this�
rather than discarding such rules� SE�Learn can be
modi�ed to further expand them� The collection of
rules so obtained are guaranteed to be complete� How�
ever� individual rules may no longer be kernel�

Minimal and Consistent Collections

By removing both inconsistent and redundant rules�
one may get a minimal collection of rules that is both
complete and consistent�

� SE�TREE AND DECISION TREES

A number of decision tree based algorithms have had
an impact on machine learning research� Part of our
purpose here is to convince researchers to look at the
SE�tree as a more general alternative to decision trees�
We devote this section to a broader comparison of the
two data structures�

	�� A FOREST OF DECISION TREES

One way to view a decision tree is as an SE�tree in
which every possible object has exactly one path along
which it can be classi�ed� i�e� an SE�tree that is con�
sistent and complete w�r�t� UNIVERSE�� Conversely�
one way to view an SE�tree is as a collection� or forest�
of decision trees� A single SE�tree can be shown to
embed a large number of decision trees� In particular�
let D be a decision tree in which attributes were cho�
sen monotonically w�r�t� some indexing function� Let
S be an SE�tree constructed in accordance to same in�
dexing function� then S embeds D� i�e� there exists a
subset of S�s edges which forms a tree that is topo�
logically and semantically equivalent to D� and that
is rooted at S�s root� One particular decision tree is
the SE�tree�s primary decision tree� the one in which
each internal node is expanded with the �rst attribute
in that node�s SE�tree V iew that does not result in
impotent expansions�

This result can be strengthened to make the SE�tree
embed any single decision tree�� In particular� let D
be a decision tree that is constructed by any ID
�like
procedure� To create an SE�tree that embeds D we
may have to slightly alter the de�nition of an SE�tree
to allow for dynamic re�indexing� In particular� we will
develop an indexing as we create the tree�

�� At �rst� we will choose an initial indexing indroot
in which the �rst attribute used inD appears �rst�

�� Then� while at a node labeled S� let indparent�S�
be the indexing used in expanding S�s parent�
In S� we use an indexing which coincides with
indparent�S� on all attributes not in V iew	S�� but
may re�order attributes in V iew	S� as we wish� In
particular� if a node corresponding to S appears in
D� we will re�order attributes in V iew	S� so that
the �rst attribute used in D to split that node
appears �rst�

By construction� D will be embedded in an SE�tree
created as above as its primary decision tree� It is
fairly easy to verify that the SE�tree remains complete
and irredundant� and that SE�Learn remains correct�

�An SE�tree� however� can be consistent and complete

without being a decision tree�
�
Not all of them at once� rather a collection that in�

cludes a speci�c decision tree�

	�� IMPROVING UPON A GIVEN
DECISION TREE

An important corollary of the result above is that
one can construct an exploration policy under which
SE�Learn will start o� with one�s favorite decision
tree� and then try to improve it by adding more
rule nodes� 	This exploration policy may be non�
monotonic though�� Of course� rule nodes will only
be added to the extent in which accuracy 	as tested
empirically on a separate training set� is improved�

We have tested this approach on the Monks bench�
mark� In each of the three problems� we started with a
decision tree constructed by the information�gain cri�
terion� Then� the rest of the SE�tree was explored
breadth��rst� Accuracy and complexity were recorded
for the primary decision tree� and for each level of the
tree in which rules were added 	Figure ���

Monk1
Monk2
Monk3

Accuracy

Size

70.00

75.00

80.00

85.00

90.00

95.00

50.00 100.00 150.00 200.00 250.00

Figure �� Starting from a Decision Tree

Note that in all three problems� the accuracy of the pri�
mary decision tree could be improved by adding SE�
tree nodes� although this improvement is not mono�
tonic� Also note that in Monk�� adding the SE�tree�s
�rst level has not only improved the accuracy� but has
also reduced the number of rule nodes 	some decision
tree rules were pruned because they were subsumed by
newly discovered rules��

	�� HYPOTHESES EXPRESSIBILITY

Consider the following problem instance�

A B Class

� � �
� � �

B
� �

A � � �
� � �

While four di�erent hypotheses are consistent with
this training data� there are only two ID
�style� de�

�There are more decision trees� but only these can be
generated by an ID��like procedure�

cision trees 	Figure ��� The corresponding SE�tree
contains 	as subset of its arcs� both trees� and can
be used to represent all four hypotheses depending on
the particular exploration policy 	bias� used in a given
classi�cation session�

A B

00 1 1

A=1A=0 B=0 B=1

	a� Decision Trees

00 1 1

A=1A=0 B=0 B=1

	b� SE�Tree

Figure �� SE�tree versus Decision Trees

Consider� for example� an OR function 	not modeled
by either decision trees�� In SE�Learn� if a search�
based approach to classi�cation is adopted 	Algo�
rithm ����� an OR function can be implemented using
an exploration policy that assigns high priority to the
arcs A�� and B��� Generalizing this problem to n
attributes� each taking its values from f� 	 	 	n��g� we
are given a training set with the n cases in which all
attributes� and the class� are equally labeled� Now� we
consider a function that takes the most frequent value
among its attributes� with bias towards higher values
in case of equality 	for n � �� we get the OR function��
Such function cannot be modeled by any of the ID
�
style decision trees�� but can easily be modeled using
an SE�tree with a resolution criterion based on simple
voting�

	�� COMPUTING KERNEL RULES

Considering the goal of computing all kernel rules�
three problems may arise in a decision tree�based
search framework�

�� The minimality problem � rules will often not be
discovered in their minimal 	kernel� form�

�� The multiplicity problem � each kernel rule may
be discovered multiply� disguised in a number of
its non�minimal supersets� and

� The incompleteness problem � some kernel rules
may not be discovered at all�

Both the minimality problem and the multiplicity phe�
nomenon result from the fact that attributes used high

�In fact� a decision tree modeling this function is neces�

sarily exponential�

in the tree are necessary for some� but not all� the
rules� The minimality problem is often addressed by
subsequently pruning the rules extracted from the de�
cision tree 	e�g� �Quinlan� � ��� The replication prob�
lem� a special case of multiplicity in which whole sub�
trees are replicated� has been addressed by several re�
searchers 	e�g� �Rivest� � � Pagallo ! Haussler� �����
Incompleteness� which is only a problem if one is re�
ally interested in all kernel rules� results from the in�
sisted mutual exclusivity of any decision tree�s leaves
	see �Weiss ! Indurkhya� ����� None of these problems
occurs in the SE�tree�based framework�

�� Rules are always discovered in their kernel form�

�� Kernel rules are always discovered uniquely� and

� All kernel rules are discovered�

	�� COMPLEXITY

The SE�tree�s exhaustiveness and large initial branch�
ing may be deceiving� Let us �rst compare its worst�
case complexity to that of a decision tree� indepen�
dently of their use�

Proposition 	�� If all attributes are b�valued� then
the number of nodes in a complete decision tree is
bn " bn�� " � � � b " � � bn� The size of a complete
SE�tree is 	b " ��n� In sharp contrast� the size of a
super�tree containing all decision trees is signi�cantly
larger� bn � n��

Within an induction framework� however� one rarely
explores a complete decision tree 	nor a complete SE�
tree for that matter�� In an ID
�like framework� the
size of a decision tree is linear in the size of the train�
ing data� This is not true of SE�Learn� Kernel rules
are close relatives of prime�implicants� and as such we
know of pathological examples in which the number of
kernel rules is exponential in the size of the training
data� On the other hand� as just explained� one does
not have to explore the entire SE�tree and one can al�
ways have the �rst nodes explored be those of one�s
favorite decision tree�

� CONCLUSION AND FUTURE

RESEARCH DIRECTIONS

We have proposed an inductive learning framework
which uses an SE�tree as a basis for search and classi�
�er representation and have presented a family of al�
gorithms for SE�tree induction and for SE�tree�based
classi�cation� We have shown that as a representa�
tion for classi�ers� SE�trees generalize decision trees in
two ways� �rst� a decision tree is a special case of an
SE�tree� and second� an SE�tree contains many deci�
sion trees� An SE�tree can also be built by improving
upon one�s favorite decision tree� However� unlike de�
cision trees� most of the search bias can be eliminated

in SE�tree�based algorithms� an independently speci�
�ed hypothesis�space bias can be used instead�

Importantly� the SE�tree�based framework can borrow
from techniques developed for decision trees� In par�
ticular

�� More expressive representation languages can be
adopted� e�g� ordered and hierarchical variables�
multi�variable tests� class probability trees� etc�
Discretization techniques� and criteria developed
for selecting a splitting test can be used to han�
dle ordered variables� averaging and smoothing
techniques can be used in conjunction with class
probabilities representation�

�� Pruning techniques developed for decision trees�
e�g� using statistical signi�cance tests� can also
be used in SE�trees�

� Entropy�minimization and other criteria devel�
oped for selecting the next splitting attribute in
decision trees will likely be useful in selecting an
indexing function for an SE�tree which will min�
imize the number of nodes that have to be ex�
plored�

More research� however� is needed to �gure ways in
which these techniques can be deployed e�ectively�

Other areas of future research include general and
domain�speci�c exploration policies and resolution cri�
teria� termination criteria suitable for various tradeo�s
between accuracy and time�space� and an incremental
version of SE�Learn�

Recent advances in search algorithms lend them�
selves to improved implementation of the SE�tree�
based framework� e�g� linear�space best��rst search
algorithms �Korf� ��� Russell� ��� and a SIMD version
of IDA� �Powley et al�� �
��

Acknowledgements

The idea of using the SE�trees to learn rules originated
at a talk by Tom Mitchell # I thank him for that�
as well as for later suggestions� I also thank Kevin
Atteson� Russ Greiner� Haym Hirsh� Alon Luss� Teow�
Hin Ngair� Michael Niv� Greg Provan� Philip Resnik�
Nick Short� Scott Weinstein� and anonymous reviewers
for commenting on previous drafts� This work was
supported in part by a graduate fellowship ARO grant
DAAL�
����C��
�PRI�

References

�Breiman et al�� ��� Breiman� L�� Friedman� J�� Ol�
shen� R�� and Stone� C�� Classi�cation and Re�
gression Trees� Wadsworth� Belmont� �����

�Buntine� ��� Buntine� W�� Myths and Legends in
Learning Classi�cation Rules� Proc� AAAI�	
�
Boston� MA� pp�
� ��� �����

�Buntine� ��� Buntine� W�� Learning Classi�cation
Trees� Technical Report� NASA Ames Research
Center� �����

�Korf� ��� Korf� R� E�� Linear�Space Best�First Search�
Summary of Results� Proc� AAAI�	�� San Jose
CA� �����

�Mitchell� ��� Mitchell� T� M�� The Need for Biases in
Learning Generalizations�Technical Report ����
�
Rutgers University� �����

�Pagallo ! Haussler� ��� Pagallo� G�� and Haussler�
D�� Boolean Feature Discovery in Empirical
Learning� Machine Learning� �� pp� ����� �����

�Powley et al�� �
� Powley� C�� Ferguson� C�� and Korf�
R� E�� Depth�First Heuristic Search on a SIMD
Machine� Arti�cial Intelligence� �� ���
� pp� ����
����

�Quinlan� �� Quinlan� J� R�� Induction of Decision
Trees� Machine Learning� �	��������� ����

�Quinlan� � � Quinlan� J� R�� Generating Production
Rules from Decision Trees� Proc� IJCAI��� pp�

���
� � ��� �

�Rivest� � � Rivest� R�� Learning Decision Lists� Ma�
chine Learning� �� pp� ������� ��� �

�Russell� ��� Russell� S�� E�cient Memory�Bounded
Search Algorithms� Proc� ECAI�	�� Vienna� Aus�
tria� �����

�Rymon� ��� Rymon� R�� Search through Systematic
Set Enumeration� Proc� KR�	�� Cambridge MA�
�����

�Thrun et al�� ��� Thrun� S� B�� Bala� J�� Bloedron� E��
Bratko� I�� Cestnik� B�� Cheng� J�� De Jong� K��
Dzeroski� S�� Fahlman� S� E�� Fisher� D�� Ham�
mann� R�� Kaufman� K�� Keller� S�� Kononenko�
I�� Kreuzinger� J�� Michalski� R� S�� Mitchell� T��
Pachowicz� P�� Reich� Y�� Vafaie� H�� Van de
Welde� W�� Wenzel� W�� Wnek� J�� Zhang� J�� The
MONK�s Problems � A Performance Comparison
of Di�erent Learning Algorithms� Technical Re�
port CMU�CS�	���	� December �����

�Utgo�� �� Utgo�� P� E�� Machine Learning of Induc�
tive Bias� Kluwer Academic� Boston MA� ����

�Weiss ! Indurkhya� ��� Weiss� S� M�� and Indurkhya�
N�� Reduced Complexity Rule Induction� Proc�
IJCAI�	�� pp� ����� Sydney� Australia� �����

