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Abstract

With the goal of reducing computational costs
without sacrificing accuracy, we describe two al-
gorithms to find sets of prototypes for nearest
neighbor classification. Here, the term “proto-
types” refers to the reference instances used in
a nearest neighbor computation — the instances
with respect to which similarity is assessed in
order to assign a class to a new data item. Both
algorithms rely on stochastic techniques to search
the space of sets of prototypes and are simple to
implement. The first is a Monte Carlo sampling
algorithm; the second applies random mutation
hill climbing. On four datasets we show that
only three or four prototypes sufficed to give pre-
dictive accuracy equal or superior to a basic near-
est neighbor algorithm whose run-time storage
costs were approximately 10 to 200 times greater.
We briefly investigate how random mutation hill
climbing may be applied to select features and
prototypes simultaneously. Finally, we explain
the performance of the sampling algorithm on
these datasets in terms of a statistical measure of
the extent of clustering displayed by the target
classes.

1 Introduction

The classical nearest neighbor algorithm has a probably de-
served reputation for being computational expensive. Run-
time costs for the basic algorithm are high: in order to
determine the class of a new instance, its similarity to every
instance in memory is assessed. Retaining all instances in
primary memory also entails storage costs. Our goal in this
paper is to demonstrate how two algorithms that rely on
random sampling and local search can reduce the cost of
nearest neighbor classification at run-time by reducing the
number of prototypes retained. While the term “prototype”
has many meanings, we use it to refer to a member of a set
of actual instances whose similarity distance to a new data
item is computed to determine which of those instances is

its nearest neighbor. While the basic nearest neighbor al-
gorithm treats all instances as prototypes, we show that it
is possible to maintain or even improve nearest neighbor
classification accuracy on out-of-sample data by selecting
only a small handful of instances as prototypes. In order to
further reduce costs in space and time, we also show how
local search can be applied to limit the features used in the
nearest neighbor computation.

Reducing the number of instances used for nearest neigh-
bor retrieval has been researched by the pattern recognition
and instance-based learning communities for some time,
where it is sometimes called the “reference selection prob-
lem” [Dasarathy, 1991]. From one research perspective,
this problem is a part of the general learning problem of
determining the effect of the number and quality of training
instances on predictive accuracy. Approaches to the prob-
lem have included storing misclassified instances (e.g., the
Condensed Nearest Neighbor algorithm [Hart, 1968], the
Reduced Nearest Neighbor algorithm [Gates, 1972], IB2
[Aha, 1990]); storing typical instances [Zhang, 1992]; stor-
ing only training instances that have been correctly classi-
fied by other training instances [Wilson, 1972]; exploiting
domain knowledge [Kurtzberg, 1987]; and combining these
techniques [Voisin and Devijver, 1987]. Other systems deal
with reference selection by storing averages or abstractions
of instances. For discussions of these approaches, see [Aha,
1990].

Aha’s research [1990] has shown that classification accu-
racy can be improved by limiting the number of prototypes
and by weighting features. See for example the compa-
rable or superior performance of Aha’s instance-filtering
algorithm IB3 over the baseline nearest neighbor algorithm
IB1[Aha, 1990]. Aha’s IB4 algorithm also improves per-
formance by learning attribute relevance weights, resulting
in a substantial increase in classification accuracy in some
domains with irrelevant attributes. The research presented
in this paper extends previous work on reference selection
by showing that in some domains decreasing the number of
prototypes can be pushed quite far indeed — that only sev-
eral well-selected prototypes can give good classification
accuracy. We further extend previous work by demon-
strating that two algorithms that rely primarily on random



techniques can perform the task of choosing a few salient
prototypes.

The intuition that a small number of prototypes can achieve
comparable or superior predictive accuracy is based on two
speculations. (1) Noisy instances will not be used as proto-
types; and (2) since each prototype may represent in a sense
an additional degree of freedom for the classifier, limiting
the number of prototypes may avoid overfitting the training
data. This second hypothesis may be tantamount to the
assumption that a learning bias in favor of simpler models
is appropriate for the data sets we use [Schaffer, 1993].

Many previous approaches to selecting prototypes are
instance-filtering techniques, where each member of the
data set is examined in turn and some screen is used to sift
the elements that should be retained in the emerging con-
cept description. Since our goals are to decrease as far as
possible the number of prototypes used and to select proto-
types that together classify well, our approach starts from
an a priori specification of prototype set size and tries to
construct an accurate prototype set of that cardinality. This
approach has the obvious advantage of forcing the exami-
nation of very small sets of prototypes. However, clamping
the number of prototypes does limit the complexity of the
problem we address. While we do not pursue in this pa-
per the question of how many prototypes to include, we do
appeal to a clustering index in Section 4 that might also be
applied to this important problem.

Two algorithms are applied to select prototypes and features
used in a nearest neighbor algorithm: (1) a Monte Carlo
technique, which chooses the most accurate of a sample
of random prototype sets; and (2) a random mutation hill
climbing algorithm (e.g., [Mitchell and Holland, 1993]),
which searches for sets of prototypes with demonstrably
good classification power. In previous work we described
a genetic algorithm approach to finding prototypes [Skalak,
1993]. This paper follows the theme of using adaptive
search techniques to find sets of prototypes, but uses some-
what less computationally intensive algorithms to locate
them.

We next describe the underlying nearest neighbor algorithm
and then introduce a Monte Carlo method (MC1) and two
applications of random mutation hill climbing algorithms
(RMHC-P and RMHC-PF1). Finally, we offer evidence
that the degree of clustering of the data set is a factor in
determining how well our simple sampling algorithm will
work.

1.1 The nearest neighbor algorithm

To determine the classification accuracy of a set of proto-
types, a 1-nearest neighbor classification algorithm is used
[Duda and Hart, 1973]. The similarity function used in this
nearest neighbor computation is straightforward and relies
on equally-weighted features.

In a pre-processing step, all feature values are linearly
scaled from 0 to 100. Extreme feature values are squashed

by giving a scaled value of 0 (100) to any raw value that is
less (greater) than three standard deviations from the mean
of that feature computed across all instances. Scaling in this
way is designed to limit the effect of outlying values. The
ReMind case-based reasoning development shell has pre-
viously incorporated a similar data pre-processing method
[Cognitive Systems, Inc., 1990]. In the pre-processing step,
missing feature values are (naively) instantiated with the
median value of that feature across all instances. To com-
pute the similarity distance between two scaled instances,
we use the Manhattan (“city block” or

�
1) distance metric.

The prototype with the smallest such similarity distance to a
test instance is its 1-nearest neighbor. As usual, an instance
is considered correctly classified by a prototype set if the
instance’s class equals the class of the prototype that is its
1-nearest neighbor taken from the prototype set.

1.2 Baseline storage requirements and classification
accuracy

Four databases from the UCI machine learning repository
[Murphy and Aha, 1994] were used: Iris, Cleveland Heart
Disease (binary classes), Breast Cancer Ljubljana, and Soy-
bean (small database). All but the Soybean database were
chosen in part because results using various algorithms were
compiled from the research literature by Holte [1993], pro-
viding convenient touchstones for comparison.

As a basis for comparison for the results we will present
in this paper, we computed the baseline classification accu-
racy of the nearest neighbor algorithm, using all the training
cases as prototypes and all the features, and five-fold cross
validation. (Folds of equal size were used in the five-fold
cross validation, necessitating that a residue of fewer than
five instances might be left out of every fold.) The average
accuracy over the five folds is given in Table 1. For gen-
eral reference, since C4.5 [Quinlan, 1993] is a benchmark
learning algorithm, we also include in Table 1 classification
accuracies on the four data sets from our own five-fold cross
validation runs using pruned trees generated by C4.5 with
its default option settings.

Table 1: Storage requirements (with number of instances
in each data set) and classification accuracy computed us-
ing five-fold cross validation with the 1-nearest neighbor
algorithm used in this paper and pruned trees generated by
C4.5.

Data Set Storage 1-NN C4.5
Iris 100% (150) 93.3% 93.3%
Cleveland 100% (303) 74.3% 71.6%
Breast Cancer 100% (286) 65.6% 72.4%
Soybean 100% (47) 100.0% 95.6%

In general, direct comparison with published results may
be improvident in that different validation techniques, sim-
ilarity metrics, and values of � of the � -nearest neighbor
algorithms almost surely will have been used. In this re-
search, we did not try to optimize � or experiment with



different similarity metrics.

2 The Algorithms

2.1 Monte Carlo (MC1)

As a general matter, Monte Carlo methods provide approx-
imate solutions to mathematical and scientific problems
through repeated stochastic trials. The results of indepen-
dent trials are combined in some fashion, usually averaged
[Sobol’, 1974]. The method has been applied to many prob-
lems in such domains as numerical integration, statistical
physics, quality control and particle physics.

The algorithm described in this section, called MC1, is
a simple application of repeated sampling of the data set,
where sampling is done with replacement. The algorithm is
simple. It takes three input parameters: � ( � -nearest neigh-
bors), � (the number of prototypes, which is the sample
size), and � (the number of samples taken). These parame-
ters are fixed in advance. For all the experiments presented
in this paper, ��� 1 and ��� 100. We choose � � 3 for
all but the Soybean data set, where � � 4, since there are
four classes.

The Monte Carlo MC1 classification procedure can be sum-
marized as follows. We assume that the data set has been
divided for experimental purposes into a training set and
test set.

1. Select � random samples, each sample with replace-
ment, of � instances from the training set.

2. For each sample, compute its classification accuracy
on the training set using a 1-nearest neighbor algo-
rithm.

3. Select the sample(s) with the highest classification ac-
curacy on the training set.

4. Classify the test set using as prototypes the samples
with the highest classification accuracy on the train-
ing set. If more than one sample has the same high-
est classification accuracy on the training set, select
a classification randomly from those given by these
best-performing samples1.

In a real application, all previously seen instances would be
used as training instances. We report in Table 2 the storage
requirements (the percentage of members of the data set
that were retained) and the classification accuracy of the
MC1 algorithm, applying five-fold cross validation.

These experiments show that MC1, a very simple approach
based on random sampling, does quite well on these four
data sets, with a large reduction in storage. A discussion
of the statistical significance of all results is postponed to
Section 3. In Section 4 we try to characterize one of the

1We report average accuracy on the test set of the prototype
sets that display the highest predictive accuracy on the training
set.

Table 2: Storage requirements, average MC1 classification
accuracy and average baseline 1-nearest neighbor classifi-
cation accuracy using five-fold cross validation.

Data Set Storage MC1 1-NN
Iris 2.0% 93.5% 93.3%
Cleveland 1.0% 80.7% 74.3%
Breast Cancer 1.0% 72.6% 65.6%
Soybean 8.5% 99.1% 100.0%

factors that will determine when random sampling will pro-
vide good accuracy. An approach to prototype selection
based on random mutation search is described next.

2.2 Random mutation hill climbing

2.2.1 The algorithm (RMHC)

Random mutation hill climbing is a local search method that
has a stochastic component [Papadimitriou and Steiglitz,
1982]. The basic random mutation hill climbing algorithm
(RMHC) is as described by Mitchell and Holland [1993]:

1. Choose a binary string at random. Call this string
best-evaluated.

2. Mutate a bit chosen at random in best-evaluated.

3. Compute the fitness of the of the mutated string.
If the fitness is strictly greater than the fitness of
best-evaluated, then set best-evaluated to the mutated
string.

4. If the maximum number of iterations have been per-
formed return best-evaluated; otherwise, go to Step
2.

The general approach is to use a bit string to represent a
set of prototypes, and in some experiments, a collection of
features. The intuitive search mechanism is that the muta-
tion of the bit vector changes the selection of instances in
the prototype set or toggles the inclusion or exclusion of a
feature from the nearest neighbor computation. The fitness
function used for all the RMHC experiments is the predic-
tive accuracy on the training data of a set of prototypes
(and features) using the 1-nearest neighbor classification
algorithm described in Section 1.

2.2.2 RMHC to select prototype sets (RMHC-P)

For this experiment, the bit vector encodes a set of � pro-
totypes in a straightforward way. Each prototype set is
encoded as a binary string, which is conceptually divided
into � substrings, one for each of the � prototypes, where
each substring encodes an index into the cases stored as an
array. The length of the binary string encoding a prototype
set is the number of bits required to represent the largest
index of a case in the data set, multiplied by the number of
prototypes,

�����
	
2 �
��
 � where � is the number of cases in



the data set. So, for example, the number of bits used to
encode a set of three Iris prototypes was

�����
	
2150 � 
 3 � 24.

The RMHC algorithm was applied to this representation,
searching for a set of three (four for the Soybean data set)
prototypes with superior predictive power. The fitness func-
tion was the classification accuracy on the training set of a
1-nearest neighbor classifier that used each set of prototypes
as reference instances. In the experiments reported here the
algorithm was run for 100 mutations2. The results after
only 100 mutations — a very small number for this type
of approach — are presented for two reasons. Informally,
we did not observe an increase in classification accuracy
in many experiments by running the algorithm longer, al-
though more experimentation is required to establish this
result. Second, such a small amount of search supports
a sub rosa hypothesis of this paper — that small sets of
prototypes with good classification accuracy are denser in
the space of sets of prototypes than might be expected for
these data sets, since little search is required to locate them.
Further, the accuracy of the final prototype set returned by
the algorithm does appear to be better than the random pro-
totype set used as the starting point. A random starting
prototype set yielded an average accuracy (across the five
partitions) on the test set of 68.0% for the Iris data set,54.7%
for the Cleveland data, 61.4% for the Breast Cancer data,
and 66.7% for the Soybean data. Average classification ac-
curacy for the final prototype set and storage requirements
for five-fold cross validation are given in Table 3.

Table 3: Storage requirements, average classification accu-
racy for the prototypes selected by RMHC-P, and average
baseline 1-nearest neighbor classification accuracy.

Database Storage RMHC-P 1-NN
Iris 2.0% 93.3% 93.3%
Cleveland 1.0% 82.3% 74.3%
Breast Cancer 1.0% 70.9% 65.6%
Soybean 8.5% 97.8% 100.0%

The results show a comparable or improved classification
accuracy of the RMHC-P algorithm over using all the train-
ing instances as prototypes. In particular, the results on the
Cleveland database appear to be better than previously pub-
lished results with only a very small percentage of stored
instances used3.

2To accelerate the algorithm, the calculated fitness of each pro-
totype set was cached by memoizing [Abelson et al., 1985] the
evaluation function so that the predictive accuracy of a set of pro-
totypes (and features) need only be computed once for each fold of
the cross validation. Nonetheless, retrievals of previously cached
evaluations are counted in the number evaluations reported.

3D. Aha reported an average of several runs of the IB3 algo-
rithm yielded 80.1% correct on the Cleveland heart disease data us-
ing a five-fold cross validation regime. Personal communication.

2.2.3 Select prototypes and features simultaneously
(RMHC-PF1)

Finally, experiments were performed to determine if the
RMHC algorithm could select features as well as proto-
types. Further reduction in computational costs would re-
sult from a reduction in the number of features that have to
be considered in the nearest neighbor similarity computa-
tion. We used RMHC-PF1 to select prototypes and features
simultaneously, using a representation that records both the
prototypes and features in a single vector.

To use RMHC to select features, we used a simple charac-
teristic function bit vector representation, one bit for each
feature used in the instance representation. The

�
th bit

records whether to use the corresponding
�
th feature from

some fixed presentation of the features: 1 to include the
feature in the similarity distance computation, 0 to exclude
it. Thus, for the Cleveland database, there are 13 features,
and a 13-bit vector represents the features.

The bit vectors used in the previous experiments for proto-
types and the features bit vector were concatenated in this
representation. At each iteration only one bit was mutated,
and it was left to the random bit mutation procedure to spec-
ify whether that bit fell within the “prototypes sub-vector”
or the “features sub-vector.” We did not attempt to alter
any bias stemming from the different relative lengths of
the prototype set vectors and feature vectors. RMHC-PF1
used a fitness function that classified the training set using
the encoded prototypes and only taking into account the
features that are specified by the bit vector.

For consistency of experimental presentation, the algorithm
was again run for 100 evaluations only, notwithstanding the
increased size of the search space, starting with a random set
of features and prototypes. The random starting prototype
and features set yielded an average accuracy (across the
five partitions) on the test set of 51.3% for the Iris data
set, 61.6% for the Cleveland data, 55.4% for the Breast
Cancer data, and 51.1% for the Soybean data. Classification
accuracy and storage requirements for the five-fold cross
validation are given in Table 4. If a data set has � instances,
each containing � features, and the RMHC-PF1 algorithm
yields � prototypes and � features, the storage requirements
reported are ��������� . We assume a uniform-cost, and not a
log-cost, model of storage costs in reporting these figures.

Table 4: Storage requirements and average classification
accuracy for the selection of prototypes and features by
RMHC-PF1, with average 1-nearest neighbor baseline clas-
sification accuracy.

Database Storage RMHC-PF1 1-NN
Iris 1.2% 94.7% 93.3%
Cleveland 0.6% 80.7% 74.3%
Breast Cancer 0.6% 72.3% 65.6%
Soybean 3.9% 97.8% 100.0%



In general, about half of the total number of features were
used (Table 5), cutting run-time storage costs in half. For
example, an average across the five folds of 2.4 features
out of 4 were used for Iris classification. Petal-width and
petal-length appear to be useful predictive features, since
they were selected as features in five and four partitions,
respectively. Sepal-length is apparently not useful, since it
was not selected in any partition. An average of 7.6 features
of 13 were used for classification in the Cleveland data set.
The ca feature was used in all five partitions; cp, exang, and
thal were applied in four; restecg in none. Descriptions of
these features may be found in [Murphy and Aha, 1994].

Table 5: Number of features in the original instance repre-
sentation and average number features selected by RMHC-
PF1.

Database Total Features Average Features
Iris 4 2.4
Cleveland 13 7.6
Breast Cancer 9 4.8
Soybean 36 16.4

3 Discussion

Table 6 summarizes the mean predictive accuracy of the
preceding experiments.

Except for the small Soybean data set, the storage require-
ments for all of the algorithms were on the order of 1% of the
training instances, except for the baseline nearest neighbor
algorithm, which used 100% of the training examples. The
general lesson is that a reduction in storage costs of one or
two orders of magnitude from a standard nearest neighbor
algorithm that uses all instances can be achieved on some
of these data sets together with a statistically significant
increase in computational accuracy.

While some of the nominally better results may not be sta-
tistically significant4, these experiments at least show that
using three or four prototypes and possibly a proper subset
of the features performs statistically as well as using the
entire training set and all the features. Thus the accuracies
of the algorithms presented in this paper are statistically
comparable to a standard nearest neighbor approach with
much smaller computational expense.

To determine the practicality of using random algorithms
in “real-world” situations, the worst-case behavior of

4In interpreting the significance results in the table, note that
the t-test considers the mean and variance of the underlying cross
validation data, but that only the mean percentage accuracy is
reported here. In general, MC1 displayed higher variance than
the other algorithms. A test for the analysis of variance (single
factor) for each data set also reveals that we cannot reject at the
0.05 confidence level the null hypothesis that all of the predictive
accuracy means are equal.

these algorithms should be investigated, particularly of
the Monte Carlo algorithm, which displayed high vari-
ance in some tests. The results presented here repre-
sent average predictive accuracies on out-of-sample data.
However, given the random basis for these algorithms,
the probability of catastrophic failures of these methods
should be determined. One direction for future research
would be to characterize the databases for which these
very simple Monte Carlo or RMHC approaches will work.
(For research that attempts to characterize the qualities
of different data sets, see [Quinlan, 1993; Aha, 1992;
Rendell and Cho, 1990].) We take some initial steps in
this direction in the following section.

4 When will Monte Carlo sampling work?

It is clear that such naive sampling techniques will not al-
ways work, although their limits need to be determined ex-
perimentally and theoretically. (One avenue of research is
to determine whether random sampling of sets of prototypes
can itself provide a measure of the predictive complexity of
a database.) The success of a sampling algorithm appears to
depend partly on the distribution of instances in the data set
and the geometric structure of the concepts to be learned.

In particular, one possible explanation for the successful
results from sampling presented in this paper is that the data
sets used exhibit well-defined, widely spaced classes5 in
feature space, classes that exhibit a high degree of “internal
coherence” and “external isolation.” The intuition is that
such an ideal separation of classes moots the selection of a
prototype, since any instance in an isolated class may give
perfect accuracy via a nearest neighbor algorithm.

Characterizing clusters and determining the “optimal” num-
ber of clusters in a data set are classical problems, and many
indicators have been proposed, usually under the heading
stopping rules, used to determine where to terminate a hier-
archical clustering algorithm [Milligan and Cooper, 1985].
In an empirical examination of stopping rules, the Calinski-
Harabasz Index (sometimes, the “Index”) was the best per-
forming of 30 procedures [Milligan and Cooper, 1985;
Calinski and Harabasz, 1974]. The Index is defined as� � �������	� ��
 ��� 1 
�� � � � ��������� ��
���� ��
�� where � is the total
number of data instances and � is the number of clusters
in a possible clustering6. � is the between cluster sum of
squares and cross product matrices, and � is the pooled
within cluster sum of squares and cross product matrices
from multivariate statistics.

We have applied this index to determine how well the
classes — regarded as clusters — are separated within each
data set. We performed a set of experiments to determine
the effect of class isolation and cohesion, measured by the
Calinski-Harabasz Index, on the performance of the MC1
Monte Carlo sampling algorithm. Our hypothesis was that

5We thank Paul Utgoff for this suggestion.
6The trace of a square matrix is the sum of its diagonal

elements.



Table 6: Summary of average classification accuracy (% correct) from five-fold cross validation for the experiments
presented in this paper to select prototypes and features. Storage requirements, in percentage of the data set are given in
parentheses. The symbol “

�
” denotes statistically significant improvement over the baseline 1-nearest neighbor algorithm

(1-NN) at the 0.1 confidence level; “*”, significance at the 0.05 confidence level. A two-sample t-test for statistical
significance assuming equal population variances was used.

Database 1-NN MC1 RMHC-P RMHC-PF1
Iris 93.3 93.5 (2.0) 93.3 (2.0) 94.7 (1.2)
Cleveland 74.3 80.7 (1.0) 82.3* (1.0) 80.7

�
(0.6)

Breast Cancer 65.6 72.6
�
(1.0) 70.9 (1.0) 72.3* (0.6)

Soybean 100.0 99.1 (8.5) 97.8 (8.5) 97.8 (3.9)

as the Calinski-Harabasz Index increased, which entails
greater class cohesion and external isolation, the perfor-
mance of MC1 would also increase.

For each of the four data sets, we performed a 10-fold cross
validation. The MC1 algorithm was run on each of the
resulting 10 training sets and its classification accuracy was
determined on the corresponding test set. Since classifica-
tion accuracy is computed on the test set, we compute the
Calinski-Harabasz Index of each pair of classes appearing
in each of the 10 test sets. From the standpoint of using the
Index to predict the suitability of a sampling technique for
a given data set, the Index value on the training set might
better reflect the “true” clustering displayed by the entire
data set. Experimental results that apply the Index to the
training set have not been conclusive to date, however.

We report the results in Figures 1, 2 and 3, where we show
the relationship between the minimum Calinski-Harabasz
Index (taken over all the pairs of classes in a test set) and
the classification accuracy on out-of-sample test sets7. The
minimum Index was used as the independent variable un-
der the hypothesis that the worst separation between a pair
of classes would dominate the classification accuracy. We
would have preferred to compare the Index of each data
set and attempted to show how the classification accuracy
varies with the Calinski-Harabasz Index, but it is unclear to
what extent Index values from distinct data sets are compa-
rable. Also, Index values vary by orders of magnitude on
the training and test sets, and the large apparent variation in
Index values across partitions is small on a relative basis.

The results show a clear tendency for MC1 to perform bet-
ter when the cluster index is higher (good class separation)
and worse when the cluster index is lower (poor separa-
tion). Tests for significance of the regression trendlines
were confirmed by an ANOVA F-test, where all were found
significant at the 0.05 confidence level (Iris: � � 6 � 2;
Cleveland: � � 17 � 6; Breast Cancer: � � 5 � 4). While the
results are not conclusive, they do present a basis for addi-
tional experiments to determine the range of applicability
of Monte Carlo approaches.

7Due to the uniformly high performance on the Soybean data,
we omit the analysis of that data set.

80

82

84

86

88

90

92

94

96

98

100

0 2 4 6 8 10 12

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y 

(%
)

Calinski-Harabasz Index

Figure 1: Classification accuracy vs. Calinski-Harabasz
Index on Iris data
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Figure 2: Classification accuracy vs. Calinski-Harabasz
Index on Cleveland Heart Disease data
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Figure 3: Classification accuracy vs. Calinski-Harabasz
Index on Breast Cancer data

5 Related research

In a recent article Holte [1993] demonstrated that a very
simple type of classification rule is sufficient to perform
quite good classification on a number of commonly used
databases. Our results complement that work by showing
how weak methods dependent on random sampling search
techniques work very well on two such databases. While
Holte used decision trees for concept representation and
applied several simple inductive learning algorithms, we
instead use sets of prototypical instances as partial concept
descriptions for a simple nearest neighbor classification al-
gorithm.

Protos [Bareiss, 1989] is a good example of a case-based
reasoning system that relies on case prototypes for clas-
sification. An exemplar that is successfully matched to a
problem has its prototypicality rating increased. The pro-
totypicality rating is used to determine the order in which
exemplars are selected for further, knowledge-based pat-
tern matching. Protos is an intelligent classification assis-
tant and the prototypicality rating may be increased based
in part on the actions of the supervising teacher. The Re-
Mind case-based reasoning development shell [Cognitive
Systems, Inc., 1990] also incorporates a facility for the user
to create prototypes to further index a case base.

While this paper investigates the coupling between proto-
types and features, the classical problem of feature sub-
set selection has received much attention from machine
learning researchers (e.g., [Almuallim and Dietterich, 1991;
Kira and Rendell, 1992; Moore and Lee, 1994; Langley and
Sage, 1994]). John, Kohavi and Pfleger[1994] identify the
need for “wrapper” models of selection, which incorporate
the target inductive algorithm into the selection of features.
The RMHC-PF1 procedure is an instance of a wrapper algo-
rithm that wraps around the target nearest neighbor method,

for example.

Caruana and Freitag[1994] compare five algorithms that
perform hillclimbing in feature space where the target al-
gorithm is C4.5, and the task is a difficult scheduling task.
The authors also present an ingenious caching scheme ap-
propriate to decision trees to speed up hillclimbing. (In
contrast, the caching scheme used by the programs pre-
sented here was a simple memoizing technique that relied
on exact match of function arguments.)

Genetic algorithm classification systems have been created
by Vafaie and De Jong [1992] and by Kelly and Davis
[1991] to select features by learning real-valued weights
for features in a data set and by DeJong and Spears [1991]
to learn conceptual classification rules. Tan and Schlimmer
[1990] have shown how features for nearest-neighbor re-
trieval may be selected where the determination of feature
values has a computational price.

6 Conclusion

We have found these results surprising. Using very sim-
ple stochastic algorithms these experiments show that sig-
nificant reductions in storage of cases and features can be
achieved on the data sets examined without decreasing near-
est neighbor classification accuracy, and in some instances
actually improving it. This paper also has provided ev-
idence for the hypothesis that the average accuracy of a
simple method of finding prototypes by sampling increases
with the internal coherence and external isolation of the
classified data, as measured by a classical clustering index
developed by Calinski and Harabasz.
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